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The relative velocities and positions of monodisperse high-inertia particle pairs in
isotropic turbulence are studied using direct numerical simulations (DNS), as well
as Langevin simulations (LS) based on a probability density function (PDF) kinetic
model for pair relative motion. In a prior study (Rani et al., J. Fluid Mech., vol. 756,
2014, pp. 870–902), the authors developed a stochastic theory that involved deriving
closures in the limit of high Stokes number for the diffusivity tensor in the PDF
equation for monodisperse particle pairs. The diffusivity contained the time integral
of the Eulerian two-time correlation of fluid relative velocities seen by pairs that
are nearly stationary. The two-time correlation was analytically resolved through the
approximation that the temporal change in the fluid relative velocities seen by a pair
occurs principally due to the advection of smaller eddies past the pair by large-scale
eddies. Accordingly, two diffusivity expressions were obtained based on whether the
pair centre of mass remained fixed during flow time scales, or moved in response
to integral-scale eddies. In the current study, a quantitative analysis of the (Rani
et al. 2014) stochastic theory is performed through a comparison of the pair statistics
obtained using LS with those from DNS. LS consist of evolving the Langevin
equations for pair separation and relative velocity, which is statistically equivalent
to solving the classical Fokker–Planck form of the pair PDF equation. Langevin
simulations of particle-pair dispersion were performed using three closure forms of
the diffusivity – i.e. the one containing the time integral of the Eulerian two-time
correlation of the seen fluid relative velocities and the two analytical diffusivity
expressions. In the first closure form, the two-time correlation was computed using
DNS of forced isotropic turbulence laden with stationary particles. The two analytical
closure forms have the advantage that they can be evaluated using a model for
the turbulence energy spectrum that closely matched the DNS spectrum. The three
diffusivities are analysed to quantify the effects of the approximations made in
deriving them. Pair relative-motion statistics obtained from the three sets of Langevin
simulations are compared with the results from the DNS of (moving) particle-laden
forced isotropic turbulence for Stη = 10, 20, 40, 80 and Reλ = 76, 131. Here, Stη
is the particle Stokes number based on the Kolmogorov time scale and Reλ is the
Taylor micro-scale Reynolds number. Statistics such as the radial distribution function
(RDF), the variance and kurtosis of particle-pair relative velocities and the particle
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collision kernel were computed using both Langevin and DNS runs, and compared.
The RDFs from the stochastic runs were in good agreement with those from the
DNS. Also computed were the PDFs Ω(U|r) and Ω(Ur|r) of relative velocity U and
of the radial component of relative velocity Ur respectively, both PDFs conditioned
on separation r. The first closure form, involving the Eulerian two-time correlation
of fluid relative velocities, showed the best agreement with the DNS results for the
PDFs.

Key words: multiphase and particle-laden flows, particle/fluid flow

1. Introduction
Turbulence-driven relative motion of high-inertia particles is relevant in astrophysical

scenarios, such as the interstellar medium, protoplanetary disks and the atmospheres
of planets and dwarf stars (Chiang & Youdin 2005; Pan et al. 2011). Specifically, the
‘sticking’ of dust particles in protoplanetary disks is believed to be the mechanism for
planetesimal formation. An intriguing question that the astrophysicists are investigating
concerns the effects of turbulence on the dispersion, sedimentation, collisional
coalescence and fragmentation of dust grains. The viscous relaxation times, τv, of
these particles are significantly large, with estimated Stη ∼ 10–100 (Pan et al. 2011),
where Stη = τv/τη is the Stokes number based on the Kolmogorov time scale τη.

The two principal quantities describing the relative motion of inertial particles in
a turbulent flow are: (i) the radial distribution function (RDF), which is a measure
of the particle spatial clustering, and (ii) the probability density function (PDF) of
pair relative velocities, which quantifies the particle encounter rate. The RDF and the
relative-velocity PDF are both key inputs to the particle collision kernel, and depend
sensitively on the Stokes number. Both statistics can be determined through direct
numerical simulations (DNS) of particle-laden turbulent flows. However, DNS suffers
from the well-known computational limitation on the Reynolds numbers that can be
achieved. This drawback of DNS is one of the motivating factors for developing PDF
equation-based stochastic models for particle-laden turbulent flows.

Recently, we developed a stochastic theory for the relative velocities and positions
of high-inertia monodisperse pairs in forced isotropic turbulence (Rani, Dhariwal
& Koch 2014). The theory involved deriving a closure for the diffusivity tensor
characterizing the relative-velocity-space diffusion current in the PDF kinetic equation
of particle-pair separation and relative velocity. Since we had considered the Str� 1
limit, the pair PDF equation is of the classical Fokker–Planck form (Str is the
Stokes number based on the time scale τr of eddies whose size is of the order
of pair separation r). Using the diffusivity formulation, one can perform Langevin
simulations of pair relative velocities and positions, which is equivalent to simulating
the Fokker–Planck equation.

In this context, the current study has two main objectives. First, we perform a
quantitative analysis of the three forms of the diffusivity derived in Rani et al. (2014).
The insights gained will help us understand the implications of the approximations
made in deriving the diffusivities, as well as guide future improvements to the theory.
In the Str� 1 limit, we perform a comparative analysis of the current and (Zaichik &
Alipchenkov 2003) diffusivity closures, as well as the predictions of relative-motion
statistics by the two theories. The second objective is to compute the relative-motion
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statistics of particle pairs using both DNS and Langevin simulations (LS), and
compare the corresponding results. The parametric inputs to the LS runs such as the
Taylor micro-scale Reynolds number, dissipation rate, Kolmogorov scales, integral
length scale and the root mean square (r.m.s.) fluctuating velocity were all obtained
from DNS. Further, the energy spectrum needed to compute the analytical diffusivities
is modelled such that it closely matches the DNS spectrum. Thus, the DNS and LS
results are compared under conditions where a broad set of flow parameters, and
not just Reλ, is matched. Such a comparison will enable us to quantify the theory’s
predictive abilities for pair dynamics in isotropic turbulence.

Zaichik & Alipchenkov (2003) developed a stochastic model for particle pairs that
was conceived to be applicable for all Stokes numbers, provided that the Stokes
drag force is applicable and is the dominant force acting on the particles. Although
Rani et al. (2014) and Zaichik & Alipchenkov (2003) are both based on a kinetic
equation description of pair interactions, there are important fundamental distinctions
between the two studies. The principal difference lies in the approach adopted to
close the diffusion current in the PDF equation. Zaichik & Alipchenkov closed the
diffusion current by using the Furutsu–Novikov–Donsker (FND) formula. The FND
formula relates the diffusion current to a series expansion in the cumulants of the
fluid relative velocities seen by the pairs (1u) and the functional derivatives of the
PDF with respect to 1u (Bragg & Collins 2014a). They further assumed that 1u had
a Gaussian distribution, for which the series expansion exactly reduces to only the
second-order cumulant of 1u (Bragg & Collins 2014a). In contrast, Rani et al. (2014)
developed a closure for the diffusion current based on a perturbation analysis of the
pair PDF equation in the limit of high Stokes number. Another important difference
concerns the simulation approach used in the two studies. Zaichik & Alipchenkov
(2003) computed the statistics of pair separation and relative velocity by solving the
equations for the zeroth, first and second relative-velocity moments of the master PDF
equation. Rani et al. simulated the Langevin equations to evolve the relative velocities
and positions of a large number of particle pairs. When compared to solving a finite
number of moments equations, the Langevin approach is higher-order accurate in the
sense that the LS inherently include all moments of the pair PDF. Another advantage
of the LS approach is that it allows us to explicitly compute the PDFs of pair relative
velocity at various separations, enabling us to track the transition in the nature of
the PDF as the separations are reduced from the order of integral scale to that of
Kolmogorov scale.

Bragg & Collins (2014a) performed a first-principles-based comparison of the Chun
et al. (2005) and Zaichik & Alipchenkov (2007, 2009) stochastic models for inertial
pair dynamics in isotropic turbulence. The focus of that paper was to compare and
analyse the predictions of particle clustering at sub-Kolmogorov-scale separations by
the two theories. In the limit of Stη � 1, Chun et al. (2005) developed closures for
the drift and diffusion fluxes in the PDF equation for pair separation, where Stη is the
Stokes number based on the Kolmogorov time scale τη. Using these closures, they
derived a power-law expression for the RDF at sub-Kolmogorov separations, which
showed good agreement with the DNS results. The Zaichik & Alipchenkov (2007)
study improved upon their earlier study (Zaichik & Alipchenkov 2003) by accounting
for the unequal Lagrangian correlation time scales of the strain-rate and rotation-rate
tensors. Bragg & Collins showed that the power-law exponents in the RDFs predicted
by the two theories were in good agreement for Stη � 1. They elaborated that this
agreement was because the drift velocity predicted by Chun et al. was the same as
the leading-order term in the drift velocity of Zaichik & Alipchenkov (2007). As is to
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be expected, for Stη ∼ 1, the theories diverge. Bragg & Collins also showed that the
clustering of Stη � 1 particles was mainly due to the centrifuging process, whereas
that of Stη ∼ 1 particles was due to their path-history interactions with the turbulence.

In an accompanying study, Bragg & Collins (2014b) analysed the theories of
Zaichik & Alipchenkov (2009), Pan & Padoan (2010) and Gustavsson & Mehlig
(2011) by focusing on the second-order structure function of pair relative velocities,
S p

2 (r, t), predicted by these theories, where r is the separation vector. Formulation
of S p

2 (r, t) is required to solve the governing equations for the moments of the pair
PDF (Zaichik & Alipchenkov 2009). One may also compute the variances of the
pair relative velocity and its components longitudinal and transverse to r – 〈U2〉,
〈U2

r 〉 and 〈U2
t 〉 respectively – using S p

2 (r, t) (Pan & Padoan 2010). By comparing
the predictions (primarily of the first two theories) with the DNS computed S p

2 (r, t),
Bragg & Collins (2014b) identified possible discrepancies in the theories. In the
case of Gustavsson & Mehlig (2011) theory, only qualitative insights could be drawn
regarding its predictions of the structure function and the RDF, since some coefficients
were left unspecified in their theory.

Ireland, Bragg & Collins (2015) performed an extensive parametric study of the
effects of Reynolds number on inertial particle statistics through DNS of forced
isotropic turbulence. They considered a wide range of Taylor micro-scale Reynolds
numbers (88 6 Reλ 6 597), and computed the statistics of single particles, as well
as pairs for Stokes numbers 0.05 6 Stη 6 30. It was observed that for Stη . 1, the
RDF is essentially independent of Reλ, whereas for Stη > 10, the RDF increased
with Reλ at nearly all separations. The latter trend is captured by our theory as well.
As identified in Bragg & Collins (2014a), the effects of preferential concentration
on pair relative-velocity statistics were important for Stη . 0.1, while the non-local
effects due to particle sampling of turbulence become important for Stη & 0.2. The
relative-velocity statistics of the Stη > 10 particles were found to increase strongly
with Reλ because these particles retain for long times the effects of their interactions
with the inertial- and integral-scale eddies.

Some of the most detailed theoretical and computational studies of high Stη
particles were undertaken by Pan, Padoan and coworkers (Pan & Padoan 2010;
Pan et al. 2011; Pan & Padoan 2013, 2014a,b,c, 2015). Pan & Padoan (2010)
derived an analytical model for the relative-velocity variance of inertial particles
that is conceptually generalized across the entire range of particle Stokes numbers
(this study will be hereafter referred to as PP10). The PP10 model is based on
expressing the pair relative-velocity structure function S p

2 (r, t) in terms of the fluid
relative-velocity structure function S f

2(r, t), where S f
2(r, t) is the Lagrangian correlation

of fluid relative velocities along inertial particle-pair trajectories. Subsequently, they
approximated S f

2(r, t) as the product of the Eulerian structure tensor of turbulence
and the Lagrangian autocorrelation of fluid relative velocities. Using this theory,
they calculated the statistics of pair relative velocity (up to the second moment) for
1 6 Stη 6 100, and compared these predictions with DNS data over a smaller Stokes
number range 16 Stη 6 10. Good agreement between the model and DNS results was
obtained. However, PP10 is limited to modelling the lower-order moments of pair
relative velocity, and does not provide any means to obtain the RDF, or the PDF of
relative velocities.

Pan et al. (2011) performed a DNS study of particle clustering in isotropic
turbulence for 1 . Stη . 100. In agreement with prior DNS and theoretical studies
(e.g. Chun et al. 2005), they observed that the RDF shows a power-law scaling for
pair separations in the dissipative range, with the exponent being a function of Stokes

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

85
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.859


Stochastic theory and DNS for the relative motion of high inertia pairs 209

number. Further, particles whose response times scale with inertial-range time scales
show clustering at inertial separations, which is manifested as the peaking of RDF for
these separations and subsequent plateauing for smaller separations. As seen in Chun
et al. (2005), the RDF of bidisperse pairs becomes flat at small scales, confirming
that such pairs show weaker clustering than monodisperse ones.

