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In this paper, a novel approach using a Great Circle Equation (GCE) formulated by vector
algebra is proposed to solve the problems of Great Circle Sailings (GCS). It is found that

Great Circle Equation Method (GCEM) can calculate the latitude and longitude of the
waypoints more effectively than conventional approaches. The methods of solving the
waypoints of GCS are discussed and a technique using minimum error propagation in every

step of the calculating procedure is suggested. Comparisons of the GCEM and the conven-
tional computation approach are also conducted for further validation. Numerical results
show that the GCEM is simpler and can solve the problems directly without requiring

judgments from the solver.
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1. INTRODUCTION. It is widely known that the shortest distance between
any two positions of the earth’s surface lies on the great circle passing through
them. Since sailing a vessel in a constantly varying course is not usually practical, a
series of rhumb lines are followed to approximate the great circle track. In fact, a
GCS is composed of segments of Rhumb Line Sailings. The navigator’s main task
in planning the use of GCS is to find the latitude and longitude of the waypoints
along the great circle track from the initial conditions.

Basically, there are three alternatives to solve the problems of Great Circle Sailings.
The first one is to make use of a great circle chart and the second is by using Sight
Reduction Tables. Because of the mathematical errors present in both these methods,
computation techniques may be preferred [1,2]. With increasing growth of compu-
tation technology, computation becomes more convenient and efficient. However, the
conventional computation procedure is based on using the vertex to form numerous
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right angled spherical triangles to give positions of waypoints along the great circle
track; it therefore seems indirect and may be complicated. To overcome the draw-
backs of this conventional computing approach, the proposed GCEM deals with
these problems by using vector algebra, which is simpler and more direct. Because of
the general nature of the solution employed in the GCEM, it may be possible to use a
general commercial package to solve a specific navigation problem. Nevertheless, it
cannot be emphasized too strongly that the only safe way to use computer software
for the solution of navigation problems is with a full knowledge and understanding of
the basic equation [2]. Hence, the theoretical background to the GCEM will be in-
troduced. Besides, for the conventional computational procedure, different users may
use non-vector calculation formulae [1,2] for the subsequent steps which may lead to
step errors which will propagate into the calculation result. Therefore, the optimal
formulae adopted, based on minimum error propagation in the steps of the compu-
tation procedure, are also suggested.

The paper is organized as follows. Following this introduction, Section 2 describes
the conventional computation procedure and the choice of optimal formula. Deri-
vations of the Great Circle Equation and its further applications are included in
Section 3. Section 4 offers worked examples for comparisons of the GCEM and the
conventional approach. A summary with some concluding remarks is in Section 5.

2. REVIEW OF THE CONVENTIONAL COMPUTATION PRO-
CEDURE. Dropping a perpendicular from the pole nearer the departure point
to the great circle track defines the vertex, which forms numerous right angled
spherical triangles with the pole and any waypoints along the great circle track as
shown in Figure 1. From this perpendicular, a number of the waypoints on the
great circle track can thus be found by using formulae derived from Napier’s Rule.
Therefore, finding the vertex is the key point in this computation procedure. Since

Figure 1. The navigational triangle used in the GCS.
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non-vector formulae can be adopted in the subsequent steps of the calculation pro-
cedure, rounding errors present in each step of the procedure are propagated into
the final result. Thus an optimal formula in each step to reduce the total error is
necessary. The conventional computation procedure with the suggested formula in
each step is summarized as follows. (All the symbols used in the following are listed
in the appendix for quick reference.)

2.1. Step 1. Finding the great circle distance (D) and the initial great circle course
angle (C). (See Figure 1). Based on identities of trigonometric functions, the great
circle distance can be calculated by the cosine formula for the side of a spherical
triangle as

cosD= sinLF � sinLT+ cosLF � cosLT � cosDLo (1)

and the initial great circle course can be obtained by the four-part formula

tanC=
sinDLo

(cosLF � tanLT)x(sinLF � cosDLo)
: (2)

In the above equations if the hemisphere of the latitude of the destination, LT, is the
same as that of the departure point, LF, it is treated as a positive quantity ; if contrary,
it is treated as negative.

