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New instability mode in a grooved channel
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It is known that longitudinal grooves may stabilize or destabilize the travelling wave
instability in a channel flow depending on the groove wavenumber. These waves
reduce to the classical Tollmien–Schlichting waves in the absence of grooves. It
is shown that another class of travelling wave instability exists if grooves with
sufficiently high amplitude and proper wavelengths are used. It is demonstrated that
the new instability mode is driven by the inviscid mechanism, with the disturbance
motion having the form of a wave propagating in the streamwise direction with
phase speed approximately four times larger than the Tollmien–Schlichting wave
speed and with its streamwise wavelength being approximately twice the spanwise
groove wavelength. The instability motion is concentrated mostly in the middle of the
channel and has a planar character, i.e. the dominant velocity components are parallel
to the walls. A significant reduction of the corresponding critical Reynolds number
can be achieved by increasing the groove amplitude. Conditions that guarantee the
flow stability in a grooved channel, i.e. the grooved surface behaves as a hydraulically
smooth surface, have been identified.

Key words: channel flow, instability, transition to turbulence

1. Introduction
It is known that surface roughness plays an important role in the laminar–turbulent

transition. This problem has been studied most frequently in the context of the
identification of conditions when the presence of roughness can be ignored, i.e. when
the wall can be viewed as hydraulically smooth. The term ‘roughness’ is frequently
used in the literature but its meaning is not well defined; the term ‘rough wall’
only means that the wall is not smooth. One can use terms like ‘roughness’, ‘wall
corrugation’ and ‘surface topography’ interchangeably, as they all have the same
meaning. In order to arrive at meaningful conclusions, one needs to remove this
arbitrariness and begin with a precise geometry description. This goal looks like
a mathematical contradiction, as there are an uncountable number of possible
roughness forms but, nevertheless, one expects to find a general answer. This
apparent contradiction has been bypassed in experiments by using artificially created
roughness forms, e.g. sets of cones, spheres, prisms, parallelepipeds, etc., with
different spatial distributions (Schlichting 1979). Results from a large number of
experiments and the development of correlations provide a database useful for design
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purposes but insufficient for any optimization. Sandpaper with various grain sizes
has been especially popular due to the belief that it accounts for the randomness
of roughness forms. This has led to the description of the topographic features
(roughness properties) using the equivalent sand roughness (Moody 1944); see Herwig,
Gloss & Wenterodt (2008) for a recent review. The most recent summary of the
experimental data dealing with the laminar–turbulent transition over rough surfaces
and its correlation with the existing theoretical models is well presented by Arnal,
Perraud & Séraudie (2008). A frequently used criterion (Morkovin 1990) for the
determination of the critical roughness size states that the roughness Reynolds number
Rek=Ukk/ν > 25 for the roughness to be active, where Uk is the undisturbed velocity
at height k. This criterion does not provide any insight into the flow mechanics and
is unable to deal with the so-called distributed surface roughness.

The most promising method for the mathematical description of the hydrodynamic
properties of a surface with an arbitrary topography relies on the reduced-order
geometry (ROG) model (Floryan 1997). The geometric properties are categorized
by projecting the surface geometry onto a convenient functional space, e.g. Fourier
space, with the expectation that only a few leading Fourier modes representing the
topography matter as far as hydrodynamics are concerned. This technique permits
the identification of features of the topography that have a decisive influence on
the flow response, with irrelevant details removed from consideration. Indeed, it has
been demonstrated that, in many instances, it is sufficient to use only the leading
Fourier mode to capture the main physical processes with accuracy sufficient for most
applications (Floryan 2007).

Analysis of the effects of surface corrugations on the flow evolution requires the
determination of the basic state followed by its linear stability analysis. One needs,
therefore, to demonstrate that the ROG model is applicable to both problems. A
systematic analysis of various groove configurations and types of flows required to
demonstrate the applicability of the ROG model is possible using either the immersed
boundary conditions (IBC) method (Szumbarski & Floryan 1999; Mohammadi &
Floryan 2012) or the domain transformation (DT) method (Cabal, Szumbarski &
Floryan 2002; Husain & Floryan 2010). Both techniques provide spectral accuracy
for topographies of practical interest and a seamless transition between different
topographic forms. Methods based on the domain perturbation result in linearization
of the surface geometry and thus are unable to account for the complete problem
physics; use of the higher-order transfer procedures does not remove this limitation
(Cabal, Szumbarski & Floryan 2001). The applicability of the ROG model to the
stability problem has been demonstrated by Cabal et al. (2002) for the DT method
and by Floryan (2002, 2007) and Szumbarski (2002) for the IBC method using
spectrally accurate discretization compatible with the mean flow solvers.

The availability of the ROG model provides the means to gain fundamental insight
into the mechanics of the flow response driven by various surface topographies.
Floryan (2007) considered spanwise grooves of arbitrary form and formulated a
formal hydraulic smoothness criterion based on the flow stability characteristics.
This criterion states that the surface topography is hydraulically active only when
it is able to induce flow bifurcation. It has been found that the two-dimensional
transverse grooves destabilize the travelling (Tollmien–Schlichting, TS) waves in
the channel flow, and this prediction has been verified experimentally (Asai &
Floryan 2006). The same grooves are able to generate instability, giving rise to
streamwise vortices (Floryan 2007). Depending on the groove characteristics and
the flow Reynolds number, the first bifurcation can lead to either travelling waves
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New instability mode in a grooved channel 693

or streamwise vortices. The grooves are known to increase transient growth, with
the optimal disturbances having the form of streamwise vortices (Szumbarski &
Floryan 2006). An increase of the distance between individual grooves eventually
eliminates any interaction between them, and each groove behaves as an individual
roughness element. While each element by itself has hardly any effect on the flow
stability, a system of such grooves may result in major flow changes (Floryan &
Asai 2011). Roughness may also have the form of a roughness patch, and the effect
of the beginning and the end of the patch and the question of how quickly the flow
recovers from such transition have been analysed by Inasawa, Floryan & Asai (2014).
Another complication is associated with receptivity and transient growth associated
with individual roughness elements (White, Rice & Ergin 2005; Denissen & White
2009). Analysis of kinematically driven flows, i.e. Couette flow, shows that roughness
is able to produce vortex instability (Floryan 2002), while it is known that such flow
is always linearly stable in the case of smooth walls.