Perhaps the broadest range of Stokes numbers considered thus far in particle-laden
isotropic turbulence is by Pan & Padoan (2013). In that study, relative-velocity
statistics of 0.16 Stη6 800 particles were computed using both DNS and the model of
PP10 (Pan & Padoan 2010). Their goal was to investigate the relative-motion statistics
for separations smaller than the Kolmogorov scale, so as to draw insights on the
collision rates of dust particles in protoplanetary disks. In protoplanetary turbulence,
dust particles are much smaller than the Kolmogorov length scale (η ∼ 1 km).
Therefore, they focused on understanding and quantifying pair relative motion for
separations r → 0. Since such a fine resolution of separations is computationally
prohibitive, Pan & Padoan (2013) computed relative-velocity statistics for separations
as small as 0.25η, and then extrapolated these insights to smaller r. The extrapolation
involved grouping the pairs into two categories: continuous and caustic types.
Continuous-type pairs are those that may have started their journey as uncorrelated
particles with high relative velocities at large separations, but decelerate as their
separations decrease and remain correlated far longer than the flow time scales that
influence their relative motion. Caustic-type pairs are those that remain uncorrelated
with large relative velocities throughout their flight. It is believed that caustic pairs
may significantly enhance collision rates, and that they dominate collision rates as
r→ 0. Predictions using PP10 of relative velocity and its components parallel and
transverse to the separation vector showed good agreement with their DNS data.

Under the limits Str � 1 and StI � 1, Rani et al. (2014) derived the transport
equation for the PDF Ω(r, U) of pair separation (r) and relative velocity (U). Here,
the Stokes number Str is based on the time scale τr of eddies whose size scales with
separation r, and StI is based on the integral time scale τI . The transport equation
for Ω(r,U), which is of the Fokker–Planck type, contains a diffusivity tensor in the
U space. We showed that the diffusivity is equal to 1/τ 2

v times the time integral of
the Eulerian two-time correlation of fluid relative velocities seen by nearly stationary
pairs (τv is the particle viscous relaxation time). In the current study, the two-time
correlation is directly computed using DNS of forced isotropic turbulence containing
stationary particles. The DNS-computed correlation when integrated in time yields
what we will refer to as the first closure form of diffusivity (CF1). An advantage
of the CF1 diffusivity is that it will provide us a means to assess the diffusivity
formulation of Zaichik, Simonin & Alipchenkov (2003), Zaichik & Alipchenkov
(2007) in the Str� 1 limit.

Alternatively to CF1, the Eulerian two-time correlation may be resolved analytically
through the approximation that the temporal change in the fluid relative velocities
seen by a pair is primarily due to the advection of size r eddies past the pair by
larger eddies. Based on this physical picture and through an analogy with the Taylor
hypothesis, one may transform the two-time correlation into two-point correlations of
fluid velocities, allowing us to analytically formulate the diffusivity in terms of the
energy spectrum. Rani et al. (2014) derived two expressions based on whether the pair
centre of mass was held fixed or allowed to move during integral time scales, the latter
being an improvement over the former at finite StI . We will refer to these expressions
as the second and third closure forms of diffusivity (CF2 and CF3), respectively.

In the current study, we first undertake a detailed analysis of the three closure
forms of the diffusivity. Such an analysis will provide quantitative insights into the
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effects of the approximations entailed in deriving the closures, i.e. that the pairs are
essentially fixed, and that the Eulerian two-time correlation may be expressed in terms
of two-point correlations. Second, we perform both Langevin and direct numerical
simulations to compute a number of statistics quantifying pair relative motion. Three
sets of Langevin simulations are performed, corresponding to the three diffusivity
forms. The LS results are compared with each other and with the DNS data. To
our knowledge, this study presents the first comparison of the stochastic and DNS
predictions of the relative-velocity PDFs at separations spanning the entire range of
turbulent scales. The pair statistics from LS are compared with those from DNS of
particle-laden isotropic turbulence for Stη= 10, 20, 40, 80 and Reλ= 76, 131. Statistics
such as the RDF, relative-velocity moments and PDFs, and the collision kernel are
compared. Furthermore, we compare the present results with those from Zaichik et al.
(2003), Zaichik & Alipchenkov (2009) where available.

The organization of the paper is as follows: § 2 presents the important details of
the closure theory, as well as identifies the three closure forms that are analysed in
this study. Section 3 discusses the computational details of the direct numerical and
Langevin simulations. Section 4 presents an analysis of the diffusivity forms, as well
as a comparison of the pair relative-motion statistics obtained from LS and DNS. We
conclude by summarizing our findings in § 5.

2. Theory

We begin with an overview of the Rani et al. (2014) stochastic model for particle
pairs in the limit of high Stokes number. A review of the theory will provide the
necessary background for the subsequent discussion of the three closure forms that
are investigated in this study.

Rani et al. (2014) considered the pair phase-space density (PSD) P(r, U, x, V; t),
which is the PSD of a particle pair with separation r, relative velocity U, and centre-
of-mass position and velocity x and V, respectively. The inclusion of x and V in the
state vector was motivated by the physical scenario that the dynamics of pair centre of
mass can influence the way a pair samples turbulence. Conservation of PSD P yields

∂P
∂t
+∇r · (UP)+∇U · (U̇P)+∇x · (VP)+∇V · (V̇P)= 0, (2.1)

where ∇r, ∇x, ∇U, and ∇V denote gradients with respect to the corresponding state
variables.

Assuming Stokes drag law to be valid, the governing equations for monodisperse
pairs are:

dU
dt
=− 1

τv
[U(t)−1u(r, x, t)] (2.2)

dV
dt
=− 1

τv

[
V(t)− u(R1(t), t)+ u(R2(t), t)

2

]
=− 1

τv
[V(t)− ucm(R1(t),R2(t), t)], (2.3)

where τv is the particle response time, R1(t) and R2(t) are the particle positions at
time t, 1u(r, x, t) = [u(R2(t), t) − u(R1(t), t)] is the seen fluid relative velocity and
ucm(R1(t),R2(t), t)= [u(R1(t), t)+ u(R2(t), t)]/2. The velocity ucm can be determined
from x and r since R1 = x− (r/2) and R2 = x+ (r/2).
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Substitution of the pair governing equations into (A 9) followed by ensemble
averaging over flow realizations gives the equation for the PDF 〈P〉:

∂〈P〉
∂t
+∇r · (U〈P〉)+∇x · (V〈P〉)− 1

τv
∇U · (U〈P〉)− 1

τv
∇V · (V〈P〉)

+ 1
τv
∇U · 〈1uP〉 + 1

τv
∇V · 〈ucmP〉 = 0, (2.4)

where 〈·〉 denotes ensemble averaging, and the terms 〈1uP〉 and 〈ucmP〉 require
closure. These terms represent turbulence–pair interactions and turbulence–centre
of mass interactions, respectively. In the limit of high Stokes number, they can be
expressed as Fokker–Planck-type diffusion terms in the phase space.

Using the decomposition P= 〈P〉 +P′, we can write 〈1uP〉 = 〈1uP′〉 and 〈ucmP〉 =
〈ucmP′〉, since 〈1u〉 = 0 and 〈ucm〉 = 0 in isotropic turbulence. This suggests that one
may derive closures for these terms by solving for P′ in terms of 〈P〉. Substituting
P= 〈P〉 + P′ into (A 9) and subtracting (A 10), the governing equation for P′ can be
obtained as:

∂P′

∂t
+∇r · (UP′)+∇x · (VP′)− 1

StI
∇U · (UP′)− 1

StI
∇V · (VP′)

+ 1
StI
∇U · (1uP′)+ 1

StI
∇V · (ucmP′)=− 1

StI
∇U · (1u〈P〉)

− 1
StI
∇V · (ucm〈P〉)+ 1

StI
∇U · 〈1uP′〉 + 1

StI
∇V · 〈ucmP′〉, (2.5)

where StI = τv/τI , and terms are made dimensionless using integral length scale (L),
integral time scale (τI), and r.m.s. fluctuating velocity (urms).

Recognizing that P′ may be expressed as a perturbation expansion in 1/StI (StI� 1),
we can write to leading order P′= (1/St)P1. Retaining O(1/StI) terms in (2.5), we get

∂P1

∂t
+∇r · (UP1)+∇x · (VP1)=−∇U · (1u〈P〉)−∇V · (ucm〈P〉). (2.6)

Equation (2.6) is a Lagrangian evolution equation of P1 in the (r, x, t) space, with U
and V held fixed.

In the limit of StI � 1 and Str � 1, Rani et al. (2014) showed that the two
convective terms on the left-hand side of (2.6) can be neglected compared to ∂P1/∂t.
We can now solve for P1 such that r and x remain fixed, giving us

〈1uP′〉 = − 1
St2

I

∫ 0

−∞
dt {〈1u(x, r, 0)1u(x, r, t)〉 · ∇U〈P〉(t)

+〈1u(x, r, 0)ucm(R1(0),R2(0), t)〉 · ∇V〈P〉(t) } (2.7)

〈ucmP′〉 = − 1
St2

I

∫ 0

−∞
dt {〈ucm(R1(0),R2(0), 0)1u(x, r, t)〉 · ∇U〈P〉(t)

+〈ucm(R1(0),R2(0), 0)ucm(R1(0),R2(0), t)〉 · ∇V〈P〉(t) }, (2.8)

where r, x, particle positions R1 and R2, and the PDF 〈P〉 undergo little change during
flow time scales.

At this point, it is pertinent to discuss the similarities and differences between
the above perturbation analysis, and the renormalized perturbation approach used
in Reeks (1992). Reeks (1992) pioneered the application of the Lagrangian history
direct interaction (LHDI) method of Kraichnan (1977) to derive the PDF equation
for particle position and velocity, as well as a closure for the phase-space diffusion
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current. The derivation of the closure using the LHDI method entailed a renormalized
perturbation expansion, which is effectively an expansion with 1/StI as the perturbation
parameter. Appendix A presents a detailed comparison of the two perturbation
methods.

The time integrals of the four correlations on the right-hand side of (2.7)–(2.8)
are, respectively, the diffusivities DUU, DUV , DVU, and DVV . Here DUU and DVV
are diffusivities in the U-space and V-space, respectively; DUV and DVU are
cross-diffusivities. Equation (A 10) for the PDF 〈P〉 may now be written as:

∂〈P〉
∂t
+∇r · (U〈P〉)+∇x · (V〈P〉)− 1

τv
∇U · (U〈P〉)− 1

τv
∇V · (V〈P〉)

−∇U · (DUU · ∇U〈P〉 + DUV · ∇V〈P〉)
−∇V · (DVU · ∇U〈P〉 + DVV · ∇V〈P〉)= 0. (2.9)

2.1. Three closure forms for diffusivity DUU

Since our primary interest is in the statistics of pair relative motion, we will consider
a more tractable, lower-dimensional PDF Ω(r,U)= ∫ 〈P〉(r,U, x,V; t) dV, where the
dependence on x was dropped due to homogeneity. In Rani et al. (2014), we showed
that (2.9) yields the following equation (in dimensional form) for Ω(r,U):

∂Ω

∂t
+∇r · (UΩ)− 1

τv
∇U · (UΩ)−∇U · (DUU · ∇UΩ)= 0, (2.10)

where τv is the particle viscous relaxation time and r and U are the pair separation
and relative velocity, respectively. The diffusivity DUU is given by

DUU = 1
τ 2
v

∫ 0

−∞
〈1u(r, x, 0)1u(r, x, t)〉 dt, (2.11)

where the integrand is the Eulerian two-time correlation of fluid relative velocities,
with both pair separation r and centre-of-mass position x held fixed. This formulation
of diffusivity is valid under the conditions Str� 1 and StI� 1.

In this study, DUU in (2.11) is resolved using three approaches, giving rise to three
closure forms. In the first closure form (CF1), the two-time correlation in (2.11) is
directly computed from DNS of forced isotropic turbulence with stationary particles,
and integrated in time to yield DUU. In the second closure form (CF2), the Eulerian
two-time correlation of relative velocities is converted into two-point correlations of
fluid velocities, allowing us to derive an expression in terms of an integral over the
wavenumber. In the third closure form (CF3), r remains fixed during flow time scales,
but x responds to integral-scale eddies, i.e. x changes during integral time scales. Thus,
CF3 attempts to improve upon and extend CF2’s validity to StI ∼ 1. The effects of
CF3, however, are anticipated to be seen only at the lower end of the Stokes number
range considered. At higher Stokes numbers, CF2 and CF3 should show very similar
behaviour.

One may regard CF1 as the most accurate among the three closure forms since
a DNS-based evaluation of the Eulerian two-time correlation would entail no further
approximations. But, CF2 and CF3, the latter in spite of its improvements, contain
approximations made to obtain analytical expressions for diffusivity. The differences
between CF1 and CF2/CF3, and their implications for pair statistics are extensively
analysed in this study.
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In the following discussion, we present the salient features of the derivation of CF2
and CF3 (details are in Rani et al. 2014). The computational details of the evaluation
of DUU for CF1 are discussed in § 3.1.

2.2. CF2 and CF3
In arriving at (2.11), Rani et al. (2014) considered the limits Str � 1 and StI � 1.
In these Stokes number regimes, particles are nearly stationary so that the temporal
change in 1u experienced by pairs is primarily due to the evolution of turbulent
scales and not due to pair (relative) motion itself. Rani et al. (2014) approximated the
temporal evolution of 1u at two positions separated by r as arising due to the passive
advection of eddies of size r by larger, integral-scale eddies. Hence, one may replace
the Eulerian two-time correlation in (2.11) by a correlation of relative velocities seen
by two pairs with the same r, but with the centres of mass separated by uIt, where uI

is the large-scale fluid velocity. This would give us closure form 2 (CF2) for DUU:

D[2]UU =
1
τ 2
v

∫ 0

−∞
〈1u(x, r, 0)1u(x+ uIt, r, 0)〉 dt. (2.12)

Relaxing the StI � 1 criterion to StI ∼ 1 enables us to account for the change
in centre-of-mass position due to interactions with eddies of time scales ∼τv, the
centre-of-mass response time. This is done by replacing uI with the relative velocity
W between the large-scale eddies and the centre of mass, yielding closure form 3
(CF3):

D[3]UU(r,W)= 1
τ 2
v

∫ 0

−∞
〈1u(x, r, t)1u(x+Wt, r, t)〉 dt. (2.13)

In the discussion that follows, we will focus on CF3, since the final expressions for
CF2 and CF3 differ only by a constant factor.

