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This paper studies the lift and drag experienced by a body in a two-dimensional,
viscous, compressible and steady flow. By a rigorous linear far-field theory and the
Helmholtz decomposition of the velocity field, we prove that the classic lift formula
L = −ρ0UΓφ , originally derived by Joukowski in 1906 for inviscid potential flow,
and the drag formula D= ρ0UQψ , derived for incompressible viscous flow by Filon
in 1926, are universally true for the whole field of viscous compressible flow in a
wide range of Mach number, from subsonic to supersonic flows. Here, Γφ and Qψ

denote the circulation of the longitudinal velocity component and the inflow of the
transverse velocity component, respectively. We call this result the Joukowski–Filon
theorem (J–F theorem for short). Thus, the steady lift and drag are always exactly
determined by the values of Γφ and Qψ , no matter how complicated the near-field
viscous flow surrounding the body might be. However, velocity potentials are not
directly observable either experimentally or computationally, and hence neither are the
J–F formulae. Thus, a testable version of the J–F formulae is also derived, which
holds only in the linear far field. Due to their linear dependence on the vorticity,
these formulae are also valid for statistically stationary flow, including time-averaged
turbulent flow. Thus, a careful RANS (Reynolds-averaged Navier–Stokes) simulation
is performed to examine the testable version of the J–F formulae for a typical airfoil
flow with Reynolds number Re = 6.5 × 106 and free Mach number M ∈ [0.1, 2.0].
The results strongly support and enrich the J–F theorem. The computed Mach-number
dependence of L and D and its underlying physics, as well as the physical implications
of the theorem, are also addressed.
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1. Introduction
A body moving through a viscous fluid will experience a reaction force (and

moment) due to its generated flow. This is the central problem of aero- and
hydrodynamics. Ever since the birth of modern aerodynamics, great efforts have
been made to find various force formulae and their underlying physical mechanisms.

† Email address for correspondence: jzwu@coe.pku.edu.cn
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Lift and drag in two-dimensional steady viscous and compressible flow 305

In this paper we consider the lift L and drag D exerted on a stationary body by a
two-dimensional steady flow in the (x, y)-plane with the orthonormal basis (ex, ey).
At upstream infinity the flow has uniform velocity U = Uex and constant properties
denoted by suffix 0. Then when the flow is incompressible and irrotational with
u = U + ∇φ, we have D = 0 and the famous Kutta–Joukowski lift formula (K–J
formula for short)

L=−ρ0UΓφ, Γφ =
∮

C
∇φ · t dl, (1.1a,b)

which was first derived rigorously and published by Joukowski (1906). (See Ackroyd,
Axcell & Ruban (2001), this book contains half-dozen English translations of
the key papers that pioneered the modern science of flight, such as Kutta (1902)
and Joukowski (1906).) Here, C is an arbitrarily chosen contour surrounding the
airfoil with unit tangent vector t. The circulation Γφ will be positive if counted
counterclockwise, which of course is independent of the size and shape of C due to
the kinematic nature of ∇φ (to see this, one only needs to take another contour C′
also enclosing the airfoil, and insert a cut AB to connect C and C′; then Γφ along the
single loop C+AB+C′+BA in the counterclockwise direction is always zero). When
the body is an airfoil with a sharp trailing edge where the Kutta condition is imposed
(Kutta 1902), (1.1) has served as the very basis of classic steady aerodynamics, which
states that the lift exerted on the body is solely determined by the circulation Γφ .

Due to the extreme simplicity and clear physical implication of (1.1), extending
the application range of (1.1) has been of great theoretical and practical interest. The
first step was to generalize (1.1) to viscous incompressible flow with high Reynolds
number or small viscosity, such as water/air flow. Bryant, Williams & Taylor (1926)
and Filon (1926) were among the first to check the validity of (1.1) for such flows.
Assuming a large Reynolds number and a thin wake layer, Taylor obtained formulae
for the lift and drag,

L=−ρ0UΓC, ΓC =
∮

C
u′ · t dl=

∫
S
ω dS, (1.2a,b)

D=
∫

W
(P0 − P) dy, P= p+ 1

2
ρ0|u|2, (1.2c,d)

where u=U+u′ is the total velocity, ω=ωez=∇×u is the vorticity and subscript 0
denotes the value at the uniform incoming flow. While (1.2c,d) indicates clearly that
the drag exerted on the body is exactly the total-pressure loss of the fluid in the wake,
(1.2a,b) needs some careful interpretation.

First, unlike (1.1), the lift-generating circulation ΓC is defined by the total
disturbance velocity u′ = u − U rather than its potential part only. This difference
has seldom been discussed but is important for physical understanding and practical
application. Since any vector field with proper continuity and smoothness can be
decomposed into a longitudinal (irrotational) field and a transversal (solenoidal) field
(not uniquely in general), namely the Helmholtz decomposition, the disturbance
velocity field u′ can always be written formally as

u′ = uφ + uψ ≡∇φ +∇×ψ . (1.3)

Here, φ and ψ are called the velocity potential of the longitudinal field and the
vortical stream function of the transversal field, respectively, which should be
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distinguished from the potential and stream function of the whole disturbance velocity
u′ in two-dimensional flow. In particular, in two dimensions we have ψ = ψez such
that uψ = ∇ψ × ez, which degenerates to a single constant outside the boundary
layers and vortical wake where the vorticity ω = ∇ × uψ is non-zero. Furthermore,
Lagerstrom, Cole & Trilling (1949) and Wu (1956) have proved (without and with
heat conduction, respectively) that a linearized viscous compressible flow including
u′ can be completely and uniquely split into longitudinal and transversal parts. Thus,
in our case, the kinematic decomposition (1.3) is uniquely determined in the whole
flow domain. Then, with Γφ defined in (1.1),

ΓC = Γφ + Γψ , Γψ =
∮

C
uψ · t dl=−

∮
C

n · ∇ψ dl, (1.4a,b)

where n is the unit normal vector pointing out of contour C with ez × t = −n. The
vortical wake may have a non-negligible effect on Γψ and hence on ΓC. Here, it is of
crucial importance to stress that, unlike the independence of Γφ on the choice of C,
as argued in the context of (1.1), generically Γψ depends on the choice of C.

Second, in steady viscous flow the vortical wake has to extend to downstream
infinity, so any contour C must cut the wake, making Γψ and hence ΓC dependent
on C in general. But Taylor points out that (i) the intersection of C and the wake
has to be a vertical line (‘wake line’, denoted by W) with normal n= ex, to ensure
the force caused by the loss of total pressure in the wake does not affect lift; and
(ii) with this choice of W, the net vorticity flux through W must vanish, i.e.∫

W
uω dy= 0, (1.5)

thus ΓC is conditionally independent of the shape and size of C, supporting the
experimental results obtained by Bryant and Williams in the same 1926 paper, with
Taylor being a coauthor (Bryant et al. 1926). We call these conditions the first and
second Taylor criteria, respectively. They ensure that Γψ = 0 and Γφ is replaceable
by ΓC. Thus, (1.2a,b) and (1.1) are consistent. For reasons to be explained in § 2.3,
we call (1.2a,b) a testable lift formula.

It is worth mentioning that the important condition (1.5) has been further elaborated
by a few authors under the boundary-layer approximation, as reviewed by Sears
(1956). Recently, the wake-layer behaviour has been analysed by Liu et al. (2015)
under the same approximation, see also Wu, Ma & Zhou (2015, pp. 290–292), who
re-derived (1.5) along with a further result∫

W
ω dy= 0, (1.6)

and found that (1.5) is necessary not only for ΓC to be independent of C but also for
(1.2a,b) itself to hold. While the validity of (1.5) for a time-averaged separated flow
at large angles of attack is questionable, later in § 4.4 we shall show that (1.6) holds
in the linear far field no matter whether the Reynolds number is large or not.

Then, in the work of Filon (1926) (independent of Taylor’s work) and later of
Imai (1951) based on the far-field Oseen equations, the validity of the testable lift
formula (1.2a,b) was also confirmed when C recedes to infinity, and (1.2c,d) takes an
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apparently kinematic and hence more general form, as an inflow contour integral of
the normal component of the transversal velocity uψ :

D= ρ0UQψ , Qψ =−
∮

C
uψ · n dl=−

∮
C
∇ψ · t dl. (1.7a,b)

Like the case of Γφ , owing to the kinematic nature of ψ being the stream function
of the solenoidal velocity constituent uψ , Qψ is also independent of the choice of C.

Since uψ is not observable, as will be explained in § 2.3, however, Filon’s drag
formula (1.7) has seldom been mentioned in the aerodynamics community. In contrast,
Wu, Ma & Zhou (2006, p. 630) have proved that if only the leading-order term is
retained, then Taylor’s drag formula (1.2c,d) can be expressed solely in terms of the
vorticity

D'−ρ0U
∫

W
yω dy, (1.8)

which is physically observable. On the other hand, since ψ or uψ is significant only
in the boundary layer and wake, by using the boundary-layer or free shear-layer
assumption ∂/∂y � ∂/∂x and integrating (1.7) by parts, we can also obtain (1.8).
Thus we call (1.8) the testable version of Filon’s formula (1.7).

Naturally, the next relevant extension would be for viscous and compressible
flow (N–S flow for short). Towards this goal, and within two dimensions, among
others, Heaslet & Lomax (1954, p. 145) have shown that the K–J formula (1.1)
holds for subsonic and supersonic flows within the linear potential-flow theory.
Finn & Gilbarg (1957, 1958) have proved that (1.1) also holds rigorously for
subsonic nonlinear potential flow, but with D = 0. Subsequently Lagerstrom (1964,
pp. 34–38) argued the validity of (1.2a,b) for viscous compressible flow based on
some plausible assumptions. Recently, by taking a Reynolds-averaged Navier–Stokes
(RANS) simulation of steady flow over a NACA-0012 airfoil, Mele & Tognaccini
(2014) have found that the values of computed lift at M=0.7 and 1.2 are in agreement
with the prediction of (1.2a,b). However, their data were too sparse to be conclusive.
But, as for Filon’s drag formula (1.7), there has been almost no progress at all. In
view of this situation, more theoretical and numerical studies in this direction are
required.

In this paper we present a profound confirmation of the universal validity
of Joukowski’s original lift formula (1.1) and Filon’s drag formula (1.7) for
Navier–Stokes (N–S) flow by both theoretical and numerical analyses. We show in § 2
that these formulae remain at least formally effective for two-dimensional steady N–S
flow over a wide range of the Mach number, if the contour C therein is sufficiently
large to lie in the far field where the N–S equations can be linearized. These
formulae have been further expressed by the jumps of φ and ψ , which are called the
Joukowski–Filon formulae. The physical causes and behaviours of these jumps are
briefly commented upon, along with a discussion of multiple circulations. A rigorous
theoretical proof of (1.1) and (1.7) is given in § 3 using the fundamental solutions of
the linearized N–S equations, which enables us to state this innovative result as the
Joukowski–Filon theorem. Next, the far-field structures of the compressible flow are
studied analytically in § 4, along with estimates of the minimum distance of the linear
far field from the body and some discussions on the decay of the vortical circulation.
Furthermore, justifications of the testable lift formula (1.2a,b) and the testable drag
formula (1.8) are also given, which together are called the testable Joukowski–Filon
formulae.
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The neat Joukowski–Filon theorem, however, is not yet a complete aerodynamic
theory. The universality of the theorem comes at the expense of lacking rich and
valuable physical mechanisms in the near field, so it reveals little on the specific
values Γφ and Qψ at different Mach numbers. On the other hand, since the testable
Joukowski–Filon formulae are linearly dependent on the vorticity, they should also
be valid for statistically stationary flow. Therefore, in § 5 we present our careful
RANS simulation, which strongly supports our theory, reveals the Mach-number
dependence of Γφ and Qψ , and enhances our understanding of the Joukowski–Filon
theorem through relevant physical mechanisms. There is also some discussion about
the implications of these theoretical–numerical results. Conclusions are given in § 6.
To be self-contained, the fundamental-solution theory of Lagerstrom et al. (1949) for
two-dimensional steady linearized N–S equations is given in appendix A. Appendix B
gives some of the detailed algebra used in developing our theory for the longitudinal
velocity field.