2.2. Step 2. Finding of the latitude and longitude of the vertex, namely (LV, lV).
(Refer to Figure 2). By using Napier’s Rule, the following two formulae can be
yielded

cosLV= cosLF � sinC (3)

and

tanDLoFV= cotC � cscLF: (4)

In Equation (4) if the initial course angle C is less than 090x, the vertex is toward LT,
while if C is greater than 090x, the nearer vertex is in the opposite direction.

Figure 2. An illustration for finding the vertex on the great circle track using Napier’s Rule for a

right angled triangle.
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2.3. Step 3. Finding of the latitude and longitude of all waypoints, LX and lX, along
the great circle track. (Refer to Figure 3). Since only the co-latitude of the vertex can
be available, the initial condition is necessary for the positions of the waypoints
according to Napier’s Rule. Now,

’ Condition 1 : When lX is given, DLoVX can be obtained and then, LX can be
calculated from the following formula

tanLX= cosDLoVX � tanLV: (5)

’ Condition 2 : When DVX is given, let the great circle distance (DVX) on either side
of the vertex be a constant, then the positions of the waypoints can be obtained
from the formula

sinLX= sinLV � cosDVX (6)

and

tanDLoVX= tanDVX � secLV: (7)

2.4. Formulae choice. Discussions of the appropriate formulae in the compu-
tation procedure are given as follows. In Step 1, with an oblique spherical triangle of
which two sides and the included angle are known it is necessary to determine the
values of the third side and the outer angle. There are several methods [1,3] which can
be adopted to solve the problems. These may be categorized into direct and indirect
methods. For the indirect method, dropping a perpendicular from one of the apexes,
the departure or destination point, to the opposite side forms two right angled
spherical triangles, whilst for the direct one, the oblique spherical triangle is con-
sidered undivided. If using a calculator rather than programmable computer tech-
nology, the direct method is better than the indirect one. Equation (1) is known as the
cosine formula for side of spherical triangle. Because the Haversine is not a built-in
function, the Haversine formula, derived from the cosine formula for logarithmic
work, is not ideal for the calculator. When rounding error and propagation in the
procedure is considered, the four-part formula in Equation (2) is the best of the
available formulae, including the sine and cosine formulae [2]. Similarly, those

Figure 3. An illustration for finding the waypoints on the great circle track by using

Napier’s Rule.
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equations in Steps 2 and 3, which are all derived from Napier’s Rule of the right
angled spherical triangle, are suggested as the optimal choices.

3. DERIVATIONS OF THE GREAT CIRCLE EQUATION. To
begin with, the earth is treated as a unitary sphere. From the navigator’s point of
view, the earth’s coordinate system can replace the spherical coordinates. Therefore,
the vector for any point P on the earth’s surface can be represented with the lati-
tude L and longitude l in a Cartesian coordinates system as

P
*
=[cosL � cos l, cosL � sin l, sinL], L= x

p

2
,
p

2

h i
, l=[0, 2p], (8)

where the north latitude is treated as a positive value and the south latitude is treated
as negative. By using the relative longitude concept and replacing the Greenwich
meridian by the meridian of the departure point, as shown in Figure 4, the unit
vectors for the departure point, the destination point and the waypoints on a great
circle located on the earth’s surface can be expressed as:

F
*
=[cosLF, 0, sinLF], (9)

T
*
=[cosLT � cosDLo, cosLT � sinDLo, sinLT], (10)

X
*
=[cosLX � cosDLoFX, cosLX � sinDLoFX, sinLX], (11)

respectively. Since the three vectors are co-planar, the scalar triple product is equal to
zero [4], that is,

X
*: (F

*
rT

*
)=0: (12)

Now, assuming that

F
*
rT

*
=[a, b, c], (13)

Figure 4. An illustration for three co-planar position vectors on the great circle track.
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Equation (13) can be viewed as a coefficient vector and X
*

in Equation (12) is a
variable vector. Substituting Equations (9) and (10) into Equation (13) yields

a=xsinLF � cosLT � sinDLo, (14)

b= sinLF � cosLT � cosDLox cosLF � sinLT, (15)

c= cosLF � cosLT � sinDLo: (16)

Finally, by using the scalar triple product, the GCE can be formulated as

a � cosLX � cosDLoFX+b � cosLX � sinDLoFX+c � sinLX=0: (17)

In Equation (17), there are two variables only,DLoFX, the difference of longitude and
LX, the latitude of the waypoints on a great circle track. Accordingly, if one of the
variables is the entering argument, the other can be obtained by using the GCE.