The CF3 diffusivity can then be expressed as an average over all values of W as:

D[3]UU(r)=
∫

D[3]UU(r,W)Φ(W) dW, (2.14)

where Φ(W) is the PDF of W, and

D[3]UU(r,W)= 1
τ 2
v

∫ 0

−∞
〈1u(x, r, t)1u(x+Wt, r, t)〉 dt

= 1
τ 2
v

∫ 0

−∞

〈[
u(x+ 1

2
r, t)− u(x− 1

2
r, t)

]
×
[

u(x+Wt+ 1
2

r, t)− u(x+Wt− 1
2

r, t)
]〉

dt

= 1
τ 2
v

∫ 0

−∞

〈
u(x+ 1

2
r, t)u(x+Wt+ 1

2
r, t)− u(x+ 1

2
r, t)u(x+Wt− 1

2
r, t)

−u(x− 1
2

r, t)u(x+Wt+ 1
2

r, t)+ u(x− 1
2

r, t)u(x+Wt− 1
2

r, t)
〉

dt. (2.15)
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Since W is principally influenced by the large-scale fluid eddies, its PDF can be
considered as Gaussian (Batchelor 1953):

Φ(W)= 1√
(2πW2

rms)
3
e−(W

2/(2W2
rms)), (2.16)

where Wrms is the r.m.s. fluctuating velocity of W. The two-point velocity correlations
in (2.15) may be expressed in terms of the velocity spectrum tensor R(k), allowing
us to further analytically resolve this equation.

For isotropic turbulence, we can write DUU as:

DUU,ij = DUU,⊥
(
δij − rirj

r2

)
+ DUU,||

rirj

r2
. (2.17)

For CF3, Rani et al. (2014) derived the following forms for DUU,⊥ and DUU,||:

D[3]UU,⊥(r)=
1
2

2π2

τ 2
v

√
1

(2π)3W2
rms

×
∫ ∞

0

E(ξ)
ξ

[
8
3
− 4sin(rξ)

rξ
− 4cos(rξ)

r2ξ 2
+ 4sin(rξ)

r3ξ 3

]
dξ (2.18)

D[3]UU,||(r)=
2π2

τ 2
v

√
1

(2π)3W2
rms

×
∫ ∞

0

E(ξ)
ξ

[
4
3
+ 4cos(rξ)

r2ξ 2
− 4sin(rξ)

r3ξ 3

]
dξ, (2.19)

where E(ξ) is the energy spectrum, ξ is the wavenumber and the analytical expression
for Wrms is presented in § 2.3. The corresponding forms for CF2 can be obtained by
simply replacing Wrms with urms in (2.18) and (2.19), where urms is the fluid fluctuating
r.m.s. velocity. It is anticipated that at high Stokes numbers, Wrms→ urms so that CF2
and CF3 approach each other.

2.3. Expression for Wrms

Wrms is the r.m.s. of the relative velocity between large-scale eddies and the centre-of-
mass velocity. It is given by

W2
rms = 1

3 〈(ui − Vi)
2〉 = 1

3 [〈u2
i 〉 + 〈V2

i 〉 − 2〈Viui〉], (2.20)

where Vi is the velocity of the pair centre of mass, ui is the fluid velocity with which
eddies of size r are advected past the pair by larger eddies and 〈u2

i 〉 = 〈u2
1 + u2

2 + u2
3〉

(〈V2
i 〉 follows a similar notation).

The velocity Vi is governed by

dVi

dt
= ucm,i − Vi

τv
, (2.21)

where ucm,i was defined in (2.3). Multiplying (2.21) with Vi and ensemble averaging
yields

d
〈

1
2 V2

i

〉
dt

= 〈uiVi〉 − 〈V2
i 〉

τv
, (2.22)
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where 〈ucm,iVi〉 is approximated with 〈uiVi〉 on the right-hand side of (2.22). This is
reasonable since both ui−Vi and ucm,i−Vi are determined by eddies with sizes of the
order of or smaller than r, so that these two quantities are expected to have similar
statistics.

At steady state, 〈Viui〉 = 〈V2
i 〉. This means that from (2.21)

W2
rms =

1
3
[〈u2

i 〉 − 〈V2
i 〉] =

1
3
〈u2

i 〉
(

1− 〈V
2
i 〉
〈u2

i 〉
)

= u′2
(

1− V ′2

u′2

)
, (2.23)

where 〈u2
i 〉/3= u′2, and similarly 〈V2

i 〉/3= V ′2. To close Wrms, one needs expressions
for u′ and the ratio V ′/u′. The latter was obtained from Jung, Yeo & Lee (2008):

V ′2

u′2
= τη(τv + T ′)+ τvT ′
(τη + τv)(τv + T ′)

, (2.24)

where TL is the fluid Lagrangian integral time scale, T ′ = Tfp − τη, τη is the
Kolmogorov time scale and Tfp is the Lagrangian integral time scale of fluid velocities
seen by the particles. Jung et al. (2008) provided an expression for Tfp in terms of
fluid Eulerian and Lagrangian integral time scales. Further, it can be inferred from
their study that u′2 = u2

rms for high St particles, i.e. variance of fluid velocity seen by
high-inertia particles is nearly equal to the variance of turbulent velocity fluctuations.

3. Computational details
In this section, we present a discussion of the two types of simulations performed

in this study: direct numerical simulations and Langevin simulations. DNS with
stationary particles were used to compute the Eulerian two-time correlation in (2.11)
that is needed for CF1. DNS with moving particles were used to validate the LS
predictions for four Stokes numbers Stη = 10, 20, 40, 80, at two Reynolds numbers
Reλ = 76, 131.

3.1. DNS
3.1.1. Fluid phase

In homogeneous isotropic turbulence (HIT), there is no inherent production of
turbulent kinetic energy. As a result, when performing DNS of HIT, the turbulence
decays monotonically in time. To achieve statistical stationarity, one applies forcing
to the low-wavenumber velocity components, i.e. one adds energy to the large scales
of turbulence. The assumption implicit to the forcing of low wavenumbers is that the
time-averaged small-scale quantities are not significantly influenced by the mechanism
of energy production at the large scales, but will only depend on the gross effects such
as the turbulent kinetic energy and its production rate (Eswaran & Pope 1988). For
this assumption to be appropriate, it is necessary that the high-wavenumber regions
of the computed spectral quantities do not depend on the details of the forcing
scheme. Eswaran and Pope (Eswaran & Pope 1988) investigated the effects of a
stochastic forcing scheme on the isotropy of small-scale statistics. They concluded
that the forcing scheme did not have an undue effect on the values of the spectral
statistics at high wavenumbers. However, it is not entirely clear from their study if

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

85
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.859


216 R. Dhariwal, S. L. Rani and D. L. Koch

Parameter DNS I DNS II

N 128 256
Reλ 76 131
urms 0.9683 1.0894
ν 0.0071 0.0028
ε 0.3189 0.4315
L 1.4942 1.4225
λ 0.5622 0.3438
η 0.0327 0.0152
Teddy 1.5431 1.3057
τη 0.1499 0.0814
κmaxη 1.9610 1.8287
1t 0.0025 0.0010
Np 100 000 262 144

TABLE 1. Flow parameters in DNS of isotropic turbulence (arbitrary units). N is the
number of grid points in each direction, Reλ≡ urmsλ/ν is the Taylor micro-scale Reynolds
number, urms ≡ √(2k/3) is the fluid r.m.s. fluctuating velocity, k is the turbulent kinetic
energy, ν is the fluid kinematic viscosity, ε ≡ 2ν

∫ κmax

0 κ2E(κ) dκ is the turbulent energy
dissipation rate, L≡ 3π/(2k)

∫ κmax

0 E(κ)/κ dκ is the integral length scale, λ≡ urms
√
(15ν/ε)

is the Taylor micro-scale, η≡ ν3/4/ε1/4 is the Kolmogorov length scale, Teddy≡ L/u′ is the
large eddy turnover time, τη≡√(ν/ε) is the Kolmogorov time scale, κmax is the maximum
resolved wavenumber, 1t is the time step and Np is the number of particles per Stokes
number.

the forcing affects the spatial and temporal coherence of large-scale eddies. Since the
coherence of eddies has a direct effect on the diffusivity tensor DUU through the fluid
relative-velocity correlations, the nature of the forcing may impact the dynamics of
particle pairs for the Stokes numbers under consideration. This aspect needs to be
studied in greater detail, and is outside the scope of the current work.

Direct numerical simulations of forced isotropic turbulence were performed
using a discrete Fourier-expansion-based pseudospectral method. Simulations were
performed over a cubic domain of length 2π discretized using N3 grid points, with
periodic boundary conditions. The fluid velocity is advanced in time by solving the
Navier–Stokes equations in rotational form, as well as the continuity equation for an
incompressible fluid (Brucker et al. 2007; Ireland et al. 2013):

∇ · u= 0
∂u
∂t
+ω× u=−∇(p/ρf + u2/2)+ ν∇2u+ f f

}
, (3.1)

where u is the fluid velocity, ω = ∇ × u is the vorticity, ρf is the fluid density, p
is the pressure, ν is the kinematic viscosity and f f is the external forcing applied
to maintain a statistically stationary turbulence. The particle loading is assumed to
be dilute so that the influence of particles on the fluid is negligible. The various
turbulence parameters for the two Reλ are summarized in table 1. Further details of
the pseudospectral algorithm may be found in Ireland et al. (2013) and Brucker et al.
(2007).
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3.1.2. Relative-velocity correlation in CF1
For CF1, computing the diffusivity DUU requires the correlation 〈1u(r,x,0)1u(r,x, t)〉

as input. This correlation was evaluated using DNS of forced isotropic turbulence
with stationary disperse particles. Two simulation parameters that impact the computed
correlation are the number of particles (thereby, pairs), and the bin size (1r) for pair
separations. Bin size refers to the thickness of the radial shell spanning r − 1r/2
to r + 1r/2, within which we search for pairs. An important consideration in
determining the number of particles is the need to obtain converged correlations at
separations r ∼ η, where η is Kolmogorov length scale. In this regard, we varied
the number of particles from 105 to 106. Although smooth statistics were obtained
for 5 × 105 particles, we used 106 particles or ∼ 5 × 1011 pairs for computing the
two-time correlation. It may be recalled that these particles are stationary, and are
to be distinguished from those indicated in table 1 that are in motion. The ‘optimal’
bin size for pair separations is determined by balancing two competing requirements:
convergence of statistics at r ∼ η, and the reduction of statistical noise associated
with too small a bin size. We considered bin sizes varying between η/20 and 2η,
and found that a bin size of η/8 satisfied the two constraints.

Evaluation of the two-time correlation of seen fluid relative velocities for nearly
half a trillion pairs is a highly computationally intensive process. We adopted
the following procedure to compute these correlations from DNS of isotropic
turbulence with fixed particles. Considering two snapshots of flow separated by a
time interval τ in a DNS run, the longitudinal and transverse components of the
product 1u(r, x, t)1u(r, x, t + τ) for a particle pair are stored in the appropriate
r bin, and then averaged over all pairs within a bin. Next, we average the two
components over pairs of flow snapshots with the same time separation τ . For each
value of τ , we averaged over 200 such pairs of flow snapshots. In figure 1(a,b), we
show the longitudinal and transverse components, respectively, of the relative-velocity
correlation as a function of τ at separations r = L/5, L/2, L for Reλ = 76. Here L
is the integral length scale. The corresponding plots for Reλ = 131 are shown in
figure 1(c,d). The correlations at various separations are then integrated in time to
yield DUU for CF1.
3.1.3. Particle phase

The governing equations for the motion of a dense spherical particle smaller than
the Kolmogorov length scale may be written as (Maxey & Riley 1983)

dxp

dt
= vp, (3.2)

dvp

dt
= u(xp, t)− vp

τv
, (3.3)

where xp and vp are the particle position and velocity, respectively, and τv=ρpd2
p/18µ

is the particle response time (ρp is the particle density, dp its diameter and µ is fluid
dynamic viscosity). In (3.3), u(xp, t) is the fluid velocity at the particle’s location. In
the DNS runs, the seen fluid velocity is evaluated through an eighth-order Lagrange
interpolation method involving a stencil of 8× 8× 8 fluid velocities surrounding the
particle location.

