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Ehrlichia are small obligately intracellular bacteria in the order Rickettsiales that
are transmitted by ticks and associated with emerging life-threatening human
zoonoses. Vaccines are not available for human ehrlichiosis, and therapeutic
options are limited to a single antibiotic class. New technologies for exploring
host–pathogen interactions have yielded recent advances in understanding the
molecular interactions between Ehrlichia and the eukaryotic host cell and
identified new targets for therapeutic and vaccine development, including those
that target pathogen virulence mechanisms or disrupt the processes associated
with ehrlichial effector proteins. Animal models have also provided insight into
immunopathological mechanisms that contribute significantly to understanding
severe disease manifestations, which should lead to the development of
immunomodulatory approaches for treating patients nearing or experiencing
severe disease states. In this review, we discuss the recent advances in our
understanding of molecular and cellular pathobiology and the immunobiology of
Ehrlichia infection. We identify new molecular host–pathogen interactions that
can be targets of new therapeutics, and discuss prospects for treating the
immunological dysregulation during acute infection that leads to life-threatening
complications.

Ehrlichia were first associated with veterinary
disease in Africa in 1925 by Cowdry, who
identified Ehrlichia ruminantium in cattle. A
decade later Donatien and Lestoquard described

Ehrlichia canis in Algerian dogs (Refs 1, 2).
Ehrlichioses continue to be important veterinary
diseases, but are now also associated with
newly identified human tick-borne zoonoses.
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At the end of the 20th century, a new tick-
borne disease, human monocytotropic
ehrlichiosis, emerged in humans and a novel
aetiological agent – Ehrlichia chaffeensis – was
identified (Ref. 3). Twelve years later, Ehrlichia
ewingii, a recognised canine pathogen that
infects granulocytes, was detected in four
immunocompromised patients with symptoms
of ehrlichiosis (Refs 4, 5). Nearly a century
after Cowdry’s discovery, Ehrlichia are firmly
established as zoonotic human pathogens of
public health importance. Human
monocytotropic ehrlichiosis is considered one of
the most prevalent life-threatening tick-borne
diseases in the USA, and ewingii ehrlichiosis is an
important clinically indistinguishable disease in
immunocompromised patients (Refs 4, 5).
The order Rickettsiales contains two families

of arthropod-transmitted obligately intracellular
bacteria that cause human diseases, including
spotted fever rickettsiosis, typhus, scrub
typhus, anaplasmosis and ehrlichiosis. The
genus Ehrlichia is a member of the family
Anaplasmataceae, which also includes the
genera Anaplasma, Wolbachia and Neorickettsia. In
addition, the family Rickettsiaceae and
respective genera Rickettsia and Orientia are also
members of Rickettsiales. The Ehrlichia genus
consists of six formally named members
(E. canis, E. chaffeensis, E. muris, E. ruminantium,
E. ewingii and E. ovis). E. chaffeensis and E.
ewingii are recognised as human zoonotic
pathogens that also cause significant disease in
the animal hosts (Refs 6, 7). E. canis, the
aetiological agent of canine monocytic
ehrlichiosis, is a globally distributed pathogen
and has been recently associated with human
infections (Refs 8, 9). E. ruminantium is a
veterinary pathogen that causes a severe acute
infection known as heartwater in domestic
ruminants localised primarily to sub-Saharan
Africa (Ref. 10).
Ehrlichia have small genomes, yet have evolved

elaborate and complex molecular strategies that
enable adaptation to distinct hosts (invertebrate
and vertebrate) and intracellular survival in
innate immune effector cells. Using Ehrlichia as
a model to understand the molecular
interactions between pathogen and eukaryotic
host cell provides an attractive and manageable
system to advance our knowledge of the
molecular pathobiology of intracellular
microbes as well as the molecular biology of

the eukaryotic cell. This review focuses on the
molecular and cellular interactions of ehrlichiae
and immunological responses that have clinical
implications with regard to development of
novel antimicrobial therapeutics or molecular
countermeasures, and immunomodulatory
approaches.

Physical characteristics and intracellular
developmental biology

E. chaffeensis is confined to cytoplasmic membrane-
bound vacuoles within monocytes/macrophages
and dendritic cells (Ref. 11), replicating to form
microcolonies called morulae that contain one to
>400 organisms (Ref. 12). Morphologically,
individual ehrlichiae are coccoid and
coccobacillary and exhibit two ultrastructural cell
types: a larger reticulate cell and a smaller dense-
cored cell (Fig. 1). Morphological comparisons to
other intracellular bacteria such as Chlamydia
have suggested that Ehrlichia reticulate cells and
dense-cored cells represent analogous replicating
and infectious forms of the organism. This
hypothesis was confirmed by a recent study
of ehrlichial developmental biology that
demonstrated that the dense-cored cell form of
E. chaffeensis binds to the host cell surface where
it is rapidly (<1 h) internalised and completes
the developmental cycle within 72 h (Ref. 16)
(Fig. 2).

The Ehrlichia genome: insight into
host–pathogen interactions

The intracellular niche occupied by Ehrlichia has
resulted in reductive evolutionary processes and
a corresponding severe loss of genes associated
with metabolic processes provided by the host
cell. Hence the genome sizes (∼1–1.5 Mb) of
Ehrlichia are relatively small compared with
those of extracellular bacteria. The genomes of
three Ehrlichia species have been sequenced
(Refs 17, 18, 19), and they show a high degree of
genomic synteny, a low G+C content (∼30%)
and one of the smallest genome coding ratios,
which is attributed to long noncoding regions
and numerous long tandemly repeated
sequences (Ref. 20). Long noncoding regions
and low G+C content in other related
Rickettsiales members are speculated to
represent degraded genes in the final stages of
elimination and excess GC-to-AT mutations
(Refs 21, 22, 23). The large number of long
tandemly repeated sequences that are a feature
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of Ehrlichia genomes have no phylogenetic
relationships, suggesting that duplication
occurred after diversification of the repeat-
encoding DNA and divergence of the species
(Ref. 24). The tandem repeats seem to be a result
of locally occurring independent events, actively
created and deleted through a mechanism
compatible with DNA slippage (Ref. 24), and
their generation might be a mechanism of
adaptation to the host.
Features identified in Ehrlichia genomes

associated with host–pathogen interactions
include genes that encode tandem- and ankyrin-
repeat-containing proteins, genes encoding actin
polymerisation proteins, genes with poly(G-C)
tracts encoding a family of proteins with short
sequence repeats, and a multigene family
encoding outer membrane proteins; in addition,
there is an absence of genes for the biosynthesis
of peptidoglycan and lipopolysaccharide
(Ref. 18), the major pathogen-associated

