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Abstract

Stochastic instabilities are studied considering the motion of one particle in a very high intensity wave propagating along
a constant homogeneous magnetic field, and in a high intensity wave propagating in a nonmagnetized medium perturbed
by one or two low intensity traveling waves. Resonances are identified and conditions for resonance overlap are studied.
The part of chaos in the electron acceleration is analyzed. PIC code simulation results confirm the stochastic heating.
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1. INTRODUCTION

The problem of stochastic heating was recently discussed
~Patin et al., 2006, 2005a, 2005b!. The effect of a constant
homogeneous magnetic field is studied in the first part of
this paper. Then, in the case of nonmagnetized plasma
interacting with several electromagnetic waves, the use of
Chirikov criterion ~Chirikov, 1979! to predict the conditions
when this heating takes place is emphasized.

A large number of issues remain open in the study of
laser-matter interaction at very high intensities. Recently,
particle-in-cell ~PIC! code simulations results published by
Tajima et al. ~2001! and also experimental results obtained
by Mulser et al. ~2005! have shown that the irradiation of
very high intensity lasers on clustered matter leads to a very
efficient heating of electrons. Tajima et al. ~2001! and
Kanapathipillai ~2006! have shown that chaos seems to be
the origin of the strong laser coupling with clusters. It was
confirmed in PIC code simulations, in the case of two
counter propagating laser pulses, that the stochastic motion
of electrons can lead to their acceleration ~Sheng et al.,
2002, 2004! of electrons. Therefore, the issue that we will
address below is the stability of electron motion in the fields
of one electromagnetic wave, and a constant homogeneous
magnetic field, and in those of several waves.

At very high intensities, the motion of a charged particle
in a wave is highly nonlinear. The situations when the
motion is integrable are exceptional. The solutions corre-
sponding to these situations deserve to be studied as they are
strong as predicted by KAM theorem ~Lichtenberg &
Liebermann, 1983;Arnold, 1988; Rasband, 1983; Ott, 1993;
Tabor, 1989; Walker & Ford, 1969!. Moreover, they are
useful to predict resonances when a perturbing wave is
considered ~Lichtenberg & Liebermann, 1983;Arnold, 1988;
Rasband, 1983; Ott, 1993; Tabor, 1989!.

First, the dynamic of a charged particle in a linearly or
almost linearly polarized traveling high intensity wave is
studied when it propagates along a constant homogeneous
magnetic field in a vacuum, or in low density plasma. A
certain number of results already published are recalled in
order to make this paper easy to read. In the first part, the
electromagnetic wave is assumed to propagate in a vacuum.
Roberts and Buchsbaum ~1964! have already explored this
problem in the case of a circularly polarized wave. They
found a “synchronous” solution in which the particle gains
energy indefinitely. In this paper, it is shown that the syn-
chronous solution still exists when the wave is linearly
polarized. One of the constants of motion appears in the
resonance condition ~Davydovski, 1963!. This means that
when a particle is initially resonant it remains resonant
forever. Two constants which are canonically conjugate are
found. This property is used to reduce the initially three
degrees of freedom problem to two degrees of freedom
problem. The system is integrated and is shown to be inte-
grable ~Lichtenberg & Liebermann, 1983; Arnold, 1988;
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Rasband, 1983; Ott, 1993; Tabor, 1989; Bouquet & Bourdier,
1998!. Then, in order to study the plasma response in the
case of a very high intensity wave propagating in low-
density plasma, it is assumed that the wave remains linearly
polarized. Performing a Lorentz transformation eliminates
the space variable corresponding to the direction of propa-
gation of the wave ~Winkles & Eldridge, 1972!. Just like in
the previous case, two canonically conjugate constants are
used to reduce the initially three degrees of freedom prob-
lem to two degrees of freedom problem. Thus, Poincaré
maps are performed. Lyapunov exponents are also calcu-
lated to confirm the chaotic nature of some trajectories
~Lichtenberg & Liebermann, 1983; Ott, 1993; Tabor, 1989;
Bourdier & Michel-Lours, 1994!. Chaos appears when a
secondary resonance and a primary resonance overlap ~Van
Der Weele et al., 1998; Kwon & Lee, 1999; Bourdier et al.,
2005!. Consequently, the system is not integrable and chaos
may appear as soon as the plasma response is taken into
account. The overlap of the two resonances can generate
some stochastic heating.

