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Abstract

This paper proposes a method to compare the performances of different methods for robust design optimization of compu-
tationally demanding models. Its intended usage is to help the engineer to choose the optimization approach when faced
with a robust optimization problem. This paper demonstrates the usage of the method to find the most appropriate robust
design optimization method to solve an engineering problem. Five robust design optimization methods, including a novel
method, are compared in the demonstration of the comparison method. Four of the five compared methods involve surrogate
models to reduce the computational cost of performing robust design optimization. The five methods are used to optimize
several mathematical functions that should be similar to the engineering problem. The methods are then used to optimize the
engineering problem to confirm that the most suitable optimization method was identified. The performance metrics used
are the mean value and standard deviation of the robust optimum as well as an index that combines the required number of
simulations of the original model with the accuracy of the obtained solution. These measures represent the accuracy, robust-
ness, and efficiency of the compared methods. The results of the comparison show that sequential robust optimization is the
method with the best balance between accuracy and number of function evaluations. This is confirmed by the optimizations
of the engineering problem. The comparison also shows that the novel method is better than its predecessor is.
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1. INTRODUCTION

Modeling and simulation are used in the early stages of the
product development process to analyze and compare different
concepts. Most models are deterministic, which means that
the model will yield the same results each time that it is simu-
lated with the same settings. However, the performances
of products are not deterministic in real life because they are
affected by uncertainties and variations such as variable ma-
terial properties, manufacturing tolerances, and varying en-
vironmental conditions.

Optimizations are commonly used to let the computer
search for optimal products, but deterministic optimizations
often lead to solutions that lie at the boundary of one or
more constraints (Wiebinga et al., 2012). These solutions
may lead to a high percentage of failure if the constraints
are affected by uncertainties and variations. It is therefore de-
sirable to perform optimizations where the statistics are taken

into account, such as robust design optimization (RDO) or
reliability-based design optimization.

The purpose of RDO is to find a robust optimal design that is
insensitive to variations and uncertainties (Beyer & Sendhoff,
2007). The objective function of an RDO is therefore usually
a linear combination of the mean value, m, and standard
deviation, s, as shown in Eq. (1) (Aspenberg et al., 2013):

min f (x) ¼ am(x)þ bsðxÞ: (1)

The values of the coefficients, a and b, are used to deter-
mine how important the mean value and standard deviation
are. This means that the mean value and standard deviation
of the performance of the design needs to be estimated each
time the value of the objective function is calculated.

Numerous methods for RDO exist (Beyer & Sendhoff,
2007), and it is important for the engineer or designer to be
able to choose an appropriate method for the given problem.
It is therefore desirable to enable benchmarking of RDO
methods for a representative problem to guide the selection
process. This paper addresses this problem by proposing a
method that can be used to benchmark RDO methods.
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The proposed benchmarking method is demonstrated through
a comparison of five RDO methods, including a novel method.

1.1. Background

At least two numerical operations are needed to perform an
RDO. One needs to estimate the robustness of a design,
whereas the other handles the optimization.

Many methods can be used to estimate how uncertainties
and variations affect the performance of a system, and in this
paper Latin hypercube sampling (LHS) is used (McKay et al.
1979). It has been used by numerous authors (Beyer & Send-
hoff, 2007) and can give reasonably accurate estimations of the
mean value and standard deviation of the performance of a sys-
tem by performing only a few tens of simulations (Persson &
Ölvander, 2011). It is also easy to implement and use.

The most important properties of an optimization algorithm
are the probability of finding the optimum, the wall clock time
it takes to perform an optimization, and how easy the algorithm
is to use (Krus & Ölvander, 2013). Different optimization algo-
rithms have different advantages, and which one to choose de-
pends on the characteristics of the problem and the preferences
of the user. The two optimization algorithms that are used in
this comparison are Complex-RF (Box, 1965; Krus & Ölvan-
der, 2013), and a genetic algorithm (GA; Holland, 1975; Gold-
berg, 2006). These are described in Section 2.