2. Far-field force formulae and their implications

Let u = U + u′ be the total velocity field. At far field, as r = √x2 + y2 → ∞,
the disturbance velocity u′ is weak enough to be linearized. This approach was
successfully taken by Joukowski (1906), and has been followed by other authors
(Bryant et al. 1926; Filon 1926; Imai 1951; Finn & Gilbarg 1957). Like (1.3) for
velocity, the key physics underlying the far-field expansion can be identified by the
decomposition of linearized fluid motion in terms of its fundamental dynamic and
thermodynamic processes: the transverse shearing process characterized by vorticity
ω = ∇ × u, and the longitudinal process characterized by the dilatation ϑ = ∇ · u,
pressure p and appropriate thermodynamic variables.

Before proceeding, for the purpose of clarity, we first review the general
compressible N–S equation and formulae for the total force. The Cauchy motion
equation (without an external body force) reads

∂

∂t
(ρu)+∇ · (ρuu)=∇ · T , (2.1)

where for a Newtonian fluid the stress tensor T is given by the Cauchy–Poisson
constitutive equation, of which a convenient form is the triple decomposition given
by Wu et al. (2006, p. 53):

T =−(p−µθϑ)I + 2µΩ − 2µB. (2.2)

Here,
Ω = 1

2 [∇u− (∇u)T] with Ω =−ΩT (2.3)

is the vorticity tensor or spin tensor,

B= ϑ I − (∇u)T with ∇ · B= 0 (2.4)

is the surface strain-rate tensor (superscript T denotes transpose), and µ and
µθ = ζ + 4µ/3 (with ζ being the bulk viscosity) are the shear viscosity and
longitudinal viscosity, respectively. If the Stokes hypothesis is used then ζ = 0.
For laminar flow µ depends on temperature T(x, t) and for viscous turbulent flow we
assume a turbulent viscosity µt(x, t). Thus, for both flows we may set µ=µ(x, t) to
represent the molecular viscosity or µt, or the sum of both. Then, let Π = p− µθϑ
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be the normal stress and substitute (2.2) into (2.1), the Navier–Stokes equation reads
(Wu et al. 2006, p. 55)

∂

∂t
(ρu)+∇ · (ρuu)=−∇Π −∇× (µω)− 2∇µ · B, (2.5)

with the last term being the resistance force of iso-viscosity surfaces to their
deformation.

On the other hand, the surface stress can be written as

t≡ n · T =−Πn+ τ + ts, (2.6)

where τ =µω× n is the shear stress and (Wu et al. 2006, pp. 23, 53)

ts =−2µn · B= 2µ(n×∇)× u (2.7)

is the viscous resistance of the fluid surface to its motion and deformation. It vanishes
at stationary ∂B due to velocity adherence. Then, for two-dimensional steady N–S
flow, the total force exerted on the body B can be expressed by a control-contour
integral:

F ≡ −
∮
∂B
(−Πn+ τ ) dl (2.8a)

= − D
Dt

∫
Sf

ρu dS+
∮

C
(−Πn+ τ + ts) dl (2.8b)

= −
∮

C
[(Πn+ ρuu · n)− (τ + ts)] dl, (2.8c)

where ∂B is the boundary of body, C is an arbitrary control contour enclosing the
body, and Sf is the area of fluid enclosed by C.

2.1. Joukowski–Filon formulae
Hereafter we assume C lies in a sufficiently far field where the flow can be linearized.
In the linearization one always splits a variable into its constant reference value (which
in the present problem is the value in uniform incoming flow) and a disturbance, and
assumes the latter is small. For example,

(u, ρ, p, µ, k)= (U, ρ0, p0, µ0, k0)+ (u′, ρ ′, p′, µ′, k′), (2.9a)
|u′|
U0
,
|ρ ′|
ρ0
,
|p′|
p0
,
µ′

µ0
,

k′

k0
=O(ε), ε� 1, (2.9b)

along with (ϑ, |ω|) = O(ε). In particular, the transport coefficients, such as shear
viscosity µ and heat conductivity k, are approximated by their constant values in
the uniform incoming flow, since products such as µ′ω and µ′θϑ , etc., are all of
O(ε2) and negligible. Of course, for turbulent flow µ0 should be the reference eddy
viscosity µt0�µ0. Having said this, below we drop the suffix 0 of constant transport
coefficients.

Now, by (2.9), for steady flow the N–S equation (2.5) is linearized to

ρ0U · ∇u′ =−∇Π −µ∇×ω. (2.10)
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Here, the disturbance velocity field u′ can be uniquely split into a longitudinal field
and a transversal field (Lagerstrom et al. 1949, pp. 27–35),

ρ0U · ∇∇φ = −∇Π, (2.11a)
ρ0U · ∇uψ = −µ∇×ω, (2.11b)

where (2.11a) can be simplified to the linearized Bernoulli integral

ρ0U · ∇φ =Π0 −Π. (2.12)

On the other hand, for constant µ we have∮
C

ts dl= 2µ
∮

C
(n×∇)× u′ dl= 0 (2.13)

and by using the exact continuity equation ∇ · (ρu) = 0 and omitting higher-order
terms we obtain ∮

C
ρuu · n dl=

∮
C
ρ0(∇φ + uψ)U · n dl. (2.14)

Thus, the linearized version of (2.8c) is

1
ρ0

F=U×
∮

C
n×∇φ dl−U ·

∮
C

nuψ dl+ ν
∮

C
ω× n dl, (2.15)

where the longitudinal equation (2.12) has been used. It remains to transform the
shear stress µω×n by the transverse equation (2.11b), which in two dimensions reads
(ω=ωez)

U · ∇uψ =−ν∇ω× ez, ν =µ/ρ0. (2.16a,b)

The asymptotic behaviour of uψ = (∂ψ/∂y, −∂ψ/∂x) is known (e.g. Galdi 1994,
p. 223): ∣∣∣∣∂ψ∂y

∣∣∣∣ = {O(r−1/2) for x ∈ the wake,
O(r−1/2−ε1) for x /∈ the wake, (2.17a)∣∣∣∣∂ψ∂x

∣∣∣∣ = O(r−1/2−ε2), (2.17b)

for some ε1, ε2 > 0 as r→∞. Now, since

∇× (U× uψ)=U∇ · uψ −U · ∇uψ =−U · ∇uψ , (2.18)

(2.16) can be recast to

∇× (U× uψ)=∇× (νω), (2.19)

so that

U× uψ = νω+∇η (2.20)
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for some scalar function η. But in two dimensions ∇η ≡ 0, since the other terms in
(2.20) are in the ez-direction. Thus, we obtain

νω× n= (U× uψ)× n= uψn ·U−Un · uψ . (2.21)

Now, substituting (2.21) into (2.15) yields immediately

F= ρ0U× ezΓφ + ρ0UQψ , (2.22)

where the circulation Γφ due to the longitudinal field and the inflow Qψ due to
the transverse field are defined in (1.1) and (1.7), respectively. Thus, like viscous
incompressible flow, lift and drag are also determined by the two scalars Γφ and Qψ

given by (1.1) and (1.7). Note that the transversal circulation Γψ gives no contribution
to the lift; thus it is (1.1) rather than (1.2a,b) that is the exact counterpart of the
incompressible version of lift in the far-field analysis. On the one hand, while for
incompressible flow Qψ just describes the linearized version of the total-pressure loss,
for compressible flow it may contain multiple mechanisms. On the other hand, from
the derivation of (2.22), it seems that (2.22) is valid only when the integral contour
C lies in the linear far field. However, as was argued in § 1 for incompressible flow,
since Γφ and Qψ are independent of the shape and size of C, and φ and ψ are regular
everywhere except at the origin, once (2.22) has been proved for the linearized far
field, it must also be true for a near-field or arbitrary integral contour C enclosing
the body.

We now cast (2.22) to a neater and more symmetric form. Since our space is
two-dimensional and the flow domain is doubly connected, as potentials rather than
directly observable physical quantities, φ and ψ can be multi-valued, having jumps
JφK and JψK defined by

Jf (x, y)K=
∮

C
df = f (x< 0,+0)− f (x< 0,−0)+ f (x> 0,−0)− f (x> 0,+0), (2.23)

where for simplicity we have let the discontinuity be along the x-axis, although it
may be shifted to anywhere without affecting the value of the jump. Therefore, the
component form of (2.22) reads

L=−ρ0UΓφ =−ρ0UJφK, (2.24a)
D= ρ0UQψ =−ρ0UJψK. (2.24b)

While the implication and crucial importance of JφK is well known, JψK seems to
be new and follows from the integral of t · ∇ψ along the segment of C that cuts the
vortical-flow region, i.e. the wake. Equation (2.24b) and JψK are of no less importance
than (2.24a) and JφK, and we call them the Joukowski–Filon formulae (J–F formulae
for short).

A rigorous theoretical proof of (2.22) or (2.24) will be given in § 3 by using the
fundamental solutions of the linearized N–S equations for viscous compressible flows.
However, for viscous flow the form of the set of equations (2.24) looks somewhat
peculiar and requires a thorough interpretation of its mathematical and physical
implications. We do this in the rest of this section.

2.2. Physical cause and behaviour of jumps JφK and JψK
Write

φ = φm + φs, ψ =ψm +ψs, (2.25a,b)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

58
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.584


312 L. Q. Liu, J. Y. Zhu and J. Z. Wu

where subscripts m and s denote multi-valued and single-valued, respectively. Then in
a free space S∞ and in polar coordinates (r, θ), the solution of the Laplace equation
∇2f = 0 which is finite as r→∞ has the familiar far-field Taylor expansion (e.g.
Batchelor 1967, § 2.10)

f (x)= κ

2π
θ + ci

∂

∂xi
(log r)+ cij

∂2

∂xi∂xj
(log r)+ · · · . (2.26)

Here, we have dropped an arbitrary constant and assumed no point source of mass;
κ = Jf K is the cyclic constant in a doubly connected flow domain, so that f − (κ/2π)θ
is single-valued and of O(r−1) as r→∞. Now, by (1.3), φ and ψ are solutions of
the Poisson equations

∇2φ = ϑ, ∇2ψ =−ω, (2.27a,b)

respectively, under proper boundary conditions. However, solving (2.27) for multi-
valued φ and ψ is as yet a non-trivial issue and beyond the concern of this paper.
Our interest here is the physical cause of the same kind of jumps, JφK and JψK.