Finally, the motion in a high intensity plane wave propa-
gating in a nonmagnetized vacuum, perturbed by one or two
electromagnetic plane waves is studied. The solution of
Hamilton–Jacobi equation, in the case of one wave, is used
to identify resonances. The effect of the different parameters
is described by using the Chirikov ~1979! criterion. Above
the Chirikov threshold and for electron trajectories with
their initial conditions in the overlapping region of two or
more resonances, stochastic heating is evidenced by com-
puting single particle energies. Finally, PIC code simula-
tions results obtained with the code CALDER ~Lefebvre
et al., 2003! are presented in order to validate the theoretical
model.

2. DYNAMICS OF A CHARGED PARTICLE
IN A LINEARLY POLARIZED
ELECTROMAGNETIC TRAVELING
WAVE PROPAGATING ALONG A
CONSTANT HOMOGENEOUS
MAGNETIC FIELD

2.1. The wave propagates in vacuum

2.1.1. Hamiltonian structure of the problem
The constant magnetic field B0 is supposed to be along

the z-axis. The traveling wave is assumed to be linearly
polarized. It has a propagation vector k0 parallel to B0

~Fig. 1!. The following vector potential is chosen for the
electromagnetic field

A � ��
B0

2
y �

E0

v0

cos~v0 t � k0 z!� [ex � � B0

2
x� [ey . ~1!

The scalar potential is assumed to vanish. The relativistic
Hamiltonian for the motion is

H � ��Px �
eE0

v0

cos~v0 t � k0 z!�
eB0

2
y�2

c2

� �Py �
eB0

2
�2

c2 � Pz
2 c2 � m2c4�102

. ~2!

This is a time-dependent system with three degrees of
freedom. It can be easily checked that

C � H � ~v0 0k0 !Pz , ~3!

is a constant of motion for this system. Combining the
equations of Hamilton allows us to easily find two other
constants of motion

C1 � Px �
eB0

2
y,C2 � Py �

eB0

2
x. ~4!

These two constants are such that

�C1,
C2

eB0
� � 1. ~5!

The three constants just found are not in involution, and at
this stage, one cannot conclude that the problem is integrable.

The normalized equations of motion are obtained by
introducing new normalized variables and parameters

[x � k0 x, [y � k0 y, [z � k0 z, ZPx, y, z �
Px, y, z

mc
, [t � v0 t, ZH � g

�
H

mc2
, a � 1

eE0

mv0 c
,V0 �

eB0

mv0

. ~6!

The following three normalized constants are also intro-
duced, ZC � C0mc2, ZC1 � C10mc and ZC2 � C20mc.

2.1.2. Integration of the system
The canonical transformation ~ [z, ZPz! r ~§, ZPz! : § �
[z � [t, defined by type-2 generating function: F2~ [z, ZPz, [t !�
ZPz~ [z � [t ! is performed first ~Lichtenberg & Liebermann,

1983; Arnold, 1988; Rasband, 1983; Ott, 1993; Tabor, 1989;
Bourdier & Gond, 2000, 2001!. The normalized Hamilto-
nian is given by H̆ ~ [x, ZPx , §, ZPz! � ZH ~ [x, ZPx , z , ZPz , [t ! �
~]0] [t !F2~ [z, ZPz, [t !, that is to say,

Fig. 1. Frame of reference.

170 A. Bourdier et al.

https://doi.org/10.1017/S026303460707022X Published online by Cambridge University Press

https://doi.org/10.1017/S026303460707022X


H̆ � ZC ��� ZPx � a cos §�
V0

2
[y�2

� � ZPx �
V0

2
[x�2

� ZPz
2 � 1�

� ZPz . ~7!

In this new system, § plays the part of a space coordinate.
The new Hamiltonian is a constant as it does not depend
explicitly on time.