The present analysis is focused on the same two-dimensional topography but with
the grooves rotated by 90◦ and thus being parallel to the flow direction. Longitudinal
grooves are known in the literature as riblets and have been studied primarily in
the context of turbulent drag reduction (Walsh 1983; Dean & Bhushan 2010; Jin
& Herwig 2014). It has been shown recently that longitudinal grooves, but with
wavelengths an order of magnitude larger, are able to reduce the frictional drag
in laminar flows (Mohammadi & Floryan 2010, 2013a,b; Szumbarski, Blonski &
Kowalewski 2011). Techniques for the analysis of the stability of the relevant flows
are described in Ehrenstein (1996), Szumbarski (2007), Boiko & Nechepurenko (2010)
and Moradi & Floryan (2014). Ehrenstein (1996) considered riblets with a scalloped
cross-section and concluded that they always destabilize the flow. Rothenflue & King
(1995) observed riblet-induced formation of a streamwise pair of vortices during
boundary layer transition. The same riblets amplify the growth of two-dimensional
travelling waves but delay the transformation of Λ-vortices into turbulent spots (Grek,
Kozlov & Titarenko 1996). In the case of three-dimensional boundary layers, riblets
are able to suppress the development of travelling waves (Boiko et al. 1997) as well
as the streak instability (Boiko et al. 2007). Luchini & Trombetta (1995) found that
riblets slightly reduce the critical Reynolds number. The two-dimensional waves were
found to be amplified and three-dimensional structures damped by the grooves in
K-type transition, while in the oblique transition caused by two oblique waves the
breakdown to turbulence was delayed by riblets (Klumpp, Meinke & Schröder 2010).
Sinusoidal riblets of very high amplitude were found to produce significant flow
destabilization in pressure-driven flows (Szumbarski 2007). A systematic analysis of
grooves over the complete range of wavelengths demonstrated that short-wavelength
grooves destabilize the TS waves while long-wavelength grooves stabilize them
(Moradi & Floryan 2014). This analysis was limited to small groove amplitudes and
the observed change of the critical Reynolds number was found to be limited to
approximately 10 % of the nominal value for the smooth channel. It is worth noting
that the use of oblique corrugations in boundary layers appears to have only a minor
effect on the TS waves (Ma’mun & Asai 2014; Ma’mun, Asai & Inasawa 2014).

The primary objective of this work is to determine the effects of the small-
amplitude longitudinal two-dimensional grooves of arbitrary shape on the stability of
pressure-gradient-driven flows in a channel. The particular focus of this work is the
search for instability modes other than the TS waves. The new results complement
the results available for the same grooves placed transversely with respect to the flow
(Floryan 2007). Because of the drag-reducing capabilities of long-wavelength grooves,
special attention is paid to flow stability in the presence of such grooves.
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694 A. Mohammadi, H. V. Moradi and J. M. Floryan

Section 2 provides description of the problem formulation for the mean flow as well
as a description of the numerical solution of the relevant field equation, and provides
a discussion of the main features of the flow. Section 3 is focused on the linear
stability, with § 3.1 giving the formulation of the stability problem and § 3.2 presenting
the numerical solution. Section 4 is devoted to the presentation of the results. The
effects of sinusoidal grooves are discussed in § 4.1, grooves with arbitrary shape and
the ROG model are discussed in § 4.2 and the properties of the flow in a channel
with optimal grooves are presented in § 4.3. Section 5 provides a short summary of
the main conclusions.

2. Flow in a channel with longitudinal grooves
The problem formulation has been described in detail by Moradi & Floryan (2014)

and thus this presentation is limited to a short outline. Consider steady and fully
developed flow through a smooth straight channel extending to ±∞ in the x-direction
and driven by a constant pressure gradient along the x-direction. This flow (Poiseuille
flow) has the form

V 0(y)= (u0, v0,w0)= (1− y2, 0, 0), p0(x)=−2Re−1x+ c, (2.1a,b)
ω0 = (ξ0, η0, φ0)= (0, 0, 2y), Q0 = 4

3 . (2.1c,d)

In the above, V 0 stands for the velocity vector with components (u0, v0, w0) in the
(x, y, z) directions, respectively, p0 stands for the pressure, where c denotes an arbitrary
constant, ω0 stands for the vorticity vector with components (ξ0, η0, φ0) in the (x, y, z)
directions, respectively, and Q0 stands for the flow rate. The maximum Umax of the
dimensional x-velocity component has been used as the velocity scale, ρU2

max has been
used as the pressure scale, where ρ stands for density, the channel half-height K has
been used as the length scale and the Reynolds number has been defined as UmaxK/ν,
where ν denotes the kinematic viscosity.

Replace the smooth walls with longitudinal grooves of arbitrary geometry (see
figure 1) expressed in terms of Fourier expansions of the form

yL(z)=−1+
m=NA∑

m=−NA

H(m)
L eimβz, yU = 1, (2.2a,b)

where the subscripts L and U refer to the lower and upper walls, respectively, β is
the groove wavenumber, λz= 2π/β denotes the groove wavelength, NA represents the
number of Fourier modes required to describe the geometry, H(m)

L =H(−m)∗
L expresses

the reality condition, and the asterisk indicates the complex conjugate. Our interest
is in the analysis of effects of flow modulations and thus we assume that the mean
openings of the grooved and the reference smooth channels are the same, i.e. H(0)

L = 0.
The driving mechanisms and the groove geometry do not depend on the x-

coordinate and thus the fluid movement is governed by the simplified x-momentum
equation and boundary conditions of the form

∂2uB

∂y2
+ ∂

2uB

∂z2
− Re

dpB

dx
= 0, uB(yL, z)= 0, uB(1, z)= 0, (2.3a−c)

subject to the fixed volume flow rate of the form

Q= λ−1
z

∫ z=λz

z=0

∫ y=1

y=yL(z)
uB(y, z) dy dz= 4

3
. (2.4)
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y

z x

Reference flow
direction

FIGURE 1. Sketch of the flow configuration.

This constraint states that the flow rate in the grooved channel is the same as in the
smooth reference channel. The pressure gradient that is required to maintain this flow
rate in the grooved channel is used to assess the ability of the grooves to reduce drag.

The flow is expressed as a superposition of the reference flow described by (2.1a–d)
and flow modifications due to the groove presence, i.e.

VB(y, z)= [uB, 0, 0] = V 0(y)+ V 1(y, z)= [u0(y), 0, 0] + [u1(y, z), 0, 0], (2.5a)

pB(x)= p0(x)+ p1(x). (2.5b)

In the above, subscripts 0 and 1 denote the reference flow and the flow modifications,
respectively. The governing equations for the flow modifications take the form

∂2u1

∂y2
+ ∂

2u1

∂z2
− Re

dp1

dx
= 0, u0(yL, z)+ u1(yL, z)= 0, u0(1, z)+ u1(1, z)= 0,

(2.6a−c)

Q= λ−1
z

∫ z=λz

z=0

∫ y=1

y=yL(z)
[u0(y)+ u1(y, z)] dy dz= 4

3
, (2.6d)

and demonstrate that the character of the velocity field is independent of Re. Solution
of (2.6) has to be determined numerically due to geometric complexities. A spectral
discretization method based on the Fourier and Chebyshev expansions is used
(Mohammadi & Floryan 2012; Moradi & Floryan 2014). The solution is assumed to
be in the form of a Fourier expansion in the z-direction, i.e.

u1(y, z)=
m=+∞∑
m=−∞

u(m)1 (y)eimβz, (2.7)

where u(m)1 = u(−m)∗
1 expresses the reality condition. Chebyshev expansions are used

for discretization of the modal functions u(m)1 (y). The Galerkin projection method is
used to form a system of linear algebraic equations. The IBC concept (Szumbarski
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FIGURE 2. Variations of the pressure gradient correction Re dp1/dx in a channel with
geometry defined by (2.8) as a function of the groove wavenumber β and the groove
amplitude S.