Since an LHS is performed every time the optimization al-
gorithm wants to calculate the value of the objective function,
the wall clock time of an RDO of a computationally expen-
sive model can be unrealistically long. One remedy is to
use computationally efficient surrogate models (SMs) instead
of the expensive model (Jin et al., 2003; Coelho, 2014).

Many comparisons of the efficiency of different types of
SMs have been performed, but no common conclusion has
been made (Wang & Shan, 2007). Anisotropic kriging is
found to be the best one according to Jin et al. (2003) and Tar-
kian et al. (2012), and is therefore used in this paper. LHS has
been used as sampling plan for SMs by several authors (Jin
et al., 2003; Forrester et al., 2008; Wiebenga et al., 2012)
and is used to create the initial SMs in this paper as well.

The remainder of the paper is structured as follows. The
five compared methods are presented in Section 2, whereas
the benchmarking method is presented in Section 3. A dem-
onstration of the comparison method and a confirmation of
its results are presented and discussed in Section 4. Finally,
the conclusions summaries the paper in Section 5.

2. COMPARED METHODS

Five different RDO methods are compared in this paper, and
they are presented in this section. The methods involve opti-
mization algorithms and in this paper two different are used:
Complex-RF and a GA.

The Complex-RF method is an extension of the original com-
plex method developed by (Box, 1965) with inspiration from
the Nelder–Mead simplex algorithm (Nelder & Mead, 1965),

which has a good trade-off between accuracy and computational
cost (Krus & Ölvander, 2013). It begins by spreading k . nþ 1
points randomly in an n-dimensional design space to form a
geometric shape referred to as a complex. The algorithm then
progresses by reflecting the worst point in the complex through
the centroid of the remaining points a reflection distance a . 1.
If this new point is still the worst, it is moved halfway toward the
centroid. This process continues until convergence or the max-
imum number of function evaluations is reached. In Krus and
Ölvander (2013), the complex-RF method is thoroughly ex-
plained and its performance optimized using meta optimization.

This paper uses the standard value of k, which is twice the
number of optimization variables, and the maximum number
of function evaluations is set to 500.

GAs mimic Darwin’s theory of survival of the fittest; see, for
example, Holland (1975) or Goldberg (2006). The algorithm is
population based, where a new generation is obtained based on
the best individuals in the previous generation. New indi-
viduals are created by combining genetic material from fit
parents to create new children. It is also possible to include
mutations to increase the robustness of the optimization. The
main advantage of GAs are their generally high accuracy, or
likelihood, of identifying the global optima in multimodal
search spaces, whereas the drawback is that they usually require
many objective function evaluations (Ölvander & Krus, 2006).

2.1. Brute force RDO (bfRDO)

The workflow of the first method is shown in Figure 1, and it
is a method that performs robust design optimization without
involving any SMs; hence, it is called the brute force method.
As no SMs are used, the original model is simulated several
times whenever the LHS estimates the mean value and stan-
dard deviations of a design. This means that the required num-
ber of simulations is the number of samples drawn by the LHS
multiplied by the number of objective function evaluations of
the optimization algorithm. Algorithms that require many ob-
jective function evaluations, such as GAs and particle swarm
optimizations (Eberhart & Kennedy, 1995) are therefore un-
suitable for this approach unless the model or function that
is optimized is extremely fast to evaluate.

Complex-RF is chosen as an optimization algorithm for this
method in this comparison due to its good trade-off between
function evaluations and accuracy (Krus & Ölvander, 2013).

2.2. SM-based RDO (SMRDO)

A commonly used method for RDO is to fit an SM to the orig-
inal model and then perform the RDO on the SM instead of
the original model. The workflow is shown in Figure 2, and
the benefit is that the only simulations of the original model
that are needed are those that are used to create the SM.
The SM can also be used for other purposes afterward.

A drawback with this method is that the SM needs to rea-
nimate the original model accurately in the whole design
space as the location of the optimum is unknown. Otherwise,
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there is always a risk that the SM is inaccurate in the vicinity
of the optimum.