The fact that the two constants, ZC1 and ZC10V0, are canon-
ically conjugate, is used now to reduce the system. To do so,
a canonical transformation, which is the product of two
canonical transformations, defined by the following type-2
generating functions: F2 � @ EPx � ~V002! [y# [x � EPy [y and F2 �
~P2 �V0 Ix! Iy � P1~ Ix � P20V0! given by

[x � Q1 �
P2

V0

, [y � Q2 �
P1

V0

,

ZPx � 2
1�~V0 Q2 � P1!, ZPy � 2

1�~V0 Q1 � P2 !, ~8!

is performed ~Bourdier et al., 1996; Bourdier & Gond,
2000!. The degree of freedom associated with the conjugate
variables ~Q2, P2! is eliminated. Thus, the initially three
degrees of freedom system is reduced to two degrees of
freedom system. In terms of the new conjugate variables:
~Q1, P1! and ~§, ZPz!, the Hamiltonian is

H � ZC � @~P1 � a cos §!2 �V0
2 Q1

2 � ZPz � 1#102 � ZPz . ~9!

The equations of Hamilton are

P̂1 � �
V0

2

g
Q1, Q̂1 �

1

g
~P1 � a cos §!,

^ ZPz �
a

g
sin §~P1 � a cos §!, _§�

ZPz

g
� 1. ~10!

The equation of Hamilton for § @Eq. ~10!# , can be put in the
form g~d§0d [t !� � ZC. As a consequence, indicating differ-
entiation with respect to § by a prime in this paragraph, we
can write A'� dA0d§� ~dA0d [t !0~d§0d [t !, which implies that
Â � �A' ZC0g. Thus, the equations of Hamilton ~Eq. ~10!!
become

P1
' ZC � V0

2 Q1, ~11a!

Q1
' ZC � �~P1 � a cos §!, ~11b!

ZPz
' ZC � �a sin §~P1 � a cos §!, ~11c!

ZC � g� ZPz . ~11d!

Differentiating a second time the second equation leads to
the following equation of motion for Q1

Q1
''�
V0

2

ZC 2
Q1 �

a

ZC
sin §. ~12a!

The following equation for P1 is obtained in the same way

P1
''�
V0

2

ZC 2
P1 � �

V0
2

ZC 2
a cos §. ~12b!

These two equations ~12a and 12b! are the equations of two
driven oscillators. One has a resonance when V0

2 � ZC 2

~Davydovski, 1963!. This resonance condition contains a
first integral of the system; this implies that when the
particle is initially resonant, it remains resonant forever.
These equations can be easily solved analytically whether
the resonance condition is satisfied or not. Then Eq. ~11c! is
used to determine Pz and g is derived through Eq. ~11d!.

2.1.3. Liouville inerrability
Inerrability can also be demonstrated by using Liouville’s

theorem. Let us consider the following Hamiltonian

PH �
OP1
2

2
�
V0

2

2 ZC 2
Q1

2 �
a

ZC
Q1 sin j, ~13!

where OP1 will be defined further. Assuming that j plays the
part of time, the equations of Hamilton read

OP1
' � �

] PH

]Q1

� �
V0

2

ZC 2
Q1 �

a

ZC
sin j,

Q1
' �
] PH

] OP1

� OP1. ~14!

Taking the derivative of the second equation of Eq. ~14! and
combining it with the first one, leads to Eq. ~12a! after
replacing j by §. In the same way, taking the derivative of
the first equation gives

OP1
''�
V0

2

ZC 2
OP1 � �

a

ZC
cos j. ~15!

One finds Eq. ~12b! again by letting OP1 � ~P1 � a cos j!0 ZC
and § � j. A constant ZI of the system defined by Eq. ~13!
becomes a constant NI of the initial system defined by Ham-
iltonian Eq. ~9!; one has: d ZI0d§ � ~d ZI0d [t !0~ _ [z � 1!, which
implies that when d ZI0d§� 0, then d ZI0d [t � 0 and d NI0d [t � 0.
Taking the total derivative of Eq. ~13!with respect to j gives

d PH

dj
�

a

ZC
Q1 cos j � 0. ~16!

If f ~Q1, OP1,j! can be such that

df ~Q1, OP1,j!

d§
�

a

ZC
Q1 cos j, ~17!

then the quantity: I � PH � f ~Q1, OP1,j! is a first integral
of the system. Eq. ~17! is integrated @* df ~Q1, OP1,j! �
~a0 ZC!*Q1 cos jdj# by performing two integrations by parts
and using the equations of Hamilton. We find
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f ~Q1, OP1,j! � �a
ZC

V0
2
OP1 cos j�

a2

4V0
2

cos 2j� a
ZC

V0
2

Q1 sin j

� a
ZC

V0
2 �Q1 cos jdj. ~18!