Temporal update of particle motion is achieved through a modified second-order
Runge–Kutta (RK2) method in which the standard RK2 weights are replaced by
exponential integrators as follows (Ireland et al. 2013):

vp(t0 + h)= e−h/τvvp(t0)+w1up[xp(t0)] +w2u[xp(t0)+ vp(t0)h], (3.4)
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FIGURE 1. The Eulerian two-time correlation of fluid relative velocities R(r, τ ) =
〈1u(r, t)1u(r, t+ τ)〉. The longitudinal and transverse components of R(r, τ ), i.e. R||(r, τ )
and R⊥(r, τ ), are shown as a function of time at separations r/L= 0.2, 0.5, 1. Panels (a,b)
Reλ= 76, and (c,d) Reλ= 131. The integral length scale L=π/(2u′2)

∫ κmax

0 E(κ)/κ dκ , and
time scale Teddy = L/urms.

where h is the time step, and the exponential integrators w1 and w2 are given by

w1 ≡
(

h
τv

) [
φ1

(−h
τv

)
− φ2

(−h
τv

)]
, w2 ≡

(
h
τv

)
φ1

(−h
τv

)
(3.5a,b)

φ1(z)≡ ez − 1
z

, φ2(z)≡ ez − z− 1
z2

. (3.6a,b)

In the DNS runs, the particles are evolved for at least 6τv for the Stη = 80
particles, and 45τv for the Stη = 10 particles, before we begin collecting their
statistics. Subsequently, the particle statistics are averaged for nearly 10τv for the
Stη = 80 particles, and 75τv for the Stη = 10 particles.

3.2. Langevin simulations
Using the CF1, CF2 and CF3 closures for DUU discussed in § 2, three sets of
Langevin stochastic simulations were performed to evolve pair separations r and
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relative velocities U. The governing equations for r and U are:

dr
dt
=U (3.7)

dU=−U
τv

dt+ B · dW . (3.8)

Here, W represents a Wiener process, and the diffusion matrix B can be written in
terms of DUU as:

B · BT = 2DUU(r), (3.9)

where BT is the transpose of B, and B is computed from a Cholesky decomposition
of DUU(r). Simulation of Langevin equations (3.7) and (3.8) is statistically equivalent
to solving the Fokker–Plank equation (2.10) for the PDF Ω(r,U).

To be able to consistently compare pair statistics from the Langevin and DNS runs,
it is important that the Langevin simulations use the same turbulence parameters as
those in statistically stationary DNS. Hence, inputs to Langevin runs such as the
Kolmogorov and integral length scales, dissipation rate, kinematic viscosity, urms and
Reλ are all identical to those in table 1. In particular, one also has to ensure that
the model energy spectrum used in CF2 and CF3 closely matches the DNS energy
spectrum. This was achieved by suitably selecting the parametric inputs to the model
spectrum provided in Pope (2000), as follows:

E(κ)=Cε2/3κ−5/3fL(κL)fη(κη) (3.10)

fL(κL)=
(

κL
[(κL)2 + cL]1/2

)5/3+p0

(3.11)

fη(κη)= exp{−β([(κη)4 + c4
η]1/4 − cη)}, (3.12)

where β = 5.2 and p0 = 2 (Pope 2000).
The parameters cL and cη are determined from the following constraints:

3
2

u2
rms =

∫ κmax

1
E(κ) dκ (3.13)

ε = 2ν
∫ κmax

1
κ2E(κ) dκ, (3.14)

where ε is the dissipation rate, and the wavenumber limits [1, κmax] are the same as
in DNS. These wavenumber limits are also used in (2.18) and (2.19) for CF2 and
CF3. The parameters cL and cη are numerically evaluated using the DNS values of
urms, ε and ν from table 1. The resulting values are shown in table 2. In figure 2,
the model spectra calculated from (3.10)–(3.12) are compared with the DNS energy
spectra for Reλ = 76 and Reλ = 131. Good agreement is seen between the model and
DNS spectra.

The computational domain in the Langevin simulations is a sphere of diameter
8L, where L is the integral length scale. This domain size is sufficiently large, since
particle pairs become decorrelated at separations of O(L) for all the Stokes numbers
considered in this study. A specular reflective boundary condition was imposed at
the outer boundary of the domain. This meant that a particle colliding with the outer
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FIGURE 2. Comparison of the DNS and model energy spectra at Reλ= 76 and Reλ= 131.
The model spectrum is used to compute the CF1 and CF2 diffusivities.

Parameter Reλ = 76 Reλ = 131

C 1.908 1.866
cL 0.3855 0.3643
cη 0.4165 0.4078
κmax 60 120

TABLE 2. Parameters for the model energy spectrum. After determining cL and cη, the
parameter C was adjusted to match the DNS energy spectrum. Pope (2000) suggested
C= 1.5.

boundary is reflected back into the domain, with its velocity component tangential
to the boundary unaffected, and the velocity component normal to the boundary
reversed.

For each Stη, pair statistics are averaged for at least 1000τv. Such a large averaging
time was necessary due to the strong dependence of the statistical errors on the
sample size in Langevin simulations. Further, in order to increase the sample size
at separations of the order of Kolmogorov length scale, a single pair is split into
multiple, equally weighted fractional pairs whenever the separation of a pair goes
below a certain value (Rani et al. 2014). When a parent pair is split, initially the
fractional pairs have the same position and velocity vectors as the parent. Each of the
fractional pairs is then evolved independently, except that it only makes a fractional
contribution when computing the statistics. In our simulations, splitting is executed at
three different radial locations, r= 2η, 5η, 10η. However, fractional pairs are not split
again. We found that splitting a pair into 10 equally weighted fractional pairs gave us
sufficient data at the smaller separations without excessively increasing the number of
pairs to be tracked. Recombination of fractional pairs when their separations exceeded
the specified radial distances was not undertaken.
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Reλ D[1],?UU,|| D[1],?UU,⊥ D[2],?UU,|| D[2],?UU,⊥ D[3],?UU,|| D[3],?UU,⊥
76 0.98 1.96 0.81 1.62 1.37 2.74
131 1.52 3.04 1.35 2.70 2.06 4.12

TABLE 3. Transverse and longitudinal components of DUU for CF1, CF2 and CF3 in the
viscous range at Reλ = 76 and 131. The values shown are for Stη = 10. The following
notation is used: D[1,2,3],?UU,|| = [D[1,2,3]UU,|| × τ 2

v /(u
2
rms × Teddy)]/(r/L)2.

4. Results and discussion
Langevin and DNS runs were performed for Stokes numbers Stη = 10, 20, 40, 80 at

Reλ = 76 and 131. Three sets of Langevin simulations – a total of 24 simulations –
were conducted corresponding to the closure forms CF1, CF2 and CF3. In each LS,
60 × 106 pairs per Stokes number were considered. The number of particles in the
DNS runs are provided in table 1.

The discussion of the results is presented in three subsections. In § 4.1, we first
compare the three forms of the diffusivity DUU. Subsequently, CF1 and the Zaichik
et al. (2003), Zaichik & Alipchenkov (2007) theory are compared in the limit of
Str � 1. In § 4.2, the radial distribution functions (RDFs) obtained using CF1, CF2
and CF3 are compared with the respective DNS RDFs. The trends in the RDFs
obtained from the closures are explained through the moments equations of the
master PDF equation (2.10). After the RDF discussion, the relative-velocity statistics
and relative-velocity PDFs obtained from the LS and DNS runs are presented and
compared in § 4.3. Throughout the discussion of the results, we will regard CF1 as
being the most accurate among the three closures. We will elaborate on the differences
in the statistical predictions of CF1 and CF2/CF3, as well as provide quantitative and
qualitative explanations for the differences.

4.1. Diffusivity tensor
We first compare the diffusivity tensors from the three closure forms considered in
this study. In addition, the CF1 and CF2 diffusivities are analysed in greater detail
for pair separations in the integral range, where one can derive analytical estimates
for these. Subsequently, we compare CF1 with the diffusivity closure of Zaichik
& Alipchenkov (2003, 2007). As CF1 is computed through DNS, it is essentially
exact for Str� 1, presenting us an opportunity to assess the Zaichik & Alipchenkov
closure in this limit. Such an analysis of their diffusivity had not been undertaken
previously.

In figure 3, the longitudinal and transverse components of the diffusivity for CF1,
CF2 and CF3 are plotted as a function of the dimensionless separation r/L (L is
the integral length scale). Shown in figure 3(a,b) are the diffusivity components at
Reλ = 76 and 131, respectively, for the Stη = 10 pairs. It may be noted that DUU × τ 2

v

is independent of the Stokes number for CF1 and CF2, but not for CF3 due to
the presence of Wrms on the right-hand side of (2.18) and (2.19). The diffusivities
are shown for the lowest Stokes number Stη = 10, since the differences between
CF2 and CF3 are more pronounced at low Stokes numbers. For Kolmogorov-scale
separations, i.e. r∼ η, DUU,⊥(r) and DUU,||(r) show an r2 scaling for all three closures
(numerical values of the scaling coefficients are shown in table 3). This scaling
arises because for r < η, the fluid velocity field may be regarded as locally linear,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

85
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.859


222 R. Dhariwal, S. L. Rani and D. L. Koch

10–1

10–2

10–3

100

101 101

100

10–1

10–2

10–3

10–4

10010–110–2 101 10010–110–2 101

(a) (b)

CF3 (long.)
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FIGURE 3. The transverse component, DUU,⊥(r), and the longitudinal component, DUU,||(r),
of the diffusivity tensor for Stη = 10 as a function of dimensionless pair separation r/L.
Diffusivity tensor components for CF1, CF2 and CF3 are shown. Upper black solid line
denotes CF3 transverse component, and lower grey solid line denotes CF2 transverse
component. (a) Reλ = 76, and (b) Reλ = 131. Transverse and longitudinal components of
DUU for CF1, CF2 and CF3 in the viscous range at Reλ=76 and 131 are shown in table 3.

i.e. 1u≈ r ·∇u, which in conjunction with (2.11) gives rise to the r2 scaling. At both
Reλ= 76 and 131, it is seen that CF3 is in reasonable agreement with CF1 for inertial
range separations. However, in the transition region between the inertial and integral
ranges, as well as in the integral range, CF1 is higher than CF3. The diffusivity
components of CF1 exceed those of CF2 at all separations. These trends are to be
expected, especially at Stη= 10, since CF3 does a better job at lower Stokes numbers
than does CF2.

For integral-scale separations, i.e. r & L, one can perform a more detailed
comparison of CF1 and CF2, since one can derive estimates for these closures
in this region. It may recalled that in deriving the CF2 diffusivity expression, we
assumed that the temporal change of the fluid relative velocities seen by a pair is
primarily due to the passive advection of size r eddies past the pair by large-scale
eddies with velocity uI . This physical picture is valid only when r/uI � r/ur = τr,
i.e. when r is small enough such that the time taken to advect the size r eddies past
the pair is smaller than their turnover time. Therefore, one expects CF2 to perform
poorly at large separations.

For r & L, the particle pairs are effectively uncorrelated and behave like two
independent particles. Consequently, the pair diffusivity is equal to twice the single
particle diffusivity. Using this principle, we can write for CF1:

D[1]UU(r & L) = 1
τ 2
v

∫ 0

−∞
〈1u(r, x, 0)1u(r, x, t)〉 dt

≈ 2
τ 2
v

∫ 0

−∞
〈u(x, 0)u(x, t)〉 dt= 2

τ 2
v

u2
rmsTEδij, (4.1)

where TE is the Eulerian integral time scale.
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FIGURE 4. Transverse component, DUU,⊥(r), and longitudinal component, DUU,||(r), of the
diffusion coefficient tensor for Stη= 80 as a function of dimensionless pair separation r/L
at: (a) Reλ = 76 and (b) Reλ = 131. CF2 and CF3 diffusivities are compared.

In the case of CF2, noting that D[2]UU,|| = D[2]UU,⊥ when r & L, we have

D[2]UU(r & L) ≈ δij
2π2

τ 2
v

√
1

(2π)3u2
rms

× 4
3

∫ ∞
0

E(ξ)
ξ

dξ (4.2)

= δij
2π2

τ 2
v

√
1

(2π)3u2
rms

× 4
3
× u2

rms

π
L (4.3)

= 0.53
τ 2
v

u2
rmsTeddyδij, (4.4)

where we replaced Wrms with urms in (2.18) and (2.19), and the right-hand side of (4.2)
is the limiting value of the right-hand side of (2.18) as r→∞. We have also used the
identity

∫∞
0 (E(ξ)/ξ) dξ = (u2

rms/π)L and Teddy= L/urms, where L is the integral length
scale. The ratio Teddy/TE ∼ 1.2–1.5 so that from (4.1) and (4.4), the ratio D[1]UU/D

[2]
UU is

now estimated to be ∼2.5–3.2 for r & L.

In figure 3, for r&L, we see that D[1]UU/D
[2]
UU≈ 2.05 when Reλ= 76, and ≈3.45 when

Reλ = 131, in accordance with the preceding scaling estimate. Further, D[1]UU/D
[3]
UU ≈

1.5 when Reλ = 76, and ≈2.29 when Reλ = 131. The lower values of D[1]UU/D
[3]
UU are

because CF3 exceeds CF2 for smaller Stη. We will also see in § 4.3 that for r & L,
the pair relative-velocity variance computed using CF1 is in good agreement with an
analytical expression for the relative-velocity variance of uncorrelated pairs (Pan &
Padoan 2013). However, both CF2 and CF3 underpredict this analytical variance by
nearly the same factors as D[1]UU/D

[2]
UU and D[1]UU/D

[3]
UU for r & L in figure 3.

