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1. Introduction

A toric variety is a normal algebraic variety of complex dimension � with an action
of the algebraic torus (C∗)� having an open dense orbit. A typical example of a non-
singular complete toric variety is the projective space CP � of complex dimension �
with the standard action of (C∗)�.

The cohomological rigidity problem for toric varieties poses the question as to
whether two non-singular complete toric varieties are diffeomorphic if their cohom-
ology rings are isomorphic as graded rings. Although a cohomology ring is known to
be a weak invariant even under homotopy equivalence, no example able to refute the
problem has been found yet. On the contrary, many results have been produced in
support of the affirmative answer to the problem. One of the remarkable results on
this topic is that two non-singular complete toric varieties with second Betti num-
ber 2 (or Picard number 2) are diffeomorphic if and only if their cohomology rings
are isomorphic as graded rings (see [6]). We refer the reader to a survey paper [4]
on this problem.

On the other hand, it is possible to pose a stronger version of the cohomologi-
cal rigidity problem for toric varieties as follows. Throughout this paper, H∗(X)
denotes the integral cohomology ring of a topological space X.
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Strong cohomological rigidity problem for toric varieties. Let M and
M ′ be non-singular complete toric varieties. If ϕ is a graded ring isomorphism from
H∗(M) to H∗(M ′), does a diffeomorphism capable of inducing the isomorphism ϕ
exist?

The projective space CP 1 is the only non-singular complete toric variety of com-
plex dimension 1, and it is easy to show that every cohomology ring automorphism is
realizable by a diffeomorphism. Note that every toric variety of complex dimension
� admits a canonical action of the �-dimensional compact torus T � = (S1)� ⊂ (C∗)�.
Furthermore, Orlik and Raymond [14] showed that real four-dimensional compact
manifolds that admit well-behaved actions of T 2 can be expressed as connected
sums of copies of CP 2, CP 2 and CP 1 × CP 1, and such manifolds are classified
by their cohomology rings up to diffeomorphism, where CP 2 denotes CP 2 with
reversed orientation. According to Wall [16], each cohomology ring automorphism
of such a manifold of real dimension 4 with second Betti number β2 � 10 is induced
by a diffeomorphism. Hence, one can conclude that the answer to the strong coho-
mological rigidity problem is affirmative for complex two-dimensional non-singular
complete toric varieties with β2 � 10.

However, the negative answer is also known. For instance, not every cohomology
ring automorphism is realizable by diffeomorphism for complex two-dimensional
non-singular complete toric varieties with β2 > 10 (see [10]). Furthermore, this
implies that the answer to the strong cohomological rigidity problem for toric vari-
eties of arbitrary dimension with sufficiently large β2 may be negative. Hence, it is
reasonable to pose the strong cohomological rigidity problem for toric varieties of
arbitrary complex dimension � with small β2. We note that, because a non-singular
complete toric variety with β2 = 1 is the complex projective space CP �, and every
automorphism of H∗(CP �) is induced by a diffeomorphism on CP �, the strong
cohomological rigidity holds for non-singular complete toric varieties with β2 = 1.

The aim of the work presented in this paper is to study the strong cohomo-
logical rigidity problem for non-singular complete toric varieties with β2 = 2. We
show that the problem can be solved by demonstrating that every cohomology ring
automorphism of these toric varieties is realizable by a diffeomorphism. Combining
our result with the fact that non-singular complete toric varieties with β2 = 2 are
smoothly classified by their cohomology rings [6], we have the following theorem.

Theorem 1.1. Every cohomology ring isomorphism between two non-singular com-
plete toric varieties with second Betti number 2 is realizable by a diffeomorphism.

The notion of a quasitoric manifold was introduced in [9] as a topological ana-
logue of a non-singular projective toric variety. A quasitoric manifold M is a real
2�-dimensional compact smooth manifold with a locally standard T �-action whose
orbit space can be identified with an �-dimensional simple polytope P . Every com-
plex �-dimensional non-singular projective toric variety with a restricted action
of (C∗)� to T � is a quasitoric manifold of real dimension 2�. It is noteworthy to
remark that every non-singular complete toric variety with β2 = 2 is projective,
and hence is a quasitoric manifold. However, not all quasitoric manifolds can be
toric varieties. For example, an equivariant connected sum CP 2#CP 2 of two CP 2s
with an appropriate T 2-action is a quasitoric manifold with orbit space a square
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∆1 × ∆1, although it is not a toric variety because it does not admit an almost
complex structure. Hence, the class of quasitoric manifolds is larger than that of
non-singular projective toric varieties1.

Note that quasitoric manifolds with β2 = 2 are topologically classified by their
cohomology rings [8]. In this work, we also investigate strong cohomological rigidity
for quasitoric manifolds as follows.

Theorem 1.2. Every cohomology ring isomorphism between two quasitoric mani-
folds with second Betti number 2 is realizable by a homeomorphism.

The remainder of this paper is organized as follows. In § 2, we review the proper-
ties of quasitoric manifolds and the topological classification of quasitoric manifolds
with β2 = 2. In § 3, we introduce the weighted projective space CPn+1

a and obtain
quasitoric manifolds over ∆n × ∆1 by carrying out an equivariant connected sum

CPn+1
a #CPn+1

a or CPn+1
a #CPn+1

a .

By using this, we show that every cohomology ring automorphism of such a qua-
sitoric manifold is realizable by a diffeomorphism. In § 4 we discuss the realizabil-
ity of a cohomology ring automorphism for a non-singular complete toric variety
with β2 = 2. In § 5, we consider quasitoric manifolds over the product of simplices
∆n × ∆m that are not non-singular complete toric varieties. Finally, we complete
the proofs of theorems 1.1 and 1.2 in § 6.

2. Quasitoric manifolds with second Betti number 2

In this section, we first review the general properties of quasitoric manifolds from
[1, 5, 9]. We partly focus on the case for which the second Betti number is 2. In
addition, we recall the classification results in [6, 8].

Let M be a 2�-dimensional quasitoric manifold over an �-dimensional simple
polytope P with d facets (codimension-1 faces). Let F be a k-dimensional face
of P . Note that for the orbit map ρ : M → P and for a point x ∈ ρ−1(F ◦), the
isotropy subgroup at x is independent of the choice of x and is a codimension-k
subtorus, which is not necessarily a coordinate subtorus, of T �, where F ◦ denotes
the interior of F . If F is a facet of P , then ρ−1(F ) is fixed by a circle subgroup
of T �. We define a function λ : {F1, . . . , Fd} → Hom(S1, T �) ∼= Z

�, known as the
characteristic function of M , such that λ(Fi) fixes the characteristic submanifold
Mi := ρ−1(Fi) for i = 1, . . . , d, where {F1, . . . , Fd} is the set of facets of P . We note
that λ satisfies the following non-singularity condition:

λ(Fi1), . . . ,λ(Fiα) form a part of an integral basis of Z
�

whenever the intersection Fi1 ∩ · · · ∩ Fiα is non-empty. (2.1)