The last term of this equation is proportional to f, thus

f ~Q1, OP1,j!�1 �
ZC 2

V0
2� � �a

ZC

V0
2
OP1 cos j�

a2

4V0
2

cos 2j

�
a

ZC
Q1 sin j. ~19!

As a consequence, a first integral of the system is given by

I �
OP1
2

2
�
V0

2

2 ZC 2
Q1

2 �
a

ZC

1

�V0
2

ZC 2
� 1�

� �V0
2

ZC 2
Q1 sin j� OP1 cos j�

a

4 ZC
cos 2j�. ~20!

The following constant: ZI � @~V0
20 ZC 2 !�1#I is held, as it has

no singularity at V0
2 � ZC 2. It can be verified easily that, in

any case, one has: d ZI0d§ � 0. When replacing OP1 by its
expression in function of P1 and § @ OP1 � ~P1 � a cos §!0 ZC!# ,
one obtains a constant of motion DI for the initial two degrees
of freedom system, thus showing that the system defined by
Hamiltonian ~Eq. ~9!! is Liouville integrable.

As we have shown, the system is integrable when the
wave is assumed to propagate along a constant homo-
geneous magnetic field in a vacuum by different methods,
no chaos can take place, and consequently all trajectories
are regular.

2.2. The wave propagates in plasma

In this part of our paper, the influence of the plasma is taken
into account. The wave is assumed to remain linearly polar-
ized. The wave vector potential for the electromagnetic field
is supposed to be given by Eq. ~1!. The dimensionless
variables and parameters previously defined are used again.
The normalized Hamiltonian of the system reads

ZH � n�� ZPx � a cos~ [t � [z!�
V0

2n
[y�2

� � ZPy �
V0

2n
[x�2

� ZPz
2 � 1�102

, ~21!

where n is the index of refraction of the plasma. The Ham-
ilton equations allow us to readily find two constants of
motion

ZC1 � ZPx �
V0

2n
[y,

ZC2 � ZPy �
V0

2n
[x. ~22!

It can be noted that the two constants ZC1 and n ZC20V0 are
canonically conjugate. ZC � ZH � ZPz is still a constant of
motion. These three constants of motion are not in involu-
tion and one cannot conclude that the problem is integrable.

We have solved the equations of Hamilton numerically.
When the wave propagates in a medium, with an index of
refraction inferior to unity ~n , 1!, the trajectories spiral
outward and inward just as in the none resonant case when
the wave propagates in a vacuum.

2.2.1. Introduction of a simplifying Lorentz transformation
A new frame ~L*! which moves uniformly along the

z-axis with velocity U relative to the laboratory frame is
introduced.The Lorentz transformation of the four-momentum
is given by Jackson ~1975! and Landau and Lifshitz ~1975!.

Px
' � Px , Py

'� Py , Pz
'� G�Pz �

U

c2
E�, E ' � G~E � UPz !, ~23!

where G� ~1 � U 20c2!�102, and E � gmc2 is the energy of
the charged particle.

In the extended phase space, where time is treated on a
common basis with other coordinates, a fully covariant
Hamiltonian formulation of the problem can be constructed.
In this space, the Lorentz transformation defined above is
identical to the canonical transformation generated by the
following type-2 generating function

F2~x, y, z, t, Px
' , Py

' , Pz
' , E ' ! � Px

' x � Py
' y � G�Pz

'�
U

c2
E '�z

� G~E ' � UPz
'!t. ~24!

As a consequence, if the problem is integrable in the frame
~L*!, it is also integrable in the laboratory frame.

The phase of the wave which is an invariant takes, in the
moving frame, the following form ~Jackson, 1975; Landau
& Lifshitz, 1975!.

v0 t � k0 z � G�v0�t ' �
U

c2
z '�� k0~z

' � Ut ' !� . ~25!

When the phase velocity of the wave is greater than the
speed of light, there exists one special frame ~L*! in which
the phase does not depend on the variable z ' . This frame can
be defined by its drift velocity ~Winkles & Eldridge, 1972!
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U

c
�

k0 c

v0

� n. ~26!

In ~L*!, the vector potential is ~Landau & Lifshitz, 1975!

A' � ��
B0

2
y ' �

E0
'

v0
' cos v0

' t '� [ex
' � � B0

2
x '� [ey

' . ~27!