In figure 4, we compare only CF2 and CF3 for the highest Stokes number
considered. Figures 4(a,b) show the diffusion tensor components for the Stη = 80
particles at Reλ = 76 and 131, respectively. At high Stokes numbers, Wrms ≈ urms, so
that one expects CF2 and CF3 to have similar diffusivities, which is confirmed in
figure 4.
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We now present a comparative analysis of CF1 and the Zaichik & Alipchenkov
(2003, 2007) closures. As already mentioned, CF1 may be regarded as ‘exact’ for
Str�1. In this limit, the Zaichik & Alipchenkov diffusivity in U-space may be written
as:

DZaichik
UU = 1

τv

TLr

τv + TLr
S(r)→ 1

τ 2
v

S(r)TLr, (4.5)

where S(r) is the Eulerian structure function tensor, and TLr is the Lagrangian two-
point time scale at separation r. We can now calculate DZaichik

UU using the well-known
scaling expressions of S(r) and TLr for separations r in the dissipative, inertial and
integral ranges. The expressions for the longitudinal and transverse components of
S(r) are (Zaichik & Alipchenkov 2003):

Viscous range: S||(r)= εr2

15ν
; S⊥(r)= 2εr2

15ν
(4.6)

Inertial range: S||(r)=C1(εr)2/3; S⊥(r)= 4
3 C1(εr)2/3 (4.7)

Integral range: S||(r)= S⊥(r)= 2u2
rms, (4.8)

where C1 = 2.0.
The corresponding expressions for TLr(r) are also provided in Zaichik & Alipchenkov

(2003). It is, however, relevant to elaborate on TLr in the dissipative range. To
determine TLr in this range, Zaichik & Alipchenkov (2003) approximated the fluid
relative velocity as being linear in the separation vector: 1u ≈ r · ∇u. Accordingly,
the viscous TLr would need to be found in terms of the correlation time scales, τσ
and τω, of the strain-rate and rotation-rate tensors constituting the velocity gradient.
Zaichik et al. (2003) considered τσ = τω = A1τη, where τη is the Kolmogorov time
scale. Subsequently, Zaichik & Alipchenkov (2007) reconsidered this analysis with
separate forms for τσ and τω. We can now write the expressions for TLr(r) as:

Viscous range [Z & A (2003)]: TLr = A1τη

Viscous range [Z & A (2007)]: τσ = Aσ τη; τω = Aωτη

}
(4.9)

TLr,|| = τσ ; TLr,⊥ =
(τσ

5
+ τω

3

)
(4.10)

Inertial range: TLr = A2ε
−1/3r2/3 (4.11)

Integral range: TLr = TL, (4.12)

where A1 =
√

5 (Lundgren 1981), Aσ = 2.3, Aω = 7.2, A2 = 1/
√

6 and TL is the
Lagrangian integral time scale. The relationship between the viscous range TLr,⊥ and
τσ and τω in (4.10) was obtained from the Brunk, Koch & Lion (1997) study of tracer
pair diffusion and coagulation in isotropic random velocity fields.

Conveniently, the scaling expressions given in Zaichik et al. (2003) can be
combined into unified forms for the entire range of turbulent scales. These are
(Zaichik, Simonin & Alipchenkov 2006; Pan & Padoan 2013):

S||(r)= 2u2
rms

[
1− exp

(
− (r/η)
(15CK)3/4

)]4/3
[

(r/η)4

(r/η)4 + (2u2
rms/(CKu2

η))
6

]1/6

(4.13)
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FIGURE 5. Comparison of CF1 of DUU with the diffusivity of Zaichik & Alipchenkov
(2003, 2007) in the limit Str�1. DUU,||(r) and DUU,⊥(r) are the longitudinal and transverse
components of DUU , respectively. ‘Zaichik’ refers to the diffusivity calculated from (4.13)–
(4.15). Diffusion coefficient is plotted as a function of dimensionless pair separation r/L
at: (a) Reλ= 76, and (b) Reλ= 131. Also shown in panel (a) are the diffusivities obtained
using the two scaling expressions for the viscous time scale: (4.6) and (4.9), and (4.6) and
(4.10). In (b) we show diffusivities obtained from the scaling expressions in the inertial
subrange: (4.7) and (4.11). For the viscous range, two forms of scaling expressions are
plotted: one in which strain rate and rotation rate have identical time scales (τσ = τω),
and the second in which they are different (τσ 6= τω). For the latter, these time scales are
obtained from Zaichik & Alipchenkov (2007).

S⊥(r)= 2u2
rms

[
1− exp

(
− (r/η)4/3

(15CKn/2)

)] [
(r/η)4

(r/η)4 + (2u2
rms/(CKnu2

η))
6

]1/6

(4.14)

TLr(r)= TL

[
1− exp

(
−
(

CT√
5

)3/2 ( r
η

))]−2/3 [
(r/η)4

(r/η)4 + (TL/(CTτη))6

]1/6

, (4.15)

where uη is the Kolmogorov velocity scale, CK = 2, CKn ≈ 2.5 and CT = 0.4.
We now compare CF1 with DZaichik

UU (r) in figure 5. The latter is computed from (4.5)
in conjunction with (4.13)–(4.15). The agreement between CF1 and DZaichik

UU is good at
Reλ= 76 and reasonable at Reλ= 131. In the dissipative range, DZaichik

UU,|| and DZaichik
UU,⊥ are

higher than their CF1 counterparts at Reλ = 131. It is to be noted that in the integral
range TL ≈ TE/1.1 is used (Pan & Padoan 2013), where TE is the Eulerian integral
time scale evaluated from DNS using TE= u2

rms×
∫∞

0 ρ(t) dt. Here ρ(t) is the Eulerian
autocorrelation of fluid velocities. The unified expressions (4.13)–(4.15) result in a
rather broad inertial region at Reλ = 76. Moreover, at Reλ = 131, it is surprising that
the Zaichik transverse component falls below even the CF1 longitudinal component
in the inertial region. These trends suggest that the combined expressions need
improvement in the inertial range, as well as in the transition region between the
inertial and integral ranges. To elaborate on this aspect, in figure 5(b), we also plot
the scaling expressions S||(r) × TLr and S⊥(r) × TLr for inertial range r, computed
from (4.7) and (4.11). These are in good agreement with D[1]UU,|| and D[1]UU,⊥ in the
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inertial region, suggesting that the scaling laws for the inertial subrange are accurate,
but the unified expressions fail to accurately capture the transition from the inertial-
to integral-scale separations. The effects of the unified expressions on the RDF
predictions of Zaichik et al. (2003) are elaborated in § 4.2.

We also explored the differences between the viscous time scale of Zaichik &
Alipchenkov (2003) (4.9), and of Zaichik & Alipchenkov (2007) (4.10). The transverse
and longitudinal diffusivities obtained from these two forms of the viscous time scale
are plotted in figure 5(a). It can be seen that the longitudinal diffusivities from the
two Zaichik & Alipchenkov studies are identical, and are in good agreement with
D[1]UU,||(r). The transverse diffusivity corresponding to (4.9) is also in good agreement
with D[1]UU,⊥(r), but that computed using (4.10) significantly overpredicts the current
D[1]UU,⊥(r). The transverse diffusivity based on a Lagrangian time scale (Zaichik &
Alipchenkov 2007) exceeding that based on an Eulerian time scale (CF1) is evidently
problematic. The viscous time scale TLr,⊥ = (τσ/5 + τω/3) arises in the context of
tracer pair diffusion in isotropic random velocity fields (Brunk et al. 1997). It is
not clear if this time scale can be applied for isotropic turbulence. We believe that
the rather simple scaling TLr = A1τη with A1 =

√
2 (Lundgren 1981) is sufficiently

accurate, obviating the need for the more complex form presented in Zaichik &
Alipchenkov (2007) at least for Stokes numbers greater than one.

4.2. Radial distribution function
The RDF is a well-established measure of particle clustering. In figure 6, the RDF is
presented as a function of Stη at four separations r/η= 6, 12, 18 and 24. The results
from the CF1-based Langevin simulations are compared with the data from the current
DNS, the Février et al. (2001) DNS, and also with the results from the Zaichik et al.
(2003) theory. The Février et al. (2001) data were for Reλ = 69, while the current
DNS data are for Reλ = 76. There is excellent agreement between the CF1 RDF and
the two sets of DNS RDFs at all four separations, particularly for Stη> 10. The RDFs
obtained from the Zaichik & Alipchenkov (2003) theory are significantly higher than
the DNS values at all separations.

In subsequent studies (Zaichik & Alipchenkov 2007, 2009), they endeavoured
to improve the theory, principally by dropping their earlier assumption that the
Lagrangian correlation time scales of the strain-rate and rotation-rate tensors are
equal. For Stη < 1, the power-law exponent C3 of the RDF (∼(η/r)C3 for r � η)
obtained using the modified theory showed good agreement with the RDF exponents
computed using DNS and the theory of Chun et al. (2005). In figure 7, we compare
the RDFs from CF1 and the current DNS with those from the Zaichik & Alipchenkov
(2009) theory at separation r/η= 1. Also shown are the RDF values from Zaichik &
Alipchenkov (2003). We observe that the RDFs computed using their modified theory
move closer to, but still overpredict, the current DNS data for Stη & 10.

We attribute this overprediction to two features of the Zaichik & Alipchenkov theory.
First, we believe that the discrepancy may principally be due to the way in which the
RDFs were computed in their study, i.e. through the solution of the transport equations
for the moments of the PDF Ω(r, U) (see (2.10)). This aspect is elaborated in the
following discussion.

Considering the pair PDF Ω(r,U), the moments of interest are

ω(r)=
∫
Ω(r,U) dU (4.16)
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FIGURE 6. Radial distribution function as a function of Stη at specific separations: (a)
r/η = 6, (b) r/η = 12, (c) r/η = 18 and (d) r/η = 24. In each plot, squares and circles
represent data from CF1 and current DNS at Reλ = 76; triangles represent DNS data of
Février, Simonin & Legendre (2001) at Reλ = 69. Solid line represents data from Zaichik
et al. (2003) theory for Reλ = 69.

〈Ui〉 = 1
ω(r)

∫
UiΩ(r,U) dU (4.17)

〈UiUj〉 = 1
ω(r)

∫
UiUjΩ(r,U) dU. (4.18)

The governing equation for the marginal PDF ω(r) is obtained by integrating (2.10)
over the U space, and that for 〈Ui〉 is obtained by premultiplying (2.10) with Ui/ω(r)
and then integrating over U. Similarly, one also obtains the transport equation for
〈UiUj〉 by taking the second relative-velocity moments of (2.10). It may be noted that
ω(r) and the RDF g(r) are related through g(r)=ω(r)/ω(r→∞).

The transport equation for ω(r) is given by (Zaichik & Alipchenkov 2003)

∂ω

∂t
+ ∂(ωUk)

∂rk
= 0, (4.19)

which only tells us that at steady state, in isotropic turbulence 〈Ui〉 = 0. In fact, ω(r)
has to be obtained from the 〈Ui〉 equation. However, when one attempts to solve the
equations for the first or higher moments (of Ui), one encounters additional closure
problems. For instance, the equation for 〈Ui〉 contains the unclosed moment 〈UiUj〉
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FIGURE 7. Radial distribution function versus Stη at separation r/η = 1. Squares and
circles represent data from CF1 and current DNS at Reλ= 76. Curve 1 represents Zaichik
et al. (2003) theory for Reλ = 69; and Curve 2 represents Zaichik & Alipchenkov (2009)
theory for Reλ = 75.

(Zaichik & Alipchenkov 2003). To obtain 〈UiUj〉, one writes the transport equation for
〈UiUj〉, which in turn involves 〈UiUjUk〉, and so on. This leads to an infinite hierarchy
of moments equations, which is typically broken by introducing further closure
approximations. For example, in Zaichik & Alipchenkov (2003), a ‘quasi-Gaussian’
approximation (QGA) was introduced for Ui, allowing them to approximate the
fourth-order moments of relative velocities in terms of the second-order moments.
Even for Stη � 1 particles, QGA may be problematic for separations r < L, where
the relative-velocity PDF is far from Gaussian and the second moments may be
transported over distances much larger than r. Further, as pointed out by Bragg &
Collins (2014b), for larger Stokes numbers, the PDF of U in the dissipation range
may be extremely intermittent. These closure approximations may be an important
contributing factor to the errors in the RDFs of Zaichik & Alipchenkov. A more
detailed analysis of the predictions of the Zaichik & Alipchenkov theory may be
found in Bragg & Collins (2014a,b).

The second reason for the differences between the DNS and Zaichik RDFs in
figure 6 may be the use of the unified expressions for the diffusivity in their theory.
As shown in figure 5(b) and in the discussion following (4.5), the unified expressions
used for S and TLr need improvement in the inertial region, as well as the transition
region between the inertial and integral ranges. The discrepancies in the diffusivity
in these regions may have contributed to the overprediction of RDFs by their theory,
since the high Stη particles preferentially respond to these scales.