Conversely, let us consider a function λ : {F1, . . . , Fd} → Z
� satisfying (2.1) and

its matrix representation Λ =
(
λ(F1) · · ·λ(Fd)

)
, called a characteristic matrix. For

a characteristic matrix Λ and a face F of P , we denote by T (F ) the subgroup of

1 In theory, a non-singular non-projective complete toric variety may fail to be a quasitoric
manifold.
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T � corresponding to the unimodular subspace of Z
� spanned by λ(Fi1), . . . ,λ(Fiα),

where F = Fi1 ∩ · · · ∩ Fiα . For each point p ∈ P , let F (p) denote the face of P
containing p ∈ P in its relative interior. Then, we construct a manifold

M(P, Λ) := T � × P/∼, (2.2)

where (t, p) ∼ (s, q) if and only if p = q and t−1s ∈ T (F (p)). Then, the standard
T �-action on T � induces a locally standard T �-action on M(P, Λ), and M(P, Λ)
is indeed a quasitoric manifold over P whose characteristic function is λ. Note
that the two vectors λ(Fi) and −λ(Fi) determine the same circle subgroup of T �.
Hence, if Λ′ is a matrix obtained from Λ by changing the signs of some columns,
then M(P, Λ′) is equal to M(P, Λ).

Set F(P ) = {F1, . . . , Fd} and define a map Θ : F(P ) → Z
d by Θ(Fi) = ei,

where ei is the ith standard basis vector. Using Θ, we can construct a T d-manifold
ZP = T d × P/∼ as in (2.2). Then the dimension of ZP is equal to d + �. The
T d-manifold ZP is referred to as a moment-angle manifold of P . For instance, Z∆�

is the (2�+1)-dimensional sphere S2�+1. Note that for two simple polytopes P and
Q, we have ZP×Q = ZP × ZQ. Hence, Z∆n×∆m = S2n+1 × S2m+1. Let us consider
the map Z

d → Z
� that makes the following diagram commute:

Z
d ��

Z
�

F(P )
Θ

���������� λ

����������

Then this map can be regarded as a homomorphism defined by x �→ Λx for every
x ∈ Z

d. Henceforth, this homomorphism is denoted by λ unless this is confusing.
Let K be the subtorus of T d corresponding to kerλ. Then K acts freely on ZP ,
and the orbit space of K on ZP is the quasitoric manifold M(P, Λ).

Two quasitoric manifolds M and M ′ over P are said to be equivalent if there is
a θ-equivariant homeomorphism f : M → M ′, i.e. f(t · x) = θ(t) · f(x) for t ∈ T �

and x ∈ M , which covers the identity map on P for some automorphism θ of T �.
Thus, M(P, Λ) and M(P, Λ′) are equivalent if there is an element G in the general
linear group GL(�, Z) of rank � over Z such that Λ′ = GΛ.

There is a well-known formula for the cohomology ring of a quasitoric mani-
fold with Z-coefficients. Let M be a quasitoric manifold over P with characteristic
matrix Λ = (λij)1�i��,

1�j�d
. Then,

H∗(M(P, Λ)) = Z[x1, . . . , xd]/IP + J , (2.3)

where xi is the degree-2 cohomology class dual to the characteristic submanifold
Mi, IP is the homogeneous ideal generated by all square-free monomials xi1 · · ·xiα

such that Fi1 ∩ · · · ∩ Fiα is empty, and J is the ideal generated by linear forms
λi1x1 + · · · + λidxd, 1 � i � �. Note that the second Betti number of M is equal to
d − �.

Let M be a quasitoric manifold with second Betti number β2 = 2. Then the
orbit space of M is a polytope of dimension � with � + 2 facets. Hence, the orbit
space is a product of two simplices ∆n ×∆m (see [12]) for some n and m satisfying
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n + m = �. Let {F1, . . . , Fn+1} and {F ′
1, . . . , F

′
m+1} be the sets of facets of ∆n and

∆m, respectively. Then, each facet of ∆n × ∆m is either of the form Fi × ∆m or
∆n × F ′

j . We may assign an order to the facets of ∆n × ∆m as follows:

F1 × ∆m, ∆n × F ′
1, F2 × ∆m, . . . , Fn+1 × ∆m, ∆n × F ′

2, . . . , ∆n × F ′
m+1.

Since the last � facets meet at a vertex, up to equivalence, we may assume that the
last � columns of the characteristic matrix Λ corresponding to M form an identity
matrix. Furthermore, by the non-singularity condition (2.1), it becomes clear that

Λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −b1 1
...

...
. . . 0

−1 −bn 1
−a1 −1 1

...
... 0

. . .
−am −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.4)

where 1 − ajbi = ±1 for i = 1, . . . , n and j = 1, . . . , m. See [8] for more details.
From now on, Ma,b denotes the quasitoric manifold M(∆n ×∆m, Λ) for Λ in (2.4),
where a = (a1, . . . , am) and b = (b1, . . . , bn). By (2.3), the cohomology ring of Ma,b

with Z-coefficients is

H∗(Ma,b) = Z[x1, x2]
/〈

x1

n∏
i=1

(x1 + bix2), x2

m∏
j=1

(ajx1 + x2)
〉

. (2.5)

A generalized Bott tower of height h, or an h-stage generalized Bott tower, is a
sequence

Bh
πh−−→ Bh−1

πh−1−−−→ · · · π2−→ B1
π1−→ B0 = {a point}

of manifolds Bi = P (C ⊕
⊕ni

j=1 ξi,j), where C is the trivial line bundle, ξi,j is
a complex line bundle over Bi−1 for each i = 1, . . . , h, and P (·) stands for the
projectivization. We refer to Bi as an i-stage generalized Bott manifold. We remark
that a two-stage generalized Bott manifold provided by n = m = 1 is known as
a Hirzebruch surface [9]. Note that h-stage generalized Bott manifolds are non-
singular projective toric varieties with β2 = h, and are quasitoric manifolds over
a product of h simplices. Moreover, by [5], a quasitoric manifold over a product
of simplices has a non-singular complete toric variety structure if and only if it is
equivalent to a generalized Bott manifold. Hence, every non-singular complete toric
variety with β2 = 2 is a two-stage generalized Bott manifold.

For simplicity, for every complex line bundle L over a base B, the a-times tensor
bundle of L is denoted by La. If b = 0, then Ma,0 is equivalent to a two-stage
generalized Bott manifold P (C ⊕

⊕m
j=1 γaj ), where γ is a tautological line bundle

over CPn. Furthermore, in (2.5), the generator x1 of H∗(Ma,0) is −c1(γ), the
negative of the first Chern class of γ, and the generator x2 of H∗(Ma,0) is the
negative of the first Chern class of the tautological line bundle over P (C⊕

⊕m
j=1 γaj ).

On the other hand, if a = 0, then a quasitoric manifold M0,b is equivalent to a
two-stage generalized Bott manifold P (C ⊕

⊕n
i=1 ηbi), where η is the tautological

line bundle over CPm (see [5]). Similarly, in (2.5), the generator x2 of H∗(M0,b) is
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−c1(η) and the generator x1 of H∗(M0,b) is the negative of the first Chern class of
the tautological line bundle over P (C ⊕

⊕n
i=1 ηbi).