Within the new frame ~L*!, the equations of motion are
generated by the following Hamiltonian.

H ' � ��Px
'�

eE0
'

v0
' cos v0

' t ' �
eB0

2
y '�2

c2

� �Py
'�

eB0

2
x '�2

c2 � Pz
'2 c2 � m2c4�102

. ~28!

Let us now introduce the following dimensionless vari-
ables and parameters

[x ' �
v0
'

c
x ', [y ' �

v0
'

c
y ', [z ' �

v0
'

c
z ', [t ' � v0 t ', ZPx, y, z

' �
Px, y, z
'

mc
,

V0
' �

eB0

mv0
' , a ' �

eE0
'

mcv0
' , ZH

' � g ' �
H '

mc2
. ~29!

The following normalized Hamiltonian

ZH ' ��� ZPx
'� a ' cos [t ' �

V0
'

2
[y '�2

�� ZPy
'�
V0
'

2
[x '�2

� ZPz
'2 � 1�102

,

~30!

leads to the normalized equations of motion.
Dropping the primes for convenience, it can be shown

very easily that this system has three constants of motion

ZC1 � ZPx �
V0

2
[y, ZC2 � ZPy �

V0

2
[x, ZC � ZPz . ~31!

The first two constants ~ ZC1 and ZC20V0! are canonically
conjugate.

2.2.2. Reduction to a two-dimensional problem and chaos
in the new frame

Let us reduce the system in order to perform Poincaré
maps. To do so, let us choose the two constants ZC1 and ZC2 as
new momentum and coordinate conjugate. The canonical
transformation defined by Eq. ~8! is performed. The new
Hamiltonian is

H � @~P1 � a cos [t !2 �V0
2 Q1

2 � ZPz
2 � 1#102 ~32!

This is a time-dependent system with only two degrees of
freedom. As ZPz is an obvious first integral, one can evacuate

the conjugate variable [z and say, even if it is not academic,
that we have a time-dependent system with one degree of
freedom.

Let us perform now the following canonical transformation

P1 � P � a cos [t,Q1 � Q, ~33!

generated by

F2~Q1, [z, P, ZPz ! � Q1 P � [z ZPz � aQ1 cos [t. ~34!

The Hamiltonian in terms of the new variables is

EH � @P 2 �V0
2 Q2 � ZPz

2 � 1#102 � aQ sin [t. ~35!

This is still a time-dependent system with only two degrees
of freedom. ZPz is still a constant of motion. The equations of
Hamilton read

Fig. 2. ~A! Surface of section plots for one trajectory. a � 4.03, V0 � 2.
~B! Lyapunov exponent calculated with the same trajectory as in Figure 2b,
the two renormalization methods are compared.
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Q �
P

g
,

P̂ � �
V0

2 Q

g
� a sin [t. ~36!

This set of equations is similar to the one found by Kwon
and Lee to describe the motion of a particle in a constant and
homogeneous magnetic field and an oscillating electric field
of arbitrary polarization ~Kwon & Lee, 1999!.

These equations of motion are solved numerically. We
have assumed that ZPz � 0 in every case. Chaos is evi-
denced first by performing Poincaré maps. The plane P-Q
with [t � 0 ~mod2p! is chosen to be the Poincaré surface of
section. Figure 2 shows Poincaré maps for only one trajec-
tory. The Lyapunov exponent for this trajectory has also
been calculated by using Benettin’s method ~Lichtenberg &
Liebermann, 1983; Ott, 1993; Tabor, 1989; Bourdier &
Michel-Lours, 1994!. To do so, two very close trajectories
are considered, the very small distance between them being

Fig. 3. Surface of section plot V0 � 2. ~A!: a � 3.3, ~B!: a � 3.33, ~C!: a � 3.34, ~D!: a � 3.35, ~E!: a � 3.38, ~F!: a � 4.
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initially d0. A sequence dn corresponding to these trajecto-
ries is calculated numerically. For every fixed time Dt, or for
every fixed distance ratio d0d0, dn is renormalized to d0. The
two ways to renormalize are used and compared, Figure 2b
shows the good agreement obtained for the Lyapunov expo-
nents when using the two renormalization techniques. The
fact that we have chaotic trajectories shows that the system
is not integrable.