Because all evaluations during the optimization are made
on the computationally effective SM, an optimization algo-
rithm with a high accuracy should be chosen even if it re-
quires many function evaluations. A GA is therefore chosen
as the optimization algorithm for this problem.

2.3. Robust sequential optimization (RSO)

RSO is a newer approach that is presented in works by, for ex-
ample, Wiebenga et al. (2012) and Rehman et al. (2014). A sche-
matic of its workflow is shown in Figure 3. It begins by fitting an
SM to the original model using LHS as sampling plan. An RDO
is then performed on the SM to find the robust optimum. The
original model is simulated once at the optimum, and the SM
is updated with this new sample. A new RDO is then performed

on the updated SM to find the new robust optimum. This itera-
tive process continues until a termination criterion is reached.

The termination criteria that are used in this paper is that the
algorithm stops when the same optimum has been found g

times in a row or the maximum allowed number of simulations
of the original model has been reached. The allowed number
of simulations of the original model is set to be either 10 times
the number of variables or 50, depending on which one is the
larger, and g is set to 5. Because the LHSs that are performed
in RSO are calling the computationally effective SM, GA is
chosen as optimization algorithm for this method too.

2.4. Evolutionary algorithm for robustness
optimization (EARO)

This method was proposed by Paenke et al. (2006) and uses
a GA as optimization algorithm and polynomial response

Fig. 2. A schematic workflow of a surrogate model-based robust design optimization.

Fig. 1. A schematic workflow of a robust design optimization.
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surfaces (PRSs) as surrogate models (Myers et al., 2009). Its
workflow is shown in Figure 4.

Whenever the GA creates a new generation, the original
model is simulated to make deterministic evaluations of the
individuals. These values are stored and used to create SMs.
A PRS is created from the closest samples when LHS should
be used to estimate the mean value and standard deviation of
an individual. The LHS is then calling the PRS instead of
the original model.

This means that the required number of simulations of the
original model for this RDO method equals the number of
individuals that are evaluated by the GA. The computational
cost is therefore similar to a deterministic optimization.

2.5. Complex-RDO (CRDO)

The proposed method is somewhat similar to EARO and an
improved version of Approach 6 in Persson and Ölvander
(2013) and its workflow is shown in Figure 5.

The method begins by fitting an SM to the original model
according to an LHS sampling plan. The SM is then called by
LHS to estimate the mean value and standard deviation at
each of the initial points that were used to fit the SM.

The k points with the best objective function values are
used as starting points for the Complex-RF optimization algo-
rithm. Whenever Complex-RF wants to calculate the value of
the objective function of a new point, a deterministic simula-
tion of that design is performed, and the SM is updated with

this value. LHS then calls the SM several times to estimate the
mean value and standard deviation of the design to estimate
its objective function value. This process continues until a
stop criterion for Complex-RF is reached.

This means that the evaluation of the robustness of each de-
sign is preceded by a deterministic simulation of the original
model. The total number of simulations of the original model
is therefore the number of samples in the original sampling
plan plus the number of points that are evaluated during the
optimization.

It also means that there will always be at least one sample in
the SM that is close to the evaluated design. This should in-
crease the accuracy in the vicinity of the parts of the design
space where the optimization algorithm currently operates.

The differences compared to the method proposed by
Paenke et al. (2006) are that Complex-RF is used instead of
GA as an optimization algorithm, and that kriging is used in-
stead of PRS as the SM. The motive for using Complex-RF is
that GA requires more function evaluations. A GA with 40
individuals and 40 generations means 1600 function evalua-
tions. A complex optimization can often find a solution in
100–200 evaluations (Persson & Ölvander, 2015). Kriging
usually performs better than polynomials as global SMs
(Jin et al., 2003). Polynomials nevertheless show reasonable
estimations for local estimations (Gobbi et al., 2013), and it
can be argued that the estimations in this method are both
global (in the beginning of the search) and local (at the con-
vergence stage).

Fig. 3. A schematic workflow for a sequential robust optimization.
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3. PROPOSED COMPARISON METHOD

A schematic workflow for the proposed comparison method
is shown in the bullet list below. A longer explanation of the
steps follows below the list.