Figure 8(a,b) compare the RDFs obtained using CF1, CF2 and CF3 with the
DNS RDF for Stη = 10 and 80, respectively, at Reλ = 76. Figure 8(c,d) show the
corresponding plots at Reλ = 131. For Stη = 10, the CF1 and CF3 RDFs show
good qualitative and quantitative agreement with the DNS RDF at both Reynolds
numbers. For Stη = 10 and both Reλ, CF2 overpredicts clustering as compared to
DNS for both viscous and inertial separations. For Stη = 80, all the RDFs are close
to unity, suggesting only a small amount of particle clustering. One also notices that
the RDFs plateau, i.e. become essentially independent of r, for separations in the
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FIGURE 8. RDFs from Langevin simulations (CF1, CF2 and CF3) and from DNS as a
function of dimensionless pair separation r/η for the indicated values of Stη = 10, 80.
(a,b) Reλ = 76, and (c,d) Reλ = 131.

inertial subrange. The plateauing is delayed, i.e. starts at smaller separations, for the
Stη = 10 pairs than for the Stη = 80 pairs. The above RDF trends can be deduced by
considering the governing equation for 〈Ui〉, given by:

∂〈Ui〉
∂t
+ ∂〈Ui〉〈Uj〉

∂rj
+ ∂〈U

′
iU
′
j〉

∂rj
=−〈Ui〉

τv
− 〈U′iU′j〉

∂ lnω(r)
∂rj

. (4.20)

For isotropic turbulence, 〈Ui〉 = 0, so that (4.20) becomes

∂〈U′αU′α〉
∂rα

=−〈U′αU′α〉
∂ lnω(r)
∂rα

, (4.21)

where α = 1, 2, 3 (repeated α does not denote a summation). We can now write

∂ ln〈U′αU′α〉
∂rα

+ ∂ lnω(r)
∂rα

= 0, (4.22)

which yields the rather elegant result for Str� 1 pairs:

ω(r)=C(St)〈U′αU′α〉−1
(r)=C(St)〈U2〉−1

, (4.23)
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FIGURE 9. 〈U2〉/u2
rms as a function of r/L for all Stokes numbers. (a) Reλ = 76 and

(b) Reλ = 131. Lines denote CF1 and symbols denote CF2.

where C(St) is an unknown coefficient that depends on the Stokes number. This
dependence of the RDF may be contrasted with the power-law scaling of the RDF
for the Stη� 1 particles at separations r . η (Chun et al. 2005):

g(r)=C2

(
r
η

)−C3

, (4.24)

where C3 ∼ Stη.
From (4.21), we can readily see that the flattening of the RDFs is related to the

flattening of 〈U2〉. By reading figure 8(a,c) in conjunction with figure 9(a,b), one
can see that the delayed plateauing of RDF for the Stη = 10 particles is related
to the correspondingly delayed plateauing of 〈U2〉 at both Reynolds numbers. The
overprediction of RDFs by CF2 for the viscous and inertial separations may also
be inferred from (4.23) which shows that the RDF is inversely proportional to the
relative-velocity variance. Since CF2 yields the lowest variances among the three
closures, we see the associated overprediction of RDFs.

Figure 9(a,b) also suggest that 〈U2〉 remains finite as the separation r→ 0 for all
the Stη considered in this study. Bec et al. (2010) performed a DNS study of the
low-order velocity structure functions of inertial particles in isotropic turbulence, and
found that the structure functions were independent of separation in the dissipation
range for Stη > 7. In Rani et al. (2014), we had classified high-inertia particle pairs
into ‘lingerers’ and ‘flyers’. Lingerers are low-relative-velocity particles that are highly
correlated and remain correlated far longer than the time scales of fluid that influence
their relative motion. Flyers are uncorrelated particles with large relative velocities,
i.e. they undergo essentially ballistic motion so that their relative motion is unaffected
by fluid eddies with sizes comparable to the pair separation. Flyers are responsible for
maintaining a finite 〈U2〉 as the separation r→ 0.

In figure 10, the RDFs from CF1, CF2, CF3 and DNS are plotted as a function
of Stη at four separations for Reλ = 76. The corresponding plots for Reλ = 131 are
shown in figure 11. In general, the CF1 RDFs show the best agreement with the DNS
RDFs. At larger separations (r= L/2, L), one notices that the agreement of CF1 with
DNS improves with Stokes number, while the agreement of CF2 and CF3 with DNS
deteriorates at higher Stokes numbers. This may be attributed to the underprediction
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FIGURE 10. RDF versus Stη at Reλ = 76 and at specific pair separations: (a) r/η = 1,
(b) r/η=11, (c) r/η=22 and (d) r/η=44 (≈L). CF1, CF2, CF3, and DNS are compared.

of DUU at large separations by CF2 and CF3. For lower Stokes numbers at both Reλ,
CF3 shows better agreement with DNS than CF2. At higher Stokes numbers, CF2 and
CF3 approach each other, as is to be expected.

In figure 12, the effects of Reλ on particle accumulation are shown by comparing
the RDFs for Stη = 10, 20 at Reλ = 76 and 131. The RDFs are shown for the two
lower Stokes numbers (and for CF1 and CF3 only) so as to clearly illustrate the
effects of Reλ variation on clustering. It can be seen from figure 12(a,b) that for
both Stokes numbers, the RDFs increase with Reλ. This is because the response
times of the particles considered are of the order of inertial time scales. An increase
in Reλ, with its concomitant broadening of the inertial subrange, would mean that
the particles respond to a greater number of scales, thereby resulting in increased
clustering at these separations. This observation is consistent with the findings in the
study of Ireland et al. (2015).

4.3. Pair relative-velocity statistics
Figure 13 shows the pair relative-velocity variance as a function of Stokes number at
four separations for Reλ = 76. The variances obtained from the Langevin simulations
using the three diffusivities are compared with the DNS variances. It is seen that
CF1 shows the best agreement with the DNS for all Stokes numbers and separations.
CF3 agrees better with DNS than does CF2, especially at the smaller Stokes numbers
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FIGURE 11. RDF versus Stη at Reλ = 131 and at specific pair separations: (a) r/η = 1,
(b) r/η=23, (c) r/η=46 and (d) r/η=92 (≈L). CF1, CF2, CF3, and DNS are compared.
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FIGURE 12. RDF versus pair separation r/η for (a) Stη = 10 and (b) Stη = 20. Black
curves are for Reλ = 131, and grey curves are for Reλ = 76. CF1, CF3 and DNS are
compared.

considered. One also notices a slow change in the variances from r ≈ 4.5η in
figure 13(b) to r ≈ 2.5η in figure 13(a). This may be attributed to the high inertia
of particles because of which they retain memory of their relative velocities even
after their separations have transitioned from the inertial range to the dissipative
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FIGURE 13. 〈U2〉/u2
η versus Stη at Reλ = 76 for various separations. (a) r/L = 1/20,

(b) r/L = 1/10, (c) r/L = 1/2 and (d) r/L = 1. Dashed line in (d) corresponds to the
analytical expression for the variance of uncorrelated pairs, 〈U2〉 = 2u2

rms(TL/(TL + τv)),
where TL is the Lagrangian integral time scale. TL is obtained using TL = TE/1.1
(Pan & Padoan 2013).

range. In figure 13(c,d), i.e. at r/L = 1/2 and 1 respectively, one can see that CF1
overpredicts the DNS variances for Stη=10, but the comparison improves significantly
for Stη > 10. This is to be expected since CF1 involves modelling DUU as the time
integral of the two-time correlation of fluid relative velocities seen by nearly stationary
pairs. Thus, CF1 becomes more accurate at high Stokes numbers where the modelled
pair dynamics approaches the pair behaviour in DNS. In figure 13(d), corresponding
to r≈ L, we also show the analytical expression for the relative velocity variance of
uncorrelated pairs, 〈U2〉 = 2u2

rmsTL/(TL + τv), where TL is the Lagrangian integral time
scale of turbulence (Pan & Padoan 2013). Except at Stη = 10, CF1 shows excellent
agreement with this expression.

In figure 13(d), the CF1 to CF2 and CF1 to CF3 variance ratios are 2.12 and 1.52
for Stη= 10, and 2.13 and 2.00 for Stη= 80. As already seen in figure 3, for Stη= 10
and r & L, we see that D[1]UU/D

[2]
UU ≈ 2.05 and D[1]UU/D

[3]
UU ≈ 1.50. For Stη = 80 and

r&L, figure 4 shows that D[1]UU/D
[2]
UU and D[1]UU/D

[3]
UU are 2.05 and 1.93, respectively. The

correspondence between the variances and diffusivities at integral-scale separations
becomes evident from these ratios. From (4.1) and (4.4), when r & L, the relative-
velocity variance limits to (2/τv)u2

rmsTE for CF1, and to (0.53/τv)u2
rmsTeddy for CF2.
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FIGURE 14. 〈U2〉/u2
η versus Stη at Reλ = 131 for various separations. (a) r/L = 1/20,

(b) r/L = 1/10, (c) r/L = 1/2 and (d) r/L = 1. Dashed line in (d) corresponds to
〈U2〉 = 2u2

rms(TL/(TL + τv)), where TL is the Lagrangian integral time scale. TL is obtained
using TL = TE/1.1 (Pan & Padoan 2013).

In figure 14, the relative-velocity variances computed using CF1, CF2 and CF3 are
compared with the DNS variances for Reλ= 131. Both CF2 and CF3 underpredict the
DNS variances, although CF3 performs better for smaller Stokes numbers. In contrast
to its behaviour at Reλ = 76, CF1 now overpredicts the DNS variances, although the
comparison gets better as the Stokes number increases. The improved agreement at
higher Stη is expected, since the validity of the principal approximation in CF1 –
pairs are essentially fixed during flow time scales – improves as the Stokes number
increases. It will also be seen in subsequent discussion that the CF1 behaviour at
Reλ = 131 can be explained by considering the effects of Reλ on the diffusivity DUU.
In figure 14(d), at r/L= 1, CF1 approaches the analytical limit, except for Stη = 10.

The effects of Reλ on the relative-velocity variances are illustrated in figure 15.
In figure 15(a), the variances obtained from CF1, CF3 and DNS are compared for
Reλ= 76, and 131 at r=L/20. The corresponding comparison of variances for r=L is
shown in figure 15(b). At both separations, increase in Reλ has only a marginal impact
on the DNS variances. The variation of Reλ, however, has a substantial effect on the
CF1 variances at both separations. This can be attributed to the strong dependence of
the CF1 diffusivity on Reλ, as will be demonstrated in the following discussion. The
CF3 variances also show a rather weak dependence on Reλ. This behaviour of CF3,
as compared to CF1, seems surprising, but will also be explained below.
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FIGURE 15. 〈U2〉/u2
rms versus Stη. (a) r/L= 1/20 and (b) r/L= 1. Open symbols denote

Reλ = 131 and filled symbols Reλ = 76.

We will now elucidate the trends in figures 14 and 15, specifically those concerning
the effects of increase in Reλ on the CF1 and CF3 variances. First, we present the
ratios of dimensionless diffusivities at Reλ= 131 and Reλ= 76, where the diffusivities
are normalized using integral scale quantities. These ratios are (at Stη=10 and r>L):

D̃
[1]
UU(Reλ = 131)

D̃
[1]
UU(Reλ = 76)

≈ 1.32 (4.25)

D̃
[3]
UU(Reλ = 131)

D̃
[3]
UU(Reλ = 76)

≈ 0.86, (4.26)

where D̃UU = DUU/(u2
rms × Teddy), and the values of urms and Teddy = L/urms for

the respective Reλ are obtained from table 1. It is interesting to note that at large
separations, the CF1 diffusivity shows a significant increase, while the CF3 diffusivity
shows a marginal decrease with the Reynolds number.

The principal reason for the strong and weak dependence of CF1 and CF3,
respectively, on Reλ may be attributed to the relevant time scales for these closures.
For CF1, the relevant time scale at large separations is the Eulerian integral time
scale, TE, while for CF2 and CF3, the time scales are L/urms and L/Wrms respectively.
It is clear from table 1 that L and urms, and thereby Teddy, do not change significantly
between the two DNS runs. This is because the turbulent kinetic energy also changes
slowly in the two DNS runs. Consequently, the integral length scale L, which is
determined by the mean dissipation rate and urms, is also nearly the same in the
two DNS runs. However, for CF1, we find that TE(Reλ = 131)/TE(Reλ = 76) ≈ 1.4,
which is close to the ratio of diffusivities D[1]UU(Reλ = 131)/D[1]UU(Reλ = 76) for r > L.
Since D[1]UU(r & L) = 〈U2〉(r & L)/τv, an increase in the diffusivity directly results in
higher relative-velocity variances at large separations. The ‘flyer’ pairs with high
variances at large separations then result in increased variances at smaller separations
through their ballistic motion. We believe that the increase in TE may be due to the
forcing methodology used to achieve stationary isotropic turbulence. As in Ireland
et al. (2013), we use a deterministic forcing method that involves resupplying the
energy dissipated during each simulation time step. The dissipated energy is added
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FIGURE 16. Dimensionless DUU × St2
η is plotted as a function of r/η for Reλ = 76, 131.

Effects of Reλ on the CF1 closure are shown. The longitudinal and transverse components
of D[1]UU are compared at the two Reλ. DUU is made dimensionless with the Kolmogorov-
scale quantities, and then multiplied with St2

η.

at low wavenumbers so that the medium and high wavenumbers are, hopefully, not
significantly influenced by the forcing. From the current DNS runs, it seems that the
deterministic forcing of small wavenumbers has the effect of increasing the temporal
coherence of large-scale eddies as Reλ is increased.

We now present further illustration of the effects of increasing Reλ on the CF1
closure of DUU. In figure 16, the dimensionless D[1]UU × St2

η is plotted as a function
of r/η at Reλ = 76 and 131, where DUU has been made dimensionless using the
Kolmogorov-scale quantities.