molecular patterns recognised by the innate
immune system. Tandem repeats are associated
with regulation of gene expression and phase
variation, and Ehrlichia species show two types
of tandem repeats: small (12 bp) and large
(100–300 bp) period repeats (Ref. 24). Secretion
of effector proteins into the host cell requires
secretion systems, and such delivery
mechanisms have been identified, including
many of the known type IV secretion system
(T4SS) components (Refs 17, 18, 19). There is no
evidence of a type III secretion system (T3SS),
although other intracellular bacteria such as
Chlamydia have this system and some secreted
ehrlichial tandem repeat proteins (TRPs) are
predicted to have an N-terminal type III
secretion transport signal. The Sec-dependent
and Sec-independent protein export pathways
for secretion of proteins across the inner
membrane as well as a putative type I secretion
system (T1SS) have also been identified (Refs 17,

DC

R

DC

R

Immunogold-labelled electron micrograph of Ehrlichia chaffeensis TRP47
Expert Reviews in Molecular Medicine 2011 Published by Cambridge University Press

Figure 1. Immunogold-labelled electron micrograph of Ehrlichia chaffeensis TRP47. Within innate
immune cells, ehrlichiae form membrane-bound microcolonies termed morulae. Individual ehrlichiae show
two morphological forms: dense-cored cells (DC; 0.4–0.6 μm in diameter) and reticulate cell (R) forms
(0.4–0.6 μm by 0.7–1.9 μm). Reticulate cells and dense-cored cells can be distinguished by the differential
expression and secretion of two tandem-repeat-containing surface proteins – TRP47 and TRP120 – which
are found only on dense-cored cells (Refs 13, 14). The intramorular space in some morulae contains a fibrillar
matrix of ehrlichial origin (Ref. 15). Figure reproduced, with permission from American Society for
Microbiology, from Ref. 14 (© 2006, American Society for Microbiology).
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18, 19). The Ehrlichia genomes also have genes that
encode three response regulator two-component
systems (composed of a sensor histidine kinase
and a response regulator), which allow bacteria to
sense signals and respond to changes in their

environment through specific gene activation or
repression (Ref. 17).

Proteins associated with host–pathogen
interactions

Tandem repeat proteins
The presence of long-period tandem repeats
distributed in intergenic regions of Ehrlichia is
well recognised and is associated with expansion
and contraction of these regions. Interestingly,
long-period tandem repeats are also found in a
small subset of proteins, many of which are
strongly immunoreactive, suggesting that they are
exposed on the surface or secreted. TRPs in
pathogenic bacteria have been associated with
host–pathogen interactions such as adhesion and
internalisation (Refs 13, 25), actin nucleation
(Ref. 26) and immune evasion (Ref. 27). Many of
these proteins in Ehrlichia have been molecularly
characterised, and major continuous species-
specific antibody epitopes have been mapped to
the acidic serine-rich tandem repeats of E.
chaffeensis TRP120, TRP47 and TRP32 (Refs 14, 28,
29), and of the E. canis orthologues TRP140,
TRP36 and TRP19, respectively (Refs 14, 29, 30).
Immunoelectron microscopy has shown that
these TRPs are secreted by the ehrlichiae and are
associated with the morular fibrillar matrix and
the morula membrane (Refs 13, 14, 28). Other
bacteria have effector TRPs that are secreted by
the T3SS; however, the absence of an identifiable
T3SS in Ehrlichia suggests that another
mechanism such as the T1SS is involved. In
preliminary work, we have explored the
possibility of these TRPs as T4SS substrates, but
they were not secreted in the well-characterised
model of the VirB/VirD4-dependent T4SS of
Agrobacterium tumefaciens (Ref. 31).

The functional role of the tandem repeats
in E. chaffeensis TRPs is not fully understood.
However, homology between the tandem repeats
and other functional protein domains and motifs
of eukaryotic origin have been reported. The
E. chaffeensis TRP47 contains seven 19-mer
(ASVSEGDAVVNAVSQETPA) tandem repeats
that dominate the C-terminal region of the
protein, and approximately half of the TRP47 is
represented by the tandem repeat domain
(Ref. 32). The TRP47 tandem repeat region shows
homology with eukaryotic proteins including the
renin receptor (also known as ATP6AP2 and
CAPER), the DNA polymerase III subunits
gamma and tau-conserved domain, and

DC
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Developmental cycle of Ehrlichia
chaffeensis in the eukaryotic host cell
Expert Reviews in Molecular Medicine 2011
Published by Cambridge University Press

Figure 2. Developmental cycle of Ehrlichia
chaffeensis in the eukaryotic host cell.
Infectious dense-cored (DC) ehrlichiae attach and
enter the host cell through receptor-mediated
endocytosis, and within 1 h after entry transform
into the intermediate (IM) 1, and then into the
reticulate cell (RC). During the next 48 h RC
replicates, doubling every 8 h, and then
transforms into IM2 and matures to DC ehrlichiae
within 72 h after initial cell contact (Ref. 16). DC
ehrlichiae obtained 72 h post-infection showed
much higher infectivity than E. chaffeensis RCs
obtained 24 h post-infection. RC and DC
ehrlichiae can be distinguished by two
differentially expressed tandem repeat proteins –

TRP47 and TRP120 – that are found only on DC
ehrlichiae, and the major outer membrane protein
p28-19, which is expressed only on the RC
(Ref. 16). However, intermediate, presumably
transitional, forms that co-express these proteins
have also been described (Ref. 16). Although
ehrlichiae and chlamydiae have similar
morphological forms and developmental cycles,
homologous genes for the histone H1 homologue
proteins (Hc1 and Hc2) involved in condensation
and decondensation of the chlamydial nucleoid
are not present in the E. chaffeensis genome
(Ref. 16). Figure adapted, with permission
from John Wiley and Sons (http://
www.interscience.wiley.com), from Ref. 16 (© The
Authors).
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ribonuclease E, suggesting similar functional
characteristics (Ref. 32). TRP47 also has several N-
terminal tyrosine and serine/threonine residues
that are predicted sites of phosphorylation, and
tyrosine phosphorylation has been detected on
TRP47 with antiphosphotyrosine antibodies
(Ref. 33). Other TRPs might be phosphorylated,
such as TRP32, which has an unusually high
frequency of tyrosine residues (20%) in the C-
terminal tail (Ref. 28). The tandem repeat
domains of TRP120 and TRP32 do not have
homology with other conserved protein domains;
however, recent studies have reported that the
tandem repeat region of TRP120 directly binds
host cell DNA (Ref. 34).