STEP 1. Decide which RDO methods should be bench-
marked.

STEP 2. Decide on appropriate test models or functions to
benchmark the methods on.

STEP 3. Decide on a robust objective function.

STEP 4. Choose performance measures

STEP 5. Perform numerous optimizations of the same prob-
lem with the same algorithm as shown in Figure 6.

STEP 6. Calculate performance metrics.

STEP 7. Compare the performance metrics for the RDO
methods and test problems.

The first step is to identify the candidate RDO methods.
This includes availability and ease of implementation and
use. The next step is to identify and choose the test functions
and models that the methods should be benchmarked on. It is
important that the test problems are similar to the problems
that are most desirable to solve. This includes the overall
shape of the problem, number of optima, noisiness, and so on.

The third step is to choose the robust objective function that
should be used. This means choosing the weights of Eq. (1)
that balances the expected value versus the robustness of a so-
lution against each other. The weights a and b are set to 1 and
0 for the comparison in this paper, to follow the definition by
Branke (2001). This is shown in Eq. (2) and means that the
optimization only strives to find the minimal mean value.

min f (x) ¼ m(x): (2)

The fourth step is to choose which performance measures
should be used to compare the RDO methods. This also en-

Fig. 4. The workflow for the evolutionary algorithm for robustness optimization.
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ables meta-optimization (Mercer & Sampson, 1978), where
the parameters of the optimization algorithm can be opti-
mized to optimize the performance of the algorithm itself.

The performance measures that are used to compare the
RDO methods need to order the RDO methods according
to several criteria:

† availability
† ease of use
† accuracy
† robustness
† efficiency

This means that both accuracy and required number of simu-
lations of the original model need to be taken into account. Nu-
merous optimizations with each method, as shown in Figure 6,

are needed to test their performances as the optimizations es-
timate probabilistic phenomena and both the GA and complex
algorithm are probabilistic methods. Popular measures of the
accuracy and robustness are therefore mean values and stan-
dard deviations of the objective function values of the optimal
points received from the optimizations (Tenne, 2015).

Several performance measures for the efficiency of an op-
timization algorithm have been proposed (Schutte & Haftka,
2005; Krus & Ölvander, 2013), but for this comparison the
measure that is presented by Persson and Ölvander (2013),
h, is used. The benefit with this measure is that it combines
the accuracy of the optimization with the required number
of simulations needed for it to converge. The metric is shown
in Eq. (3) and can be interpreted as the probability of finding
the optimum if 100 simulations of the original model are al-
lowed. It can be noted that the value will be equal to 1 for all

Fig. 5. A schematic workflow of a complex robust design optimization.

Fig. 6. A workflow for performing numerous robust design optimizations.
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methods that have a 100% hit rate, but if two methods have
the same accuracy, the one that requires the least number of
simulations should naturally be chosen.

h ¼ 1� ð1� poptÞ100=nopt : (3)

The fifth step is to perform the numerous optimizations ac-
cording to Figure 6. This step can be extremely time consum-
ing if computationally expensive models were chosen in Step 2.
The received optima are then used to calculate the performance
metrics in Step 6. These metrics are then compared in Step 7 to
investigate which RDO method performs best.

4. DEMONSTRATION OF THE COMPARISON
METHOD

This demonstration of the comparison method strives to find
the most appropriate method among the five in Section 2 for
solving the problem in Section 4.1.

4.1. Engineering problem

The engineering problem that the best RDO method should
be found for is the electrical motorcycle model presented

by Persson and Ölvander (2015). It is implemented in
MATLAB Simulink and consists of models of the battery,
electrical motor, gear box, and the motorcycle itself. A
screenshot of the model is shown in Figure 7. The objective
is to optimize the velocity of the electrical motorcycle after
5 s. The optimization problem has three variables: the gear ra-
tios of the first and second gear, and the speed at which the
gear is shifted between the first and second gear. The random-
ness is introduced as a uniform noise of 1/8 of the variable
ranges.