Actually, these jumps may or may not appear in a doubly connected flow domain,
depending on whether the body-induced physical disturbance field is only partly or
completely inside the domain. To see this, consider first the motion of a lift-producing
body in S∞ with the fluid otherwise at rest. Assume the body starts motion at t= 0 in
S∞ and then becomes a constant translation with velocity −U. Evidently, at any finite
t> 0 with t 6 T <∞, S∞ always contains the whole disturbance field created by the
body, including both the body-carried disturbance at the current time t and the starting
disturbance formed right after t= 0 that keeps moving to far downstream, as well as
any possible connection between the two. This flow in S∞ is inherently unsteady. It
has been proved by Liu et al. (2014a) that, in both two and three dimensions and
at any t<∞, there are two positive parameters a, b> 0 such that ω and ϑ decay as
O(e−ar2

) and O(e−br) as |x|→∞, respectively. Thus they can be considered physically
compact or confined in a finite domain S (ignoring their exponentially decaying tails;
cf. Saffman (1992, p. 1)). The total vorticity (or total circulation in two dimensions)
in S∞ is identically zero, and hence no jump of φ and ψ can occur. In this case, Liu
et al. (2014a) have proved that φ must be single-valued and uniquely determined by
the piecewise continuous (ω, ϑ)-field via (2.27). The reasoning applies equally to ψ .
Indeed, if C encloses the entire vorticity field then evidently Qψ = 0.

In contrast, the domain where the flow is considered steady (viewed in body-fixed
frame of reference), denoted by Sst, is obviously a subspace of S∞, which inevitably
cuts off the starting disturbance once that has moved to sufficiently far downstream as
t→ T for any T <∞, such that its influence on the flow in Sst is negligible. But the
total-circulation conservation theorem no longer holds in Sst. Conceptually, one may
conceive that the topology of vortical flow in the complement subspace S∞ − Sst is
continued to the second branch of a double-branched Sst, which in the single-branched
physical space leaves jumps of φ and ψ as its only signature: JφK and JψK measure
the total amount and spreading of the vorticity outside Sst, respectively. While the
former does not depend on any specific ω-distribution that may even shrink to a point
vortex, the latter does. These two jumps provide mutually complementary information.
In fact, they may also occur if the flow in Sst becomes unsteady, as long as part of
the vortical wake is cut off. Note that since the steady flow in Sst is nothing other
than a part of the uniquely determined flow field in S∞, the uniqueness of (φs, ψs) in
Sst is also ensured.
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Having made the above observations, the behaviour of JφK = Γφ and JψK = −Qψ

are also clear. They are both independent of C because uφ is curl-free and uψ is
divergence-free, as was argued in § 1 for incompressible flow. This is consistent with
the fact that, in contrast to (φs, ψs), as a contour-integral effect the jumps JφK and
JψK remain invariant with respect to r, as indicated by (2.26). Therefore, JφK and
JψK can be determined well by linear far-field theory. Once this is done, (2.24) will
hold exactly, independent of the size and shape of C.

2.3. Multiple circulations and their observability
Ever since Taylor’s lift formula (1.2a,b), for viscous flow several different circulations
ΓC, Γφ and Γψ have appeared, as seen from (1.4). Some of them are physically
observable, and some are not. A quantity is said to be physically observable if it
can be directly tested either experimentally or computationally. For any contour C
enclosing area S, since

ΓC =
∮

C
u′ · t dl=

∫
S
ω dS=

∮
C

uψ · t dl= Γψ , (2.28)

both ΓC and Γψ are observable. But in a general viscous flow Γφ is not, unless
either S is entirely inside the flow domain Sf and away from the body B so that
Γφ = JφK= 0, which is also the case if we introduce a cut to connect Σ and ∂B so
that Sf becomes singly connected, or Γψ = 0 in a certain asymptotic sense. On the
other hand, as the ‘circulation’ of an auxiliary vortical velocity u⊥ψ ≡ ez × uψ =∇ψ ,
JψK=−Qψ is generally not observable, unless either, as said above, C encloses the
entire vortical-flow region including starting vortex, so that JψK= 0, or Qψ approaches
a fixed value in an asymptotical sense.

An immediate consequence of the above observation is that the great generality and
exactness of the J–F formulae (2.24) comes at the expense of being not physically
testable, and therefore they are not directly useful in applied aerodynamics. Therefore,
after proving (2.24) in § 3, we still have to proceed to find when Γφ can be replaced
by ΓC and Qψ replaced by proper integrals of an observable vortical variable. This
will be done in § 4, also by using the fundamental solutions of the far-field linearized
N–S equations. The results are then testable numerically, as will be given in § 5.
More importantly, they further reveal the quantitative behaviours of far-field flow
in different Mach-number regimes. But it will be seen that the expense of using
observable quantities only to express lift and drag is that the testable formulae hold
only when C is located at a sufficiently far field.

It should be stressed that physically non-testable quantities are still meaningful and
of great value because they can be thoroughly theoretically analysed. In fact, our far-
field theory to be presented in §§ 3 and 4 is heavily based on a study of the behaviours
of φ and ψ , which directly leads to the discovery of testable lift and drag formulae.

3. Joukowski–Filon theorem
In § 2.1, the Joukowski–Filon formulae (2.24) are derived under the assumption that

a regular linearized far field does exist for viscous compressible flow. But whether
such a field indeed exists still needs a proof. Lagerstrom (1964, p. 36) has pointed
out that the linearization is feasible for viscous flow over a finite body, as we are
concerned with here, but not necessarily so if either of these restrictions is removed.
This assertion is not yet a rigorously proved theorem. In this section we provide a
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constructive proof by finding analytically the non-trivial and regular solution of JφK
and JψK in the linear far field from subsonic to supersonic flows. This finding enables
us to state (2.24) as a theorem. In § 4 we shall further find analytically the detailed
behaviour of different components of far-field velocity, and thereby identify the key
flow structures that lead to these jumps.

3.1. Fundamental solutions of linearized steady N–S equations
The conventional strategy for seeking out far-field flow solutions is to carry
out separation of variables or to take the Fourier transform of velocity in the
circumferential direction, and thereby obtain a series of approximate velocities,
of which the first two coefficients are related to the drag and lift. This has been
done by Filon (1926), Imai (1951), and Chadwick (1998), among others, for viscous
incompressible flow. However, this approach involves very lengthy algebra and
cannot fully determine all the coefficients, although the governing equation is already
linearized (Oseen equation for incompressible flow). As a result, extending the same
strategy to compressible flow would involve much more tedious algebra. Additional
difficulty may occur since the governing equation for the longitudinal field (dilatation,
pressure, entropy, etc.) in viscous compressible flow is a third-order parabolic equation,
whose general solution is not yet known. To avoid these disadvantages, therefore, in
this section we adopt a different strategy. As will be shown below, in addition to
supporting and sharpening the results in § 2, the present section has its own theoretical
merit as a short-cut alternative strategy to conventional far-field theories based on
series expansion.

For an observer in the very far field, a body moving through a fluid appears as
a singular point, and its action on the fluid appears as an impulse force. In this
case the far-field disturbance flow is sufficiently weak and may well be governed
by linearized N–S equations. Note that to calculate the impulse force there is no
need to solve these equations under specified boundary conditions. Rather, it suffices
to directly use the fundamental solution of the linearized steady N–S equations
in free space. This is the basic idea in the study of linear differential equations,
which will be called fundamental-solution theory and has been demonstrated by
Lagerstrom (1964, pp. 75–81) for incompressible flow. The same strategy has been
used by Liu et al. (2014a) in deriving the aforementioned asymptotic behaviour of
the unsteady (ω, ϑ)-field in S∞.

Fortunately, the desired fundamental solutions have already been given by
Lagerstrom et al. (1949) for a different purpose (to obtain approximate solutions
of flat-plate boundary layers and friction drag thereon), without considering heat
conduction. The extension of these fundamental solutions to include heat conduction
is straightforward if the viscosities and heat conductivity are assumed small (Mao, Shi
& Wu 2010; Mao 2011). Specifically, let νθ = µθ/ρ0 be the longitudinal kinematic
viscosity, γ = cp/cv be the ratio of specific heats, and α be the heat diffusion
coefficient, then it suffices to replace νθ by νθ + (γ − 1)α, which is called as
the ‘diffusivity of sound’ (Lighthill 1956, p. 263). It was also shown by Mao and
coworkers that, if there is no strong heat addition, the entropy variation caused by
the flow is a higher-order term in the far field, and hence we may omit it in the
following development.

With these facts in mind, the linearized N–S equation (2.10) can be further
simplified with the assumption p= p(ρ). Introduce (primed) disturbance quantities by

u=Uex + u′, ρ = ρ0(1+ ρ ′), (3.1a,b)
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so that the steady momentum and continuity equations are

U∂xu′ − νθ∇∇ · u′ + ν∇× (∇× u′)+ c2∇ρ ′ = f , (3.2a)
∇ · u′ +U∂xρ

′ = 0, (3.2b)

where c is the speed of sound and f represents an external body force, which in our
case is the force exerted on the fluid by the body. In the near-field formulation f
could have a compact distribution in (x, t)-space as used by Saffman (1992, p. 51),
but below it will be idealized as a δ-function of x, i.e.

f =−
(

D
L

)
δ(x)
ρ0

, (3.3)

where D and L are the drag and lift exerted on the body, and the full-space integral
of δ(x) is unity: ∫

δ(x) dx= 1. (3.4)

Denote by G the fundamental solution of (3.2) for u′, of which the derivation and
expression are given in appendix A. Then the far field u′ can be written as

u′(x)=
∫

G(x, ξ) · f (ξ) dξ . (3.5)

Note that G can also be split into longitudinal and transversal parts,

G(x, ξ)=Gφ(x, ξ)+Gψ(x, ξ), (3.6)

so the longitudinal and transversal velocities defined by (1.3) now read

uφ = ∇φ(x)=
∫

Gφ(x, ξ) · f (ξ) dξ , (3.7a)

uψ = ∇×ψ =
∫

Gψ(x, ξ) · f (ξ) dξ . (3.7b)

Here, by (A 8),

Gφ(x, 0) = 1
2πU

∫ ∞
−∞

eilx

il

(−l2 il∂y

il∂y ∂2
y

) exp

(
−|y|

√
l2 − U2l2

c2 + iνθUl

)

2

√
l2 − U2l2

c2 + iνθUl

dl, (3.8a)

Gψ(x, 0) = − 1
2πU

∫ ∞
−∞

eilx

il

(−∂2
y il∂y

il∂y l2

) exp

(
−|y|

√
l2 + iUl

ν

)

2

√
l2 + iUl

ν

dl. (3.8b)

It should be stressed that these two formulae indicate that although the governing
equations of the longitudinal and transversal processes can be completely decoupled,
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their solutions cannot, except for very special cases, since generically a body force can
cause both longitudinal and transversal disturbances (cf. Saffman 1992, p. 52). This
is indeed true in our case, where f represents the force exerted by a solid body that
includes all possible couplings of different processes on the body surface and in the
nonlinear flow regions. Even if the entire disturbance flow field is sufficiently weak
and can be linearized, the boundary coupling between ω and Π still exists for viscous
flow and is responsible for the key mechanism of boundary vorticity creation, which
was first revealed by Lighthill (1963) and is well known today (e.g. Wu et al. 2006,
pp. 138–144).

Compared to dealing with the disturbance velocity u′ directly, we find it sometimes
more convenient to deal with the velocity potential φ and the vortical stream function
ψ . By substituting (3.3) and (3.8) into (3.7) and integrating the results with all the
integral constants dropped for simplicity, we can obtain

φ = Lφl +Dφd

2πρ0U
, (3.9)

ψ = Lψl +Dψd

2πρ0U
, (3.10)

where (with higher-order viscous terms in square root operators omitted)

φl = sgn y
∫ ∞
−∞

eilx

2il
e−|y|
√
(1−M2)l2+i((νθM4)/U)l3 dl, (3.11a)

φd =−
∫ ∞
−∞

eilx e−|y|
√
(1−M2)l2+i((νθM4)/U)l3

2

√
(1−M2)l2 + i

νθM4

U
l3

dl (3.11b)

and

ψl =
∫ ∞
−∞

eilx e−|y|
√

l2+2ikl

2
√

l2 + 2ikl
dl, k= U

2ν
, (3.12a)

ψd = sgn y
∫ ∞
−∞

eilx

2il
e−|y|
√

l2+2ikl dl, (3.12b)

with subscripts l and d denoting the possible contributions of lift and drag to φ and
ψ , respectively.