& Floryan 1999; Mohammadi & Floryan 2012) is used to enforce the boundary
conditions. The IBC method relies on the use of a fixed regular computational
domain extending in the y-direction far enough so that it completely encloses the
grooved channel, and imposition of the flow boundary conditions is carried out
through specially constructed boundary relations using the tau concept (Canuto et al.
2006). The fixed volume flow rate constraint is discretized directly and the pressure
gradient correction is determined simultaneously with the velocity field through the
solution of a system consisting of the field equation, the boundary constraints and
the volumetric flow rate constraint. Numerical parameters have been chosen through
careful experimentation to guarantee at least six digits of accuracy. Certain cases
were tested using the DT method.

The properties of the mean flow are illustrated for a groove geometry of the form

yL(z)=−1+ S cos(βz), yU = 1, (2.8a,b)

i.e. the lower wall is fitted with sinusoidal grooves. Figure 2 illustrates variations of
the pressure gradient corrections as a function of β and S, and demonstrates that
grooves of sufficiently long wavelength reduce the pressure gradient required to drive
the flow. The velocity distribution illustrated in figure 3(a) demonstrates the formation
of a stream tube with elevated velocity in the widest channel opening. Figure 3(b)
displays spanwise velocity variations in the middle of the channel and demonstrates
that the stream tube exists for medium and long groove wavelengths but disappears
for grooves with sufficiently short wavelengths. The latter effect is associated with the
stream lift-up phenomenon and the apparent hydraulic wall thickening (Mohammadi &
Floryan 2013a). The same figure demonstrates the appearance of inflection points in
the spanwise velocity distributions; there are no inflection points in the wall-normal
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FIGURE 3. (a) Spatial distribution of the streamwise velocity component uB for flow
through a channel with geometry defined by (2.8) with S = 0.035 and β = 0.7.
(b) Spanwise variations of uB at y= 0 for β = 0.1, 0.7 and 10.

velocity distributions at any spanwise location. The vorticity field has just two non-
zero components, i.e.

ωB = (ξB, ηB, φB)= (0, ∂uB/∂z,−∂uB/∂y), (2.9)

with extrema of ηB identifying locations of the spanwise inflection points (not shown).
The flow can be viewed as consisting of sheets of constant z-vorticity in the case
of the smooth channel; these sheets are deformed by the grooves, which, in addition,
generate the y-vorticity component. It is simple to show that the viscous dissipation
function ΦB, defined as

ΦB =
(
∂uB

∂y

)2

+
(
∂uB

∂z

)2

, (2.10)

is strongest near the walls and negligible near the centre of the channel.

3. Linear stability analysis
The drag-reducing abilities of the long-wavelength grooves can be utilized only if

the flow remains laminar. It is therefore of interest to determine the maximum critical
Reynolds numbers that guarantee the flow stability for all possible groove forms. We
shall assume that the disturbance level is low and thus the asymptotic stability can
predict the onset conditions for secondary states. A high level of disturbances requires
analysis of the transient growth (Szumbarski & Floryan 2006) as well as information
about the initial structure of the disturbance field.

3.1. Problem formulation
The governing equations can be expressed in terms of the continuity and the vorticity
transport equations of the form

∇ · V = 0, (3.1a)
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698 A. Mohammadi, H. V. Moradi and J. M. Floryan

∂ω

∂t
− (ω · ∇)V + (V · ∇)ω− 1

Re
∇2ω= 0, (3.1b)

where V and ω=∇× V are the velocity and vorticity vectors, respectively (Floryan
1997). The flow quantities are expressed as a superposition of the basic flow and three-
dimensional disturbances, i.e.

V(x, y, z, t)= VB(y, z)+ VD(x, y, z, t), (3.2a)
ω(x, y, z, t)=ωB(y, z)+ωD(x, y, z, t). (3.2b)

In the above, subscript D denotes the disturbance field and VD = (uD, vD, wD) and
ωD= (ξD, ηD, φD) stand for the disturbance velocity and vorticity vectors, respectively.
Substitution of (3.2) into (3.1), subtraction of the basic flow and linearization lead to
the disturbance equations of the form

∂uD

∂x
+ ∂vD

∂y
+ ∂wD

∂z
= 0, (3.3a)

∂ξD

∂t
− ηB

∂uD

∂y
− ∂uB

∂y
ηD − φB

∂uD

∂z
− ∂uB

∂z
φD

+ uB
∂ξD

∂x
− 1

Re

(
∂2ξD

∂x2
+ ∂

2ξD

∂y2
+ ∂

2ξD

∂z2

)
= 0, (3.3b)

∂ηD

∂t
− ηB

∂vD

∂y
− φB

∂vD

∂z
+ uB

∂ηD

∂x
+ ∂ηB

∂y
vD

+ ∂ηB

∂z
wD − 1

Re

(
∂2ηD

∂x2
+ ∂

2ηD

∂y2
+ ∂

2ηD

∂z2

)
= 0, (3.3c)

∂φD

∂t
− ηB

∂wD

∂y
− φB

∂wD

∂z
+ uB

∂φD

∂x
+ ∂φB

∂y
vD

+ ∂φB

∂z
wD − 1

Re

(
∂2φD

∂x2
+ ∂

2φD

∂y2
+ ∂

2φD

∂z2

)
= 0, (3.3d)

subject to the homogeneous boundary conditions of the form

VD(x, yL, z, t)= 0, VD(x, yU, z, t)= 0. (3.4a,b)

The coefficients appearing in (3.3b–d) are functions of the (y, z)-coordinates and
therefore the solution can be written as

VD(x, y, z, t)= GD(y, z)ei(δx+µz−σ t) + c.c., (3.5a)
ωD(x, y, z, t)=ΩD(y, z)ei(δx+µz−σ t) + c.c., (3.5b)

where δ and µ denote the real wavenumbers in the x- and z-directions, respectively,
σ = σr+ iσi is the complex amplification rate, σi is the rate of growth of disturbances,
σr is the frequency of disturbances and c.c. refers to complex conjugates. The
amplitude functions GD(y, z) and ΩD(y, z) are periodic functions of z and thus can
be expressed in terms of Fourier expansions of the form

GD(y, z)=
n=+∞∑
n=−∞
[g(n)u (y), g(n)v (y), g(n)w (y)]einβz + c.c., (3.6a)
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ΩD(y, z)=
n=+∞∑
n=−∞
[g(n)ξ (y), g(n)η (y), g(n)φ (y)]einβz + c.c. (3.6b)

Substitution of (3.6) into (3.5) leads to the disturbance velocity and vorticity
components of the form