4.2. Test problems

Four mathematical functions are used to compare the five RDO
methods. These are presented in Table 1 together with the elec-
trical motorcycle problem. The table also contains information
about the number of variables, variable limits, the randomness,
and the criteria for a successful optimization for the different
problems. The equations for the functions can be found in Ap-
pendix B together with descriptions of the properties of the
functions.

The mathematical functions have been chosen to have ap-
proximately the same number of variables and the same be-
havior as the electrical motorcycle problem. They have also

Fig. 7. Screenshot of a Simulink model of an electric motorcycle
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been used in benchmarking of robust optimization by, for ex-
ample, Branke (2001) and Rehman et al. (2014) or for deter-
ministic optimization by for example Toal and Keane (2012).

The reason to use simple mathematical functions for this
comparison is that they are computationally cheap to evaluate
and can be used to improve the understanding of how the dif-
ferent methods operate (Beyer & Sendhoff, 2007). Further-
more, mathematical functions can be adapted to investigate
which behaviors of the problems are easy or difficult for
each method to solve (Neculai, 2008).

The randomness is introduced similar to Branke (2001) as
a uniform noise, d, on the variables as shown in Eq. (4). This
means that if d¼+0.2 and a suggested design where x¼ 1 is
analyzed, the values of x þ d can range from 0.8 to 1.2.

f ¼ f ðxþ dÞ,
dmin � d � dmax: (4)

The functions used by Branke are tailored for investigating
the performance of RDO for nonlinear problems and can be
scalable to any number of variables. This means that it is pos-
sible to investigate how the number of variables affects the
performance of the different methods. To enable scalability,
each variable is independent from the others in the calcula-
tions. The total function value is the sum of the contributions
from all variables as shown in Eq. (5).

f ðxÞ ¼
Xn

i¼1
fiðxÞ: (5)

The robust function proposed by Rehman et al. (2014)
has three variables and is not scalable. The randomness is
introduced as a uniform noise on the design variables of
+1/8 (12.5%) of the variable ranges.

4.3. Comparison settings

Each robust optimization method needs to optimize each
problem numerous times to collect the statistical data needed
to estimate the performance measures. This number is set to
1000 optimizations in this comparison.

The performance measure in Eq. (3) needs a criterion for
a successful optimization to estimate the accuracy, denoted
hit rate. This comparison uses a similar criterion as the one

used by Riesenthel and Lesieutre (2011): 100,000 points
are spread in the design space and their objective function val-
ues calculated. The 1000th lowest value is then used as a
limit, and any optimization that results in an objective func-
tion value that is lower is deemed successful. A drawback
is that the 100,000 samples become more spread as the num-
ber of variables increases. This means that it is easier for an
optimization to find a solution that is better than the limit
for problems with many variables. It should be an adequate
criterion of a successful optimization here as the test problems
have approximately the same number of parameters.

4.4. Results from the comparison

The results from the 1000 optimization runs for each problem
and method can be found in Appendix A. The mean value and
standard deviations of the optimums found for each method
and optimization problem are summarized in Table 2 together
with the performance indices.

The RDO methods can be ordered according to their rank-
ing for each of these problems and criteria to get a better over-
view. This is presented in Table 3, where the rankings of each
method also are added together into overall scores. SMRDO,
for example, places fifth, fifth, fifth, and fourth in the accu-
racy rankings for each problem and therefore receives an
overall score of 5 þ 5 þ 5 þ 4 ¼ 19.

The overall scores indicate that bfRDO, RSO, and CRDO
are the three most accurate methods. They are also the
methods with the highest robustness. RSO is the clear winner
in terms of efficiency with the places 1, 2, 1, and 1. The over-
all scores therefore indicate that RSO should be the most
suitable optimization method for our engineering problem if
it is computationally expensive.

To investigate the appropriateness of choosing RSO, the elec-
trical motorcycle problem is optimized by all RDO methods in
the same manneras the test problems. These results can be found
in the bottom of Table 2 and the rightmost column in Table 3.