The following theorem provides a smooth classification of two-stage generalized
Bott manifolds.

Theorem 2.1 (Choi et al . [6]). Let B2 := P (C ⊕
⊕m

j=1 γaj ) and B′
2 := P (C ⊕⊕m

j=1 γa′
j ), where γ denotes the tautological line bundle over B1 = CPn. The fol-

lowing are equivalent.

(1) There exist ε = ±1 and w ∈ Z such that

(1 + εwx1)
m∏

j=1

(1 + ε(a′
j + w)x1) =

m∏
j=1

(1 + ajx1) ∈ H∗(B1),

where x1 = −c1(γ) ∈ H2(B1).

(2) The generalized Bott manifolds B2 and B′
2 are diffeomorphic.

(3) The cohomology rings H∗(B2) and H∗(B′
2) are isomorphic as graded rings.

If neither a nor b is the zero vector, then Ma,b cannot be equivalent to a two-
stage generalized Bott manifold. Moreover, from the non-singularity condition of
(2.4), either the non-zero entries of a are ±2 and the non-zero entries of b are ±1,
or the non-zero entries of a are ±1 and the non-zero entries of b are ±2.

The following theorem gives a topological classification of quasitoric manifolds
with β2 = 2.

Theorem 2.2 (Choi et al . [8]). Two quasitoric manifolds with second Betti num-
ber 2 are homeomorphic if and only if their integral cohomology rings are isomorphic
as graded rings.

Furthermore, a quasitoric manifold M with β2 = 2 that is not equivalent to a
generalized Bott manifold is homeomorphic to Ms,r for some non-zero vectors

s := (2, . . . , 2︸ ︷︷ ︸
s

, 0, . . . , 0) ∈ Z
m and r := (1, . . . , 1︸ ︷︷ ︸

r

, 0, . . . , 0) ∈ Z
n,

where s � �(m + 1)/2	 and r � �(n + 1)/2	. In particular, in the case where n > 1
and m > 1, all Ms,rs are distinct and they cannot be homeomorphic to generalized
Bott manifolds. In other cases, Ms,r is homeomorphic to

(1) M0,1 = CPm+1#CPm+1 if n = 1 and m is even;

(2) either M0,1 or M(2,0,...,0),1 = CPm+1#CPm+1 if n = 1 and m is odd;

(3) M2,0 if n is even and m = 1; and

(4) either M2,0 or M2,(1,0,...,0) if n is odd and m = 1,

where # denotes an equivariant connected sum and CPm+1 denotes CPm+1 with
reversed orientation.
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Since the orbit space of a quasitoric manifold Ma,b is ∆n×∆m, Ma,b is a quotient
of Z∆n×∆m = S2n+1 × S2m+1 by an action of T 2. More precisely, let us define a
free action of the 2-torus Ka,b on S2n+1 × S2m+1 by

(t1, t2) · ((w1, . . . , wn+1), (z1, . . . , zm+1))

= ((t1tb12 w1, . . . , t1t
bn
2 wn, t1wn+1), (ta1

1 t2z1, . . . , t
am
1 t2zm, t2zm+1)).

Then the orbit space S2n+1 × S2m+1/Ka,b is the quasitoric manifold Ma,b.

Remark 2.3. Let ϕ be a graded ring automorphism of H∗(Ma,b). Then there is a
matrix (gij)i,j=1,2 such that g11g22 − g12g21 = ±1 and(

ϕ(x1)
ϕ(x2)

)
=

(
g11 g12

g21 g22

) (
x1

x2

)
.

Hence, Aut(H∗(Ma,b)) can be regarded as a subgroup of GL(2, Z).

3. Weighted projective spaces and their connected sums

It is well known that the quasitoric manifold M1,0 over ∆n × ∆1 is the con-
nected sum CPn+1#CPn+1, and the quasitoric manifold M1,(2,0,...,0) is the con-
nected sum CPn+1#CPn+1. In this section, we show that quasitoric manifolds M2,0

and M2,(1,0,...,0) over ∆n × ∆1 can be expressed as equivariant connected sums of
weighted projective spaces, before considering the realizability of the automorphism
of H∗(Ma,b) when a = 1 or a = 2.

Let us first consider the definitions and properties of weighted projective spaces.

Definition 3.1. Let q = (q0, . . . , q�) be an (� + 1)-tuple of positive integers, with
gcd(q0, . . . , q�) = 1. The (complex) weighted projective space of weight q, denoted
by CP �

q , is defined as the quotient of C
�+1 \ {0} by the weighted action of C

∗,

ζ · (z0, . . . , z�) �→ (ζq0z0, . . . , ζ
q�z�).

Alternatively, CP �
q can be realized as the quotient of the unit sphere S2�+1 ⊂ C

�+1

by the action of S1, which is obtained by the restriction of the above action of C
∗

to the unit circle S1.

Note that if q0 = · · · = q� = 1, then CP �
q is the ordinary projective space CP �.

The image of
(C∗)�+1 ⊂ C

�+1 \ {0}

in CP �
q is the quotient (C∗)�+1/C

∗, where we regard C
∗ as the subgroup of (C∗)�+1

via the map ζ �→ (ζq0 , . . . , ζq�). Then, the action of (C∗)�+1 on C
�+1 \ {0} descends

to an action of (C∗)� ∼= (C∗)�+1/C
∗ on CP �

q . Furthermore, CP �
q is a projective toric

variety that is not necessarily non-singular.
Note that CP �

q is equipped with an action of the �-dimensional torus T �
q =

(S1)�+1/jq(S1), where jq : S1 → (S1)�+1 is the embedding defined by jq(ζ) =
(ζq0 , . . . , ζq�). It is well known that CP �

q with this action of T �
q is a toric Kähler

orbifold; see [11] for more details.
We can also consider real weighted projective spaces as follows.

https://doi.org/10.1017/S0308210516000457 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210516000457


978 S. Choi and S. Park

Definition 3.2. Let q := (q0, . . . , q�) be an (� + 1)-tuple of positive integers, with
gcd(q0, . . . , q�) = 1. The real weighted projective space of weight q, denoted by RP �

q ,
is defined as the quotient of R

�+1 \ {0} by the weighted action of R \ {0},

ζ · (x0, . . . , x�) = (ζq0x0, . . . , ζ
q�x�).

Alternatively, RP �
q is also realized as the quotient of the unit sphere S� ⊂ R

�+1 by
the action of Z2 = {±1}, which is obtained by the restriction of the above action
of R \ {0} to Z2. Hence, if all qis are odd, then RP �

q is the ordinary real projective
space RP �.

Note that the real weighted projective space RP �
q is the fixed set of the conjuga-

tion action on the weighted projective space CP �
q .

As mentioned in the introduction, a quasitoric manifold is a topological gener-
alization of a non-singular projective toric variety. The notion of a projective toric
variety, which is not necessarily non-singular, is also topologically generalized to
that of a quasitoric orbifold. This generalization was introduced by several authors
in, for example, [9, 13,15].