Ankryin repeat proteins
Theankyrin repeat (Ank) is aubiquitous eukaryotic
motif that canoccur incombinationwithother types
of domains and can cooperatively fold into
structures that mediate molecular recognition by
protein–protein interactions. Ehrlichia species are
among only a few prokaryotes that are known to
have Ank-containing proteins. The most
extensively studied Ank protein in E. chaffeensis is
a 200 kDa protein (Ank200) that has a central
domain containing 19 Anks flanked by acidic
(pI 4–5) C- and N-terminal domains with a
predominance of glutamate and aspartate
residues (Ref. 35). In addition, like the TRPs, the
E. canis and E. chaffeensis Ank200s have a high
proportion of polar amino acids, including serine
and threonine (Refs 35, 36). Several species-
specific antibody eptiopes have been mapped to
acidic terminal domains of the Ank200s (Refs 35,
36). Our preliminary data suggest that E.
chaffeensis Ank200 is not secreted by the T4SS
(Ref. 31); however, Anaplasma phagocytophilum
AnkA appears to be secreted by this mechanism
(Ref. 37). Although E. chaffeensis and A.
phagocytophilum are closely related, they are
different in many aspects; for example, they show
tropism for different cell types, residence in
different cytoplasmic compartments (Refs 38, 39)
and distinct immune evasion mechanisms
(Refs 40, 41, 42). In addition, an A. phagocytophilum
VirD4, the T4SS substrate-coupling protein, shows
a higher identity with A. tumefaciens VirD4 than
with that of E. chaffeensis (Refs 17, 41).

Major outer membrane proteins
A superfamily of immunoreactive outer
membrane proteins that are members of the

Pfam PF01617 group of proteins (http://pfam.
sanger.ac.uk/) has been identified in the family
Anaplasmataceae. E. chaffeensis has a paralogous
family of 22 major outer membrane proteins
(OMP-1/p28) encoded at a single locus
upstream from the secA gene and downstream
from a hypothetical transcriptional regulator
gene (Ref. 44). They were originally proposed to
be involved in antigenic variation of the
organism. Although recombination of the major
outer membrane proteins of closely related
Anaplasma species occurs to create antigenic
diversity, there is no evidence that
recombination of the Ehrlichia OMP-1 family
occurs. Differential expression of the OMP-1
genes in ticks and animal hosts has been
reported, suggesting that they have a role in
host adaptation (Refs 45, 46). Expression of only
one OMP-1 gene (OMP-1B) has been reported in
ticks and tick cell lines and appears to involve a
temperature-sensitive regulation mechanism
(Refs 45, 47). By contrast, all OMP-1 family
members are expressed in mammalian hosts and
cells, and antibodies against all OMP-1 proteins
have been detected in experimentally infected
dogs (Refs 45, 48). Although the role of the
outer membrane proteins in antigenic variation
and immune evasion is still uncertain, other
characteristics have been identified for the
OMP-1 proteins, including transmembrane
β-strand structural features and porin activity,
suggesting that they might facilitate nutrient
acquisition (Ref. 49).

Molecular and cellular biology of infection
Entry and characteristics of the ehrlichial
vacuole
Infection of the host cell involves dense-cored
ehrlichiae that express TRP120 on the surface.
TRP120 has an important role in the binding
and entry process (Refs 13, 25), and a potential
role has also been demonstrated for TRP47 in
attachment to tick cells using the E. ruminantium
orthologue (Erum1110) (Ref. 50). The stability of
TRP120 and invasion of E. chaffeensis are
regulated by the bacterial second messenger
cyclic di-GMP and activity of ehrlichial surface
serine protease HtrA (Ref. 25). Binding to
the host cell occurs through receptors such
as E- and L-selectin and other
glycosylphosphatidylinositol (GPI)-anchored
proteins located in caveolae (Refs 51, 52),
triggering receptor-mediated endocytosis that
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involves signalling events including
transglutamination, tyrosine phosphorylation,
phospholipase Cγ2 activation, production of
inositol (1,4,5)-trisphosphate and increases in
intracellular calcium (Ref. 53). Removal of
surface-exposed GPI-anchored proteins by
phosphatidylinositol-specific phospholipase C
prevents the development of early inclusions
(Ref. 52).
The vacuoles in which the organism enters

contain caveolin-1, GM1 ganglioside and
phospholipase Cγ2. Later (>3 h) after infection,
vacuoles that contain replicating ehrlichiae show
characteristics of early endosomes such as the
presence of the small GTPase Rab5A (RAB5A),
early endosomal antigen 1 (EEA1) and vacuolar
(H+) ATPase, and they accumulate transferrin
and transferrin receptor (Ref. 12). Replicative
vacuoles of closely related A. phagocytophilum do
not express these markers (Ref. 38). Other
molecules found in Ehrlichia inclusions are
vesicle-associated membrane protein 2, major
histocompatibility class II and β2-microglobulin
(Refs 12, 38). Ehrlichia vacuoles appear to be
maintained in a caveolar trafficking system that
interacts with recycling endosomal pathways
(Ref. 52).

Modulation of host cell gene expression
E. chaffeensis appears to activelymodulate host cell
gene transcription and function through several
mechanisms, including interactions with host
chromatin and modulation of host signalling.
One mechanism that has been identified
involves the inhibition of host mitogen-activated
protein (MAP) kinases by E. chaffeensis, leading
to the downregulation of transcription factors
and transcription of target genes related to host
defence (Ref. 54). The discovery of DNA-binding
proteins (TRP120 and Ank200) of Ehrlichia
provides another mechanism by which host cell
gene transcription can be modulated (Refs 34, 55).
The transcription levels of a relatively small

percentage (5%) of host cell genes are altered
significantly within the first 24 h post-infection
(Ref. 56). This transcriptional profile has
provided new information on host cell processes
targeted by Ehrlichia and has revealed key
themes in pathobiology and disease
pathogenesis. Specific cellular processes that
appear to be modulated are apoptosis,
regulation of the cell cycle and differentiation,
signal transduction, and the expression of

proinflammatory cytokines, biosynthetic and
metabolic proteins, and membrane trafficking
proteins. Host genes modulated during E.
chaffeensis infection are distinct from those
observed in infections by other intracellular
bacteria, illustrating the complexity and
diversity of intracellular pathogen–host
interactions and survival strategies (Ref. 56).