Performing Poincaré maps, one can check that the pri-
mary resonance ~3,1! exists for all none zero values of the
dimensionless electric field, a, while the secondary ~3,1!
resonance appears when a is greater that some threshold for
one given value of V0. When V0 � 2, the secondary reso-
nance is born when a is in the range 3.33–3.34 ~Figs. 3b and
3c!. As a grows, the central island is squeezed by the

hyperbolic fixed points of the secondary ~3,1! resonance
until the fixed points are absorbed by the elliptic fixed point
of the ~1,1! resonance ~Figs. 3c and 3d!. When a increases,
the hyperbolic fixed points reappear and move outward
~Fig. 3e!. When a is in the range 3.38– 4, the primary ~3,1!
resonance and the secondary ~3,1! resonance overlap, and
chaotic trajectories cover the overlapped region ~Fig. 3f !
~Van Der Weele et al., 1998!.

2.2.2. Reduction to a two-dimensional problem and chaos
in the laboratory frame

When going back to the laboratory frame, the equations
of Hamilton must be derived through Eq. ~21!. Performing
the canonical transformation: § � [z � [t, the following
Hamiltonian is obtained

ZH � n�� ZPx � a cos §�
V0

2n
[y�2

� � ZPy �
V0

2n
[x�2

� ZPz
2 � 1�102

� ZPz . ~37!

In order to reduce the system, two canonical transforma-
tions defined by the following type-2 generating functions
F2 � @ EPx � ~V002n! [y# [x � EPy [y and F2 � @P2 � ~V00n! Ix# Iy �
P1~ Ix � nP20V0! are performed. The new Hamiltonian reads

ZH � n�~P1 � a cos §!2 �
V0

2

n2
Q1

2 � ZPz
2 � 1�102

� ZPz . ~38!

The equations of Hamilton are

P̂1 � �
V0

2

ng
Q1, Q̂1 �

n

g
~P1 � a cos §!,

^ ZPz �
an

g
sin §~P1 � a cos §!, _§�

n ZPz

g
� 1. ~39!

Fig. 4. Surface of section plots for one trajectory in the laboratory frame.
a � 4.03 ~A!: V0 � 0.1997, n � 0.995. ~B!: V0 � 0.282, n � 0.99.

Fig. 5. Lyapunov exponent calculated for one trajectory in the laboratory
frame. V0 � 0.282, n � 0.99.
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When the index of refraction is very close to unity, perform-
ing Poincaré maps and calculating Lyapunov exponents
evidenced chaotic trajectories ~Figs. 4a, 4b, 5!.

It has been shown in the last two paragraphs that, as soon
as the phase velocity is higher than the speed of light,
chaotic trajectories can exist due to the overlap of only two
resonances. Then, some particles can move in a larger phase
space and take more energy from the wave than in the
integrable case. The situation studied next seems to be more
promising as there will be an infinite number of resonances,
thus leading to a very large space possibly opened to the
charged particle.

3. DYNAMICS OF A CHARGED PARTICLE IN
ONE OR SEVERAL LINEARLY POLARIZED
TRAVELING ELECTROMAGNETIC WAVES
PROPAGATING IN A NONMAGNETIZED
VACUUM

3.1. Dynamics of one particle in one wave
propagating in vacuum. Hamiltonian
formulation of the problem

Let us consider a charged particle in an electromagnetic
plane wave propagating along the z direction ~the wave
vector k0 is parallel to the z direction!. The following
four-potential is chosen

@f, A# � @0, ~E0 0v0 !cos~v0 t � k0 z! [ex # , ~40!

where E0, v0, and k0 are constants. When time t is treated as
a parameter entirely distinct from the spatial coordinates,
the relativistic Hamiltonian of a particle in the electromag-
netic wave is given by Eq. ~2! in which B0 equals zero. This
system has three degrees of freedom. H0 � ~v00k0!Pz, Px

and Py are three constants of motion, which are independent
and in involution. As a consequence, the system is com-
pletely integrable ~Lichtenberg & Liebermann, 1983; Bou-
quet & Bourdier, 1998!. Let us introduce the following
dimensionless variables and parameter: [z � k0 z, ZPx, y, z �
Px, y, z0mc, [t � v0 t, ZH0 � g� H00mc2, a � eE00mcv0. The
new Hamiltonian, which describes the system, expressed in
terms of these new variables, is:

ZH0 � @@ ZPx � a cos~ [t � [z!# 2 � ZPy
2 � ZPz

2 � 1#102.