Remarks. Obviously, the transverse part of the solution described by ψl and ψd is
independent of the Mach number and has the same behaviour for incompressible flow.
But the longitudinal part described by φl and φd depends explicitly on the Mach
number, as seen from their common key factor

(1−M2)l2 + i
νθM4

U
l3 (3.13)

in the Fourier space. As shown in appendix B, this factor takes different leading-order
forms for subsonic, transonic, and supersonic flows, leading to different structures of
the linear far field. In general, the velocity potential φl and φd cannot be integrated
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exactly, but can be expressed only by contour integrals, say (B 3), which can be
directly proved to be finite everywhere except at the singular origin. This fact
indicates that the linearized far field indeed exists for compressible flow, which is
true even for inviscid subsonic flow, but only for viscous transonic and supersonic
flows.

3.2. Joukowski–Filon theorem
With the above preparations, we can state the following innovative theorem, named
after the discoverers of (1.1) and (1.7), which is solely due to the double-connection
of flow domain and flow steadiness:

The Joukowski–Filon theorem. For a two-dimensional steady viscous flow of com-
pressible fluid over a rigid body, the lift and drag exerted on the body can be solely
determined by the jumps of the velocity potential and vortical stream function given
by (2.24a) and (2.24b), respectively.

Proof. First, since jumps can be located anywhere by choosing appropriate integral
constants in φ and ψ , for simplicity we have dropped all these constants, implying
that the jumps must lie on the x-axis as defined by (2.23). But setting y = 0
removes any explicit role of the viscosities and Mach number from (3.11) and
(3.12), making JφK and JψK formally independent of Re and M. This simplifies our
analysis significantly.

Second, by comparing the structures of the velocity potential φl and φd generated
by lift and drag, respectively, it is easy to confirm that only φl may have a possible
discontinuity. Thus we can ignore φd, and by setting y=±0 in (3.11a) we obtain

φl(x,±0)=±
∫ ∞
−∞

eilx

2il
dl=±π

2
sgn x, (3.14)

where

sgn x=
{+1 if x> 0,
−1 if x< 0. (3.15)

Since this is the only possible jump of φl and φd, we have

JφlK=−2π, JφdK= 0. (3.16a,b)

Similarly, by setting y=±0 in (3.12b) we have

ψd(x,±0)=±
∫ ∞
−∞

eilx

2il
dl=±π

2
sgn x, (3.17)

which is also the only possible jump in ψl and ψd:

JψlK= 0, JψdK=−2π. (3.18a,b)

Therefore, by substituting (3.16) into (3.9) and (3.18) into (3.10), (2.24) follows at
once.

Third, as argued in § 2.2, both JφK and JψK are independent of r as well as the
size and shape of the contour C. Finally, the observation made at the beginning of
this section has ensured the existence of the linearized far field from subsonic flow
all the way to supersonic flow. Thus the proof is completed.
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Remarks. (1) It is well known that the classic linearized Oseen equation is a
uniformly effective far-field asymptotic approximation at any Reynolds number.
Similarly, the derivation of (2.24) in § 2.1 and the fundamental solutions of φ
and ψ in § 3.1 impose no limitation on the magnitude of viscosities or Reynolds
number. Therefore, the Joukowski–Filon formulae (2.24) are also uniformly
effective at any Reynolds number.

(2) Although φ, ψ , uφ and uψ are non-observable, once well established, the
Joukowski–Filon theorem immediately converts the jumps JφK and JψK to
observable quantities in a generalized sense: they are just equivalent to the lift
and drag (divided by ρ0U) obtained by any experiments or computations!

In the above proof we did not appeal to any specific behaviour of φ and ψ .
This approach makes the proof concise and general, but leaves the relevant physical
mechanisms of lift and drag obscure. Thus, to explore the underlying physics we still
have to directly analyse the disturbance velocity. We do this in the next section.

4. Far-field flow structures and testable Joukowski–Filon formulae
In this section, the Joukowski–Filon theorem will be proved again by directly

considering the disturbance velocity, in particular for the lift formula of the supersonic
flow. A preliminary discussion of near-sonic flow, the estimates for the distance of
the linear far field from the body, and the far-field decay of vortical circulation will
also be given. Finally, testable forms of the J–F formulae will be given, which, of
course, are physically testable and practically applicable but valid only in the linear
far field.

4.1. Vortical stream function and transverse velocity
The vortical stream function generated by the lift ψl is independent of Mach number
and considered first. Equation (3.12a) can be integrated exactly by shifting the integral
contour to Im l=−k, i.e.

ψl =
∫ ∞
−∞

eilx e−|y|
√

l2+2ikl

2
√

l2 + 2ikl
dl= ekx

∫ ik+∞

ik−∞
einx e−|y|

√
n2+k2

2
√

n2 + k2
dn

= ekx
∫ ∞
−∞

einx e−|y|
√

n2+k2

2
√

n2 + k2
dn= ekxK0(kr), (4.1)

where r =√x2 + y2 and K0 is the modified Bessel function of the second kind of
order zero, which has the following useful properties

d
dz

K0(z)=−K1(z), K0(z)∼
√

π

2z
e−z

(
1− 1

8z
+ · · ·

)
, (4.2a,b)

d
dz
(zK1)=−zK0, K1(z)∼

√
π

2z
e−z

(
1+ 3

8z
+ · · ·

)
. (4.2c,d)

In general the integral in (3.12b) cannot be integrated explicitly except for special
cases, say low-Reynolds-number flow with k� 1. In this case (3.12b) approximates
to

ψd ≈ sgn y
∫ ∞
−∞

eilx

2il
e−|yl| dl= sgn y arctan

(
x
|y|
)
, (4.3)
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of which the jump is −2π, being consistent with (3.18). But for high-Reynolds-
number flow, which is our main concern, such a simple function is no longer
available. Instead, we consider its derivatives and the results are

∂ψd

∂x
=−∂ψl

∂y
, (4.4a)

∂ψd

∂y
= ∂ψl

∂x
− 2kψl, (4.4b)

which can be directly confirmed by the definitions of ψl and ψd, see (3.12).
Collecting the above results, for any impulse-force-induced flow the transversal

velocity uψ = (∂ψ/∂y,−∂ψ/∂x) is

∂ψ

∂y
=− kDekx

2πρ0U

[
K0(kr)+ x

r
K1(kr)

]
− kLekx

2πρ0U
y
r

K1(kr), (4.5a)

−∂ψ
∂x
=− kDekx

2πρ0U
y
r

K1(kr)− kLekx

2πρ0U

[
K0(kr)− x

r
K1(kr)

]
(4.5b)

and the vorticity ω is

ω=−2k
∂ψ

∂x
=−k2Dekx

πρ0U
y
r

K1(kr)− k2Lekx

πρ0U

[
K0(kr)− x

r
K1(kr)

]
. (4.6)

Note that (4.5) and (4.6) are valid at any Mach number provided that the linearized
far field has been reached.

Recalling the definition of inflow Qψ and the divergence-free condition∇ · uψ = 0,
the result of Qψ obtained from the contour integral along an arbitrary loop C is
equivalent to that along a circular contour, i.e.

Qψ ≡−
∮

C
uψ · n dl=−

∫ 2π

0
uψ · nrdθ. (4.7)

Substituting (4.5) into (4.39) and denoting z= kr yields

Qψ = zD
2πρ0U

[
K0(z)

∫ 2π

0
ez cos θ cos θ dθ +K1(z)

∫ 2π

0
ez cos θ dθ

]
+ zL

2πρ0U
K0(z)

∫ 2π

0
ez cos θ sin θ dθ, (4.8)

where the second line vanishes identically. The integrals of the first line are exactly
the definition of the modified Bessel function of the first kind,

I0(z) = 1
2π

∫ 2π

0
ez cos θ dθ, (4.9a)

I1(z) = 1
2π

∫ 2π

0
ez cos θ cos θ dθ, (4.9b)

which satisfy the identity

[I1(z)K0(z)+ I0(z)K1(z)] = 1
z
. (4.10)

By substituting this identity into (4.8), the J–F drag formula (2.24b) follows
immediately.
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4.2. Velocity potential and longitudinal velocity
To obtain as much information as possible from these integrals, we make a case-by-
case analysis for different Mach-number regimes. For clarity, only the main results are
listed here, with detailed algebra given in appendix B.

4.2.1. Subsonic flow
For the subsonic flow, the velocity potential φl and φd are given by (B 8), i.e.

φl = sgn y arctan
(

x
β|y|

)
, β =

√
1−M2, (4.11a,b)

φd = 1
2β

ln(x2 + β2y2). (4.11c)

Furthermore, by setting y=±0 in (4.11) we obtain

φl(x,±0)=±π

2
sgn x, (4.12)

which, of course, is identical to (3.14) and confirms our previous proof. Note that the
above results are exactly the theory of inviscid subsonic flow (Finn & Gilbarg 1957),
of which the circulation and the origin of the lift are well known.

4.2.2. Supersonic flow
For the supersonic flow, the velocity potential φl and φd are given by (B 11) and

(B 17), i.e.

φl = π

2
sgn y erf

(
x− B|y|

2
√
ΛB|y|

)
, (4.13a)

φd =− π

2B
erf
(

x− B|y|
2
√
ΛB|y|

)
, (4.13b)

where the error function erf(·) is defined by (B 12) and

B2 =M2 − 1> 0, Λ≡ νθM
4

2B2U
� 1. (4.14a,b)

Similarly, by setting y=±0 we obtain

φl(x,±0)=±π

2
sgn x, (4.15)

which, of course, is identical to (3.14) and confirms our previous proof. However,
since the J–F lift formula is new in supersonic flow, we prove this formula again by
directly considering the disturbance velocity.

With the help of (3.9) and (4.13), the longitudinal velocity components can be
approximated by (retaining only the leading term)

∂φ

∂x
≈ sgn y

4πρ0UB
(BL− sgn yD)

√
π

ΛB|y| exp
[
−(x− B|y|)2

4ΛB|y|
]
, (4.16a)

∂φ

∂y
≈ − 1

4πρ0U
(BL− sgn yD)

√
π

ΛB|y| exp
[
−(x− B|y|)2

4ΛB|y|
]
. (4.16b)
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Thus, we obtain
∂φ

∂y
=−sgn yB

∂φ

∂x
. (4.17)

As pointed out by Lagerstrom et al. (1949, p. 96), just like inviscid Mach waves,
the resultant disturbance of the longitudinal wave is normal to the Mach line. For
supersonic flow the far field can be regarded as asymptotically inviscid with Λ→ 0.
As seen from (4.16a) and (4.16b), (∂φ/∂x, ∂φ/∂y)→ 0, except for the narrow region
where x − B|y| ∼= 0. As a result, the circulation is contributed only by the velocity
across the Mach line. Furthermore, since the disturbance velocity along the Mach line
x−B|y| = 0 is zero, we need only to consider the contribution of the normal velocity
across the Mach line. This is indeed true, as can be seen more clearly below.