Suppose that P is a simple polytope of dimension � with d facets F1, . . . , Fd.
By relaxing the unimodality condition (2.1), we can define a rational characteristic
function as follows. A function λ : {F1, . . . , Fd} → Z

� is called a rational characteris-
tic function if λ(Fi1), . . . ,λ(Fiα

) are linearly independent over Z whenever the inter-
section Fi1 ∩ · · · ∩Fiα is non-empty. Each vector λ(Fi) is the rational characteristic
vector corresponding to Fi. Let K be the subtorus of T d corresponding to the kernel
of λ. Then K acts on ZP with finite isotropy groups. We denote by Q(P,λ) the
orbit space of K on ZP and call it the quasitoric orbifold corresponding to (P,λ).
If we assign an order to the set of facets of P , the rational characteristic function
λ can be represented by the rational characteristic matrix Λ =

(
λ(F1) · · ·λ(Fd)

)
.

For simplicity, we use the notation Q(P, Λ) instead of Q(P,λ) provided that this
does not cause confusion.

Note that Z∆� is S2�+1 and the subtorus K corresponding to the kernel of a
rational characteristic function on ∆� is a circle with a suitable weight. Hence, the
weighted projective space CP �

q is a quasitoric orbifold over ∆�.
In particular, for a positive integer a, let q := (1, . . . , 1, a) ∈ Z

n+2. We specify
CPn+1

a := CPn+1
q and Tn+1

a := Tn+1
q . That is, CPn+1

a is the quotient of S2n+3 by
the action of S1 with the weight (1, . . . , 1, a),

ζ · (z0, . . . , zn+1) �→ (ζz0, . . . , ζzn, ζazn+1).

For each z = (z0, . . . , zn+1) in S2n+3, the isotropy group of the action of S1 at z is
the identity except if z = (0, . . . , 0, 1). The isotropy group at z = (0, . . . , 0, 1) is µa,
the group of the ath roots of 1. Therefore, the weighted projective space CPn+1

a

has a unique singularity at the point [0, . . . , 0, 1], modelled on C
n+1/µa. Let us find

the rational characteristic function λ corresponding to CPn+1
a . Note that for each

i = 0, . . . , n + 1, the suborbifold Qi of CPn+1
a described by zi = 0 is fixed by the

quotient of the (i + 1)th coordinate circle of Tn+2. We identify Tn+1
a and Tn+1 via

the map that sends the (i + 1)th coordinate circle of Tn+2 to the ith coordinate
circle of Tn+1 for i = 1, . . . , n + 1. Since [ζ, 1, . . . , 1] = [1, ζ−1, . . . , ζ−1, ζ−a] in
Tn+1

a , the first coordinate circle of Tn+2 is identified with the circle subgroup of
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Tn+1 generated by (ζ−1, . . . , ζ−1, ζ−a). Moreover, the torus Tn+1 acts on CPn+1
a

as follows:

(t1, . . . , tn+1) · [z0, . . . , zn+1] = [z0, t1z1, . . . , tn+1zn+1].

Then, for each i = 1, . . . , n + 1, the suborbifold Qi is fixed by the ith coordinate
circle of Tn+1, and Q0 is fixed by the circle generated by (−1, . . . ,−1,−a) in Z

n+1 =
Hom(S1, Tn+1). Let us denote by Fi the facet of ∆n+1 corresponding to Qi. Then
λ(F0) = (−1, . . . ,−1,−a) and λ(Fi) = ei for i = 1, . . . , n. Hence, the rational
characteristic matrix corresponding to CPn+1

a is

Λa :=
(
λ(F0) λ(F1) · · · λ(Fn+1)

)
=

⎛
⎜⎜⎜⎜⎜⎝

−1 1
−1 1
...

. . .
−1 1
−a 1

⎞
⎟⎟⎟⎟⎟⎠ . (3.1)

In particular, a fan2 of CPn+1
a as a projective toric variety is obtained by taking

the cones generated by all proper subsets of

{−e1 − · · · − en − aen+1, e1, . . . ,en+1}.

On the other hand, consider (n + 1) × (n + 2) matrices of the form

Λ =

⎛
⎜⎜⎜⎜⎜⎝

±1 ±1
±1 ±1
...

. . .
±1 ±1
±a ±1

⎞
⎟⎟⎟⎟⎟⎠ .

Then Λ is a rational characteristic matrix on ∆n+1. Because a row operation of Λ
whose determinant is ±1 corresponds to an automorphism of Tn+1, and changing
the signs of column vectors does not affect the subgroup generated by these column
vectors, it is clear that Q(∆n+1, Λ) is equivalent to the weighted projective space
CPn+1

a with a suitable action of Tn+1.
Now, let us consider a smooth manifold CPn+1

a #CPn+1
a obtained by the (equiv-

ariant) connected sum of CPn+1
a and CPn+1

a at their singular points. More pre-
cisely, let D′ and D′′ be closed balls in CPn+1

a and CPn+1
a , respectively, con-

taining the singular point that is a suborbifold with a boundary diffeomorphic
to D2(n+1)/µa, where D2(n+1) is the closed unit ball in C

n+1. By deleting the
interiors of the balls D′ in CPn+1

a and D′′ in CPn+1
a , and attaching the resulting

punctured manifolds CPn+1
a \ D′◦ and CPn+1

a \ D′′◦ to each other by a diffeomor-

2 A fan is a collection Σ of cones in R� such that each face of a cone in Σ is also a cone in Σ,
and the intersection of two cones in Σ is a face of each. It is well known that there is a one-to-one
correspondence between fans in R� and toric varieties of complex dimension �.
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Figure 1. Illustration of CP 2
a #CP 2

a .

phism ∂D′ ∼= S2n+1/µa
∼= ∂D′′, we obtain a smooth manifold CPn+1

a #CPn+1
a .3

This can be described in terms of toric topological language. Let us review the con-
struction of the equivariant connected sum for quasitoric orbifolds Q(P ′,λ′) and
Q(P ′′,λ′′). Let v′ = F ′

1 ∩ · · · ∩ F ′
� and v′′ = F ′′

1 ∩ · · · ∩ F ′′
� be the vertices of P ′ and

P ′′, respectively, such that λ′(F ′
i ) = λ′′(F ′′

i ) for i = 1, . . . , �. Then the connected
sum of P ′ and P ′′ with respect to v′ and v′′ is combinatorially equivalent to the
polytope formed by deleting the small balls of v′ and v′′ of P ′ and P ′′, respectively,
and gluing together the resulting neighbourhoods. The hyperplanes containing F ′

i

and F ′′
i , respectively, must be attached to another for i = 1, . . . , �. When the choices

of v′ and v′′ with the order of facets are clear, the connected sum is denoted by
P ′#P ′′. Indeed, P ′#P ′′ is combinatorially equivalent to a simple polytope due
to [2]. The equivariant connected sum of Q(P ′,λ′) and Q(P ′′,λ′′) is the quasitoric
orbifold corresponding Q(P ′#P ′′,λ), where λ is a characteristic function natu-
rally defined by λ′ and λ′′. Indeed, CPn+1

a #CPn+1
a is the equivariant connected

sum of two quasitoric orbifolds. Near the singular points [0, . . . , 0, 1] ∈ CPn+1
a and

[0, . . . , 0, 1] ∈ CPn+1
a , both have the same singularity and the same characteris-

tic vectors: e1, . . . ,en, and −e1 − · · · − en − aen+1. Hence, we can carry out an
equivariant connected sum CPn+1

a #CPn+1
a by removing the singular points as in

figure 1.
Note that the orientation of CPn+1

a is associated with the orientation of ∆n+1 ⊂
R

n+1 and the columns of the characteristic matrix are determined up to sign. Then
the characteristic matrix of CPn+1

a #CPn+1
a is

⎛
⎜⎜⎜⎜⎜⎝

−1 1
−1 1
...