VD(x, y, z, t)=
n=+∞∑
n=−∞
[g(n)u (y), g(n)v (y), g(n)w (y)]ei[δx+(µ+nβ)z−σ t] + c.c., (3.7a)

ωD(x, y, z, t)=
n=+∞∑
n=−∞
[g(n)ξ (y), g(n)η (y), g(n)φ (y)]ei[δx+(µ+nβ)z−σ t] + c.c. (3.7b)

A system of linear homogeneous ordinary differential equations for g(n)v (y) and
g(n)η (y) is obtained by substituting (3.7) and (2.7) into (3.3) and separating Fourier
modes. This system, after extensive rearrangement, takes the form

T (n)(y)g(n)v (y)=
m=+∞∑
m=−∞

[A(n,m)v (y)g(n−m)
v (y)+ A(n,m)η (y)g(n−m)

η (y)], (3.8a)

S(n)(y)g(n)η (y)+C(n)(y)g(n)v (y)=
m=+∞∑
m=−∞

[B(n,m)v (y)g(n−m)
v (y)+ B(n,m)η (y)g(n−m)

η (y)], (3.8b)

where −∞< n<+∞,

T (n)(y)= i[−σ + δu0(y)](D2 − k2
n)− iδD2u0(y)− 1

Re
(D2 − k2

n)
2, (3.9a)

S(n)(y)= i[−σ + δu0(y)] − 1
Re
(D2 − k2

n), C(n)(y)= itnDu0(y), (3.9b,c)

A(n,m)v (y) = iδ[k2
nu(m)1 (y)+D2u(m)1 (y)]

− 2imβδtn−m

k2
n−m

Du(m)1 (y)D− iδ
k2

n−m

(k2
n −m2β2)u(m)1 (y)D2, (3.9d)

A(n,m)η (y)=−2imβδ2

k2
n−m

[u(m)1 (y)D+Du(m)1 (y)], (3.9e)

B(n,m)v (y)=−itnDu(m)1 (y)+ imβ
(

1+ mβtn−m

k2
n−m

)
u(m)1 D, (3.9f )

B(n,m)η (y)=−iδ
(

1− m2β2

k2
n−m

)
u(m)1 (y), (3.9g)

k2
n = δ2 + t2

n, tn =µ+ nβ, Dq = dq/dyq. (3.9h−j)
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The above formulation is analogous to the Bloch theory (Bloch 1929) for systems
with spatially periodic coefficients and to the Floquet theory (Coddington & Levinson
1965) for systems with time-periodic coefficients. The right-hand sides of (3.8) vanish
in the limit of zero groove amplitude and the system reduces to an infinite set of
uncoupled differential equations similar to those found in the case of stability of
parallel flows. In analogy to such flows, we shall refer to the T , S and C operators
as the Orr–Sommerfeld, Squire and coupling operators, respectively (Floryan 1997).
The eigenvalues of (3.8) have to be determined numerically, and the methods used in
this work are briefly explained in the next section.

3.2. Numerical solution
The complete problem represents an eigenvalue problem for a system of ordinary
differential equations (3.8) with homogeneous boundary conditions (3.4). Approximate
solutions can be determined by truncating the Fourier expansions (3.7) at NS modes
and thus solving (3.8) for n = −NS, . . . , −1, 0, 1, . . . , NS. The summations in (3.8)
are truncated at NM modes, where NM 6 2NS denotes the number of Fourier modes
used to represent the mean flow in the numerical solution. The modal functions
are discretized using the Chebyshev expansions, and these expansions are truncated
at Chebyshev polynomials of order NT . The Galerkin projection method is used
to construct a system of linear algebraic equations, and the boundary conditions
are enforced using the IBC concept combined with the tau method (Szumbarski &
Floryan 1999; Floryan 2002; Moradi & Floryan 2014). The DT method (Cabal et al.
2002) provides an alternative if grooves with very large amplitudes are of interest.

Several methods for tracing individual eigenvalues have been used, i.e. the shooting
method combined with the Newton–Raphson procedure (Floryan 2002), the inverse
iteration method (Floryan 2002) and the Arnoldi method (Saad 2003). The inverse
iteration method is preferred because of its good convergence properties but its
applicability is limited to tracing of σ , as it relies on complex arithmetic. The
Newton–Raphson method requires careful tuning but is able to trace any combination
of two real parameters. The Arnoldi method provides means for evaluation of
segments of the spectra of large matrices such as those encountered in this analysis.
The tracing of eigenvalues has been extended, if required, over several Brillouin
zones (Bloch 1929) in the µ-direction in order to show how the leading eigenvalue
is affected by the groove wavenumber.

4. Results
The flow in a smooth channel becomes unstable at Rec = 5772, with two-

dimensional TS waves with wavenumber δ = 1.02056 travelling in the downstream
direction playing the critical role (Orszag 1971). The instability has a subcritical
character, and an increase of the level of disturbances can reduce the critical Reynolds
number down to Rec ≈ 2700 (Herbert 1988). Numerous experiments demonstrate that
the presence of distributed surface roughness changes the above scenario. Conditions
when the transverse grooves (i.e. grooves transverse to the flow direction) with an
arbitrary shape become hydraulically active, i.e. are able to create flow bifurcation,
have been determined by Floryan (2007), who identified changes in the critical
conditions for the TS waves and demonstrated the growth of disturbances in the
form of longitudinal vortices. The vortices are driven by centrifugal forces and are
highly attenuated in the case of smooth walls. Predictions related to the TS waves
have been confirmed experimentally (Asai & Floryan 2006). Analysis of the transient
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0.68 0.70

FIGURE 4. Disturbance spectrum for flow in a channel with geometry defined by (2.8)
with β = 0.7 and S = 0.035 for Re = 6000 and disturbances with δ = 1.02 and µ = 0
computed using NS= 10 Fourier modes and Chebyshev polynomials up to order NT = 250.
Black crosses identify elements of the spectrum. The Orr–Sommerfeld spectrum for the
smooth channel is given for comparison purposes and is identified using grey circles. The
width of branch S is dictated by the number of Fourier modes used in the solution.

growth demonstrated that optimal disturbances have the form of streamwise vortices
(Szumbarski & Floryan 2006). Moradi & Floryan (2014) investigated the effects
of longitudinal grooves (grooves parallel to the flow direction) and documented
changes in the characteristics of the TS waves. They were able to demonstrate
that short-wavelength grooves destabilize such waves while long-wavelength grooves
stabilize them, when compared with their behaviour in a smooth channel. Below,
we shall describe another class of disturbances whose growth is promoted by the
longitudinal grooves; these disturbances are strongly attenuated in the smooth channel.

As the number of possible groove shapes is uncountable, we begin the discussion
with grooves described by a single Fourier mode with the resulting channel geometry
described by (2.8). This simplifies the discussion, as the number of geometric
parameters is reduced to two, i.e. the groove wavenumber β and the groove
amplitude S.