Survival in mononuclear phagocytes requires
the ability to evade innate and adaptive immune
responses. E. chaffeensis represses the
transcription of cytokines involved in the early
innate immune response and cell-mediated
immune response to intracellular microbes,
including host cell cytokines that modulate
innate and adaptive immunity to intracellular
bacteria. Early in infection, genes for the
proinflammatory cytokines interleukin (IL)-1β
(IL1B), IL-8 and tumour necrosis factor β (TNF-
β; also known as LTA) are upregulated, and
others such as TNF-α (TNF) are not induced
(Ref. 56). By contrast, most cytokines and
receptors are downregulated, including IL-15,
IL-18 and various chemokine receptors. These
cytokines have fundamental roles in stimulating
natural killer (NK) cells and T helper 1 (Th1)
cells to produce interferon γ (IFN-γ; IFNG),
which then activates macrophages to kill
phagocytosed bacteria. IL-12 and IL-15 also
activate NK cells and cytotoxic T lymphocytes to
kill cells infected with intracellular bacteria.
Thus, active modulation of genes associated
with the immune response appears to be
essential to the survival of E. chaffeensis.

Modulationofgenesassociatedwith inhibitionof
apoptosis and cell cycle regulators is observed early
during E. chaffeensis infection, and is probably
necessary for delaying host cell death, as
discussed further below. E. chaffeensis infection
upregulates transcription of apoptosis inhibitors
such as IER3, BIRC3 and BCL2, but inhibits
apoptosis inducers such as BIK and BNIP3L
during the early stage of infection, thus impairing
host cell apoptosis and maintaining a prolonged
growth opportunity for ehrlichiae (Ref. 56).

E. chaffeensis lives in an early endosome and
inhibits the maturation of the endosome to
evade destruction by lysosomal enzymes
(Ref. 38). In an effort to modulate this process,
E. chaffeensis inhibits the transcription of genes
involved in membrane trafficking and lysosomal
fusion: the production of Rab5, synaptosome-
associated protein 23 (SNAP23) and syntaxin 16
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(STX16) is repressed,most dramatically during the
first hour of infection. Interestingly, Rab5
is associated with E. chaffeensis inclusions.
Depletion of Rab5 inhibits the fusion of the
phagosome containing Listeria monocytogenes
with lysosomes (Ref. 57).

Acquisition of iron and cholesterol
Ehrlichia survival depends on an available supply
of intracellular iron (Ref. 58), and this is also
demonstrated by the fact that the antiehrlichial
activity of IFN-γ is mediated by limiting the
available cytoplasmic iron (Ref. 59).
Interestingly, cytoplasmic vacuoles containing
replicating ehrlichiae accumulate transferrin
receptor, and transferrin receptor mRNA is
upregulated during ehrlichial infection (Ref. 58),
which might serve to counteract the reduction of
surface transferrin receptor by IFN-γ. How
Ehrlichia acquires iron from the host is not fully
understood, but a conserved iron-acquisition
mechanism has been identified in Ehrlichia
involving the ATP-binding cassette transporter
family, a mechanism shared by a diversity of
bacterial species (Ref. 60). However, unlike most
bacteria in which the genes encoding iron-
acquisition proteins are found in an operon,
Ehrlichia iron-acquisition genes are not part of a
functional operon (Ref. 60). The iron-binding
protein (Fbp) of Ehrlichia is conserved among
other known iron-binding proteins in bacteria,
and similarly it binds Fe(III). Notably, Ehrlichia
Fbp has been observed outside the bacterium
within the morular space containing dense-
cored cells, suggesting that iron is obtained from
intracellular pools derived from transferrin and
shuttled by Fbp to the bacterium (Ref. 60).
Although Ehrlichia lack structural membrane

components such as peptidoglycan and
lipopolysaccharide, they appear to use cholesterol
as a structural substitute (Ref. 61). Ultrastructural
changes are observed in Ehrlichia in the presence
of cholesterol-extraction reagents. Cholesterol is
incorporated as a component of the outer
membrane, and Ehrlichia have an unidentified,
but specific, direct uptake mechanism (Ref. 61).
The structural integrity of the organism is
dependent on cholesterol, and it is essential for
maintaining an infectious state (Ref. 61).

Evading innate host defences
As indicatedabove,Ehrlichiahaveevolvedstrategies
that allow them to survive in phagocytes and

evade innate host defence mechanisms. Ehrlichia
manipulate innate immune defence mechanisms,
including production of reactive oxygen species
(ROS), apoptosis, lysosomal fusion and IFN-γ
responsiveness. A major host defence mechanism
is production of ROS that have strong
antimicrobial effects. E. chaffeensis is highly
sensitive to O2

− killing (Ref. 62) and lacks genes
involved in the detoxification of ROS (Ref. 17).
However, E. chaffeensis actively blocks O2

−

generation in monocytes stimulated with phorbol
myristate acetate and causes degradation of
NADPH oxidase subunit p22phox in monocytes,
but not neutrophils (Ref. 62). Degradation of
p22phox appears to involve nonproteasomal
proteolysis and heat-labile factors or proteins
from E. chaffeensis. Degradation can be detected in
isolated monocyte membrane fractions, which
suggests that intracellular signalling events are
not required (Ref. 62).

Apoptosis is an innate cellular defence
mechanism against microbes that is modulated
by many bacterial pathogens, and there is new
information that indicates that Ehrlichia also
modulate host cell death. In nature, Ehrlichia
survive by persistently infecting vertebrate
hosts, so delaying or preventing apoptosis could
be a means of enhancing survival by preventing
host cell death and subsequent immune
recognition. For most intracellular pathogens,
induction of apoptosis leads to pathogen killing
and clearance of infection, and this is thought to
be beneficial to the host and enhance the
immune response to the infection. In the case of
Ehrlichia, there appear to be several mechanisms
involved in apoptosis modulation by Ehrlichia.
As mentioned above, E. chaffeensis upregulates
the transcription of genes related to
antiapoptotic activity and the cell cycle,
including cyclin-dependent kinase expression, in
THP-1 cells (Ref. 56). E. ewingii delays apoptosis
in neutrophils by stabilisation of host cell
mitochondria (Ref. 63).