. . .
−1 1
−a −1 1

⎞
⎟⎟⎟⎟⎟⎠ . (3.2)

Now, consider a two-stage generalized Bott manifold P (C ⊕ γa), where γ is the
tautological line bundle over CPn. The relationship between the weighted projective

3 Note that if we do a connected sum at a non-singular point, then the connected sum
CP n+1

a #CP n+1
a or CP n+1

a #CP n+1
a still has singular points. In this paper, we consider only

the case in which both CP n+1
a #CP n+1

a and CP n+1
a #CP n+1

a are smooth manifolds that are the
connected sums at singular points.
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Figure 2. A Hirzebruch surface is a blow-up from CP 2
(1,1,a).

space CPn+1
a and the projective bundle P (C ⊕ γa) over CPn is provided by the

following lemma.

Lemma 3.3. Let a > 1. Then a projective bundle P (C⊕γa) over CPn is the blow-up
of CPn+1

a at the singular point.

Proof. Each one-dimensional cone in a fan of P (C ⊕ γa) is generated by one of the
elements in

S := {−e1 − · · · − en − aen+1,−en+1, e1, . . . ,en+1}.

We obtain a fan of CPn+1
a by taking the cones generated by all proper subsets

of the set S \ {−en+1}; see figure 2. Note that the cone generated by the set
{−e1 − · · · − en − aen+1, e1, . . . ,en} corresponds to the singular point [0, . . . , 0, 1]
of CPn+1

a , and −aen+1 = (−e1 −· · ·−en −aen+1)+e1 + · · ·+en. Hence, P (C⊕γa)
is the blow-up of CPn+1

a at the singular point. See figure 2.

Lemma 3.4.

(1) For a > 0, Ma,0 is homeomorphic to CPn+1
a #CPn+1

a .

(2) Let
r = (1, . . . , 1︸ ︷︷ ︸

r

, 0, . . . , 0) ∈ Z
n.

Then M2,r is homeomorphic to

(a) CPn+1
2 #CPn+1

2 if r is even,

(b) CPn+1
2 #CPn+1

2 if r is odd.

Proof. We make note of the fact that a blow-up of CPn+1
a at the singular point

is indeed CPn+1
a #CPn+1

a . By comparing their characteristic functions, it follows
from lemma 3.3 that Ma,0 is equivalent to CPn+1

a #CPn+1
a . Hence, statement (1)

is proved.
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Now let us prove statement (2). Then, as in (2.4), the characteristic matrix of
M2,r is

Λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1 1
...

...
. . .

−1 −1 1
−1 0 1
...

...
. . .

−1 0 1
−2 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the order in F(∆n × ∆1) is

F1 × ∆1, ∆n × F ′
1, F2 × ∆1, . . . , Fn+1 × ∆1, ∆n × F ′

2.

We note that its orbit space ∆n × ∆1 can be identified with ∆n+1#∆n+1. The
columns of Λ corresponding to the (ordered) subset {F1 ×∆1, . . . , Fn+1 ×∆1, ∆n ×
F ′

1} form the rational characteristic matrix Λ̃ on ∆n+1,

Λ̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 −1
...

. . .
...

−1 1 −1
−1 1 0
...

. . .
...

−1 1 0
−2 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Moreover, the columns of Λ corresponding to the subset {F1 × ∆1, . . . , Fn+1 ×
∆1, ∆n × F ′

2} also form the rational characteristic matrix Λ2 on ∆n+1,

Λ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1
...

. . .

−1 1
−1 1
...

. . .

−1 1
−2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that the first n + 1 columns of Λ̃ are equal to those of Λ2, and they have the
determinant 2. Furthermore, the characteristic matrix corresponding to

Q(∆n+1, Λ̃)#Q(∆n+1, Λ2)
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Figure 3. ũ and ṽ in H2(CP 2
a #CP 2

a ).

coincides with Λ. Hence, M2,r is equivalent to the equivariant connected sum of
Q(∆n+1, Λ̃) and Q(∆n+1, Λ2) at the singular points. Note that

Λ̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
. . .

...

1 1
1 0

. . .
...

1 0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0
...

. . .
...

1 1 0
−1 1 0
...

. . .
...

−1 1 0
−2 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.3)

Since the first matrix on the right-hand side of (3.3) is in GL(n+1, Z), Q(∆n+1, Λ̃)
is equivalent to CPn+1

2 . Therefore, M2,r is equivalent to either

CPn+1
2 #CPn+1

2 or CPn+1
2 #CPn+1

2 .

In particular, according to [8, theorem 5.5],

• if n is even, M2,r = M2,0 = CPn+1
2 #CPn+1

2 = CPn+1
2 #CPn+1

2 ;

• if n is odd,

– M2,r = M2,0 = CPn+1
2 #CPn+1

2 for even r, and

– M2,r = M2,(1,0,...,0) = CPn+1
2 #CPn+1

2 for odd r.

This proves statement (2).

Now, let us consider the cohomology ring of CPn+1
a #CPn+1

a . Letting X :=
CPn+1

a \ D◦ and Y := CPn+1
a \ D′◦, we can see that X ∪ Y = CPn+1

a #CPn+1
a

and X ∩ Y = ∂D = ∂D′, where D◦ and D′◦ are the interiors of the closed balls D
and D′ containing the singular point in CPn+1

a and CPn+1
a , respectively.

Let ũ and ṽ be the elements of H2n(X) and H2n(Y ) represented by the subman-
ifolds CPn = {zn+1 = 0} ⊂ X and CPn = {zn+1 = 0} ⊂ Y , respectively. Thus, ũ
and ṽ are elements of H2n(CPn+1

a #CPn+1
a ). See figure 3.

Recall the characteristic matrix (3.2) of CPn+1
a #CPn+1

a . Then the cohomology
ring is

H∗(CPn+1
a #CPn+1

a ) = Z[x1, x2]/〈xn+1
1 , x2(ax1 + x2)〉,
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where x1 and x2 correspond to the first and the second columns of (3.2), respectively.
Because ũ and ṽ represent the characteristic submanifolds associated with ∆n ×F ′

1
and ∆n × F ′

2, through Poincaré duality, ũ and ṽ correspond to u = ax1 + x2 and
v = x2 in H2(CPn+1

a #CPn+1
a ), where the identities originate from J in (2.3).