4.1. Sinusoidal grooves
We begin discussion by considering travelling wave disturbances, which connect to
the classical TS waves in the limit of S → 0. The full disturbance spectrum for
Re= 6000, S= 0.035 and β = 0.7 for the ‘two-dimensional’ waves with δ= 1.02 and
µ= 0 is displayed in figure 4. The term ‘two-dimensional’ is given in quote marks, as
disturbances are always three-dimensional owing to the groove-imposed modulations,
but reduce to the purely two-dimensional form for S→ 0. The dominant eigenvalue
is located at the tip of branch A (wall modes; Mack 1976) and its location is weakly
affected by the grooves. Comparison of the disturbance velocity eigenfunctions for
S = 0 and S 6= 0 shows small differences in the x- and y-velocity components and
the formation of wall layers with highly intense spanwise motions (figure 5). The
results displayed in figure 6(a) demonstrate that this mode connects to the TS waves
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1.0

0.5
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–1.0

0

1.00.5–0.5–1.0 0 1.00.5–0.5–1.0 0
y y

Tip of the grooves

Tip of the grooves

0

–0.2

–0.4

1.00.5–0.5–1.0 0
y

Tip of the grooves
0.2

0.1

0

–0.1

–0.2

(a) (b)

(c)

FIGURE 5. Disturbance velocity eigenfunctions (a) g(n)u (n= 0, 1, 2), (b) g(n)v (n= 0, 1, 2)
and (c) g(n)w (n = 1, 2, 3) associated with the most unstable eigenvalue for Re = 6000,
S= 0.035, β = 0.7, δ= 1.02 and µ= 0, normalized by the condition max06y61 |g(0)u (y)| = 1.
The solid and dashed lines correspond to the real and imaginary parts, respectively.
Eigenfunctions for the TS waves in a smooth channel are shown in (a) and (b) using
grey lines.

for S→ 0. The flow topology illustrated in figure 7 is very similar to that found
in the smooth channel, i.e. it consists of a set of spanwise rolls propagating in the
streamwise direction. The rolls are modified by the spanwise movements concentrated
in the wall layers, with the fluid periodically flowing away from the corrugation
peaks near the corrugated wall and towards the peaks at the opposite wall, with these
directions reversed every quarter wavelength (see figure 8). Very strong spanwise
movement in the wall layers occurs at the beginning of the disturbance wavelength
(x = 0, see figure 8a), followed by a very strong vertical movement in the channel
centre a quarter wavelength further downstream (x=λx/4; see figure 8b). The presence
of grooves adds structures in the central part of the channel, which can be described
as very weak vertical rolls (see figure 9a); there is no trace of these structures in the
wall layers (see figure 9b).

Figure 10 displays the spectrum for the same flow conditions and channel geometry
but for a different class of disturbances, e.g. for δ = 0.3 and µ = 0. The unstable
eigenvalue is located at the tip of branch P (centre modes) and its location is strongly
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0.2675

0.2670

0.2665

0.2660

S S

(a) (b)

FIGURE 6. Variations of the growth rate σi and the frequency σr of the ‘two-dimensional’
disturbances (µ = 0) as a function of the groove amplitude S for the groove geometry
described by (2.8) with β= 0.7 for the flow Reynolds number Re= 6000 and disturbances
with streamwise wavenumber δ = 1.02 (a) and δ = 0.3 (b). Dashed lines identify the
imaginary and real parts of the most unstable TS waves with δ = 1.02 in the smooth
channel (a) and the least stable Squire mode with δ = 0.3 in the smooth channel (b).

1

0

–1

1
1 1

0

–1
0 1 2 0 1 2

y

(a) (b)

FIGURE 7. Disturbance velocity vectors in the (x, y)-plane in the smooth channel (a) and
in the corrugated channel at z= λz/4 (b) for the TS waves for the same conditions as in
figure 5 and normalized by the condition maxyL6y61, 06z6λz |uD(0, y, z, 0)| = 1.

affected by the groove amplitude. This mode connects to the Squire mode in the limit
of S→ 0 as demonstrated in figure 6(b). The velocity eigenfunction for the limiting
Squire mode is displayed in figure 11 and demonstrates that the fluid movement
occurs only in the spanwise direction, resulting in the three-dimensionalization of
the velocity field in a nominally two-dimensional flow even when the spanwise
disturbance wavenumber µ = 0. Figure 11 also displays velocity eigenfunctions
for the leading mode from the spectrum shown in figure 10 and demonstrates a
significant change in the disturbance flow field. The x- and z-velocity components are
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(a) (b)

FIGURE 8. Disturbance velocity vectors in the (y, z)-plane at x=0 (a) and x=λx/4 (b) for
the TS waves for the same conditions as in figure 5 and normalized in the same manner
as in figure 7.
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0 21

0.02 1
(a) (b)

FIGURE 9. Disturbance velocity vectors in the (x, z)-plane at y=0 (a) and y=−0.9 (b) for
the TS waves for the same conditions as in figure 5 and normalized in the same manner
as in figure 7.

O(1) while the y-component is significantly smaller, suggesting that the disturbance
motion retains a nearly planar character, i.e. it is confined mostly to the (x, z)-plane.
The topology of the disturbance velocity field illustrated in figure 12 suggests that
this field is made up of rows of counter-rotating rolls oriented across the channel and
propagating in the streamwise direction. There are two rows of rolls per one groove
wavelength, one centred at the widest channel opening and the other one centred at
the narrowest opening, with the former one being stronger.

We shall now address the question of the origin of the new instability. It is known
that the TS instability is driven by shear and a sufficient increase of Re will lead
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FIGURE 10. Disturbance spectrum for flow in a channel with geometry defined by (2.8)
with β = 0.7 and S = 0.035 for Re = 6000 and disturbances with δ = 0.3 and µ = 0
computed using NS = 10 Fourier modes and NT = 250 Chebyshev polynomials. Black
crosses identify elements of the spectrum. The Squire spectrum for the smooth channel is
given for comparison purposes and is identified using grey circles. The width of branch
S is dictated by the number of Fourier modes used in the solution.

to its eventual stabilization. This process is illustrated in figure 13(a), displaying
variations of the amplification rate σi as a function of δ for increasing Re. The
initial destabilization is followed by stabilization when Re becomes sufficiently
large. Figure 13(b) displays the results of a similar study for the new mode and
demonstrates that the amplification rate becomes Re-independent once Re becomes
large enough. These results demonstrate that the instability is driven by an inviscid
mechanism. It is simple to show that the mean flow vorticity has local extrema
and thus the vorticity dynamics drives the instability through the so-called inflection
point instability (Fjørtoft 1950). Figure 14 displays the distribution of the mean flow
y-vorticity component, which can be viewed as a measure of the ‘driving force’,
as well as the distribution of the dissipation function ΦB, which can be viewed
as a measure of the ‘opposing force’. Quote marks are used here to underline the
qualitative character of these terms. The ‘driving force’ increases monotonically in
the downward direction while the dissipation function is smallest around the channel
mid-line, with the local minima in the widest and narrowest channel openings, and
increases with distance away from the channel centre. The optimal conditions for the
initiation of the instability are on both sides of the widest channel opening slightly
below the channel mid-line, as this is where the ratio of the ‘driving’ and ‘opposing’
forces is the highest. Another argument explaining the location of the most intense
instability motion can be made by looking at the spanwise variations of the local
Reynolds number Reloc, which is based on the maximum velocity and the channel
half-height at a given spanwise z-location, i.e.