Results show that bfRDO performs best on the electrical
motorcycle problem in terms of both accuracy and robustness.
It does however perform worse than all other methods in terms
of efficiency. This means that it is unsuitable for the electrical
motorcycle problem unless much computational power is ac-
cessible. It is expected that bfRDO has a low efficiency for
many problems because it does not include surrogate models

Table 1. Optimization problem settings

Function
No. of

Variables Lower Bounds Upper Bounds d Successful if f (x) ,

Branke3 2 [21 21] [1 1] +0.2 21.4
Hartmann6 6 [0 0 0 0 0 0] [1 1 1 1 1 1] +0.2 21.57
Peaks 2 [23 23] [3 3] +0.2 25.1
Rehman 3 [25 0 0] [10 15 1] +12.5% 12.2
Electrical MC 3 [1 1 10] [10 10 60] +12.5% 266.6
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and therefore needs to evaluate the original model many times
every time the robustness of a design should be calculated.

The results indicate that RSO was an appropriate choice of
optimization method. It places second behind bfRDO in
terms of both accuracy and robustness, but it is the most effi-
cient method. This means that the proposed benchmarking
method succeeded in identifying the most suitable method
for solving the engineering problem.

It is difficult to draw any general conclusions regarding the
different RDO methods because the number of test problems
are few and they all have few design variables. Some pointers
can however be made.

SMRDO generally displays a bad accuracy. It places fifth,
fifth, fifth, and fourth for the test problems and third for the

engineering problem. The other methods improve their SMs
during the optimization, and SMRDO does not. This means
that the original SM needs to animate both the general appear-
ance and the optimum of the function well. This is evidently a
hard task, and hence, it is concluded that it is beneficial to im-
prove the SM as the optimization evolves.

CRDO displays higher performance indices, h, than EARO
for all problems. This shows that the proposed novel method,
where the optimization algorithm is changed from a GA to the
complex algorithm and the SMs from polynomial response
surfaces to kriging models, is more computationally efficient.
This is mainly because CRDO requires fewer simulations of
the original model to converge than EARO. The Complex-
RF optimization algorithm generally converges faster than a

Table 2. Results from 1000 independent optimizations for the five methods for each robust optimization problem

Function
No. of

Variables Metric bfRDO SMRDO RSO EARO CRDO

Branke3 2 Mean 21.24 20.47 21.01 20.85 21.05
SD 0.44 1.64 0.44 0.38 0.54
H 0.026 0.076 0.338 0.002 0.117

Hartmann6 6 Mean 21.89 20.49 21.68 21.08 21.91
SD 0.12 0.34 0.23 0.57 0.12
h 1 0.010 0.861 0.010 0.712

Peaks 2 Mean 24.86 23.88 26.08 25.87 25.55
SD 2.00 2.88 0.67 1.29 1.20
h 0.022 0.606 0.999 0.352 0.655

Rehman 3 Mean 10.73 11.56 10.09 17.82 10.52
SD 1.32 1.73 1.13 11.61 1.38
h 0.019 0.714 0.998 0.023 0.706

Electrical MC 3 Mean 265.68 262.56 263.59 259.97 254.74
SD 2.44 6.64 3.82 5.72 12.58
h 0.005 0.110 0.503 0.015 0.044

Table 3. Rankings of the five RDO methods for each optimization problem and performance criterion

Accuracy Mean Branke 3 Hartmann 6 Peaks Rehman Overall Score Ranking Electrical MC