’ Condition 1 : When lX is given first, DLoFX can be obtained. Substituting it into
Equation (17) and rearranging yields

tanLX=
a � cosDLoFX+b � sinDLoFX

xc
(18)

If the solution of Equation (18), LX, is positive, the position of the waypoint is in
the Northern hemisphere; if negative, then the waypoint is a Southern latitude.

’ Condition 2 : When LX is given first and assuming that

tana=
a

b
, (19)

where sina=(a=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2+b2

p
), cosa=(b=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2+b2

p
). Substituting these results into

Equation (17) gives us

sin(DLoFX+a)=
xcffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2+b2

p � tanLX: (20)

Once DLoFX is obtained from Equations (19) and (20), lX can be calculated
immediately.

Having constructed these equations, we can solve the waypoints on the great circle
effectively. Several applications to the point crossing the equator and the vertex are
illustrated as follows. Assuming that the point crossing the equator in the earth’s
coordinate system be expressed as (0, lE), since LE=0, substituting it into Equation
(18) yields

tanDLoFE=x
a

b
: (21)

Then, we can find the longitude at which a vessel crosses the equator. Again assuming
that the vertex can be represented as (LV, lV) at which LV is the highest latitude for
the great circle track, we have (d tanL/dL)=0 such that

tanDLoFV=
b

a
: (22)

Substituting the above result into Equation (18) yields

tanLV=
a � cosDLoFV+b � sinDLoFV

xc
: (23)

316 FORUM VOL. 57

https://doi.org/10.1017/S0373463304002681 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463304002681


Therefore, a combined use of Equations (22) and (23) can easily obtain the vertex
(LV, lV). Although formulae derived by using plane analytic geometry for the vertex
have been proposed [5], the complexity of the calculation procedure makes such
techniques more time-consuming than our suggested methodology. It should be
noted that when the product of Equations (21) and (22) is equal tox1, the difference
of longitude between the point passing the equator and the vertex is 090x. From
the spherical geometry, it means that two great circles bisect one another [3].

As for obtaining the great circle distance (D), as shown in Figure 4, it is actually the
angle between the unit vectors F

*
and T

*
; therefore,

cosD= F
*:T

*
= cosLF � cosLT � cosDLo+ sinLF � sinLT: (24)

Equation (24) is the well-known cosine formula for side of spherical triangles and can
be derived easily using vector algebra.

4. ILLUSTRATIVE EXAMPLES.
4.1. Example 1. The captain decides to use great circle sailing from 33x51.5kS,

151x13.0kE (Sydney, Australia) to 08x53.0kN, 079x31.0kW (Balboa, Panama). Calculate
the latitude and longitude of the waypoints on great circle at longitude 170xE and at
each 20 degrees of longitude thereafter to longitude 90xW.

Solutions of the GCS for a given lX using the conventional computation procedure
and the proposed GCEM are shown in Tables 1 and 2, respectively. A comparison
of the two tables shows that the proposed GCEM largely reduces the steps of the
calculation procedure and the solution can be obtained in one step from the GCEM
simply by using a scientific calculator with a memory function.

4.2. Example 2. The same situation is given as Example 1. Calculate the latitude
and longitude of the waypoints on the great circle track at equal interval of distance,
1200 nautical miles (20x), from the vertex.

In this example, as the distance between the position of waypoint and the
vertex is given in advance, the positions of the waypoints can be solved by the

Table 1. The conventional computation procedure of the GCS for a given latitude, lX.