Phagolysosomes represent another important
innate host defence mechanism against
pathogens. Ehrlichia are able to inhibit fusion of
the phagosome containing ehrlichiae with
lysosomes and thus prevent their destruction by
this defence mechanism (Ref. 12). Although very
little is known about how Ehrlichia avoid this
host defence mechanism, recent studies have
demonstrated that functioning two-component
systems have an important role in preventing
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lysosomal fusion (Ref. 64). Two-component
systems consist of a sensor with a histidine
kinase that detects environmental signals, and a
response regulator that has DNA-binding
activity and regulates gene transcription
(Ref. 65). E. chaffeensis has three two-component
systems: PleC–PleD, NtrY–NtrX and CckA–CtrA
(Ref. 66). Cells treated with closantel and
incubated with E. chaffeensis have increased
colocalisation between E. chaffeensis and
lysosomal glycoprotein LAMP-1, and E.
chaffeensis infection is completely inhibited by
pretreatment with closantel (Ref. 66).
The macrophage-activating cytokine IFN-γ has

an important role in innate and adaptive immune
responses against intracellular pathogens. The
activation of macrophages by IFN-γ induces
several antimicrobial effector mechanisms,
including regulation of iron homeostasis
(Ref. 67), that are necessary for the production
of antimicrobial effectors, including ROS and
nitrogen radicals (Ref. 68). The ability to acquire
iron is important for the survival of intracellular
pathogens such as Ehrlichia, Salmonella, Listeria
and Mycobacterium (Refs 68, 69). With respect to
E. chaffeensis, macrophages that are stimulated
with IFN-γ before infection or early in infection
readily kill E. chaffeensis (Ref. 59). However,
E. chaffeensis has developed strategies to
circumvent the actions of IFN-γ. E. chaffeensis
upregulates transferrin receptor expression to
counteract the downregulation by the action of
IFN-γ (Ref. 58). The inhibitory effects of IFN-γ
on E. chaffeensis infection can be reversed by
the addition of iron-saturated transferrin,
and E. chaffeensis infection is inhibited by
the intracellular iron chelator deferoxamine
(Ref. 59), demonstrating the critical role of iron
for E. chaffeensis infection and the role that
IFN-γ has in regulating its availability. After
E. chaffensis infection is established, IFN-γ is
no longer effective, possibly because of the
ability of E. chaffeensis to upregulate host iron-
acquisition mechanisms. The ability of E.
chaffeensis to block the antimicrobial mechanisms
of IFN-γ is mediated at least in part by
inhibition of the JAK–STAT IFN-γ signal
transduction pathway (Ref. 70). Binding of a
protein component of E. chaffeensis to the host
cell blocks tyrosine phosphorylation of JAK1
and STAT1 normally induced by IFN-γ
(Ref. 70). JAK–STAT inhibition has been linked
to the upregulation of protein kinase A by

E. chaffeensis (Ref. 70). Others have also
suggested that avoiding IFN-γ activity might
be influenced by transcriptional regulation of
JAK–STAT expression mediated by the nuclear
effector Ank200 (Ref. 55).

E. chaffeensis also appears to modulate the host
innate immune response by influencing other cell
signalling pathways. Antimicrobial activities of
macrophages become progressively less
responsive during E. chaffeensis infection in
association with downregulation of pattern
recognition receptors (PRR), including CD14,
TLR2 and TLR4, and activity of the associated
PRR transcription factor PU.1 (SPI1) (Ref. 54).
Activation of PU.1 has been linked to a p38
mitogen-activated protein kinase (MAPK)-
dependent pathway, and a p38-specific MAPK
inhibitor shows similar effects on PU.1 and PRR
activity and expression (Ref. 71). Ehrlichia also
appear to target host tyrosine kinases and
phosphatases (FYN and PTPN2; described in
more detail below), but the downstream
processes affected by these interactions are not
known (Ref. 32).

E. chaffeensis effectors and molecular
host interactions

Significant progress has been made in the
identification of host cell processes that are
modulated by Ehrlichia in order to survive in
phagocytes. However, the effector proteins
involved in manipulating these host cell
processes have been largely undetermined.
Recent genome sequencing efforts and new
biotechnology approaches to investigate
molecular protein–protein interactions have
focused attention on two small groups of
Ehrlichia-encoded proteins: those containing
tandem or ankryin repeats. These proteins
appear to be effectors involved in novel,
complex and multidimensional molecular
strategies to reprogramme host cell defence
mechanisms (Ref. 72). Two proteins, TRP47 and
Ank200, have been the focus of recent studies
demonstrating interactions with host cell DNA
and molecular interactions with host proteins
associated with distinct host cell processes.

E. chaffeensis TRP47
Many of the small family of TRPs of Ehrlichia
are strongly recognised by the host immune
response, including TRP47 (Refs 14, 28, 29).
TRP47 is differentially expressed on dense-cored
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ehrlichiae and is found extracellularly, indicating
that it is secreted (Fig. 1). A recent study to
examine molecular interactions between TRP47
and the host identified several interactions with
specific host cell targets, including polycomb
group ring finger 5 (PCGF5), Src protein
tyrosine kinase FYN, protein tyrosine
phosphatase nonreceptor type 2 (PTPN2),
adenylate cyclase-associated protein 1 (CAP1)
and immunoglobulin lambda-like polypeptide 1
(IGLL1), with distinct cellular functions
associated with signalling, transcriptional

regulation, vesicle trafficking, and cellular
proliferation and differentiation (Ref. 32) (Fig. 3).
Notably, none of these host targets had been
identified by previous studies related to the cell
biology of Ehrlichia infection. The interactions
between TRP47 and the host cell illustrate the
complexity and diversity of pathogen–host
interactions that occur and will require
additional research to fully comprehend.
Although the relevance of these ehrlichiae–host
molecular interactions in the context of ehrlichial
pathobiology remains to be determined, the host

anti-TRP47 anti-PCGF5 Merged

anti-TRP47 anti-IGLL1 Merged

Colocalisation of PCGF5 and IGLL1 with Ehrlichia chaffeensis expressing
TRP47 within infected THP-1 cells
Expert Reviews in Molecular Medicine © 2011 Cambridge University Press

Figure 3. Colocalisation of PCGF5 and IGLL1 with Ehrlichia chaffeensis expressing TRP47 within
infected THP-1 cells. E. chaffeensis-infected cells were dually labelled with anti-TRP47 (green) and PCGF5
or IGLL1 (red) and examined by confocal microscopy. PCGF5 and IgLL1 colocalise with E. chaffeensis
TRP47-labelled morulae (yellow, right merged panels). Molecular interactions between PCGF5, IGLL1, FYN,
CAP1 and PTPN2 were first reported in Ref. 32. Abbreviations: IGLL1, immunoglobulin lambda-like
polypeptide 1; PCGF5, polycomb group ring finger 5; THP-1 cells, a human acute monocytic leukaemia cell
line; TRP47, tandem repeat protein 47.
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targets identified suggest that TRP47 is a
multifunctional effector that has an important
role in establishing bacterial infection and
promoting intracellular survival (Fig. 4).
The strongest observed interaction between an