Denote the Mach angle temporarily by θ , such that

sin θ = sgn y
1
M
. (4.18)

Then the normal velocity across the Mach line is

u±n = −
∂φ

∂x
sin θ + ∂φ

∂y
cos θ (4.19)

= M(D sgn y− BL)
4πρ0BU

√
π

ΛB|y| exp
[
−(x− B|y|)2

4ΛB|y|
]
, (4.20)

where superscripts + and − denote the upper and lower Mach lines, respectively, and
the normal distance away from the Mach line is

n± =−x sin θ + y cos θ =−sgn y
x− B|y|

M
. (4.21)

Define the circulation across the upper and lower Mach lines as

Γ ±φ ≡
∫ δ

−δ
un dn±, (4.22)

where δ is the half-width of the Mach-line region, which of course is very small
and for our purpose can be regarded as a small fixed number. Substituting (4.20)
and (4.21) into (4.22) yields

Γ ±φ =−
ML

4πρ0U

∫ δ

−δ

√
π

ΛB|y| exp
[
− M2n2

4ΛB|y|
]

dn, (4.23)

where the total contribution of D is identically zero due to its symmetric property,
see (4.20).

Finally, we replace variable n by ξ =Mn/2
√
ΛB|y|, so for fixed n= δ we obtain

ξ = Mδ
2
√
ΛB|y| →∞ as Λ→ 0. (4.24)

Thus (4.23) can be written as

Γ ±φ =−
L

2
√

πρ0U

∫ ∞
−∞

e−ξ
2

dξ =− L
2ρ0U

. (4.25)

Therefore, since Γφ = Γ +φ + Γ −φ , the J–F lift formula (2.24a) for supersonic flow
follows. Note that in this case Λ has no explicit effect.
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4.2.3. Near-sonic flow
For near-sonic flow only some particular integrals have been obtained, of which the

most important results are

∂φd

∂x
(x, 0)=

(
πU
νθM4

)1/2 sgn x− 1
2
√|x| , (4.26a)

∂φd

∂x
(0, y)=−

(
U
νθM4

)2/3 √3G( 4
3)

|y|1/3 , (4.26b)

where G(·) is the Gamma function defined by (B 21). The result of (4.26a) is
consistent with that of the leading term obtained by inviscid and nonlinear transonic
far-field theory (e.g. Cole & Cook 1986, p. 207). This also confirms our early
assertion that the linearized near-sonic far field does exist, but only for viscous flow.

By comparing the results of (B 22) and (4.26b) we note that ∇φd rather than ∇φl
dominates uφ in the near-sonic far field, while for the subsonic and supersonic far
fields both are dominant. Of utmost importance is that ∇φd decays extremely slow
as O(r−1/3), which makes the linearized far field for sonic flow almost beyond reach
numerically in the y-direction, in particular in the drag calculation.

4.3. Distance of the linear far field from the body
We now use the preceding solutions of the linear equations to predict how large the
minimum distance rm from the body should be for them to become exact, which can
then be tested by a numerical study. In this way, the existence of the linear far field
can be checked more concretely. The estimate is based on a simple requirement that
the order of magnitude of the relevant disturbance velocity constituents, after being
non-dimensionalized, is not larger than unity. As a familiar example, for small-Re
incompressible Stokes flow with drag coefficient Cd ∼ Re−1 (e.g. Lagerstrom 1964,
p. 83), we have rm=O(Re−1); then the far field with r> const./Re, one should turn to
the Oseen equation. It is then straightforward to find the following estimates, where
the Reynolds numbers as well as the coefficients of lift and drag, Cl and Cd, are
defined in the conventional way:

(i) Transversal far field: by (4.5), we have

rm =O
(

C2
dRe

16π

)
independent of M. (4.27a)

(ii) Longitudinal far field, subsonic: by (4.11) we have

rm =O
(

Cl

4πβ

)
. (4.27b)

(iii) Longitudinal far field, supersonic: by (4.16) we have

rm =


O
(

C2
dReθ

24πBM4

)
if B< 1,

O
(

B3C2
l Reθ

24πM4

)
if B > 1,

(4.27c)

where Reθ is the Reynolds number based on the longitudinal viscosity νθ .
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(iv) Longitudinal far field, near sonic: by (4.26), we have

rm =O
(

C3
dRe2

θ

16π3

)
. (4.27d)

Clearly, different dominant dynamic processes and flow structures at different Mach-
number regimes result in vastly different linear far-field locations, with a variety of
dependences on Cl or Cd, Re or Reθ , and M. Of these distances the linear uφ-field
for near-sonic flow is the farthest from the body. It should be stressed that, because
uφ and uψ coexist in the same momentum equation and have to be balanced, one
should determine the location of the linear far field by the larger rm of uφ and uψ ,
and similarly that of the x- and y-components of each constituent.

Since the viscous linear far field does exist for compressible flow (including
subsonic, transonic, and supersonic flow), it will be seen in § 5 that all these estimates
are numerically confirmed.

4.4. Far-field decay of vortical circulation
For compressible viscous flow, if W intersects shock waves that can also generate
vorticity as boundary layers do, then the second Taylor criterion can no longer be
satisfied. Thus, to make (1.2a,b) valid in the general case, we should let C include
all vorticity sources, and W, the downstream face of C, lie in the linearized far field.
We call this requirement the generalized Taylor second criterion. With this and the
first Taylor criteria satisfied, we find that Γψ always decreases to zero exponentially
as the wake line position x= XW→∞.

In particular, since uψ is significant only at the wake line with n= ex, and vanishes
exponentially elsewhere, and ω=−2k∂ψ/∂x in the linearized region, from the second
expression of (1.4) we have, for arbitrary XW ,

Γψ =−
∫

W

∂ψ

∂x
dy= 1

2k

∫
W
ω dy. (4.28)

Now, there are two ways to prove
∫
ω dy = 0. The first one is based on near-wake

analysis and presented by Liu et al. (2015). The second one uses the fundamental
solution to calculate (4.28) directly, which provides more information. By substituting
(4.6) into (4.28) and using (4.5), we obtain

Γψ =− kekxL
πρ0U

∫ ∞
0

[
K0(kr)− x

r
K1(kr)

]
dy, (4.29)

where the term involving drag D is identically zero, due to it being anti-symmetric
about the x-axis, and for simplicity we have taken the infinite wake plane. Denoting
x̃= kx, ỹ= ky and r̃= kr, and then integrating by parts, (4.29) can be further reduced
to

Γψ =− x̃ex̃L
πρ0U

[
x̃
∫ ∞

1

√
z2 − 1K1(x̃z) dz−

∫ ∞
1

K1(x̃z)√
z2 − 1

dz
]
. (4.30)

Define

J(x̃, n)≡
∫ ∞

1
(z2 − 1)n−1K1(x̃z) dz, (4.31)
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of which the integral is well known and the result is

J(x̃, n)=G(n)2n−1x̃−nK1−n(x̃). (4.32)

This reduces (4.30) to

Γψ =−21/2x̃1/2ex̃L
πρ0U

[
G
(

3
2

)
K−1/2(x̃)− 1

2
G
(

1
2

)
K1/2(x̃)

]
. (4.33)

Since

K−n(z)=Kn(z), G(x+ 1)= xG(x), (4.34a,b)

then we have

Γψ = 0, or equivalently,
∫

W
ω dy= 0, (4.35a,b)

the same as (1.6) but derived without using the boundary-layer approximation.
Following these discussions, therefore, the generically non-observable Γφ becomes

observable when it is used to measure the total vorticity in Sst:

lim
XW→∞

ΓC = Γφ =
∫

Sst

ω dS, (4.36)

which is independent of the precise location of W, as ensured by the generalized
Taylor criteria.

4.5. Testable Joukowski–Filon formulae
Although the remarks following the Joukowski–Filon theorem indicated that JφK
and JψK have become observable quantities, this is evidently still not satisfied
if the integrands of Γφ and Qψ are not observable. We thus need to find the
circumstances in which these integrands can be replaced by physically observable
variables. Now the preceding analyses of the flow behaviour have revealed that
the required circumstance is the linear far field, of which the existence has been
confirmed by the estimates made in § 4.3. Therefore, we are now ready to derive a
pair of testable Joukowski–Filon formulae, which are stated first:

The testable Joukowski–Filon formulae. For a two-dimensional steady viscous flow of
compressible fluid over a rigid body, the lift and drag exerted on the body are given
by

L=−ρ0UΓC, ΓC =
∫

S
ω dS, (4.37a,b)

D= ρ0UQW, QW =−
∫

W
yω dy, (4.37c,d)

respectively, where W is the downstream face of the outer boundary of S, which is
perpendicular to the incoming flow and lies in the linear far field.
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In the following, we call (4.37) the testable J–F formulae (TJ–F formulae for
short). Obviously, (4.37) is the same as (1.2a,b), and (4.37c,d) is also exactly the
same as the far-field profile drag formula (1.8) for incompressible flow, indicating
the compressibility effect such as entropy gradient does not enter the far-field drag
formula. Note, however, no small-viscosity assumption was made in deriving (4.37),
and hence, like (2.24), they are valid in a wide Reynolds-number range as well.

To derive (4.37) we note that, first, from (2.24a) and (1.4) the lift formula can be
written as

L=−ρ0UΓC + ρ0UΓψ , (4.38)

where the last term can be regarded as a correction term. Of course, this correction
term is strongly dependent on the choice of the contour C, which vanishes if the
generalized Taylor criteria are satisfied, as proved in § 4.4.

Second, substituting (4.6) into the second equation of (4.37c,d) yields

QW = 2x̃2ex̃D
πρ0U

∫ ∞
1

√
z2 − 1K1(x̃z) dz= 2D

πρ0U
x̃2ex̃J

(
x̃,

3
2

)
, (4.39)

which by (4.32) becomes

QW = D
πρ0U

21/2G
(

1
2

)
x̃1/2ex̃K1/2(x̃). (4.40)

Then since

K1/2(z)=
√

π

2z
e−z, G

(
1
2

)
=√π, (4.41a,b)

(4.37c,d) follows immediately, which is independent of the Mach number and is valid
provided that the generalized Taylor criteria are satisfied.

It has been mentioned in § 2.3 that the expense of replacing the non-testable
formulae by testable formulae is that one can no longer enjoy the arbitrariness of the
contour C. The error introduced by this replacement vanishes as C recedes to infinity.
Here, a closer observation of the validity range of (4.37a,b) and (4.37c,d) is desired.

Physically, the validity of (4.37a,b) relies simply on the smallness of Γψ , which
by (4.28) is proportional to the vorticity integral along the wake plane. On the other
hand, the validity of (4.37c,d) requires that in the far field the source of drag comes
solely from the wake, including all vorticity generated by boundary layers and shock
waves. Only if this generalized Taylor second criterion is satisfied, can the drag be
precisely expressed by the y-moment of the vorticity integral along W. Consequently,
although in principle to ensure the validity of both (4.37a,b) and (4.37c,d) the linear
far field of the whole flow should be reached, their realizations may sometimes be
considerably different and easier. Indeed, in calculating ΓC the vorticities at the upper
and lower half-planes both usually have extremely small magnitudes compared to
those in the boundary layer or wake shear layer, where ω has different signs that
can cancel each other in the integral along W, so that (4.37a,b) can be valid even
when the linear far field for the whole flow has not yet been reached. In contrast,
however, in calculating QW this sign difference of vorticity becomes enhancement of
the integrand due to taking the y-moment, and hence to ensure its validity the linear
far field of the whole flow has to be reached. This contrast between calculations of
lift and drag is especially strong for near-sonic flow, as seen from (4.27d) and § 5.3,
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where at high Reynolds number the linear far field can hardly be reached numerically,
making (4.37c,d) ineffective. Furthermore, the above difference between the TJ–F lift
formula and the drag formula makes the former measurable in an experiment such
as that made by Bryant et al. (1926), but the latter difficult since its validity requires
the integral contour to lie totally in the linear far field where the magnitude of the
vorticity is small.