Item

Process Equation Input Output Solution

1 (1) LF=33x51.5k (S) D=127.252415x D=7635.2k
2 (2) LT=x08x53.0k (N) C=73.942671x S73.9xE

DLo=129x16.0k (E) Cn=106.1x

3 (3) LF=33x51.5k LV=37x03.5k LV=37x03.5kS
4 (4) C=73.942671x DLoFV=27x19.3k lV=178x32.3kE*
5 (5) DLoVX=178x32.3kEx170xE

=8x32.3kW
LX=36x45.1k 36x45.1kS 170xE

DLoVX=11x27.7kE LX=36x30.3k 36x30.3kS 170xW

DLoVX=31x27.7kE LX=32x47.2k 32x47.2kS 150xW

DLoVX=51x27.7kE LX=25x11.8k 25x11.8kS 130xW

DLoVX=71x27.7kE LX=13x30.0k 13x30.0kS 110xW

DLoVX=91x27.7kE LX=x01x06.2k 01x06.2kN 90xW

* lV is determined by the relative position of the vertex and the departure point, in which an artificial

judgement of the initial great circle course is necessary.
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conventional procedure and the solving process with the suggested formulae are
shown in Table 3.

4.3. Example 3. The same situation is given as Example 1. Calculate the latitude
and longitude of the waypoints on the great circle at latitude 35xS and at each 10 degrees
of latitude northward to latitude 05xN.

In this example, the latitude is given and the longitude cannot be solved by the
conventional procedure; however, by using the proposed GCEM the solution can be
obtained easily as shown in Table 4. In addition, for the solutions of the vertex and
the point crossing the equator by the GCEM, as shown in Table 5, we find that the
proposed method can easily solve any points along the great circle track, and the
relationship of two great circles bisecting each other has been further verified through
Example 1. All the formulae listed in the previous sections have been illustrated
through these worked examples with tables. In practical situations, however, the leg
of the rhumb line may be shorter than those of the examples. This will make no

Table 3. Use of the conventional computation procedure to solve the waypoints of the GCS when the

distance from the vortex, DVX, is known.

Process

Item

Equation Input Output Solution

Process 1–4 is the same as Table 1. Preliminary: LV=37x03.5kS; lV=178x32.3kE

5 (6) DVX=20x (1200 nm) LX=34x29.5k 34x29.5kS 154x01.3kE

6 (7) DLoVX=024x31.0k
E

W
34x29.5kS 156x56.7kW

5 (6) DVX=40x LX=27x29.6k 27x29.6kS 135x01.5kW
6 (7) DLoVX=046x26.2kE
5 (6) DVX=60x LX=17x32.2k 17x32.2kS 116x11.9kW
6 (7) DLoVX=065x15.8kE
5 (6) DVX=80x LX=06x00.4k 06x00.4kS 099x28.3kW
6 (7) DLoVX=081x59.4kE
5 (6) DVX=100x LX=x06x00.4k 06x00.4kN 083x27.1kW
6 (7) DLoVX=x081x59.4k

=098x00.6kE*

* tan(xh)=tan(180xxh).

Table 2. Use of the GCEM to solve the GCS for a given latitude lX.

Item

Process Equation Input Output Solution

1 (14) LF=x33x51.5k (S) a=0.4261695713

2 (15) LT=08x53.0k (N) b=0.2201663328

3 (16) DLo=129x16.0k (E) c=0.6352045779

4 (18) DLoFX=151x13.0kE x170xE LX=x36x45.1k 36x45.1kS 170xE

=18x47.0kE
DLoFX=38x47.0kE LX=x36x30.3k 36x30.3kS 170xW

DLoFX=58x47.0kE LX=x32x47.2k 32x47.2kS 150xW

DLoFX=78x47.0kE LX=x25x11.8k 25x11.8kS 130xW

DLoFX=98x47.0kE LX=x13x30.1k 13x30.1kS 110xW

DLoFX=118x47.0kE LX=1x06.2k 01x06.2kN 90xW
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difference to the practical applicability of the GCEM because of the method’s general
nature.

5. CONCLUSION. In this paper, the GCE based on the scalar triple product
principle of vector algebra has been formulated and the GCEM is developed to cal-
culate the latitude and longitude of the waypoints along the great circle track.
Comparisons with conventional approaches show that the GCEM is not only sim-
pler because of the reduced number of necessary steps, but is also as accurate as
conventional methods. By considering the error propagation existing in the conven-
tional calculating procedure, the optimal formulae are determined and suggested
for potential users. Several worked examples validate the proposed GCEM.
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APPENDIX

The following symbols are used in this paper:

L latitude

LF departure latitude

LT destination latitude

LV latitude of the vertex

LX latitude of great circle track waypoints

l longitude

lF departure longitude

lT destination longitude

lV longitude of the vertex

lX longitude of great circle track waypoints

lE longitude of the equator crossing point on a great circle track

DLo difference of longitude between departure and destination, DLo=LFyLT

DLoFV difference of longitude between departure and vertex

DLoVX difference of longitude between vertex and waypoints on the great circle track

DLoFX difference of longitude between departure and waypoints on the great circle track

DLoFE difference of longitude between departure and the equator crossing

DLoVE difference of longitude between vertex and equator crossing

D great circle distance between the departure and the destination

DFV great circle distance between the departure and the vertex

DVX great circle distance between the vertex and the waypoints

C initial great circle course angle from the departure to the destination
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Great Circle Versus Rhumb Line Cross-track
Distance at Mid-Longitude

Paul Hickley

(Oxford Aviation Training)

KEY WORDS

1. Great circle. 2. Rhumb line.

My present job requires me to teach airline pilot students up to ATPL standard,
in order to prepare them for the JAA exams. In my opinion, the standard required of
the candidates is quite high but, nevertheless, it is an undergraduate, not a post-
graduate, qualification. As such, the stated JAR Learning Objectives do not include
a requirement to know spherical trigonometry. The boys and girls are required to
be able to calculate Rhumb Line tracks from one Lat and Long to another (from a
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knowledge of change of latitude for N–S distance and from the departure formula for
E–W distance, then the use of the tangent relationship to get the track angle). They
could even be required to work out the Great Circle track given the Rhumb Line
track (by use of the conversion angle formula: CA=(1/2)Change of Longitudersine
mean-Latitude). However, the sine rule, the cosine rule and Napier’s Rules are not
required knowledge and are not expected to be taught. It was therefore with some
interest that we noted the following type of question appearing in the examinations
recently:

Waypoint One is 60N 30W. Waypoint Two is 60N 20W. Your autopilot is coupled to the INS
and you are steering from WP1 to WP2. What will be your latitude on passing 25W?

A 6011N

B 6006N

C 6000N

D 5953N

Bear in mind that this is two-hour exam worth 100 marks. Give them 5 minutes
to read the paper at the start and five minutes to ensure that they have answered
every question at the end and the candidates are looking at 110 minutes. This
was a two-mark question. This means that the JAA expect them to be able to
answer it in 2 minutes and 12 seconds. Now, I’m an experienced aviator and
instructor and I’m not sure that I could have come up with an answer in that
time without some sort of pre-warning of the type of question. How do we go
about it?

Well, even at the most elementary level, the students should realise that an INS will
steer you along the Great Circle, not the Rhumb Line track. They should also realise
that the Great Circle track will be nearer the Pole (in whichever hemisphere) than the
Rhumb Line track, so they can dismiss answers C and D above. That still leaves them
to choose between 6011N and 6006N in this particular question.

Let’s first sort out for ourselves what the answer is. Most readers of the Journal will
probably have an advantage over the ATPL candidates in that they will be familiar
with spherical trigonometry. So let’s draw ourselves the spherical trig diagram in
Figure 1. Position A is 60N 30W. Position B is the North Pole. Position C is wherever
the Great Circle track crosses 25W. The examiners have made the problem relatively
easy for a spherical trig solution by choosing the same latitude for start and finish and
by putting the unknown latitude at the mid-longitude. You can either work out that
the Rhumb Line track must be 090xT and at mid-meridian Great Circle and Rhumb
Line track must be same, or you can realise that Point C is the vertex of a Great Circle
and so its direction at that point must be 090xT. We also know that, as the latitude of
A is 60N, the co-latitude must be 30x. We can also establish what angle A is, because
the Rhumb Line track will be 090xT so the Great Circle track at that point must be
(090xxconversion angle).

CA=1
2 Change of Longitudersine mean-Latitude

=1
2r100rsin 60�

=4:33�
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Therefore angle A=90x4:33�

=85:67�:

Now apply the sine rule

sin a= sinAr
sin c

sinC

= sin 85:67�r
0:5

1

Therefore a=29�54:30, which is the co-latitude of Point C:

So C is at 60x05.7kN 025x00.0W – option (B) of the answers.
Well, yes – except that knowledge of some of the above formulae is not expected be

available to my students. So, how are they supposed to answer it?