In CF1, we have

D[1]UU =
1
τ 2
v

∫ 0

−∞
〈1u(r, x, 0)1u(r, x, t)〉 dt. (4.27)

The effects of Reλ on CF1 can be understood by approximating the Eulerian two-time
relative-velocity correlation on the right-hand side of (4.27) as the product of the
Eulerian two-point structure function and an Eulerian autocorrelation of fluid relative
velocities. This allows us to write:

D[1]UU × τ 2
v ≈ S(r)Tr, (4.28)

where S(r) is the structure function, and Tr is the Eulerian two-point time scale at
separation r. In both viscous and inertial ranges, it can be shown from (4.6)–(4.7)
and (4.9)–(4.11) that S(r)Tr/(u2

ητη) is independent of Reλ.
In the integral range, however, S||/u2

η and S⊥/u2
η∼ (u′/uη)2. Using u′/uη values from

Yeung & Pope (1989), one arrives at the following scaling: u′/uη = 0.50505
√

Reλ −
0.0061 for 38 6 Reλ 6 93. Using the DNS data of Ireland et al. (2015), we get the
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FIGURE 17. Relative-velocity PDF Ω(U|r) normalized by 〈U2〉1/2 for Reλ = 76 and at
r/L= 1/20. (a) Stη = 10 and (b) Stη = 80. Grey line represents the normal distribution.

scaling: u′/uη = 0.50626
√

Reλ + 0.018761 for 88 6 Reλ 6 597, which to leading order
is nearly identical to the Young & Pope scaling. For the Eulerian integral time scale
TE, we obtain the following scaling from Ireland et al. (2015): TE/τη = 0.1039Reλ +
2.8525. Therefore, at integral-scale separations, the Reλ dependence of D[1],non-dim

UU arises
from both S and Tr. It can be seen in figure 16 that in the dissipative and inertial
ranges, the Reλ effects on D[1],non-dim

UU are weak, but in the integral range, increase in
Reλ dependence leads to the higher values of diffusivity for Reλ = 131.

In figure 17, the PDF of relative velocity conditioned on separation r, i.e. Ω(U|r),
normalized by 〈U2〉1/2 is presented at r = L/20 for Stη = 10, 80 and Reλ = 76. The
normalization of a PDF by the standard deviation sheds light on the shape of the
PDF, e.g. its deviation from Gaussianity. In figure 17, the PDFs obtained from
LS using CF1 and CF3 are compared with the DNS PDFs. It is known that for
separations of the order of the integral length scale L, particle pairs are effectively
uncorrelated so that they behave like individual particles. In such a scenario, the
relative-velocity PDF should be Gaussian. Indeed, this is what we see in the DNS,
as well as LS (figure not shown here). As seen in figure 17, at smaller separations,
the PDFs become non-Gaussian (increasingly so as the separation decreases). The
non-Gaussianity is manifested in the form of PDFs with wider tails and sharper
peaks than a Gaussian PDF. The wider tails are representative of uncorrelated pairs
with high relative velocities, referred to as flyers. The higher peaks at low relative
velocities are representative of pairs whose relative motion is strongly correlated,
referred to as lingerers. Thus, the transition from a Gaussian PDF at large separations
to non-Gaussian PDF at small separations is characterized by two distinct trends:
flyers that become lingerers, and flyers that remain as flyers. At r = L/20, the
transition of pairs into lingerers is more prominent for the Stη = 10 pairs than for the
Stη = 80 pairs, as manifested by the higher peak in figure 17(a). This is because the
smaller Stη particles relax to the local flow more effectively than do the higher Stη
particles that still retain some memory of their ballistic motion at larger separations.
For both Stokes numbers, the PDFs of CF1 and CF3 have wider tails than the
DNS PDF, suggesting that they overpredict the number of flyers. For Stη = 10, the
inset of figure 17(a) shows that both CF1 and CF3 underpredict the occurrence
of lingerers.
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FIGURE 18. Relative-velocity PDF Ω(U|r) scaled by urms for Reλ= 76 and at r/L= 1/20.
(a) Stη = 10, and (b) Stη = 80.
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FIGURE 19. Relative-velocity PDF Ω(U|r) normalized by 〈U2〉1/2 for Reλ = 131 and at
r/L= 1/20. (a) Stη = 10 and (b) Stη = 80. Grey line represents the normal distribution.

The PDF Ω(U|r) scaled by the turbulence intensity urms is shown in figure 18. The
PDFs obtained using CF1 and CF3 are compared with those computed from DNS.
These PDFs enable us to understand the trends in relative-velocity statistics such as
the variance 〈U2〉. Among the closures, the CF1 PDFs show the best agreement with
the DNS PDFs. At r = L/20, the CF1 PDFs for Stη = 10 have wider tails than the
corresponding DNS PDFs, which leads to an overprediction of variance by CF1, as
seen in figure 13(a). For Stη = 80, however, we see that the CF1 PDF has narrower
tails than the DNS PDF, which explains the lower CF1 variance compared to the DNS
variance in figure 13(d). These trends suggest that CF1 overpredicts (underpredicts)
the number of high-relative-velocity flyers at low (high) Stokes numbers. At both
Stokes numbers, the CF3 PDFs are narrower than the DNS PDFs.

In figure 19, we present the normalized relative-velocity PDFs at Reλ = 131. For
both Stη= 10 and Stη= 80, CF1 shows good agreement with DNS for low to moderate
relative velocities (−4 . U/〈U2〉1/2 . 4), but has wider tails than DNS for higher
relative velocities. For Stη=10, when the relative velocity U/〈U2〉1/2∼±2, one notices
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FIGURE 20. Relative-velocity PDF Ω(U|r) scaled by urms for Reλ=131 and at r/L=1/20.
(a) Stη = 10, and (b) Stη = 80.

10–1

10–2

10–3

100

101

10–1

10–2

10–3

100

101(a) (b)

–2–4 0 2 4 –2–4 0 2 4

FIGURE 21. PDF of radial relative velocity Ω(Ur|r) scaled by urms for Stη = 10, 80 at
Reλ = 76 and at specific separations: (a) r/L= 1/20 and (b) r/L= 1.

an inflection point in the DNS PDF. It is interesting to note that CF1 captures the
inflection point, but not CF3. Further, CF3 predicts lower peaks than DNS for Stη=10,
and higher peaks than DNS for Stη = 80.

The PDF Ω(U|r) scaled by urms for Reλ = 131 is shown in figure 20. We see that
CF1 gives rise to PDFs with wider tails than does DNS, particularly for Stη = 10.
This is consistent with the significant overprediction of variances by CF1 for low
Stokes numbers at Reλ= 131 (figure 14). However, for Stη = 80, the CF1 PDF shows
reasonable agreement with the DNS PDF. For Stη= 80, the CF3 PDF is narrower than
the DNS PDF. As a result, CF3 underpredicts the DNS variances.

Next, we present in figure 21 the PDF of the radial component of relative velocity
Ur = U · r/r at Reλ = 76. The PDF Ω(Ur|r) is of interest since it is a key input to
the collision kernel. We compare CF1 and CF3 with the DNS for Stη = 10 and 80
at two separations r = L/20 and L. The most important property of these PDFs is
the transition from a negatively skewed PDF at r = L to a nearly symmetric PDF
at r = L/20. The transition in skewness suggests that the clustering of high-inertia
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FIGURE 22. Kurtosis as a function of dimensionless pair separation r/L at: (a) Reλ= 76,
and (b) Reλ = 131. CF1, CF3 and DNS are compared for Stη = 10 and 80.

particles at small separations is driven by the inward-migration bias occurring at much
larger separations. At both r = L/20 and L, the PDFs for the Stη = 10 particles are
more negatively skewed than those for the Stη = 80 particles. This means that lower
Stokes number particles tend to have higher radially inward relative velocities, which
may cause the increased clustering of these particles. For r= L/20 and Stη = 10, the
CF1 PDF is more negatively skewed than the DNS PDF, which explains the higher
RDF for CF1 in figure 10. The CF3 PDF is less negatively skewed than the DNS
PDF, and hence the lower RDF of CF3.

The transition from Gaussian to non-Gaussian relative velocities can also be
demonstrated using the kurtosis of relative velocity, 〈U4〉/〈U2〉2. A kurtosis of 3
denotes a Gaussian distribution, and a deviation from this value is indicative of a
non-Gaussian PDF. In figure 22(a,b), the kurtosis is plotted as a function of separation
r/L for the various Stη at Reλ = 76 and 131. In figure 22(a), at Reλ = 76, we see
that CF1 and CF3 compare well with DNS at larger separations. For smaller pair
separations (r/L . 0.5), CF1 shows the best agreement with DNS. It is also evident
that for r∼ L, kurtosis approaches 3, indicating the Gaussianity of relative velocities.
At smaller r, the kurtosis for the Stη = 80 pairs deviates more slowly from 3 when
compared to the Stη = 10 pairs. This suggests that the relative motion of the former
pairs retains the ballistic nature for a wider range of separations as compared to the
latter pairs. In figure 22(b), for Reλ = 131 and Stη = 10, the CF1 kurtosis exceeds
the CF3 kurtosis at all separations. As already seen, the increased Reλ leads to a
noticeably higher CF1 diffusivity at large separations, which in turn impacts the CF1
kurtosis. When we compare figure 22(a,b), it can be seen that the non-Gaussianity
increases with Reynolds number.

4.4. Collision kernel
The collision kernel K(σ ) for monodisperse particles is (Ray & Collins 2011):

K(σ )= 4πσ 2g(σ )
∫ 0

−∞
(−Ur)P(Ur|σ) dUr, (4.29)

where σ is the particle diameter, g(σ ) the RDF of particle pairs at contact, Ur=U · r/r
is the radial component of relative velocity and P(Ur|σ) is the PDF of Ur at contact.
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FIGURE 23. Collision kernel as a function of Stokes number at Reλ = 76. CF1, CF3
and DNS are compared. Curve 1 shows the collision kernel when the RDF g(r)= 1 and
the PDF P(Ur|r) is Gaussian. Curve 2 represents the collision kernel computed using the
Zaichik & Alipchenkov (2009) theory. Curve 3 represents the collision kernel computed
using the Abrahamson theory (Abrahamson 1975; Zaichik & Alipchenkov 2009). Curve 4
represents the collision kernel from the Mehlig, Uski & Wilkinson (2007) theory. Curve
5 represents the collision kernel computed using equation (56) of Zaichik & Alipchenkov
(2009). Curves 2 through 4 are at r/η = 1 and Reλ = 75. Curve 5 is at r/η = 2.3 and
Reλ = 76.

Equation (4.29) shows that the collision kernel depends on the RDF and the PDF of
Ur, the former a measure of particle spatial concentration, and the latter a measure of
the rate of particle encounters. Figures 23 and 24 show the collision kernels for all
Stη and at Reλ= 76 and 131, respectively. It is relevant to mention that the ‘collision
kernels’ for CF1, CF3 and the current DNS are presented at separation r = 2.3η for
Reλ = 76, and r = 4.7η for Reλ = 131, since these are the smallest separations for
which a statistically stationary P(Ur|r) could be computed in the respective Langevin
simulations. At both Reλ, CF1 shows the best agreement with DNS. At Reλ= 131, the
comparison of CF1 with DNS improves with Stokes number.

In figure 23, curve 2 represents the collision kernel at r = η computed by Zaichik
& Alipchenkov (2009) from (Wang, Wexler & Zhou 2000)

K(d)= 2πd2〈|Ur(d)|〉g(d), (4.30)

where the particle diameter d = η and 〈|Ur(d)|〉 =
√

2/π〈U2
r (d)〉. Curve 3 represents

the collision kernel of Abrahamson (1975) (cf. Zaichik & Alipchenkov (2009)).
Curve 4 represents the collision kernel computed from the theory of Mehlig et al.
(2007). Finally, curve 5 is the kernel computed from (4.30), with 〈|Ur(d)|〉 and g(d)
values from the current DNS. It can be seen that the collision kernel of Zaichik &
Alipchenkov (2009) overpredicts the DNS values for Stη < 20, and approaches the
DNS for Stη > 40. One also notices that curve 5 obtained from (4.30) is in good
agreement with the curve computed from (4.29).

The use of 〈|Ur|〉 =
√

2/π〈U2
r 〉 by Zaichik & Alipchenkov (2009) assumes that

the pair relative velocities are normally distributed. They recognized that such an
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FIGURE 24. Collision kernel as a function of Stokes number at Reλ= 131. CF1, CF3 and
DNS are compared.

assumption was, at the best, reasonable only at large Stokes numbers. However, it
was shown by Wang, Wexler & Zhou (1998) that even for zero Stokes number
particles, the ratio 〈|Ur|〉/

√〈U2
r 〉 = 0.77, which is quite close to

√
2/π = 0.798 for

normally distributed relative velocities.
Also indicated in figures 23 and 24 are the collision kernels when particle pairs

are uncorrelated, corresponding to g(r)= 1 and P(Ur|r) being Gaussian. Interestingly,
the collision kernels of high Stokes number pairs in isotropic turbulence are smaller
than the collision rates of uncorrelated pairs. Since g(r) > 1 when particles cluster,
we can attribute the higher collision kernels for the uncorrelated pairs as arising
from the integral over Ur in the kernel equation (4.29). This scenario is confirmed
in figure 25, where we compare the PDF P(Ur|r) for the Stη = 10, 80 pairs at both
Reλ with the Gaussian PDF for uncorrelated velocities. It is clear that the wider tails
of the Gaussian PDF result in the corresponding higher collision kernels. In addition,
comparison of figures 23 and 24 shows that the collision kernel increases with Reλ,
due to an increase in both the RDF and the relative velocities (i.e. relative velocity
PDFs with wider tails) with Reλ. This is confirmed in figure 25 where we see that
for a given Stη, the PDF tails become wider as Reλ is increased. The higher collision
kernels for CF1 than CF3 at all Stη and both Reλ can also be explained by the PDFs
in figure 25.