In fact, (4.37c,d) is not the only possible testable drag formula. Suppose that
|∇φd| � |uψ | in the wake, which is valid for subsonic and supersonic flows, as
indicated by (4.5), (4.11) and (4.16), one may replace uψ by u′ in (2.24b) and
replace C by a far wake line W, confined only on the wake domain. Our numerical
tests (figure not shown) indicate that this replacement indeed works well for subsonic
and supersonic flows, but behaves worse than (4.37c,d) for high-transonic flow since
∇φd decays extremely slow, as predicted by (4.26). On the other hand, the concept of
wake boundary is very fuzzy, which makes the results of this possible testable drag
formula to a certain extent artificial. Thus we prefer to use (4.37c,d) as our testable
drag formula.

5. Numerical study and physical discussions
As argued at the end of § 1, the Joukowski–Filon theorem alone is not yet a

complete aerodynamic theory. The strength of the theorem can be fully exploited
only if its profound physical implications are revealed and enriched by near-field
information. Therefore, a careful numerical study has been conducted, of which the
aims are:

(i) to test the validity of the theory of §§ 2–4, especially the TJ–F formulae (4.37) as
well as the predicted location of the linearized far field in a wide Mach-number
range;

(ii) to provide quantitative information for ΓC and QW themselves; and
(iii) to gain a thorough physical understanding of our major findings.

These tasks are reported in this section.

5.1. Numerical method and validation
Since the TJ–F formulae are solely and linearly dependent on the vorticity, they should
also be valid for statistically stationary flow, which is the only possible way for the
high-Reynolds-number flow with shocks and separation to be (time-averaged) steady.
Thus we performed a RANS simulation of an RAE-2822 airfoil in steady viscous and
compressible flow. But, in the RANS simulation a variable eddy viscosity is inevitably
involved, which at the boundary of the computational domain may not be constant
(nor accurately captured due to the coarse grid there), which is different from the
conditions used in deriving the TJ–F formulae. Nevertheless, in these formulae the
eddy viscosity does not appear explicitly, and our results show that a variable eddy
viscosity has a negligibly small effect in testing the theoretical prediction.

In this section, quantities are made dimensionless by the airfoil chord length as
well as the velocity U, density ρ0, and sound speed c of the uniform incoming
flow. The Reynolds number, angles of attack, and incoming-flow Mach numbers are
chosen as Re = 6.5 × 106, α = 2.31◦ and 5◦, and M ∈ [0.1, 2.0], with an interval
0.1, except for M ∈ [0.7, 1.1], where it is 0.05. The mesh number we adopted is
1601 × 512 in the circumferential and normal directions, respectively. The height of
the first cell to the wall and the minimum streamwise spacing at the leading and
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FIGURE 1. The pressure coefficient distribution of an RAE-2822 airfoil at Re= 6.5× 106,
M=0.729, α=2.31◦. Solid line shows the numerical results andu shows the experimental
data from Cook et al. (1979).

trailing edges are 5 × 10−6 and 2 × 10−4, respectively. The computational-domain
size is as large as 400 in order to reach the linear far field. The initial condition
is set as the free-stream quantities. The far-field boundary conditions are treated by
local one-dimensional Riemann invariants, which were designed by Thomas & Salas
(1986) to study transonic flow over a body and extensively examined. It is found to
be reliable for transonic flows over lifting airfoils and wings (e.g. Hafez & Wahba
2007). No-slip and adiabatic conditions are applied on the airfoil surface.

The OpenCFD-EC2D-1.5.4 program developed by Professor X. L. Li of the Chinese
Academy of Sciences is employed to solve the compressible Navier–Stokes equations.
In this open-source software, these equations are solved by a finite-volume method,
with the convective terms discretized by a third-order WENO (weighted essentially
non-oscillatory) scheme for shock capture and the viscous terms by a second-order
central difference. For temporal terms a first-order LU-SGS (lower–upper symmetric-
Gauss–Seidel) method is used with a dimensionless time step 1t= 10−4. We assume
constant µ and set µθ = 4µ/3. The SA turbulence model is used for this RANS
simulation.

Figure 1 compares the computed pressure coefficient, Cp = p/((ρ0U2)/2), over the
airfoil with experimental data (Cook, McDonald & Firmin 1979) at the same flow
conditions. The agreement is good, indicating a validation of our scheme.

It was found that, except for too large an integral contour C where the mesh is
too sparse, or too small an integral contour where strong shock waves intersect it,
the lift and drag coefficients computed from the general force formula (2.8c) are in
excellent agreement with that from the wall-stress integral (2.8a) throughout the entire
computed Mach-number range, with maximum relative error less than 1 % and 4 %,
for the lift and drag coefficients, respectively (figure not shown). On the other hand,
the independence of the result on mesh and time-step sizes has been checked for
M = 0.8 (see table 1, where Cl and Cd are also calculated by (2.8c) with a typical
contour C). In all cases, the errors of lift and drag are very small.

In the following, the mesh and time step sizes of case 1 and the TJ–F formulae
(4.37) are adopted.
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FIGURE 2. Mach-number dependence of lift coefficients of an RAE-2822 airfoil at Re=
6.5× 106. Solid line shows results from the wall-stress integral. Results given by the TJ–F
lift formula (4.37a,b) with ΓC calculated along the contour with wake line position XW .
Dashed–dotted line, XW = 1; dashed–dotted–dotted line, XW = 2; short-dashed line, XW = 5.
(a) α = 2.31◦; (b) α = 5.0◦.

Cases Grid Time step Cl Cd Error of lift Error of drag

1 1601× 512 1.0× 10−4 0.5409 0.0368 0 0
2 1001× 256 1.0× 10−4 0.5402 0.0379 0.13 % 2.99 %
3 1601× 512 5.0× 10−4 0.5411 0.0375 0.04 % 1.90 %

TABLE 1. Validation of mesh size and time-step size at M = 0.8. The lift and drag
coefficients are computed by (2.8c).

5.2. The Mach-number dependence of lift
Figure 2 shows a comparison of the Mach-number dependence of the lift coefficients,
computed by the standard wall-stress integral (denoted by ‘stress integral’) and the
TJ–F lift formula (4.37a,b) (denoted by ‘K–J’), for different wake positions at two
angles of attack. In both cases the lift coefficients are almost independent of the wake
position XW before they reach their maximum values, at which point some differences
between the predictions of the wall-stress integral and (4.37a,b) start to occur, finally
decreasing as XW increases. Below we make several physical observations.

First, the observed independence or dependence on XW can be easily understood
based on the concept of multiple circulations. In the subsonic regime, Taylor’s second
criterion stated in § 1 ensures Γψ = 0 or ΓC = Γφ , so Cl is independent of XW , as
confirmed by figure 2. However, in transonic and supersonic flow, a shock wave may
cause boundary-layer separation, with shear layers shedding into the wake in a non-
symmetric manner on the upper and lower surfaces. Such shear layers may also arise
due to shock–shock interactions. Thus Taylor’s second criterion is violated and the
choice of XW can strongly affect ΓC, as shown in figure 2. Without being aware
of multiple circulation, this dependence on XW might mislead one into thinking that
(1.2a,b) or (4.37a,b) no longer hold once shocks appear; but we now see that the
‘error’ is actually caused by Γψ , for which the effect coexists with shocks, and it is
this that makes ΓC dependent on XW . Nevertheless, as long as the generalized second
Taylor criterion is satisfied, (4.37a,b) still holds in the linear far field, as Filon (1926)
has proved for incompressible flow.
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FIGURE 3. Vorticity contour of an RAE-2822 airfoil at Re = 6.5 × 106, α = 2.31◦
with shown range ω ∈ [−5.0, 5.0]. Solid line indicates ω > 0 and dashed line indicates
ω< 0, with interval 0.53. (a) M= 0.75, ω× 10−4 ∈ (−4.9, 1.2); (b) M= 0.85, ω× 10−4 ∈
(−3.0, 1.3).

Second, the location of the linear far field (§ 4.3) estimated by (4.27) can now be
checked. Since flow turbulence has almost died out at the far field (except in the
wake), to make the estimate we can use the Reynolds number Re=O(106) based on
molecular viscosity; and, for subsonic and low-transonic flow we have Cd =O(10−3)
(see figure 5 below). Thus by (4.27a) we just need XW = O(1), which is confirmed
by figure 2. However, for high-transonic and supersonic flow we have Cd =O(10−2),
so by (4.27a) we have XW = O(102), indicating that the linear far field is much
farther away compared to that of subsonic flow. This is the origin of an appreciable
error in using (4.37a,b) with XW =O(1) in supersonic flow. The effect of Γψ indeed
disappears when we chose XW = O(102). Having seen this, we consider the above
agreement strong support for the validity of the basic lift formula (4.37a,b). It is also
confirmation of the existence of the linear far field of uψ in the whole computed
Mach-number range.

On the other hand, for near-sonic flow where Cd=O(10−1), the prediction of (4.27d)
is rm = O(108), which is far away from the reach of any finite-domain computation.
Thus, the still perfectness of (4.37a,b) for near-sonic flow is particularly impressive.
As explained at the penultimate paragraph of § 4.5, the validity of (4.37a,b) even
before reaching the linear far field is due to cancellation of extremely weak vorticities
with opposite signs behind the shock waves from the upper and lower half-planes (see
figure 3).

Third, a qualitative interpretation of the M-dependence of lift can be made. Consider
the case at α = 2.31◦ as an example. As seen from figure 2(a), in the low-M range
ΓC increases monotonically with M until a shock wave appears on the upper surface
at a critical Mach number (see figures 3(a) and 4(a) for the vorticity and Mach
contours at M = 0.75, respectively). This confirms our preceding theoretical result
that for subsonic flow the lift-generating mechanism is just a natural extension of
that for incompressible flow, without a qualitative physical change. In contrast, once
we enter the transonic regime, the shock cuts off ΓC suddenly to a much lower
level, evidently due to the aforementioned strong shock-induced vorticity shedding
into the wake. This dropping of ΓC then stops at M ≈ 0.85 due to the formation
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FIGURE 4. Mach-number contour of an RAE-2822 airfoil at Re = 6.5 × 106, α = 2.31◦.
Solid line indicates M > 1 and dashed line indicates M < 1, with interval 0.05. (a) M =
0.75; (b) M = 0.85.

of a lower-surface shock which has at least the same strength as that of the upper
surface (see figures 3(b) and 4(b) for the vorticity and Mach contours at M = 0.85,
respectively), which causes strong shedding of vorticity of the opposite sign and
hence turns the ΓC–M curve into a new smooth supersonic stage.

5.3. The Mach-number dependence of drag
Unlike the lift, for which we have ΓC = Γφ for subsonic flow, since Filon’s drag
formula (1.7) or (2.24b) is solely expressed in terms of non-observable uψ or ψ , it has
seldom been cited and never been tested in the aerodynamics community. In contrast,
quite a few testable approximate far-field drag formulae, which are mathematically
rigorous, have been designed and are in use. Equation (4.37c,d) is new for viscous
compressible flow and will be tested here for the first time.