Ehrlichia and host protein is between TRP47 and
PCGF5 (Ref. 32) (Fig. 3). E. chaffeensis is known
to modulate host cell gene transcription, and
PCGF5 has been associated with DNA-
dependent regulation of transcription, metal-ion
binding and protein–protein interactions. PCGF5
is related to the polycomb group proteins
(transcriptional repressors) Bmi-1 (PCGF4) and

Mel-18 (PCGF2), which have important roles in
the regulation of HOX gene expression, X-
chromosome inactivation, tumourigenesis, self-
renewal, maintenance of pluripotency of stem
cells and stimulation of E3 ubiquitin ligase
activity. Thus, it appears that TRP47-expressing
dense-cored ehrlichiae might interact with
PCGF5 in order to modulate host cell gene
expression to favour survival (Fig. 4).

Another interesting interaction that has been
characterised is between TRP47 and IGLL1, the
surrogate light chain associated with the pre-B-
cell receptor (Ref. 73) (Fig. 3). The pre-B-cell

ER

IP3

Ca2+
Ca2+

c

ReceptorFYN

IP3R

PLCg

Entry of Ehrlichia
a

CAP1-encircled
morula

Caveolin-1

CAP1–TRP47 interaction

Apoptosis

Apoptosis

Ehrlichia
release

Actin
dynamics

PCGF5–TRP47
interaction

PTPN2–TRP47
interaction

JAK–STAT

IFN–g

MAPK
pathway

P

PP
P

TRP47–CAP1
interaction:
trafficking and
apoptosis

b

TRP47–PCGF5
and TRP47–PTPN2
interactions:
cellular signalling

A proposed model of TRP47 effector function in Ehrlichia chaffeensis infection
of the macrophage
Expert Reviews in Molecular Medicine © 2011 Cambridge University Press

Figure 4. A proposed model of TRP47 effector function in Ehrlichia chaffeensis infection of the
macrophage. (See next page for legend.)
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receptor is involved in transduction of signals for
cellular proliferation, differentiation from the pro-
B-cell to the pre-B-cell stage, allelic exclusion at
the Ig heavy-chain gene locus and promotion
of Ig light-chain gene rearrangements (Ref. 73).
Thus, the significance of the interaction
between TRP47 and IGLL1 might involve
signalling and development, but suggests a
novel role for IGLL1 in the macrophage and
one that will require further study to understand.
The location of TRP47 on the surface of dense-

cored ehrlichiae suggests that this protein might
be involved in host cell attachment or entry. The
association with FYN tyrosine kinase suggests
that such a role is possible (Fig. 4). Tyrosine
kinases are known to be involved in ehrlichial
entry; however, the specific kinases involved
have not been determined (Ref. 53). In addition,
phosphorylation of host or bacterial proteins has
been implicated in signalling pathways,
triggering the entry of many intracellular
pathogens. Ehrlichia enter through caveolae, and
FYN is known to specifically phosphorylate
caveolin-1 and is required for coxsackievirus
internalisation and infection by caveolin-
associated vesicles of polarised epithelial cells
(Ref. 75). Evidence of tyrosine phosphorylation
of TRP47 has been reported, suggesting that

there is a functional significance and that FYN
might be responsible (Ref. 33).

TRP47 also interacts strongly with PTPN2,
also known as T-cell PTP, which catalyses the
dephosphorylation of phosphotyrosine peptides
and regulates phosphotyrosine levels in signal
transduction pathways. It is ubiquitously
expressed with particularly high expression in
haematopoietic tissues and appears to broadly
influence haematopoietic cell development, but
recent findings also demonstrate a role in several
human illnesses, from autoimmune disease to
cancer (Ref. 76). PTPN2 has several substrates,
including CSF1R, EGFR, PDGFR, INSR, p52Shc
(SHC1), JAK1, JAK3, STAT1, STAT3, STAT5A/B
and STAT6 (Ref. 77). The JAK–STAT pathway is
inhibited by monocytotropic E. chaffeensis
(Ref. 74), supporting the possibility that TRP47
might be involved not only in the inhibition of
IFN-γ-induced tyrosine phosphorylation of
STAT1, JAK1 and JAK2 by interacting with
PTPN2, but also in the regulation of cellular
development (Fig. 4). Ehrlichia might favour
PTPN2 upregulation because the loss of PTPN2
results in STAT5 hyperactivation, increased
production of IFN-γ, TNF-α, IL-12 and
inducible nitric oxide synthase, increased
tyrosine phosphorylation, recruitment of a

Figure 4. A proposed model of TRP47 effector function in Ehrlichia chaffeensis infection of the
macrophage. (See previous page for figure.) The schematic diagram is based on defined pathogen effector
molecular interactions (Ref. 32) and previous reports of cellular events during infection (Refs 16, 52, 54, 56,
74). (a) Entry of Ehrlichia. Binding of E. chaffeensis to its receptor on the surface of an innate immune cell
such as a monocyte directly or indirectly activates FYN. Activated (phosphorylated) FYN tyrosine kinase
phosphorylates and activates PLCγ, which hydrolyses membrane phospholipid phosphatidylinositol (3,4)-
bisphosphate (not shown), resulting in increased levels of inositol (1,4,5)-trisphosphate (IP3) and thus
release of Ca2+ from intracellular stores and Ca2+ influx. FYN might regulate the function of the IP3 receptor
by phosphorylation and promoting release of Ca2+ from the endoplasmic reticulum. FYN also
phosphorylates caveolin-1 involved in ehrlichial entry. (b) TRP47–CAP1 interactions. TRP47 is secreted by
dense-cored Ehrlichia and associated with the morula surface, where it interacts with CAP1. This
interaction might facilitate endocytosis and vesicle trafficking, because CAP1 promotes rapid actin
dynamics in conjunction with ADF/cofilin and is required for cell morphology, migration and endocytosis; in
addition, the TRP47–CAP1 interaction might promote apoptosis in the late stages of infection (which could
have an important role in the release of dense-cored ehrlichiae), because mitochondrial shuttling of CAP1
promotes actin- and coflin-dependent apoptosis. (c) TRP47–PCGF5 and TRP47–PTPN2 interactions.
TRP47–PCGF5 interaction modulates gene transcription associated with cell signalling and remodelling of
the cytoskeleton, facilitating and supporting intracellular survival of E. chaffeensis. TRP47– PTPN2
interaction might modulate cytokine signalling events by exerting negative feedback on the JAK–STAT
pathway by dephosphorylation of JAKs and STATs involved in intravacuolar maintenance and survival of E.
chaffeensis. Dashed lines indicate processes the JAK–STAT pathway might affect indirectly. Abbreviations:
CAP1, adenylate cyclase-associated protein 1; ER, endoplasmic reticulum; JAK, Janus kinase; MAPK,
mitogen-activated protein kinase; PCGF5, polycomb group ring finger 5; PLCγ: phospholipase Cγ; PTPN2,
protein tyrosine phosphatase, non-receptor type 2; STAT, signal transducer and activator of transcription;
TRP47, tandem repeat protein 47.
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complex of GRB2–GAB2–SHP2 (PTPN11) to
the CSF1R and enhanced activation of ERK
(MAPK1/3), and might affect transcription factor
PU.1 signalling. Thus, TRP47 might influence a
large number of important signal transduction
pathways by interacting with PTPN2 (Fig. 4).
The membrane-bound vacuoles in which