Reloc =Umax,locKloc/ν = Re uB,max[1− S cos(βz)/2]. (4.1)

The variations of Reloc illustrated in figure 15 demonstrate that Reloc is largest at
the widest channel opening and suggests that this is where the balance between the
inertial and viscous forces is most favourable for the instability.
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FIGURE 11. Disturbance velocity eigenfunctions (a) g(n)u (n= 1, 2, 3), (b) g(n)v (n= 1, 2, 3)
and (c) g(n)w (n = 0, 1, 2) associated with the most unstable eigenvalue for Re = 6000,
S= 0.035, β = 0.7, δ = 0.3 and µ= 0, normalized by the condition max06y61|g(0)w (y)| = 1.
The solid and dashed lines correspond to the real and imaginary parts, respectively.
Eigenfunctions for the Squire mode in a smooth channel are shown in (c) using grey
lines.

The dominant eigenvalues identified through the analysis of the spectra shown in
figures 4 and 10 determine the critical stability conditions. Their tracing through
the parameter space provides the means for characterization of the instability.
Figure 16(a,b) displays the neutral curves in the (Re, δ)-plane for β = 1 and typical
groove amplitudes, and for S = 0.05 and typical groove wavenumbers. These results
demonstrate the significantly different wavelengths of the most unstable TS waves and
the most unstable new mode, as the critical wavenumber for the new mode is less
than half of that for the TS waves. They also demonstrate a large sensitivity of the
new mode, and the relative insensitivity of the TS waves, to the groove amplitude, as
well as a rapid decrease of the critical Reynolds number Rec for the new mode as S
increases. The last observation is consistent with the results displayed in figure 6(b),
which show a rapid increase of the amplification rate as S increases.
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FIGURE 12. Disturbance velocity vectors in the (y, z)-plane at x= 0 (a) and at x= λx/4
(b), in the (x, z)-plane at y = 0 (c), and in the (x, y)-plane at z = λz/4 (d) for the
new mode for the same conditions as in figure 11 and normalized by the condition
maxyL6y61, 06z6λz |uD(0, y, z, 0)| = 1.

The effects of the groove wavenumber β are illustrated in figure 17. It can be seen
that the new mode can be induced by grooves with a finite range of β and that the
range of ‘active’ β increases rapidly with an increase of both S (a) and Re (b). The
term ‘active’ refers to β values that are able to induce this instability. An increase
of Re corresponds to the reduction of the ‘opposing force’, while an increase of S
corresponds to the increase of the ‘driving force’. The latter effect is illustrated in
figure 18, which demonstrates a rapid increase of ηB = ∂uB/∂z with an increase of
S while, at the same time, the dissipation function remains nearly unchanged (not
shown). The same figure also demonstrates a rapid decrease of ηB= ∂uB/∂z for small
and large β values, which explains why such grooves are unable to support the new
instability.

So far, the discussion has only considered ‘two-dimensional’ waves, i.e. µ= 0. The
results displayed in figure 19 demonstrate that such waves play the critical role for
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FIGURE 13. Variations of the growth rate σi of the ‘two-dimensional’ disturbances (µ= 0)
as a function of the streamwise wavenumber δ for flow in a channel with geometry
described by (2.8) with S=0.035 and β=0.7 for the TS waves (a) and the new mode (b).
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FIGURE 14. Distributions of the mean flow dissipation function ΦB (black lines) and
the mean flow normal vorticity component ηB = ∂uB/∂z (grey lines) in the middle of the
channel with geometry described by (2.8) with S= 0.035 and β = 0.7.

the new mode, as the oblique waves are more attenuated. A similar conclusion for
the TS waves has been reported by Moradi & Floryan (2014).

Figure 20 displays variations of the critical Reynolds number Rec as a function of
the groove geometry, i.e. β and S, for the TS waves and for the new mode. The
range of the unstable β values for the new mode is clearly delineated together with
the remarkable decrease of Rec when S increases. Variations of Rec for the TS waves
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FIGURE 15. Variations of the local Reynolds number Reloc defined by (4.1) for flow in
a channel with geometry defined by (2.8) with S= 0.035 and β = 0.7 for Re= 6000.
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FIGURE 16. Neutral curves in the (Re, δ)-plane for the ‘two-dimensional’ disturbances
(µ= 0) in a channel with geometry defined by (2.8). (a) Results for β= 1 and different S.
(b) Results for S = 0.05 and different β. Solid and dotted lines correspond to the new
mode and the TS waves, respectively.

can be viewed as marginal when compared with variations of Rec for the new mode.
Figure 21 provides a zoom-in on the range of parameters where the new mode plays
the critical role and, at the same time, expands the range of S covered by the analysis;
it provides detailed information about the critical Reynolds number Rec, the critical
wavenumber δc, the critical frequency σr,c and the critical phase speed cc = σr,c/δc.
It can be seen that Rec can be reduced down to Rec < 750 for S = 0.1. The range
of unstable β values has a rather steep, weakly S-dependent bound on the side of
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FIGURE 17. Neutral curves in the (β, δ)-plane for the ‘two-dimensional’ disturbances
(µ = 0) in a channel with geometry defined by (2.8). (a) Results for Re = 7000 and
different S. (b) Results for S = 0.05 and different Re. Solid and dotted lines correspond
to the new mode and the TS waves, respectively.
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FIGURE 18. Variations of the maximum of the mean flow vertical vorticity component
ηB = ∂uB/∂z at y = 0 as a function of the groove wavenumber β in a channel with
geometry defined by (2.8) with S= 0.035.

large β, while it keeps expanding on the side of small β as S increases. The critical
wavenumber δc changes from ∼1 for large β to ∼0.025 for small β for the new mode
while δc for the TS waves changes marginally. The critical frequency for the new
mode changes from ∼1 for large β to ∼0.025 for small β, while it remains nearly
constant for the TS waves. The critical phase speed remains nearly constant at cc≈ 1
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FIGURE 19. Variations of the critical Reynolds number Rec for disturbances with the
wavevector q= (δ,µ) as a function of its inclination angle θ =±tan−1(µ/δ) for the groove
geometry described by (2.8) with S = 0.05. Results correspond to the new mode with
|q| = (δ2 +µ2)1/2 = 0.3 (black lines) and |q| = 0.32 (grey lines).

for the new mode and at cc ≈ 0.26 for the TS waves. In summary, at the onset one
can observe the new mode with wavelength varying widely depending on the groove
wavenumber but with a phase speed that is nearly always the same and approximately
four times greater than the TS wave phase speed.