Now assume that ab = 2. By lemma 3.4,

CPn+1
a #CPn+1

a
∼= Ma,0 and CPn+1

a #CPn+1
a

∼= Ma,(b,0,...,0).

Hence, by using the cohomology formula (2.5), we compute their cohomology rings
as follows:

H∗(CPn+1
a #CPn+1

a ) = Z[x1, x2]/〈xn+1
1 , x2(ax1 + x2)〉,

H∗(CPn+1
a #CPn+1

a ) = Z[x1, x2]/〈xn
1 (x1 + bx2), x2(ax1 + x2)〉.

Note that u = ax1 + x2 and v = x2 correspond to the (n + 1)th and (n + 3)th
columns of the characteristic matrix

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 0 1
−1 0 1
...

...
. . .

−1 0 1
−a −1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

or

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 −b 1
−1 0 1
...

...
. . .

−1 0 1
−a −1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Proposition 3.5. Assume that a = 1 or a = 2. Then the ring automorphism
groups Aut(H∗(CPn+1

a #CPn+1
a )) and Aut(H∗(CPn+1

a #CPn+1
a )) are realizable by

diffeomorphisms.

Proof. If n = 1, then CP 2
a #CP 2

a is a Hirzebruch surface, and CP 2
2 #CP 2

2 is diffeo-
morphic to CP 2#CP 2. According to [3] or [16], all ring automorphisms on their
cohomology rings are realizable by diffeomorphisms. Henceforth, let us assume that
n > 1.

We first compute the ring automorphism groups of

H∗(CPn+1
a #CPn+1

a ) and H∗(CPn+1
a #CPn+1

a )

as subgroups of GL(2, Z) (see remark 2.3). For each case, there is only one relation
x2(ax1 + x2) = 0 such that a product of two degree-2 elements is zero up to
scalar multiplication. Accordingly, an automorphism should send {x2, ax1 + x2} to
{x2, ax1 + x2} up to sign. Hence, there are at most eight automorphisms.

Let u = ax1 + x2 and v = x2. Then we have

un+1 = (−v)n+1 in H∗(CPn+1
a #CPn+1

a )

and

un+1 = (−1)nvn+1 in H∗(CPn+1
a #CPn+1

a ).
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If n is even, neither H∗(CPn+1
a #CPn+1

a ) nor H∗(CPn+1
a #CPn+1

a ) has any auto-
morphism (u, v) �→ ±(u, −v). Hence,

Aut(H∗(CPn+1
a #CPn+1

a )) =
{ (

1 0
0 1

)
,

(
−1 0
0 −1

)
,

(
1 0

−a −1

)
,

(
−1 0
a 1

) }

= Aut(H∗(CPn+1
a #CPn+1

a ))
∼= (Z2)2.

If n is odd, then

Aut(H∗(CPn+1
a #CPn+1

a ))

=
{ (

1 0
0 1

)
,

(
−1 0
0 −1

)
,

(
1 2/a

0 −1

)
,

(
−1 −2/a

0 1

)
,

(
−1 0
a 1

)
,

(
1 0

−a −1

)
,

(
1 2/a

−1 −1

)
,

(
−1 −2/a

a 1

) }

= Aut(H∗(CPn+1
a #CPn+1

a ))
∼= (Z2)3.

We consider an involution s on CPn+1
a defined by

s : [z0, . . . , zn+1] �→ [z0, . . . , zn+1].

For odd n, we consider another involution t defined by

t : [z0, . . . , zn+1] �→ [−z0, . . . ,−zk−1, zk, . . . , zn+1],

where k = (n + 1)/2. Observe that

(1) the involution s reverses the orientation of the submanifold CPn = {zn+1 =
0}, and fixes the real weighted projective space RPn+1

a ;

(2) the fixed-point set of the involution t is the disjoint union of {zk = · · · =
zn+1 = 0} = CP k−1 and {z0 = · · · = zk−1 = 0} = CP k

a ;

(3) the point [0, . . . , 0, 1] is fixed by both s and t.

Note that if a = 1, then [0, . . . , 0, 1] is a smooth point. If a = 2, both [0, . . . , 0, 1] ∈
RPn+1

a and [0, . . . , 0, 1] ∈ CP k
a have the same singularity, that is, [0, . . . , 0, 1] ∈

RPn+1
a is locally modelled by R

n+1/µ2, and [0, . . . , 0, 1] ∈ CP k
a is locally modelled

by C
k/µ2.

Type 1. We consider the involution s on both CPn+1
a and CPn+1

a . Take the equiv-
ariant connected sum of CPn+1

a and CPn+1
a at [0, . . . , 0, 1]. The resulting involution

on CPn+1
a #CPn+1

a then sends (u, v) to (−u, −v).

Type 2. We consider the involution s on CPn+1
a and t on CPn+1

a . Take the equiv-
ariant connected sum of CPn+1

a and CPn+1
a at [0, . . . , 0, 1]. The resulting involution

on CPn+1
a #CPn+1

a then sends (u, v) to (−u, v).
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Type 3. Let D′ (respectively, D′′) be a suborbifold of CPn+1
a (respectively, CPn+1

a )
with a boundary that is diffeomorphic to D2(n+1)/µa, where D2(n+1) is the closed
unit ball. Then CPn+1

a #CPn+1
a is obtained by deleting the interiors of the sub-

orbifolds D′ and D′′ containing [0, . . . , 0, 1] from CPn+1
a and CPn+1

a and gluing
the resulting boundaries ∂D′ and ∂D′′. Hence, CPn+1

a #CPn+1
a admits a reflection

about ∂D′ = ∂D′′ that maps

CPn+1
a \ D′ to CPn+1

a \ D′′.

This reflection sends (u, v) to (v, u).

Then type 1, type 2 and type 3 correspond to(
−1 0
0 −1

)
,

(
−1 −2/a

0 1

)
and

(
−1 0
a 1

)

respectively.
Combining the diffeomorphisms of the three types above, it becomes possible to

realize every element of

Aut(H∗(CPn+1
a #CPn+1

a ))

for a = 1, 2.
Because we can use the same process for CPn+1

a #CPn+1
a , we can realize every

element of Aut(H∗(CPn+1
a #CPn+1

a )) for a = 1, 2.

Remark 3.6. In general, if a is odd, then [0, . . . , 0, 1] ∈ RPn+1
a is smooth, and if

a is even, then [0, . . . , 0, 1] ∈ RPn+1
a has an isotropy group µ2. On the other hand,

[0, . . . , 0, 1] ∈ CP k
a has an isotropy group µa. Hence, type 2 is only possible when

a = 1 or 2.

Combining lemma 3.4 and proposition 3.5, we obtain the following.

Corollary 3.7. Assume that a = 1 or 2. Then for a quasitoric manifold Ma,b,
every automorphism of H∗(Ma,b) is realizable by a homeomorphism.