Figure 5 shows the comparison of the Mach-number dependence of the drag
coefficients, computed by the wall-stress integral and the TJ–F drag formula (4.37c,d)
(denoted by ‘Filon’). The agreement is again excellent in the subsonic and supersonic
regimes, as well as most of the transonic regime (0.7<M< 1.3 for α= 2.31◦). Note
that the figure only displays the results for three large values of XW ; however, at
most calculated Mach numbers XW can be much nearer to the trailing edge such
that it still gives the desired agreement, as long as it satisfies with the minimum rm

predicted in § 4.3 (test plots not shown).
An obvious disagreement between the stress integral and the prediction of (4.37c,d)

occurs at M ∈ (1.0, 1.1), which can hardly be improved by increasing XW since the
linear far field for this case recedes to as far as rm=O(108). Although the vorticities
behind the shock waves are still weak, their effect is enhanced in the y-moment
integral. In this situation, as explained at the penultimate paragraph of § 4.5, (4.37c,d)
is valid only if the linear far field has been truly reached.

Having said this, let us turn to some specific physical issues. First, like the case of
lift, for subsonic flow the independence of QW from XW is ensured by the fact that
all vorticity comes from the boundary layers, which form a roughly defined parabolic
wake zone. Even for a low-transonic flow with M<1, with some shocks (see figures 3
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FIGURE 5. Mach-number dependence of drag coefficients of an RAE-2822 airfoil at
Re = 6.5 × 106. Solid line shows results from the wall-stress integral. Results given by
the TJ–F drag formula (4.37c,d) with QW calculated along the wake line whose position
is XW . Dashed–dotted line, XW = 50; dashed–dotted–dotted line, XW = 100; short-dashed
line, XW = 400. (a) α = 2.31◦; (b) α = 5.0◦.

and 4), because the supersonic regions are confined to the vicinity of the body surface,
the shock-generated vorticity is also confined to that parabolic wake. This is confirmed
by our numerical tests with XW =5 (figure not shown), showing that perfect agreement
between (4.37c,d) and the stress integral can be reached for M< 1 (all the way to the
maximum Cd and slightly further). At the supersonic side, with M > 1.2, a similar
independence of QW from XW reappears, but this requires XW =O(102), as estimated
by (4.27a). The difference between the results from the stress integral and (4.37c,d)
reduces as M increases. These observations, along with those on the lift, indicate that
our computational domain has reached the entire linearized far field from low-speed
to low-transonic flow, and for supersonic flow.

Second, a qualitative interpretation of the Mach-number dependence of drag can
be made. Consider again the case of α = 2.31◦ as an example. In the low-M range
the drag is very low and almost constant, with Cd ≈ 8.4 × 10−3. This is a typical
characteristic of streamlined bodies in subsonic flow due to the dominance of the
skin-friction drag. As M increases from 0.7 to 0.9, shocks appear and Cd increases
sharply from 9.0 × 10−3 to 0.124 due to the wave drag. But, unlike the lift, in the
far field the wave drag is not directly measured by ∇φd but by the contribution of
the shock-generated vorticity moment in (4.37c,d). There, since transonic shocks may
extend very far in the y-direction, although the vorticity behind the shocks is weak,
its y-moment can be of the same order of magnitude as, or even larger than, that of
the attached boundary layers and associated wake shear layer, where ω has high peaks
but a small y-extension. Unlike the lift, the sharp increase of the drag does not stop at
M= 0.85, but continues until the shocks reach the trailing edge at M= 0.9. Thereafter
Cd decreases smoothly as M increases, since the shocks at the trailing edge become
more and more oblique, reducing the shock-generated vorticity moment.

Finally, why the near-sonic linear far field recedes so far in the y-direction can
now be physically understood. As shocks start to appear in the transonic flow, their
curvature will generate a vorticity field which, though very weak, may have very large
extension in the y-direction. Therefore, far downstream what one sees is a sudden
lateral expansion of a single wake as the incoming velocity increases from M < 1
to M= 1. This wide wake is full of vorticity coming from both boundary layers and
shocks.
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FIGURE 6. Far-field view of the disturbance pressure contours of an RAE-2822 airfoil
at Re = 6.5 × 106, M = 1.4, α = 2.31◦. Solid line is p′ > 0 and dashed line is p′ < 0.
(a) Numerical result. (b) Analytical solution calculated by (2.12) with Re= 100 to make
the narrow Mach-line strips distinguishable.

5.4. The universality of the Joukowski–Filon theorem
The beauty and value of the J–F formulae (2.24) and TJ–F formulae (4.37) are their
extreme neatness and broad validity over a wide Mach-number range. They provide
a universal and yet exact framework for understanding the physically representative
quantities of lift and drag, which are just a pair of far-field contour integrals Γφ
and Qψ , respectively. For complex compressible flows, Γφ and Qψ serve as two
encompassing parameters that can contain all the net effects of various flow processes,
structures and their interactions on lift and drag.

Although the linearized N–S equations can be split into a longitudinal process and a
transversal process, both lift and drag have their origin in the transversal process. On
the one hand, while Γφ is associated only with a potential flow, it is still ‘induced’
by a point-like vortex generated by the point-like body located at x = 0, a picture
that holds for both subsonic and supersonic flows. Interestingly, while the distribution
of ∇φ is smooth in subsonic flow, it becomes almost singular in supersonic flow,
concentrated in the narrow neighbourhood of a pair of Mach-line bundles of opposite
families, which are the degenerated form of shocks emitted from the body. Figure 6
shows this situation, where the analytical solution is calculated using the linearized
Bernoulli integral (2.12), with φx given by (4.16a) and µθ∇2φ omitted, in which L
and D are determined by the numerical results. If the Mach lines are symmetric with
respect to the x-axis, we obtain Γ +φ =−Γ −φ and no lift exists. Thus, it is the Mach-line
asymmetry that causes a lift for supersonic flow, but once again that asymmetry is
eventually ‘induced’ by the point-like vortex.

On the other hand, the underlying physical mechanism behind the validity of
the TJ–F drag formula is that all vorticity in the wake line, lying in the linear far
field, can be regarded as wake vorticity, which is confined to a finite region. This
is due to advection of vorticity being much stronger than its diffusion for large
Reynolds numbers. Roughly speaking, as vorticity generated by both the boundary
layer and shocks is advected downstream, it also diffuses mainly along the direction
perpendicular to the main stream. Since the gradient of the vorticity generated by
the boundary layer is much larger than that generated by shocks, in subsonic and
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supersonic flows the former diffuses much more rapidly than the latter and will
eventually overcome the latter. As a result, the origins of vorticities in the wake line
are no longer distinguishable. This is why the TJ–F formula is valid. However, in
near-sonic flow the transverse scale of the vorticity generated by shocks is so large
that it can hardly be overcome by the vorticity diffused from shear layers in any
finite-domain simulation. This invalidates the TJ–F formula in the narrow range of
M ≈ 1.

For viscous compressible flow, this physical picture is consistent with a near-field
force formula given by Wu & Wu (1993), see also Liu et al. (2014b), where F
is dominated by the domain integral of a moment of ∇2(µω) for both two- and
three-dimensional flows. However, if one traces the primary origin of the transversal
vorticity field all the way to the body surface, then one again finds the longitudinal
field, because it is the tangent pressure gradient that is the dynamic cause of the
vorticity generation (Liu et al. 2015).

Finally, the neatness and broad validity of (4.37a,b) and (4.37c,d) are possible
because many specific near-field flow structures decay sufficiently fast as XW →∞.
But it is these structures that determine the specific Mach-number dependence of
lift and drag for each specific flow, and enable one to identify the detailed physical
mechanisms responsible for the forces. These are evidently of crucial importance in
engineering applications, and can be found only from detailed near-field flow data and
explained by relevant diagnostic theories, such as that reported in Liu et al. (2014b).

6. Conclusions and discussions
This paper studies the total lift and drag experienced by a body moving with

constant velocity through a two-dimensional, externally unbounded, viscous and
compressible fluid at rest at infinity, both theoretically and numerically. Our major
findings are summarized as follows.

(1) Based on far-field linearized Navier–Stokes equations and the Helmholtz
decomposition of the disturbance velocity field u′ = uφ + uψ , it is found that
the lift and drag are exactly and universally given by a pair of Joukowski–Filon
formulae (J–F formulae for short) (2.24), expressed as the contour integrals
of uφ = ∇φ and uψ = ∇ψ × ez, or the jumps Γφ = JφK and Qψ = −JψK,
respectively. These formulae are independent of the incoming-flow Mach number
M and Reynolds number Re as the direct consequences of the unique kinematic
features of two-dimensional, steady and viscous external flow. First, because
it is two-dimensional, the flow domain is doubly connected, permitting the
velocity potentials φ and ψ both to be multi-valued and have jumps. Second,
the steadiness means that the flow domain must exclude some wake vorticity
that leads to non-zero jumps JφK and JψK as the kinematic measure of lift and
drag. Third, because of viscosity and the vortical wake, the circulation ΓC has
two constituents, Γφ and Γψ .

(2) A complete far-field linearized theory is developed analytically. Its first role is
to give a rigorous proof of the J–F formulae, so that the result can be stated as
the Joukowski–Filon theorem. Owing to the pure kinematic nature, ∇ × uφ = 0
and ∇ · uψ = 0, once the theorem is proved in the linear far field the J–F
formulae are also independent of the shape and size of the integration contour
C surrounding the body. To the authors’ knowledge, this is the first time that it
has been discovered that the classic and fundamental aerodynamic theorems of
Joukowski and Filon for incompressible flow can be exactly carried over all the
way to supersonic flow, without any change in form.
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(3) The second role of the theory is to clarify the dominant flow structures, such as
shear layers and shock waves, responsible for the lift and drag in different ranges
of M, and thereby to make specific estimates of the minimum distances of the
linear far field to the body in different Mach-number ranges. This includes the
most critical case with M ≈ 1, but for which the viscous linear field is too far
away to be reached by any finite-domain numerical simulation.

(4) Because velocity potentials are not physically observable quantities, the
integrands of the J–F formulae are not directly testable. The key to making
them testable is to find the condition at which Γψ→ 0. This is the third role of
the theory, leading to a testable version of the J–F formulae (TJ–F formulae for
short). They are also independent of M and Re, but hold only in the linear far
field. They approach the universal J–F formulae asymptotically as the integration
contour recedes to infinity.

(5) A careful RANS simulation of typical airfoil flow is performed. It confirms
directly the TJ–F formulae along with their behaviour predicted by the theory,
as well as the predicted minimum distance of the linear far field. Except for
near-sonic flow, for which the linear far field is too remote, the excellent
numerical agreement between the predicted lift and drag using the TJ–F formulae
and using the wall-stress integrals can be considered as strong support for the
exact and universal J–F formulae. Based on near-field flow data, the numerical
results are able to reveal the underlying physical mechanisms behind the
Mach-number dependence of lift and drag, and thereby enhance the understanding
of the Joukowski–Filon theorem.

(6) Both the universal J–F formulae and far-field TJ–F formulae reveal that the
origin of aerodynamic forces in viscous compressible flow is in a transversal
process. This is evident for the drag, and also true for the lift, since even Γφ
in (2.24a) can be viewed as ‘induced’ by a point-like vortex at the origin. In
subsonic flow the vortex induces a smooth field surrounding the body, while in
supersonic flow it induces the asymmetry of a pair of Mach-line bundles emitted
from the body. Compared to other dynamic–thermodynamic fields generated
by the body, such as shocks, expansions, temperature gradients (and associated
variable viscosities), entropy increments, etc., the vorticity extends the farthest
downstream and is the only signature of disturbed flow observable at a remote
wake line. Perhaps only the very remote lateral extension of the longitudinal
process in near-sonic flow could be comparable to the downstream extension of
vorticity. However, the ultimate origin of the vorticity field is still the dynamic
coupling of the longitudinal and transverse processes at solid walls and curved
shocks.