The reader may note that β and δc for the new mode satisfy the relation δc ≈ β/2
(see figure 21b), which suggests that a parametric resonance is contributing to the
instability. One can look at the grooves as one-dimensional spatially distributed forcing
imposed on the flow and characterized by the wavevector (0, β). Studies of simple
model problems involving such forcing demonstrate that the dynamical system may
exhibit wavenumber locking and responses that extend into two spatial dimensions,
i.e. the system response may have a component in the direction orthogonal to the
forcing wavevector (Manor, Hagberg & Meron 2008, 2009). Analysis of natural
convection in a horizontal layer subject to one-dimensional spatial temperature
modulations demonstrates that the system response is driven by a combination of the
buoyancy-driven instability and the spatial parametric resonance, with each mechanism
dominating over a different range of forcing wavelengths and the wavenumber locking
between the forcing and the system response observed in the latter case (Hossain &
Floryan 2013). The forcing reduces the system symmetry to translational symmetry.
Addition of a pressure-gradient-driven flow further affects the symmetry, with the
system response showing preference for the flow direction (Hossain & Floryan 2015).
Such a system still exhibits characteristics associated with the spatial parametric
resonance if the flow Reynolds number is small enough and the forcing is strong
enough. Shear layers always have a preferred direction, e.g. the flow direction, and
thus the effect of parametric resonance may be difficult to identify. The analysis
is further complicated by the simultaneous appearance of shear, vorticity (inflection
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FIGURE 20. Variations of the critical Reynolds number Rec as a function of the groove
wavenumber β and the groove amplitude S in a channel with geometry defined by (2.8).
Solid and dotted lines correspond to the ‘two-dimensional’ new mode (µ = 0) and the
two-dimensional TS waves (µ = 0), respectively. The thick line separates zones where
each mode plays the critical role. The zoom-in on the range of β where the new mode
determines the critical conditions together with an extension to larger values of S is given
in figure 21.

point mechanism) and centrifugal instability mechanisms. Floryan (1997) studied
pressure-gradient-driven channel flow modified by forcing in the form of streamwise
suction or blowing and demonstrated that one possible response involves the formation
of streamwise vortices, i.e. structures characterized by a wavevector with a component
orthogonal to the forcing wavevector. Forcing generated by the transverse surface
corrugations has led to similar conclusions for the pressure-gradient-driven flows as
well as for the kinematically driven flows (Floryan 2002, 2007). The system response
to forcing in the form of longitudinal grooves furthermore underscores the importance
of the spatial parametric resonance.

The results presented in figures 20 and 21 provide the basis for the identification
of conditions that guarantee that the flow remains laminar in the presence of grooves,
i.e. when the grooved surface behaves as a hydraulically smooth surface. Here we
shall use the definition proposed by Floryan (2007), which states that the corrugated
wall can be viewed as hydraulically smooth as long as it is unable to create system
bifurcation. It is convenient to introduce the global critical Reynolds number defined
as

Rec,g = min
β

(S= const.)

(Rec), (4.2)

i.e. it is defined as the minimum of Rec over all groove wavenumbers for a given
groove amplitude for a particular instability mode. Figure 22 displays variations of
Rec,g as a function of S for the TS waves and for the new instability mode. The zone
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FIGURE 21. Variations of the critical stability parameters as a function of the groove
wavenumber β and the groove amplitude S. Other conditions are as in figure 20. Variations
of the critical Reynolds number Rec, the critical wavenumber δc, the critical frequency σr,c
and the critical phase speed cc = σr,c/δc are displayed in panels (a)–(d), respectively.

attached to the bottom left corner identifies conditions when the flow remains stable
regardless of the spatial distributions of the grooves. When S< 0.02, increase of Re
will eventually lead to the onset of the TS wave instability and the corresponding
conditions define the travelling wave limitation. When S > 0.02, increase of Re will
eventually activate the new mode and the corresponding conditions define the new
mode limitation. The latter curve can be approximated as Rec,g = 4.505S−1.925 and
it defines the upper limit of S that guarantees flow stability. Conditions below the
limiting curves guarantee flow stability for any groove distributions and thus walls
with such grooves can be viewed as hydraulically smooth. The reader may note that
not every groove distribution corresponding to the conditions above these curves must
lead to flow instability.

4.2. Grooves with arbitrary shapes
The above discussion was focused on grooves with shapes described by a single
Fourier mode, i.e. (2.8). We shall now enquire how the new instability mode is
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TS waves New mode

Hydraulically
smooth wall

S

FIGURE 22. Variations of the global critical Reynolds number Rec,g as a function of
the groove amplitude S for flow through a channel fitted with grooves of different
shapes. Solid grey lines correspond to sinusoidal grooves defined by (2.8). Black dashed,
dotted, solid and dash-dotted lines correspond to triangular grooves with a1 = b1 = λ/2
and d1 = 0, universal trapezoidal grooves with a2 = b2 = λ/8 and c2 = d2 = 3λ/8,
rectangular grooves with c3 = d3 = λ/2 and circular-segment grooves with c4 = d4 = λ/2,
respectively (see figure 23 for definitions of geometric parameters). Correlation for the new
instability mode for the most dangerous shape, i.e. the rectangular grooves, has the form
Rec,g = 4.505S−1.925.

affected by changes in the groove shape. It has been shown by Floryan (2007) in
the analysis of the stability of channel flow modified by transverse grooves, and by
Moradi & Floryan (2014) in the analysis of the stability of the TS mode in a channel
with longitudinal grooves, that groove shapes can be replaced with an acceptable
accuracy by the leading mode from the Fourier expansion describing their geometry.
These conclusions form the basis of the ROG model. It remains to be shown if
the ROG model remains valid for the new mode. Figure 23 describes four general
shapes used in the analysis, including rectangular grooves. The Fourier representation
of the latter shape suffers from the Gibbs phenomenon, which has been controlled
using a filtering technique based on the ‘raised cosine’ method (Canuto et al. 2006).
Figure 24 displays the neutral curves for the test grooves with their shapes replaced by
a gradually increasing number of Fourier modes from Fourier expansions representing
their shapes. It can be seen that the computed critical Reynolds numbers rapidly
converge as the number of Fourier modes used for the geometry description increases.
These results demonstrate that the ROG model can indeed be used in the analysis
of the new mode and thus the results described in § 4.1 can be used to estimate the
stability characteristics of arbitrary grooves with an acceptable accuracy.