Ehrlichia reside in the host cell cytoplasm interact
with endosomal recycling pathways. A
specific interaction between TRP47 and the
multifunctional protein CAP1 has been defined
that appears to occur at the morula membrane
interface, where CAP1 localises with the dense-
cored morulae adjacent to the morula boundaries
(membrane) (Ref. 32). CAP1 is a highly conserved
monomeric-actin-binding protein that contains
binding domains for actin (C-terminal region),
adenylate cyclase and cofilin (N-terminal region),
and profilin (central region), and it has an active
role in actin turnover (Ref. 78). Genetic studies in
yeast have implicated CAP1 in vesicle trafficking
and endocytosis. In mammalian cells, CAP1 is
associated with the SH3-domain-dependent
complex of actin-binding protein 1 and dynamin
that is involved in receptor-mediated endocytosis
(Ref. 79). Thus, in an effort to survive in the
intracellular niche, Ehrlichia might manipulate
cytoskeletal components of the mononuclear
phagocyte such as actin by modulating CAP1
(Fig. 4). Interestingly, CAP1 has also been
implicated in promoting apoptosis by functioning
as an actin shuttle to mitochondria. Similar to
cofilin, BAD and BAX, CAP1 rapidly translocates
to mitochondria independently of caspase
activation, where it promotes apoptosis (Ref. 80).
Associations between ehrlichial morulae and
mitochondria have been consistently observed
(Ref. 15). Thus, the TRP47 and CAP1 interaction
might be multifunctional by facilitating
endocytosis and vesicle trafficking, and promoting
apoptosis in the late stages of infection (Fig. 4).

E. chaffeensis Ank200 interaction with host
Alu elements
There are four genes in the E. chaffeensis genome
that encode proteins with Ank repeats. One of
these proteins, Ank200, is a well-characterised
major immunoreactive protein that has several
species-specific antibody epitopes located
primarily in acidic N- and C-terminal domains
(Ref. 35). The E. chaffeensis Ank200 lacks a signal
peptide, but is predicted to be secreted by a
leaderless secretion system (Secretome 2.0), and

it has a T4SS motif (Ref. 81). Ank200 has
recently been detected in host cell nuclei of E.
chaffeensis-infected cells where it interacts with
an adenine-rich motif in promoter and intronic
Alu elements (Ref. 55). Alu elements are short,
interspersed mobile DNA elements distributed
in a nonrandom manner that comprise
approximately 5–10% of the human genome and
are thought to be involved in transcriptional
regulation as carriers of cis-regulatory elements
(Refs 82, 83). Alu elements have known binding
sites for transcription factors including all MEF2
family members, as well as HNF1.03, OC.2,
BARX2 and PAX4 (Ref. 84). The global analysis
of binding sites of Ank200 demonstrates that
this protein binds to several regions distributed
on nearly every chromosome by direct DNA
interaction or via other DNA-binding proteins.

The host cell processes targeted by Ank200
have been classified, and include genes
associated with transcriptional regulation,
apoptosis, ATPase activity and structural
associations with the nucleus (Ref. 55) (Table 1).
Interestingly, genes associated with host cell
processes known to be altered during E.
chaffeensis infection were found to be targets of
Ank200. In addition, Ank200 appears to bind
genes associated with transcription, and there is
evidence that a large number of genes
associated with transcription are modulated
during E. chaffeensis infection (Ref. 56).

Several Ank200 target genes have been linked
to pathogenesis and immune evasion, including
TNF-α, JAK2 and CD48. TNF-α expression
is not induced early in infection (<48 h)
(Refs 85, 86), but expression is upregulated
approximately 30-fold by day 5 post-infection
(Ref. 55). E. chaffeensis Ank200 might contribute
to the induction of TNF-α by binding directly to
the promoter and upregulating gene
transcription. Studies have demonstrated that
overproduction or high serum concentration
of TNF-α on day 7 post-infection is
closely associated with fatality in severe
monocytotropic ehrlichiosis (Refs 87, 88). One of
the primary mechanisms by which E. chaffeensis
survives in the host cell appears to be blocking
macrophage responsiveness to IFN-γ (Ref. 59).
Furthermore, JAK2 transcription appears to be
silenced during E. chaffeensis infection, and
JAK–STAT genes are also Ank200 targets,
suggesting that E. chaffeensis uses
several strategies, including directly modulating
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genes associated with the JAK–STAT pathway
(Ref. 56).