The specific values of JφK and JψK are beyond the scope of the formulae
themselves, but are the synthetic effects of various complex dynamic fields generated
by the body motion. Therefore, it is believed that a rational combination of the
universal J–F formulae and aerodynamic force theories in terms of special near-field
flows (e.g. Liu et al. 2014b) can provide a powerful means for the development of
modern high-speed aerodynamics at a fundamental level, especially for complex flows
with coupled multiple dynamic and thermodynamic processes.

As shown in § 2.1, the inherent nature of linearized analysis is such that it retains
only constant reference values for all transport coefficients, such as viscosities and
heat conductivity. This feature imposes a limitation in applying the theory to a
linearized turbulent far field, since the best one could do is, as mentioned in § 2.1, to
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use a constant reference eddy viscosity µt0 that is approximately O(103)µ0. However,
our RANS simulation indicates that, qualitatively (data not shown here, which may
not be accurate enough due to the sparse grid in the far field), turbulence occurs
mainly in the vortical wake with a non-negligible varying eddy viscosity µt(x), but
µt(x) is not significantly larger than the molecular viscosity near the shocks. This
varying-µt effect cannot be captured by the linearized theory although it is applicable
to statistically steady flow. Consequently, the minimum distance of the linearized
transverse far field would be significantly shortened by a large µt0, which may
explain the perfectness of the TJ–F formula (4.37c,d) in the subsonic region; but
since µt(x) remains of the same order of magnitude as the laminar viscosity near the
shocks in the far field, the minimum distance of the linearized longitudinal turbulent
far field may not be significantly shortened, especially for near-sonic flow.
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Appendix A. Fundamental solution of the linearized N–S equations
This appendix highlights the derivation of the fundamental solution of (3.2) for u′

in two-dimensional steady flow, obtained by Lagerstrom et al. (1949, pp. 172–175,
182–193).

Denote the Fourier transform and inverse transform of (3.2) in the x-direction as

f̃ (l, y)=
∫ ∞
−∞

e−ilxf (x, y) dx, f (x, y)= 1
2π

∫ ∞
−∞

eilx f̃ (l, y) dl. (A 1a,b)

Now the equations in (3.2) are transformed to (upon eliminating ρ̃)

(aM1 − bM2 − k2I) · ũ=−f̃ , (A 2)

where

a= νθ + c2

ilU
, b= ν, k2 = ilU (A 3a−c)

and

M1 =
(−l2 il∂y

il∂y ∂2
y

)
, M2 =

(−∂2
y il∂y

il∂y l2

)
. (A 3d,e)

To find the fundamental solution of (A 2) the following theorem is very useful:

THEOREM 1. If M1 and M2 are two linear differential matrix operators such that

M1 ·M2 =M2 ·M1 = 0, M1 −M2 = LI, (A 4a,b)
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where I is the unit matrix and L is a scalar linear differential operator, then the
fundamental solution G(x, ξ) of (A 2) is given by

G(x, ξ)= 1
k2

(
M1g√

k2/a
−M2g√

k2/b

)
, (A 5)

where gβ(x, ξ) is the fundamental solution of the scalar operator L− β2.

Now, since L= ∂2
y − l2, of which the fundamental solution gβ with far-field decaying

condition is

gβ = e−|y|
√
β2+l2

2
√
β2 + l2

, Re
√
β2 + l2 > 0, (A 6a,b)

then the fundamental solution of (A 2) comes from (A 5) and (A 6) directly, which we
denote as G̃,

G̃(l, y)= 1
k2

M1

exp

(
−|y|

√
k2

a
+ l2

)

2

√
k2

a
+ l2

−M2

exp

(
−|y|

√
k2

b
+ l2

)

2

√
k2

b
+ l2

 . (A 7)

Transforming back to the physical space, we obtain

G=
∫ ∞
−∞

M1

exp

(
−|y|

√
k2

a
+ l2

)

2

√
k2

a
+ l2

−M2

exp

(
−|y|

√
k2

b
+ l2

)

2

√
k2

b
+ l2

 eilx dl
2πk2

, (A 8)

with a, b, k2 and M1,M2 being given by (A 3a–c) and (A 3d,e), respectively.

Appendix B. Far-field longitudinal velocity components
We give detailed algebra for the derivation of the far-field longitudinal velocity ∇φ

from its Fourier transform (3.11). The basic idea in studying the integrals therein is to
choose appropriate integral contours to ensure the far-field decaying condition. Denote

(1−M2)l2 + i
νθM4

U
l3 = Ae−iθ , (B 1)

where

A2 =
[

1+
(

M4

1−M2

νθ l
U

)2
]
(1−M2)2l4, (B 2a)

tan θ = M4

1−M2

νθ l
U
. (B 2b)

Then the velocity potential φl given by (3.11a) can be written as

φl = sgn y
∫ ∞

0
e−|y|A

1/2 cos (θ/2) sin
(

xl− |y|A1/2 sin
θ

2

)
dl
l
. (B 3a)
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But since the integral in (3.11b) is not convergent, we consider its derivatives instead.
In fact, due to the identity

∂φd

∂y
= ∂φl

∂x
, (B 3b)

only ∂φd/∂x has to be considered, that is

∂φd

∂x
=
∫ ∞

0
e−|y|A

1/2 cos (θ/2) sin
(

xl− |y|A1/2 sin
θ

2
− θ

2

)
ldl

A1/2
. (B 3c)

Note that the above results are valid only for small viscosity. However, contrary to
the subsonic flow 1−M2 > 0, where the viscosity can be omitted and the results are
the corresponding potential flow, for 1 −M2 6 0 the viscosity can never be omitted,
otherwise θ = π and the disturbance can never die out. This simple observation
stresses the vital role of viscosity in sonic and supersonic flows, which is the key
mechanism for the shock waves to be weakened and die out eventually.

B.1. Subsonic flow
For subsonic flow, we have

A1/2 ≈ βl,
θ

2
≈ λl, (B 4a,b)

where

β2 = 1−M2 > 0, λ≡ νθM4

2β2U
� 1. (B 5a,b)

Substituting (B 4) into (B 3a) gives

φl = sgn y
∫ ∞

0
e−β|y|l sin(xl− λβ|y|l2)

dl
l

= sgn y
∫ ∞

0
e−β|y|l sin(xl)

dl
l
− λβy

∫ ∞
0

e−β|y|l cos(xl)l dl

= sgn y arctan
(

x
β|y|

)
+ λβy(x2 − β2y2)

(x2 + β2y2)2
. (B 6)

Similarly, by substituting (B 4) into (B 3c) we can obtain

∂φd

∂x
=
∫ ∞

0
e−β|y|l sin[(x− λ)l− λβ|y|l2]dl

β

=
∫ ∞

0
e−β|y|l sin[(x− λ)l]dl

β
− λ|y|

∫ ∞
0

e−β|y|l cos(xl)l2 dl

= 1
β

x− λ
(x− λ)2 + β2y2

+ sgn y
2λ
β

β2y2(3x2 − β2y2)

(x2 + β2y2)3
. (B 7)

Evidently, the above results include incompressible flow as a special case with M=
λ= 0 and β = 1. They can also be regarded as a first-order viscous modification of
inviscid subsonic flow if terms proportional to λ are retained. Furthermore, since the
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terms involving νθ are all proportional to r−2 for subsonic flow, as seen in (B 6) and
(B 7), they of course make no contribution to the circulation as r→∞ or νθ → 0.
Thus we may simply set νθ = 0 to obtain

φl = sgn y arctan
(

x
β|y|

)
, β =

√
1−M2, (B 8a,b)

φd = 1
2β

ln(x2 + β2y2). (B 8c)

Note that although the original form of φd, i.e. (3.11b), is not convergent, the
derivatives of (B 8c) are identical to those of (3.11b). Thus (B 8c) can be regarded as
the finite part of (3.11b).

B.2. Supersonic flow
For supersonic flow, we have

A1/2 ≈ Bl,
θ

2
≈ π

2
−Λl, (B 9a,b)

where

B2 =M2 − 1> 0, Λ≡ νθM
4

2B2U
� 1. (B 10a,b)

Substituting (B 9) into (B 3a) we have

φl = sgn y
∫ ∞

0
e−ΛB|y|l2 sin[(x− B|y|)l]dl

l

= π

2
sgn y erf

(
x− B|y|

2
√
ΛB|y|

)
, (B 11)

where erf(·) is the error function defined by

erf(z)= 2√
π

∫ z

0
e−t2 dt. (B 12)

Similarly, for ∂φd/∂x we have

∂φd

∂x
= −

∫ ∞
0

e−ΛB|y|l2 cos[(x+Λ− B|y|)l]dl
B

= − 1
2B

√
π

ΛB|y| exp
[
−(x+Λ− B|y|)2

4ΛB|y|
]

(B 13)

and due to (B 3b) and (B 11) we have

∂φd

∂y
= ∂φl

∂x
= sgn y

2

√
π

ΛB|y| exp
[
−(x− B|y|)2

4ΛB|y|
]
. (B 14)

Note that the viscosity can cause the maximum longitudinal disturbance velocity
induced by the drag (not by the lift) to lie not exactly along the Mach line but to
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have a displacement Λ away from it. However, since in most cases Λ� 1, we can
omit this infinitesimal displacement effect. With this in mind, (B 13) can be integrated
to yield

φd = φd(−∞, y)− 1
2B

√
π

ΛB|y|
∫ x

−∞
exp

[
−(ξ − B|y|)2

4ΛB|y|
]

dξ (B 15)

= φd(−∞, y)− π

2B
erf
(

x− B|y|
2
√
ΛB|y|

)
+ π

2B
. (B 16)

Now take the y-derivative of (B 16) and compare the result with (B 14), then φd can
be simply denoted as

φd =− π

2B
erf
(

x− B|y|
2
√
ΛB|y|

)
, (B 17)

which gives the same leading term of the velocity field.

B.3. Near-sonic flow
For near-sonic flow we have

A≈ νθM
4

U
l3, θ ≈ π

2
. (B 18a,b)

Then the velocity potential φl, (B 3a), can be written as

φl = sgn y
∫ ∞

0
e−|y|M

2√νθ /(2U)l3/2 sin
(

xl− |y|M2

√
νθ

2U
l3/2

)
dl
l
, (B 19)

of which the integral always exists, but only for special cases can it be integrated to
yield analytical results. In particular, we have

φl(x,±0)=±π

2
sgn x, (B 20a)

φl(x, y)=
[

G
(

2
3

)(
U
νθM4

)1/3 x
|y|2/3 −

π

6

]
sgn y, |x| � 1, (B 20b)

where G(·) is the Gamma function defined by

G(z)=
∫ ∞

0
tz−1e−t dt. (B 21)

From (B 20) we can see that φl decreases from π/2 to −π/2 for y> 0 as x increases
from −∞ to +∞, while φl(0, y) retains a constant value −π/6 even for y→∞.
These results suggest a very slow decay of ∂φl/∂x. Indeed, we have

∂φl

∂x
(0, y)=G

(
2
3

)(
U
νθM4

)1/3 sgn y
|y|2/3 . (B 22)

On the other hand, for the longitudinal velocity generated by the drag, we have

∂φd

∂x
=
(

U
νθM4

)1/2 ∫ ∞
0

e−|y|M
2√νθ /(2U)l3/2 sin

(
xl− |y|M2

√
νθ

2U
l3/2 − π

4

)
dl

l1/2
. (B 23)
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In particular, we have

∂φd

∂x
(x, 0)=

(
πU
νθM4

)1/2 sgn x− 1
2
√|x| , (B 24a)

∂φd

∂x
(0, y)=−

(
U
νθM4

)2/3 √3G
(

4
3

)
|y|1/3 . (B 24b)
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