4. Two-stage generalized Bott manifolds

In this section, we restrict our attention to two-stage generalized Bott manifolds.
We show that every cohomology ring automorphism of a two-stage generalized Bott
manifold is realizable by a diffeomorphism. We prepare the following two lemmas.

Lemma 4.1 (Choi et al . [6, lemma 5.2]). Let E and E′ be Whitney sums of com-
plex line bundles over the complex projective space CPn of the same dimension. If
E and E′ have the same total Chern classes, then E and E′ are isomorphic.

Lemma 4.2 (Choi et al . [6, lemma 6.2]). Let M = P (C ⊕
⊕m

i=1 γai) and M ′ =
P (C ⊕

⊕m
i=1 γa′

i) be projective bundles over the complex projective space B =
CPn. Assume that m is greater than 1. Then every cohomology ring isomorphism
ϕ : H∗(M) → H∗(M ′) preserves the subring H∗(B) unless M is CPn × CPm.

Now we can show the realizability of a cohomology ring automorphism of a two-
stage generalized Bott manifold.
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Proposition 4.3. Let E := C ⊕
⊕m

j=1 γaj be the Whitney sum of complex line
bundles over CPn. Then every graded ring automorphism of H∗(P (E)) is induced
by a diffeomorphism.

Proof. Since every cohomology ring automorphism of a product of complex pro-
jective spaces is induced by a diffeomorphism [7], we may assume that P (E) is a
non-trivial fibre bundle.

Note that P (E) is a Hirzebruch surface if n = m = 1. Each cohomology ring
automorphism of a Hirzebruch surface is realizable by a diffeomorphism by [3]
or [16].

If m = 1 and 1 � a1 � 2, then P (E) is diffeomorphic to CPn+1
a1

#CPn+1
a1 .

Hence, by proposition 3.5, every automorphism of H∗(P (E)) is realizable by a
diffeomorphism.

Then the remaining cases are (i) m > 1 and (ii) m = 1, n > 1, and a1 > 2. Note
that

H∗(P (E)) = H∗(CPn)[x2]
/〈

x2

m∏
j=1

(ajx1 + x2)
〉

= Z[x1, x2]
/〈

xn+1
1 , x2

m∏
j=1

(ajx1 + x2)
〉

,

where x1 = −c1(γ) ∈ H2(CPn) ⊂ H2(P (E)) and x2 ∈ H2(P (E)) is the negative of
the first Chern class of the tautological line bundle over P (E). We first claim that
every cohomology ring automorphism of H∗(P (E)) preserves the subring H∗(CPn)
in each case.

In the first case, i.e. if m > 1, by lemma 4.2, every automorphism of H∗(P (E))
preserves the subring H∗(CPn).

Now, we consider the second case, i.e. m = 1, n > 1, and a1 > 2. Let ϕ
be a ring automorphism of H∗(P (E)). Since n > 1, there is only one relation
x2(a1x1 + x2) = 0 such that a product of two degree-2 elements is zero up to
scalar multiplication. Thus, ϕ should send {x2, a1x1 + x2} to {x2, a1x1 + x2} up
to sign. Suppose that ϕ(a1x1 + x2) = ±(a1x1 + x2) and ϕ(x2) = ∓x2. Then
ϕ(x1) = ±(x1+(2/a1)x2). Because a1 > 2, ϕ cannot be an isomorphism. Therefore,
there are only four automorphisms of H∗(P (C ⊕ γa1)), those being as follows:

Aut(H∗(P (E))) =
{ (

1 0
0 1

) (
−1 0
0 −1

) (
1 0

−a1 −1

) (
−1 0
a1 1

) }
.

Hence, in each case, every ring automorphism of H∗(P (E)) preserves the subring
H∗(CPn), which proves the claim.

Let ϕ be a ring automorphism of H∗(P (E)). By the above claim, ϕ(x1) = ±x1.
Since every automorphism of H∗(CPn) is induced by a diffeomorphism, we may
assume that ϕ(x1) = x1.

We write ϕ(x2) = εx2 + Ax1, where ε = ±1 and A ∈ Z. Then the map ϕ lifts to
a grading preserving isomorphism ϕ̄ : Z[x1, x2] → Z[x1, x2] with ϕ̄(J̃ ) = J̃ , where
J̃ ⊂ Z[x1, x2] is the ideal generated by the homogeneous polynomials xn+1

1 and
x2

∏m
j=1(ajx1 + x2).
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(I) We assume that ϕ(x2) = x2 + Ax1. Since ϕ̄(x2
∏m

j=1(ajx1 + x2)) ∈ J̃ , we have

(x2 + Ax1)
m∏

j=1

(x2 + (A + aj)x1) = f(x1, x2)xn+1
1 + αx2

m∏
j=1

(x2 + ajx1), (4.1)

where f(x1, x2) is a homogeneous polynomial of degree m − n and α is an integer.
Note that if n � m, then f = 0. By comparing the coefficients of xm+1

2 and x1x
m
2 on

both sides of (4.1), it is clear that A = 0. Hence, ϕ is the identity that is obviously
induced from the identity map of P (E).

(II) Now assume that ϕ(x2) = −x2 +Ax1. Since ϕ̄(x2
∏m

j=1(ajx1 + x2)) belongs to
J̃ , we have

(−x2 + Ax1)
m∏

j=1

(−x2 + (A + aj)x1) = f(x1, x2)xn+1
1 + αx2

m∏
j=1

(x2 + ajx1), (4.2)

where f(x1, x2) is a homogeneous polynomial of degree m − n and α is an integer.
By comparing the coefficients of xm+1

2 on both sides of (4.2), it follows that α =
(−1)m+1. By substituting x2 = 1 into (4.2), we obtain

(1 − Ax1)(1 − (A + a1)x1) · · · (1 − (A + am)x1) = (1 + a1x1) · · · (1 + amx1) (4.3)

in H∗(CPn) = Z[x1]/〈xn+1
1 〉. Since E possesses a Hermitian metric, its dual bundle

E∗ = Hom(E, C) is canonically isomorphic to the conjugate bundle C ⊕ γ−a1 ⊕
· · · ⊕ γ−am . By lemma 4.1, equation (4.3) implies that

E∗ ⊗ γ−A = γ−A ⊕ γ−A−a1 ⊕ · · · ⊕ γ−A−am = C ⊕ γa1 ⊕ · · · ⊕ γam = E

as complex vector bundles over CPn.
Let 〈·, ·〉 be a Hermitian metric on E. Then the map h̃ : E → E∗, u �→ 〈u, ·〉,

induces the isomorphism h : P (E) → P (E∗) as fibre bundles. If y is the negative of
the first Chern class of the tautological line bundle over P (E∗), then h∗(y) = −x2.