When using the proper time of the particle to parameterize
the motion in the extended phase space, and the dimension-
less variables and parameter just introduced above, the
normalized Hamiltonian in the extended phase space reads
~Jackson, 1975; Rax, 1992!

ZH0 � ~ 2
1�!g2 � ~ 2

1�!~ ZP � a!, ~41!

where ZP � P0mc and a � e~E00v0!cos~v0 t � k0 z! [ex 0mcv0.
A normalized proper time: [t � v0t is introduced next.
The y degree of freedom is assumed not to be excited. We
look for a set of actions ~P4, P5, E ! and angles ~u,w,f!,
instead of the configuration ~r, t !, and momentum, ~P,�g!
in the ~ [x, [z, [t, ZPx , ZPz,�g! phase space. This comes out to
seek a canonical transformation ~ [x, [z, [t, ZPx , ZPz ,�g! r
~u,w,f, P5, P4, E !, such that the new momenta are constants
of motion. Following Landau and Lifshitz ~1975! and Rax
~1992!, the Hamilton–Jacobi equation is solved. The Ham-
iltonian in terms of action-angle variables reads

EH0~P5 , P4 , E ! � �102~M 2 � P5
2 � P4

2 � E 2 !, ~42!

where M 2 � 1 � a202. As EH0 � 0, the energy momentum
dispersion relation is given by the following expression

E~P5 , P4 ! � MM 2 � P5
2 � P4

2. ~43!

The solution of the equations of motion is in terms of these
variables

u � �P4 [t,w� �P5 [t,f� E [t. ~44!

This solution is necessary to predict resonances when a
perturbing mode is considered.

3.2. Dynamics of a charged particle in two or three
linearly polarized traveling waves

The perturbing waves are assumed to have their electric
fields in the polarization plane of the high intensity wave

[a1 � a1 cos a sin~ Jv1
[t � Dk15 [z � Zk14 x! [ex

� a1 sin a sin~ Jv1
[t � Dk15 [z � Zk14 x! [ez . ~45!

The perturbing Hamiltonian is approximated by:

ZH1 � ~ ZP � [a!{ [a1, ~46!

Fig. 6. Compton resonances. a� 5p06, a � 1, Jv1 � 1.
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one has

EH1 � a1(
N

VN sin@ Dk15w� Dk14u� Jv1f� N~w� f!# . ~47!

When the phase of the sine is stationary, the perturbation
calculation fails to converge because of the occurrence of a
small denominator. On the basis of the solution of Hamilton-
Jacobi in the case of one wave, this stationary condition
gives the Compton resonance condition

Dk15P5� Dk14P4� Jv1 E � N~E � P5 ! � 0. ~48!

Figure 6 displays P4 versus P5 restricted to the energy
surface equation.

3.3. Influence of the different parameters.
Chirikov criterion

Let us show how to choose the different parameters in
order to optimize the stochastic heating. Trajectories are
chaotic when their initial conditions stand in the overlap-
ping region of two or several resonances. Extended chaos

takes place when many resonances overlap. For the sake
of simplicity, we shall consider two resonances only, and
check if the Chirikov threshold is reached, that is to say
when the ratio RN, N ' � ~DP4,5, N � DP4,5, N ' !0dN, N ' , where
DP4,5, N � DP4,5, N ' is the sum of the half-widths of the
resonances and dN, N ' is the distance which separates them,
is larger than unity.

Figure 7 displays the Compton resonances ~P4 versus
P5! for different situations. They show their influence on
the resonance pattern. Only the first resonances are shown
in these figures. Resonances become closer for higher val-
ues of a and Jv1 and when a decreases. The resonance
lines become symmetric with respect to the P5 axis when
a grows. Figures 6 and 7 seem to show that chaos will
be optimum when a is close to p. They show that the
resonance lines become closer for growing values of Jv1.
They also show that higher values of a have the opposite
effect.

At this level, one cannot come to a conclusion as these
behaviors must be compared to the resonance widths. Only
the ratio of the sum of the half-widths of two resonances
over the distance separating them allows a conclusion.

Fig. 7. Compton resonances for different values of the parameters. ~A!: a�p06, a �1, Jv1 �1, ~B!: a�p04, a �1, Jv1 �1, ~C!: a�
p06, a � 4, Jv1 � 1, ~d!: a�p06, a � 1, Jv1 � 2.