bfRDO 1 2 4 3 10 3 1
SMRDO 5 5 5 4 19 5 3
RSO 3 3 1 1 8 1 2
EARO 4 4 2 5 15 4 4
CRDO 2 1 3 2 8 1 5

Robustness SD

bfRDO 2 1 4 2 9 2 1
SMRDO 5 4 5 4 18 5 4
RSO 2 3 1 1 7 1 2
EARO 1 5 3 5 14 4 3
CRDO 4 1 2 3 10 3 5

Efficiency h

bfRDO 4 1 5 5 15 4 5
SMRDO 3 4 2 2 11 3 2
RSO 1 2 1 1 5 1 1
EARO 5 4 4 4 17 5 4
CRDO 2 3 2 3 10 2 3
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GA, and this is shown here as well. The drawback is that Com-
plex-RF has a lower hit-rate than GA, but this is somewhat
remedied by using kriging instead of PRS as SM. This is dem-
onstrated by the similar or even higher hit rate for CRDO when
compared with EARO. It can also be seen from the compari-
son of the mean values that CRDO has a better accuracy than
EARO for the test problems but not for the engineering prob-
lem. However, the faster convergence yields an overall better
performance measure for CRDO.

The accuracies of the SMs are crucial for the performance
of the different methods. Kriging is generally a good SM, but
best suited for stationary functions (Toal & Keane, 2012). It is
possible that the methods would work better with other SM
types or a nonstationary kriging.

The ease of use and availability of the RDO methods is not
taken into account in this demonstration of the comparison
method. The algorithms are quite fast to create from existing
and freely available code and used with their standard settings.

5. CONCLUSIONS

This paper proposes a method that can be used to compare the
performance of RDO methods in order to find the most
suitable for a given problem. The comparison method is dem-
onstrated for five RDO methods, where the fifth method
(CRDO) is a novel method with a mechanism similar to
one of the other methods (EARO). The proposed comparison
method includes a performance index for efficiency, and it is
shown that it can be used to compare different RDO methods.

This paper also proposes a novel RDO method that uses
surrogate models to speed up the optimization. Every time
the optimization algorithm wants to calculate the robustness
of a suggested design, a deterministic simulation of the origi-
nal model is performed and a surrogate model created. The
robustness calculation is then performed by simulating the
surrogate model instead of the original model. The proposed
method is inspired by an existing method (EARO) proposed
by Paenke et al. (2006) that uses a genetic algorithm as an op-
timization algorithm and polynomial response surfaces as
surrogate models. The proposed method instead uses the
Complex-RF an optimization algorithm and kriging as a sur-
rogate model. The results show that the new method is more
efficient than the method that it is a modification of.

The demonstration of the comparison method uses four
mathematical functions to identify the most suitable algo-
rithm for solving a low-dimensional engineering problem.
The comparison suggests that robust sequential optimization
is the most appropriate method to use. This selection is con-
firmed to be correct according to verification optimizations of
the engineering problem with all RDO methods.

If the model that should be optimized is computationally
efficient, no SMs are needed, and the problem can be solved
without using SMs. The more computationally demanding
the original model is to simulate, the more important it is
that each simulation contributes to the solving of the optimi-
zation problem. This means that more calculations can be

made by the optimization algorithm between each simulation
to ensure that only necessary simulations are performed.

The algorithms that update the SMs during the optimiza-
tions are all dependent on accurate SMs in the beginning of
the optimization process. The algorithms may otherwise
search for solutions in the wrong region of the design space
and never recover. This can be somewhat remedied by differ-
ent updating schemes for the SMs (see, e.g., Jones 2001). It is
possible that the algorithms can be improved further by incor-
porating these updating schemes, and this warrants further re-
search.

The example comparison is made using an objective func-
tion where only the mean value of a design is considered, and
hence the calculation of the standard deviation is not taken
into account. If, however, objective functions are used where
the standard deviation is included, other methods, for exam-
ple, Taylor expansions of the standard deviation, should be
considered as well.
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Krus, P., & Ölvander, J. (2013). Performance index and meta-optimization of
a direct search optimization method. Engineering Optimization 45(10),
1167–1185.

McKay, M.D., Beckman, R.J., & Conover, W.J. (1979). Comparison of three
methods for selecting values of input variables in the analysis of output
from a computer code. Technometrics 21(2), 239–245.

Mercer, R.E., & Sampson, J.R. (1978). Adaptive search using a reproductive
metaplan. Kybernetes 7(3), 215–228. doi:10.1108/eb005486

Myers, R.H., Montgomery, D.C., & Anderson-Cook, C.M. (2009). Response
Surface Methodology: Process and Product Optimization Using De-
signed Experiments. Hoboken, NJ: Wiley.