Figure 22 illustrates the variations of Rec,g for all these grooves. It can be seen
that the TS wave limitation is little affected by changes of the groove shape. The
curve defining the new mode limitations shifts as a function of the groove shape but
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FIGURE 23. Groove shapes used in this study: (a) triangular grooves, (b) trapezoidal
grooves, (c) rectangular grooves, and (d) circular-segment grooves with c4 > 4S and
R= c2

4/(16S)+ S.
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FIGURE 24. The neutral curves in the (Re, δ)-plane for grooves with amplitude S= 0.05
and wavenumber β = 1. Dashed, dotted, solid and dash-dotted lines correspond to
triangular grooves with a1 = b1 = λ/3, d1 = λ/3, trapezoidal grooves with a2 = b2 = λ/6,
c2= d2= λ/3, rectangular grooves with c3= 2λ/3, d3= λ/3, and circular-segment grooves
with c4= 2λ/3, d4= λ/3, respectively (see figure 23 for notation). (b) An enlargement of
the box shown in (a). All grooves were represented in the analysis using one, three and
five leading Fourier modes taken from the Fourier expansions describing their geometry.

the difference between the critical Reynolds number for the actual groove and for its
reduced geometry representation remains below 10 %. Rectangular grooves appear to
be the most effective in initiating the new instability mode, and thus one can define
the parameter range where the grooved surface behaves as a hydraulically smooth
surface using results for this particular shape.
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FIGURE 25. The neutral curves in the (Re, δ)-plane for channels fitted with the optimal
equal-depth grooves. Groove geometry is represented by the universal trapezoid with a2=
b2 = λ/8, c2 = d2 = 3λ/8 and β = 0.7 (see figure 23b for notation). Results for sinusoidal
grooves are given for reference (dotted lines). (b) An enlargement of the box shown in (a).

4.3. Optimal grooves
The stability characteristics of the optimal grooves are of interest, as such grooves
provide the largest possible drag reduction (Mohammadi & Floryan 2013b). The
shapes of such grooves depend on the type of constraints. The channel geometry
used for analysis is expressed as

yL(z)=−1+
m=NA∑

m=−NA

H(m)
L eimβz, yU(z)= 1, (4.3a,b)

and the groove height (SL,max) and depth (SL,min) are subject to constraints of the form

SL,max =max

(
m=NA∑

m=−NA

H(m)
L eimβz

)
, SL,min =−min

(
m=NA∑

m=−NA

H(m)
L eimβz

)
. (4.4a,b)

In the case of equal-depth grooves, SL,max= SL,min= S. In the case of unequal-depth
grooves, the height is set by (4.4a,b) while the depth is determined by the optimization
process (Mohammadi & Floryan 2013b). The shape of the optimal, equal-depth
grooves can be well approximated by a universal trapezoid with a2 = b2 = λ/8 and
c2 = d2 = 3λ/8 (figure 23b). The neutral stability curves for such grooves displayed
in figure 25 demonstrate a significant loss of stability when compared with the
simple sinusoidal grooves. The shapes of the unequal-depth grooves are illustrated in
figure 26(a). If the y-coordinate is rescaled using the peak-to-bottom distance as the
length scale ȳL = (yL + 1 − SL,max)/(SL,min + SL,max), and the z-coordinate is rescaled
using the groove width at half-height Whalf as the length scale z̄= (z− z0)/Whalf , the
groove shape can be approximated using a Gaussian function of the form ȳ=−e−4z̄2

(Mohammadi & Floryan 2013b). Figure 26(b) displays the neutral curves for these
grooves. While one cannot compare them directly with the simple sinusoidal grooves,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

39
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.399


New instability mode in a grooved channel 717

–0.95

–1.00

–1.05

–1.10

1.0

0.8

0.6

0.4

0.2

0
0 0.5 1.0 1000 3000 5000 7000

0.05
0.05

0.05

0.06

0.06

0.04

0.04
TS waves

New mode

(a) (b)

FIGURE 26. The optimal unequal-depth grooves. (a) Geometry of the optimal grooves
with β = 0.7 and SL,max = 0.04, 0.05 and 0.06. (b) The neutral curves in the (Re, δ)-plane
for flow in a channel fitted with these grooves. Groove geometry is represented in the
stability analysis by the universal Gaussian function (see text for details).

the critical Reynolds number is similar to that found in the case of the optimal
equal-depth grooves (compare figure 26b with figure 25a) and suggests significant
flow destabilization.

5. Conclusions
An analysis of the effects of longitudinal grooves on the stability of the pressure-

gradient-driven flow has been carried out. The analysis has been focused on the effect
of the flow modulations associated with the grooves. It has been shown that the ROG
model provides the means for the determination of the stability characteristics of
arbitrary grooves with accuracy sufficient for most applications. These characteristics
can be determined by using the leading Fourier mode from the Fourier expansion
describing the groove geometry.

A new mode of instability has been identified. This mode has the form of a
travelling wave but with characteristics widely different from the TS waves. The new
mode grows only in the presence of a certain type of groove whose form has been
specified.

It has been shown that the new mode is driven by the inviscid instability mechanism
associated with both the vorticity dynamics and the spatial parametric resonance. The
‘driving force’ is associated with the spanwise gradients of the streamwise velocity
component, which are essential for the activation of both mechanisms. Reduction of
the groove wavenumber reduces the spanwise velocity gradients owing to the smaller
geometry gradients, and thus decreases the ‘driving force’ and leads to the stabilization
of this mode. An increase of the groove wavenumber leads to the stream lift-up above
the grooves and reduction of the flow modulations, and thus a reduction of the ‘driving
force’ and flow stabilization. As a result, the new mode is able to grow only in a
well-defined range of groove wavenumbers.

Increase of the groove amplitude leads to larger spanwise velocity gradients and
thus results in a significant destabilization of the new mode. As a result, the
new mode, and not the TS waves, plays the critical role for most of the groove
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wavenumbers of practical interest, e.g. the critical Reynolds number for the new
mode can be reduced down to Rec ≈ 400 for grooves with amplitude S = 0.1 while
Rec for the TS waves is marginally affected. Conditions that guarantee that neither
mode becomes unstable for grooves with specified amplitude and an arbitrary spatial
distribution have also been identified. The stable zone is limited on the Reynolds
number side by the TS instability and on the groove amplitude side by the new mode.
This zone defines conditions when the grooved surface behaves as a hydraulically
smooth surface.

The topology of the disturbance velocity field associated with the new mode
can be described as consisting of rows of counter-rotating rolls oriented across the
channel and propagating in the streamwise direction. Such topology results in a nearly
planar disturbance velocity field, i.e. this velocity field is dominated by the velocity
components parallel to the mean position of the bounding walls. The most intense
disturbance motion is concentrated in the middle of the channel and is centred at the
widest channel opening. The critical wavenumber δc changes from ∼1 for large β

values to ∼0.025 for small β for the new mode, while δc for the TS waves changes
marginally. The critical frequency for the new mode changes from ∼1 for large β
values to ∼0.025 for small β, while it remains nearly constant for the TS waves.
The critical phase speed remains nearly constant at cc ≈ 1 for the new mode and at
cc ≈ 0.26 for the TS waves. As a result, at the onset one can observe the new mode
with wavelengths varying widely depending on the groove wavenumber but with a
phase speed that is nearly always the same and approximately four times larger than
the TS wave phase speed.
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