Method 1 – Half the Conversion Angle. One way might be by drawing it as a plane
triangle, as in Figure 2. We can find the distance AD using the departure formula
and, over this fairly small change of longitude and reasonably low latitude, this will
be very close to the Great Circle distance AE.

Departure=change of longitude (mins)r cos latitude

=5r60r0:5

=150 nautical miles:

(Calculation of the Great Circle distance AE, using spherical trig, gives 149.86 nm, so
it’s pretty close.)

WP2
60N 20W

WP1
60N 30W

25W

North Pole

A

a

B

C

c

b

Figure 1.
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We can find the conversion angle EAD. That is the conversion angle from WP1 to
WP2. This will be as follows:

CA (from A to C)=1
2rch longrsin lat

=1
2r10r0:8660

=4:33�:

The problem is that the line AD is curved. If we are going to solve this using plane
trigonometry, we need a straight line. But let’s re-examine the previous diagram,
blowing up the corner EAD as in Figure 3. 4.33x is the combination of angles x and y
in Figure 3.We need the angle x on its own. If we can find y and subtract it from 4.33x,
we can find x. That’s not too difficult. y is the conversion angle between 60N 30W and
60N 25W.

CA (from A to D)=1
2rch longrsin lat

=1
2r5r0:8660

=2:165�

Therefore x=4:33�x2:165�

=2:165�:

A
WP1

C
WP2

B

E

D

Figure 2.

A E

D

x
y

Figure 3.
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So, the straight-line angle EAD is half the curved-line conversion angle EAD. This is
a general result and is applicable to any such problem, not just at this latitude.

So now:

sine x=
DE

AE

and DE=150 nmr sin 2:165�

=5:67 nm:

Therefore the latitude at E is 6005.67N.
Answer B is correct.

Method 2. Method 1 is fine, but it does mean that you have to remember a one-off
formula (half the conversion angle) to cover just one case. Another method is to treat
it as a Lambert map projection. See Figure 2 again. Avoid the temptation to treat it as
a Polar Stereo. If you do, the straight line AC is not a great circle. However, if you
treat it as a Lambert projection, with the parallel of origin at 60N, then the Great
Circle can be considered as a straight line.

The conversion angle EAD is 4.33x (see the argument in Method 1). Angle BAD is
90x (a parallel crossing a meridian on an orthomorphic chart). This means that the
angle BAE is 85.67x. We know that A is 60N and B is 90N, so the distance AB is 1800
nautical miles. If we can find the distance BE we can subtract it from BD (also
1800 nm) to find DE.

Distance AE is 150 nm (see the argument in Method 1).

Sine angle BAE=
BE

BA

Sine 85:67�=
BE

1800

So BE=1794:86 nm:

So DE is (1800� 1794:86)=5:14 nm, giving the latitude of E as 6005:14N:

Method 3. There is a neater way of solving the above question, provided the Rhumb
Line distance AD is fairly close to the Great Circle distance AE. In this example, it is.
Therefore you can use Pythagorus. BAE is a right-angled triangle. Pythagorus’s
theorem states that :

BA2=AE2+BE2

18002=1502+BE2:

This gives the distance BE as 1793.74 nm. Subtracting this from 1800 gives 6.26 nm,
making the latitude of E 6006.26N.

(You can see that all of these methods give slightly different answers, because they are
all approximations. The definitive spherical trigonometry answer is 60x05.6624kN.
Nevertheless, they all give an answer that is close enough to separate the multiple-choice
solutions and select answer B above.)
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Method 1 is reasonably accurate provided that the Great Circle Distance from the
start point to the mid-longitude isn’t too different from the Rhumb Line Departure
distance. But it’s a lot to do in 2 minutes and 12 seconds if you haven’t been shown
how to do it before. And when you are shown how to do it, it’s a one-off formula
which you don’t use anywhere else and could lead to confusion with the Conversion
Angle formula.

Method 2 is not too bad as long as you resist the temptation to treat it as a Polar
Stereo chart.

Method 3 is quite quick, but does not have universal application. It, too, assumes
that the Great Circle and the Rhumb line distance are fairly close. It would break
down at near-Polar latitudes.

Can anyone suggest a neater and more elegant solution – without using spherical
trig?
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