Immunopathological mechanisms and
disease

During E. chaffeensis infection, there is a relatively
low bacterial burden in the blood and tissues in
nonimmunocompromised patients. However,
the clinical manifestations, which include fever,
multiorgan failure and adult respiratory distress
syndrome, suggest that the pathogenesis of
ehrlichiosis might involve immunopathological
responses that are described as a toxic-shock-like
syndrome (Refs 89, 90). Studies using a fatal
murine model and a surrogate unnamed
monocytic ehrlichia isolated from Ixodes ovatus
ticks in Japan (IOE) suggest that such a
mechanism is involved (Ref. 91). Mice
inoculated with IOE develop histopathological
lesions resembling those observed in human
monocytotropic ehrlichiosis patients, and a
similar disease course is observed in the IOE
murine model. Lethal infections with IOE are
accompanied by extremely high levels of serum
TNF-α, a high frequency of splenic TNF-α-
producing CD8+ T cells, decreased Ehrlichia-
specific CD4+ T cell proliferation, low IL-12
levels in the spleen and a 40-fold decrease in the
number of ehrlichial antigen-specific IFN-γ-

producing CD4+ Th1 cells (Refs 88, 92).
Furthermore, mice lacking TNF receptors
I/II are resistant to IOE-induced liver
injury (an apparent effect of reduced
immunopathology), but show higher bacterial
burdens (indicating reduced protective
immunity) (Ref. 93). Others have also
demonstrated immunopathological responses
linked to CD8+ T cells (Ref. 87). Interestingly,
fatal memory responses against homologous but
not heterologous challenge are associated with
decreased bacterial burden, enhanced
inflammatory response in the liver, decreased T
cell responses and defective maintenance of
IFN-γ-producing T cells (Ref. 94). CD1d-
restricted NKT cells appear to be instrumental in
the induction of immunopathological responses
(Ref. 95).

Clinical implications and applications
underlying

Ehrlichiosis manifests as an undifferentiated
febrile illness that is difficult to diagnose, and
delayed treatment can lead to serious
complications and poor prognosis. There are no
vaccines for human rickettsial diseases,
including ehrlichiosis, and therapeutic options
are limited. The rapid growth in antibiotic
resistance among microbes suggests that

Table 1. Selected E. chaffeensis Ank200 target genes identified by ChIP-on-chipa

Gene Chromosome GeneBank
(Accession no.)

Description

ZNF703 8 NM_025069 Zinc finger protein 703
ZNF513 2 NM_144631 Zinc finger protein 513
CD48 1 NM_001778 CD48 molecule
FGFRL1 4 NM_021923 Fibroblast growth factor receptor-like 1
PTK2B 8 NM_004103 Protein tyrosine kinase 2 beta
STAT1 2 NM_139266 Signal transducer and activator of transcription
PRCC 1 NM_199416 Papillary renal cell carcinoma
EFHC1 6 NM_018100 EF-hand domain (C-terminal) containing 1
TNF 6 NM_000594 Tumour necrosis factor α
JAK2 9 NM_004972 Janus kinase 2
DIO1 1 NM_000792 Deiodinase, iodothyronine, type I
ANKZF1 2 NM_018089 Ankyrin repeat and zinc finger domain containing 1
NDOR1 9 NM_014434 NADPH-dependent diflavin oxidoreductase 1
TDP1 14 NM_018319 Tyrosyl-DNA phosphodiesterase 1
USF1 1 NM_007122 Upstream transcription factor 1

aInformation in the table is based on Ref. 55.
Abbreviation: CHIP-on-chip, chromatin immunoprecipitation and DNA microarray analysis.
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antibiotics could become ineffective for ehrlichial
and rickettsial infections in the future. The lack of
broader therapeutic options is complicated by the
fact that there are no effective vaccines available
to prevent disease in susceptible populations.
Recent advances in our understanding of
molecular pathogen–host interactions, virulence
mechanisms, effector proteins, the cellular basis
of infection and the immunopathological basis
of clinical manifestations have provided new
targets for therapies that block pathogen
virulence mechanisms, host–pathogen
interactions or eukaryotic cell processes, and
have identified additional approaches involving
immunomodulatory therapies that can be
considered.
Antibodies that block interactions between

effector proteins and host targets can be used
therapeutically. For example, passive transfer of
E. chaffeensis TRP120-epitope-specific antibodies
reduces ehrlichial burden and demonstrates the
potential of therapeutic antibodies against
ehrlichial effector proteins (Ref. 96). These
studies also suggest that vaccines containing
defined antigens are feasible and will be
developed in the future. Additionally, drugs that
target specific pathogen virulence mechanisms
such as secretion systems and signal
transduction systems or inhibit acquisition of
essential components for pathogen structural
integrity and function might be viable
alternative therapies that can be used for patient
treatment. Defining molecular host–pathogen
interactions and ultimately the three-
dimensional structures of effector molecules will
allow the development of small-molecule
inhibitors that can disrupt the ability of the
pathogen to manipulate host cell processes
resulting in pathogen clearance by the immune
system.
Managing patients who are experiencing

manifestations and complications associated
with severe disease requires understanding of
the underlying immune dysregulation, to
develop rational strategies to alleviate its effects.
The overproduction of inflammatory cytokines
or chemokines is responsible for serious clinical
manifestations that can be managed by
targeted immunotherapies that block cytokine
production or neutralise cytokine effects by
blocking a specific cytokine–receptor interaction
and its immunopathological consequences. Such
patient management strategies can be

considered as the immune effectors are
comprehensively defined.

Research in progress and outstanding
research questions

The complexity of the pathogen–host relationship
between Ehrlichia and the eukaryotic host cell
is becoming better understood, and the
mechanisms used by the organism to
reprogramme cellular processes are becoming
more defined. New pathogen–host interactions
such as nuclear translocated proteins that bind
host chromatin have been recently described,
but much more research is needed to fully
appreciate how these effector proteins modulate
host cell transcription and whether they can be
useful therapeutic targets. Other effector
proteins and secretion mechanisms have been
identified, but the mechanisms used by these
effectors and how they modulate targeted host
cell processes are areas of active research that
will provide useful information for the
development of therapeutics. Much research
on the cellular processes that are affected
during infection has been accomplished, and
advancing knowledge regarding host cell
processes that are targeted by the organism
will be beneficial for designing therapeutic
interventions for Ehrlichia as well as other
rickettsial pathogens.

Development of immunomodulatory strategies
for patient management will become more
practical in the future, and research to
understand the immunopathological mechanisms
involved has taken large steps forward.
Questions that need to be addressed are why
some patients respond immunologically in a
detrimental way and how we can accurately
identify and manage these patients. More
research needs to be devoted to the development
of biomarkers for disease for diagnosis and
development of rational strategies for patient
management and therapeutic decisions.
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Figure 1. Immunogold-labelled electron micrograph of Ehrlichia chaffeensis TRP47.
Figure 2. Developmental cycle of Ehrlichia chaffeensis in the eukaryotic host cell.
Figure 3. Colocalisation of PCGF5 and IGLL1 with Ehrlichia chaffeensis expressing TRP47 within infected
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Figure 4. A proposed model of TRP47 effector function in Ehrlichia chaffeensis infection of the macrophage.
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