5. Conclusions
We performed a detailed assessment of the Rani et al. (2014) stochastic model

for the relative motion of high Stokes number particle pairs in statistically stationary
isotropic turbulence. The principal contributions of the Rani et al. (2014) study were
to: (i) derive a formulation for the relative-velocity-space diffusivity in the PDF
kinetic equation for pairs with Str� 1 and (ii) develop closure(s) for this diffusivity.
The fundamental diffusivity formulation (CF1) in Rani et al. (2014) involved the
time integral of the Eulerian two-time correlation of fluid relative velocities ‘seen’
by nearly stationary particles. The two-time correlation was resolved by converting it
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FIGURE 25. Effects of Reynolds number on the PDF of radial relative velocity Ω(Ur|r)
for Stη = 10, 80. (a) CF1 closure, and (b) CF3 closure. The PDFs for Reλ= 76 are shown
for r= 2.3η, and those for Reλ = 131 are for r= 4.7η.

into a combination of Eulerian two-point correlations of fluid velocities. As a result,
two closed-form expressions were obtained for the diffusivity, referred to as CF2 and
CF3, depending upon whether the centre-of-mass position was held fixed or allowed
to move during flow time scales. That study, however, involved only a preliminary
analysis of the developed closures. A detailed comparison of the relative-motion
statistics predicted by the model with DNS data was also not undertaken.

In the current study, a detailed analysis of the CF1, CF2 and CF3 diffusivities
was performed by: (i) comparing their limiting values for separations in the integral
range and (ii) comparing CF1 with the Zaichik & Alipchenkov (2003) closure that
involved expressing the diffusivity as the product of an Eulerian structure function and
a Lagrangian time scale of eddies whose size scales with the pair separation. These
comparisons establish that CF1 is the most accurate among the three closure forms
considered.

Subsequently, a rigorous quantitative analysis of the stochastic model was performed
through a direct comparison of Langevin simulation results with the DNS data for
four Stokes numbers at two values of the Taylor micro-scale Reynolds number.
Langevin simulations were performed using the three closure forms of the diffusivity.
We compared LS predictions of the RDF, relative-velocity variance and kurtosis, and
the relative-velocity PDF with the corresponding DNS data. For each of the statistics,
it is evident that the predictions of CF1 follow the trends one would expect from the
original premise of the Rani et al. (2014) theory for high-inertia particles.

The RDFs obtained from the Langevin simulations based on CF1 showed excellent
agreement with the DNS RDFs. The differences between the RDFs from the Zaichik
& Alipchenkov (2003) theory and the DNS RDFs were attributed to: (i) the
moments-based approach used to compute the RDFs and (ii) the inaccuracies in
the inertial-range diffusivity as calculated from the unified expressions for the
Eulerian structure function and the Lagrangian time scale. We derived an elegant
power-law expression relating the RDF to the inverse of the relative-velocity variance.
Relative-velocity variances computed using CF1 showed good agreement with the
variances from DNS, particularly at higher Stokes numbers. For separations in the
integral range, the CF1 variances showed good agreement with the analytical limit
for the relative-velocity variance of two uncorrelated particles.
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The effects of Reynolds number on the relative-velocity statistics were also
considered, where it was established that CF1 has a stronger dependence on Reλ
than CF2 and CF3. Consequently, we see that as the Reynolds number is increased,
the CF1 variances were significantly higher than the DNS variances, especially
for low Stokes numbers at small separations. However, at large separations, the
CF1 variances showed good agreement with the expression for the relative velocity
variance of uncorrelated pairs. The PDFs Ω(U|r) when normalized with the standard
deviation 〈U2〉1/2 and when scaled with urms were presented separately. The former
allow us to understand the deviation of the PDFs from Gaussianity at various pair
separations, as well as provide insights into how uncorrelated pairs at large separations
transition into lingerers. The PDF of the radial component of the relative velocity,
Ω(Ur|r), presents the startling picture of the transition from a negatively skewed PDF
at large separations to a nearly symmetric PDF at small separations. The smaller the
Stokes number, the greater the skewness of the PDF Ω(Ur|r). The transition in
the PDF Ω(Ur|r) suggests that the clustering of high Stokes number particles at
small separations originates in the inward-migration bias at much larger separations.
This physical picture is analogous to the Bragg & Collins (2014a) analysis that the
clustering of Stη∼ 1 particles was primarily due to their path-history interactions with
turbulence.

The transition from Gaussian to non-Gaussian relative velocities as pair separations
decreased was also quantified through the kurtosis of relative velocity. Kurtosis
was presented both as a function of Stokes number and Reynolds number, and the
predictions of CF1 and CF3 were compared with the DNS data. It was observed
that the lower the Stokes number, the higher the kurtosis. Finally, collision kernels
were also computed, and good agreement was found between CF1 and DNS. More
importantly, in the context of planetesimal formation, it was found that the collision
kernels increased with the Reynolds number due to an increase in both the RDF and
the relative velocities with Reλ. Equally relevant is the observation that at high Stokes
numbers, the collision kernels were smaller than those of particles with randomly
distributed relative velocities and positions.

The analysis and validation of the CF1 closure have established that the stochastic
model of Rani et al. (2014) captures both the qualitative and quantitative features of
the relative motion of high-inertia particle pairs. The limitations of CF2 and CF3
were also clearly identified. In this context, two advancements to the closure that
will be considered in a future study are: (i) improve the behaviour of CF1 at higher
Reynolds numbers and (ii) improve CF3 so that it approaches the consistent limit at
large separations.
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Appendix A. Comparison with renormalized perturbation expansion of LHDI
In Rani et al. (2014), the diffusion current was closed through a perturbation

analysis of the pair PDF equation in the limit of high Stokes number. In the discussion
that follows, this perturbation method is compared with the renormalized perturbation
approach used in the LHDI approximation (Kraichnan 1977; Reeks 1992). We begin
by presenting an overview of Reeks’ application of the LHDI method for closing
the diffusion current in the particle phase space (Reeks 1992). Our focus is on the
salient features of this approach, rather than on its rigorous mathematical formalism.
Subsequent to the discussion of the LHDI method, we will present the relevant
aspects of the current method, and draw comparisons and contrasts between the two
methods.

In deriving a closure for the diffusion current, Reeks begins by considering the
instantaneous phase-space density Ĝ(r, U, t; r1, U1, t1) arising from the introduction
into the flow of a particle pair with relative position r1 and relative velocity U1 at time
t1. (Here, we are applying Reeks’ original formulation for single particle dynamics
to the relative motion of particle pairs.) The Green’s function Ĝ is governed by the
Liouville’s equation, namely

∂Ĝ
∂t
+∇r · (UĜ)+∇U · (U̇Ĝ)= 0 ∀t> t1 (A 1)

and Ĝ(r, U, t; r1, U1, t1)= δ(r− r1)δ(U − U1)δ(t − t1) when t = t1. In (A 1), ∇r and
∇U represent gradients with respect to r and U, respectively.

Substituting the particle-pair governing equation

dU
dt
=− 1

τv
[U(t)−1u(r(t), t)] (A 2)

into (A 1) gives

∂Ĝ
∂t
+∇r · (UĜ)− 1

τv
∇U · (UĜ)=− 1

τv
∇U · [1u(r(t), t)Ĝ]. (A 3)

Ensemble averaging (A 3) over flow realizations yields

∂G
∂t
+∇r · (UG)− 1

τv
∇U · (UG)=− 1

τv
∇U · 〈1uĜ〉, (A 4)

where G= 〈Ĝ〉. The correlation 〈1uĜ〉 presents a closure problem, which is resolved
through the LHDI method.

An important step in the LHDI approach of Reeks is to transform (A 3) to a new
phase space such that the convective terms on the left-hand side of (A 3) drop out.
This is achieved through the transformation

w=Uet/τv (A 5)
y= r+ τvU(1− et/τv ). (A 6)

Applying this transformation, and introducing the generalized Lagrangian Green’s
function in place of the above Ĝ as in Kraichnan (1977), the transformed Liouville’s
equation becomes

∂Ĝ
∂t
=− 1

τv
1u · lĜ, (A 7)
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where the Ĝ = Ĝ(y, w, t|s; y1, w1, t1|s1) is the generalized Green’s function in the
transformed space, and the operator l is given by

l=−et/τv∇w − τv(1− et/τv )∇y. (A 8)

Broadly speaking, the next step in LHDI is to solve (A 7) for Ĝ. This could be
readily accomplished by expressing Ĝ as a series expansion in terms of Ĝ(0) that
is the solution of (A 7) with its right-hand side set to zero. This series expansion
involving functional powers of Ĝ(0) is often referred to as a primitive perturbation
series. Truncated forms of primitive expansions are quite inaccurate, except for very
small values of the perturbation parameter. To avoid the problems with the primitive
perturbation method, Kraichnan applied the renormalized perturbation expansions.

Renormalization involves inverting the original series so as to express Ĝ(0) in terms
of G, where G=〈Ĝ〉; this method was outlined in Kraichnan (1977) for the case of a
random oscillator. Eventually, by replacing Ĝ(0) with the renormalized expression, one
is able to write Ĝ(y,w, t|s; y1,w1, t1|s1) as an expansion in terms of functional powers
of G(y,w, t|s; y1,w1, t1|s1). It may be pointed out that this renormalized expansion is
effectively a series in terms of 1/τv, or in dimensionless sense 1/StI , where StI is the
Stokes number based on the integral time scale. However, unlike a primitive expansion,
the renormalized expansion does not require 1/StI to be a small quantity, making
such expansions reliably accurate even after truncation of the series. Substituting the
renormalized Ĝ series into 〈1uĜ〉, retaining only the first term containing G, and
transforming back to the original phase space gives us a closure for the diffusion
current in terms of G(r,U, t; r1,U1, t1) and the dispersion tensors. Further averaging
over the initial conditions of particle pairs yields the final desired closure for 〈1uW〉
in terms of 〈W(r, U, t; r1, U1, t1)〉, where W is the fine-grained phase-space density,
and 〈W〉 is the PDF of particle pair relative position and velocity. Having set the
background for the LHDI method, we will now compare and contrast LHDI with the
perturbation expansion-based closure derived in the current study.

It is to be noted that the current method was developed independently of the
LHDI-based method of Reeks. In this study, we begin by considering the following
conservation equation for the phase-space density P(r,U, x,V; t)

∂P
∂t
+∇r · (UP)+∇U · (U̇P)+∇x · (VP)+∇V · (V̇P)= 0 (A 9)

which upon ensemble averaging (and dropping the x and V terms in the interest of
brevity) yields the PDF transport equation

∂〈P〉
∂t
+∇r · (U〈P〉)− 1

τv
∇U · (U〈P〉)=− 1

τv
∇U · 〈1uP〉. (A 10)

The closure problem is now represented by the term 〈1uP〉 on the right-hand side
of (A 10). Quite analogous to the renormalized expansions in LHDI but without its
detailed mathematical formalism, we write P as an expansion in which 〈P〉 is the first
term, and 1/StI is the small quantity. The motivation for writing such an expansion
was that while the ensemble averaging 〈· · ·〉 is equivalent to averaging over flow time
scales, P evolved over longer time scales of the order of the particle response time
τv. Hence, one may anticipate a perturbation in P with respect to 〈P〉. It is important
to note that the expansion of P in terms of 〈P〉 and higher-order terms is analogous
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to the renormalized expansion of Ĝ in terms of G (= 〈Ĝ〉), and NOT to that of Ĝ in
terms of G(0). The expansion of Ĝ in terms of G(0) is a primitive perturbation series,
and we do not consider an analogous expansion of P in terms of P(0).

In spite of this similarity between the present and renormalized expansions, the
current method is only applicable when Str � 1, whereas LHDI, in principle, is
valid for all Stokes numbers. The reason for this limitation may be attributed to an
important assumption in the current method – i.e. the pair relative position r remains
essentially constant during flow time scales. This assumption effectively means that
U= 0 so that the two convective terms on the left-hand side of (A 9) dropout (without
any transformation of the phase space). Thus, the PSD P is governed by the equation

∂P
∂t
=− 1

τv
∇U · (1uP)≈− 1

τv
∇U · (1u〈P〉), (A 11)

which may be solved for P in terms of 〈P〉. Substitution of the resulting P into 〈1uP〉
yields the diffusion current closure. Comparison of (A 7) and (A 11) shows that (A 7)
reduces to (A 11) for asymptotically large particle Stokes numbers. Consideration
of this limit allows us to go one step beyond LHDI in deriving a closed form
expression for the diffusivity characterizing the phase-space diffusion current. Here,
we are referring to our conversion of the Eulerian two-time correlation of fluid relative
velocities to an Eulerian two-point correlation, which then allowed us to derive an
expression for diffusivity that is closed to an integration in the wavenumber.

As the above discussion elaborates, the present expansion is, in fact, qualitatively
similar to the renormalized perturbation series. The reason for the 1/StI � 1
requirement is due to effectively neglecting the convective terms on the left-hand
side of the phase-space density equation; whereas, in Reeks’ approach, the singularly
important step is to perform a phase-space transformation so that the convective terms
are naturally zeroed out.

Finally, a brief comment on the source of perturbations in the current and LHDI
methods. In the LHDI method of Reeks (1992), the perturbation in the particle phase-
space density arises due to the introduction into the flow of a particle pair with relative
position r1 and relative velocity U1 at time t1. In the current study, the source of
perturbation lies in the fact that the particles relax over times longer than flow time
scales. Therefore, when one averages over flow realizations, there is a perturbation in
the particle phase-space density.
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