Neculai, A. (2008). An unconstrained optimization test functions collection.
Advanced Modeling and Optimization 10(1), 147–161.

Nelder, J.A., & Mead, R. (1965). A simplex method for function minimiza-
tion. Computer Journal 7(4), 308–313.
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APPENDIX A

APPENDIX B

Branke3

f ðxjÞ ¼
xj þ 0:8 if �0:8 � xj , 0:2
0 otherwise

�
: (A:1)

Table A.1. Data from the comparison

bfRDO SMRDO

Function Calls
Hit-
Rate

Perf
Index Calls

Hit-
Rate

Perf
Index

Branke3 3540 0.609 0.026 100 0.076 0.076
Hartmann6 10000 1 1 100 0.606 0.606
Peaks 4700 0.655 0.022 100 0.009 0.009
Rehman 9960 0.850 0.019 100 0.714 0.714
Electrical MC 9960 0.410 0.005 100 0.110 0.110

Table A.2. Functions

RSO EARO

Function Calls
Hit-
Rate

Perf
Index Calls

Hit-
Rate

Perf
Index

Branke3 51 0.190 0.338 624 0.014 0.002
Hartmann6 61 0.700 0.861 2618 0.228 0.010
Peaks 43 0.960 0.999 633 0.936 0.352
Rehman 48 0.950 0.998 2444 0.428 0.023
Electrical MC 51 0.300 0.503 573 0.084 0.015

Table A.3. Functions

CRDO

Function Calls Hit-Rate Perf Index

Branke 445 0.424 0.117
Hartmann 499 0.998 0.712
Peaks 182 0.856 0.655
Rehman 179 0.888 0.706
Electrical MC 214 0.091 0.044

Table B.1. Functions

Function
No. of

Variables Overall Behavior
No of Determin.

Extreme Pts.

Branke 2 Discrete 1
Hartmann 6 Continuous Multiple
Peaks 2 Continuous Multiple
Rehman 3 Continuous Multiple
Electrical MC 3 Continuous, noisy 1
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Hartmann6

f ðxÞ ¼ �
X4

i¼1
ai exp �

X6

j¼1
Aijðxj � PijÞ2

 !
, (A:2)

where

a ¼ ð1:0, 1:2, 3:0, 3:2ÞT ,

A ¼

10 3 17 3:5 1:7 8
0:05 10 17 0:1 8 14

3 3:5 1:7 10 17 8
17 8 0:05 10 0:1 14

0
BB@

1
CCA,

P ¼ 10�4

1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

0
BB@

1
CCA_

Peaks

f ðxÞ ¼ 3ð1� x1Þ2exp½�x2
1 � ðx2 þ 1Þ2�

� 10

� 3x1

5
� x3

1 � x5
2

�
exp½�x2

1 � x2
2�

� 1
3

exp½�ðx1 þ 1Þ2 � x2
2�: (A:3)

Rehman

f ðxÞ ¼
�

x2 �
5:1
4p

x2 þ
5
p

x1 � 6

�2

þ 10

��
1� 1

8p

�
cosðx1Þ þ 1

�
þ ð6x3 � 2Þ2sinð12x3 � 4Þ þ 8x3: (A:4)

How to compare performance of RDO algorithms 297

https://doi.org/10.1017/S089006041700018X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041700018X

	How to compare performance of robust design optimization algorithms, including a novel method
	Abstract
	INTRODUCTION
	Background

	COMPARED METHODS
	Brute force RDO (bfRDO)
	SM-based RDO (SMRDO)
	Robust sequential optimization (RSO)
	Evolutionary algorithm for robustness optimization (EARO)
	Complex-RDO (CRDO)

	PROPOSED COMPARISON METHOD
	DEMONSTRATION OF THE COMPARISON METHOD
	Engineering problem
	Test problems
	Comparison settings
	Results from the comparison

	CONCLUSIONS
	REFERENCES
	APPENDIX A
	APPENDIX B