For each q ∈ CPn, we choose a non-zero vector vq from the fibre of γ−A over q
and define a map g̃ : E∗ → E∗ ⊗ γ−A by g̃(uq) = uq ⊗ vq, where uq is an element
of the fibre of E∗ over q. The map g̃ depends on the choice of vqs but the induced
map g : P (E∗) → P (E∗ ⊗ γ−A) does not have this dependency because γ−A is a
line bundle. Then the map

g : P (E∗) → P (E∗ ⊗ γ−A) = P (E)

preserves the complex structure on each fibre. Therefore, it induces a complex vector
bundle isomorphism TfP (E∗) → TfP (E∗ ⊗ γ−A) between their tangent bundles
along the fibres. According to the Borel–Hirzebruch formula, their respective total
Chern classes are

(1 + y)(1 − a1x1 + y) · · · (1 − amx1 + y)

and
(1 − Ax1 + x2)(1 − Ax1 − a1x1 + x2) · · · (1 − Ax1 − amx1 + x2).
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Since g∗(c1(Tf (P (E)))) = c1(Tf (P (E∗))), we have

g∗
(

(m + 1)(x2 − Ax1) −
m∑

j=1

ajx1

)
= (m + 1)y −

m∑
j=1

ajx1.

Furthermore, the map g covers the identity map on CPn; thus, g∗(x2) = y + Ax1.
Therefore,

h∗(g∗(x2)) = −x2 + Ax1 = ϕ(x2).

By (I) and (II), every ring automorphism ϕ is induced by a diffeomorphism.

5. Quasitoric manifolds over ∆n × ∆m

In this section, we show that every cohomology ring automorphism of a quasitoric
manifold with second Betti number 2 is realizable by a homeomorphism. As we have
seen in the previous section, every cohomology ring automorphism of a two-stage
generalized Bott manifold is realizable by a diffeomorphism. Hence, we only need to
consider quasitoric manifolds over ∆n × ∆m that are not equivalent to a two-stage
generalized Bott manifold.

Let Ma,b be a quasitoric manifold over ∆n × ∆m. By theorem 2.2, it is suffi-
cient to consider the case in which a = s = (2, . . . , 2, 0, . . . , 0) �= 0 and b = r =
(1, . . . , 1, 0, . . . , 0) �= 0.

Proposition 5.1. Let Ms,r be a quasitoric manifold over ∆n × ∆m, where two
non-zero vectors s and r have the forms

s := (2, . . . , 2︸ ︷︷ ︸
s

, 0, . . . , 0) ∈ Z
m and r := (1, . . . , 1︸ ︷︷ ︸

r

, 0, . . . , 0) ∈ Z
n.

Then every element of Aut(H∗(Ms,r)) is induced by a homeomorphism.

Proof. The detailed computation of Aut(H∗(Ms,r)) can be found in the proof of
theorem 6.2 in [8]. Even though it is one of key parts of this proof, the result is used
here without detailed calculation to avoid repetition of the elementary computation.

If n = 1 or m = 1, every automorphism of H∗(Ms,r) is realizable by a homeo-
morphism by corollary 3.7.

Now, assume that both n and m are greater than 1.

(I) If s �= (m + 1)/2 and r �= (n + 1)/2, then

Aut(H∗(Ms,r)) =
{ (

1 0
0 1

)
,

(
−1 0
0 −1

) }
∼= Z2.

Define a homeomorphism f : S2n+1 × S2m+1 → S2n+1 × S2m+1 by

((w1, . . . , wn+1), (z1, . . . , zm+1)) �→ ((w1, . . . , wn+1), (z1, . . . , zm+1)).

Then f preserves the orbits of the action of Ks,r defined in § 2. Hence, f induces a
homeomorphism from Ms,r = S2n+1 × S2m+1/Ks,r to itself. Let f̄ be the homeo-
morphism induced from f . Then f̄∗ is represented by the matrix

( −1 0
0 −1

)
, and

hence {f̄∗} generates Aut(Ms,r).
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(II) If s = (m + 1)/2 and r �= (n + 1)/2, then

Aut(H∗(Ms,r)) =
{ (

1 0
0 1

)
,

(
−1 0
0 −1

)
,

(
1 0

−2 −1

)
,

(
−1 0
2 1

) }

∼= Z2 × Z2.

Define a homeomorphism g : S2n+1 × S2m+1 → S2n+1 × S2m+1 by

((w1, . . . , wn+1), (z1, . . . , zm+1))
�→ ((w1, . . . , wr, wr+1, . . . , wn+1), (zs+1, . . . , zm+1, z1, . . . , zs)),

and then g preserves the orbits of the action of Ks,r on S2n+1 × S2m+1.
Let ḡ be the homeomorphism from S2n+1 ×S2m+1/Ks,r to itself induced from g.

Then ḡ∗ is represented by the matrix
( −1 0

2 1

)
, and hence the set {f̄∗, ḡ∗} generates

Aut(H∗(Ms,r)).

(III) If s �= (m + 1)/2 and r = (n + 1)/2, then

Aut(H∗(Ms,r)) =
{ (

1 0
0 1

)
,

(
−1 0
0 −1

)
,

(
−1 −1
0 1

)
,

(
1 1
0 −1

) }

∼= Z2 × Z2.

Define a homeomorphism h : S2n+1 × S2m+1 → S2n+1 × S2m+1 by

((w1, . . . , wn+1), (z1, . . . , zm+1))
�→ ((wr+1, . . . , wn+1, w1, . . . , wr), (z1, . . . , zs, zs+1, . . . , zm+1)).

and then h also preserves the orbits of the action of Ks,r on S2n+1 × S2m+1.
Let h̄ be the homeomorphism from S2n+1 ×S2m+1/Ks,r to itself induced from h.

Then h̄∗ is represented by the matrix
(

1 1
0 −1

)
, and hence the set {f̄∗, h̄∗} generates

Aut(H∗(Ms,r)).

(IV) If s = (m + 1)/2 and r = (n + 1)/2, then the set {f̄∗, ḡ∗, h̄∗} generates

Aut(H∗(Ms,r)) =
{ (

1 0
0 1

)
,

(
−1 0
0 −1

)
,

(
1 0

−2 −1

)
,

(
−1 0
2 1

)
,

(
−1 −1
0 1

)
,

(
1 1
0 −1

)
,

(
1 1

−2 −1

)
,

(
−1 −1
2 1

) }
.

6. Proofs of theorems 1.1 and 1.2

Let M and M ′ be quasitoric manifolds with second Betti number 2. If ϕ : H∗(M) →
H∗(M ′) is an isomorphism as graded rings, then there exists a homeomorph-
ism f : M → M ′ by theorem 2.2. Then f induces a graded ring isomorphism
f∗ : H∗(M ′) → H∗(M). Accordingly, f∗ ◦ ϕ is a ring automorphism of H∗(M).
Hence, by proposition 4.3 and proposition 5.1, there exists a homeomorphism
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g : M → M such that g∗ = f∗ ◦ ϕ. Hence, ϕ is realizable by a homeomorphism
g ◦ f−1, as shown in the following diagram:

H∗(M)

ϕ

��

g∗

������������

H∗(M)

H∗(M ′)
f∗

������������

This proves theorem 1.2.
Furthermore, if M and M ′ are non-singular complete toric varieties, then f and

g are diffeomorphisms by theorem 2.1 and proposition 4.3. This proves theorem 1.1.
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