Fig. 8. Chirikov criterion: RN, N ' as a function of different parameters when P4� 0. a �1, a1 � 0.1, ~A! Resonances N � �1 and N �
�2, ~B!: N � �2 and N � �3.

Stochastic heating in ultra high intensity laser-plasma interaction 177

https://doi.org/10.1017/S026303460707022X Published online by Cambridge University Press

https://doi.org/10.1017/S026303460707022X


Figure 8 show that the Chirikov criterion is better satis-
fied when a in is close to p, in the range @5p06, 7p06# . The
best choice is for resonances N � �1 and N � �2, when Jv1

is in the range @1, 2# . The criterion is also satisfied when
Jv1 � @3.5,4# and a� @9p010,11p010# . With respect to the

resonances N � �2 and N � �3, a higher value of Jv1 must
be considered, one must have Jv1 � 1.8.

Figure 9 show the influence on the Chirikov criterion
of a and a1. When a� p06 ~Fig. 4a!, the Chirikov thresh-
old can be reached only outside the scope of this model
~a1 � a!. It can be reached, for instance, for a � 4 and
a1 � 0.4 when a � 5p06 ~Fig. 9b!.

In summary, the Chirikov criterion will be satisfied when
a is close to p, and almost only the resonances N � �1 and
N � �2 can overlap when P4 does not equal zero. Extended
chaos can take place in a banana-like surface in the ~P4, P5!
phase place.

3.4. Numerical results for one or several particles

First, stochastic acceleration was evidenced by considering
one particle only. Figure 10 shows the evolution of the
energy of one particle. These results were obtained with a
fourth order Runge–Kutta considering one and two waves.

Then, using the integrator of the PIC code CALDER
~Lefebvre et al., 2003!, the dynamics of five particles was
studied. The case of one wave was compared to the case of
three waves for which an “anomalous” heating was evi-
denced. The two perturbing waves are symmetric with respect
to the propagation direction of the high intensity wave.
Figure 11 shows that this heating takes place when the
trajectories become “chaotic.”

As it was shown that stochastic heating grows with
a, and the plasma density, the case of two counter pro-
pagating waves was considered. To study this specific
problem, one-dimensional simulations were achieved.
The laser pulses are two stepwise, 1 ps, long pulses
with the same frequency. The plasma occupies a 100 mm
region, the laser wave length is 1 mm and the maximum
intensity is I � 1.24 � 1019 W0cm2 ~a � 3! for the high
intensity wave, and I � 1.38 � 1016 W0cm2 ~a1 � 0.1!
for the low intensity wave. The initial temperature of
the plasma is 1 keV. The energy carried by all the waves
was kept constant. The case when the plasma inter-
acts with two waves is compared to the one when it
interacts with one wave only. It shows that stochastic
heating can be very important in the two waves case
~Fig. 12!

Fig. 9. Chirikov criterion: RN, N ' in function of electric field amplitudes when P4� 0. Resonances N � �1 and N � �2. ~A!: Jv1 � 1,
a�p06, ~B!: Jv1 � 1, a� 5p06.

Fig. 10. Energy of one particle versus time. ~A!: one wave case, Jv1 �1, a � 4, a1 � 0.1. ~B!: two waves case, Jv1 �1, a � 4, a1 � 0.1.
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4. CONCLUSIONS

The stability of a charged particle in the fields of one wave
traveling along a constant homogeneous magnetic field or
several waves propagating in nonmagnetized plasma was
explored within the framework of a Hamiltonian analysis.
In the first part of this paper, it was shown that the motion of
one particle in a wave propagating along a magnetic field in
a vacuum is integrable. When a plasma index of refraction is
considered, it has been shown that the problem is noninte-
grable; it becomes chaotic when a primary and a secondary
resonance overlap.

Then, a high intensity plane wave propagating in
nonmagnetized plasma was perturbed by one or two elec-
tromagnetic plane waves. The solution of the Hamilton–
Jacobi equation was used to identify resonances. The Chirikov
criterion was applied to two resonances corresponding to
two or three ~symmetric! perturbing waves. Stochastic heat-
ing was evidenced considering single trajectories and com-

puting the energy of the charged particle. PIC code simu-
lations were performed to confirm the occurrence of sto-
chastic heating.
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