
Proceedings of the Royal Society of Edinburgh, 134A , 225{240, 2004

Non-classical global solutions
for a class of scalar conservation laws

Paolo Baiti
Dipartimento di Matematica e Informatica, Universit³a di Udine,
Via delle Scienze 206, Udine 33100, Italy (baiti@dimi.uniud.it )

(MS received 29 October 2002; accepted 6 August 2003)

We consider the Cauchy problem for a class of scalar conservation laws with ° ux
having a single in° ection point. We prove existence of global weak solutions satisfying
a single entropy inequality together with a kinetic relation, in a class of bounded
variation functions. The kinetic relation is obtained by the travelling-wave criterion
for a regularization consisting of balanced di® usive and dispersive terms. The result
is applied to the one-dimensional Buckley{Leverett equation.

1. Introduction

In this paper we establish an existence theorem for (non-classical) weak solutions
of the Cauchy problem associated with a nonlinear hyperbolic conservation law,

@tu + @xf (u) = 0; u(t; x) 2 R; x 2 R; t > 0; (1.1)

u(0; x) = u0(x); x 2 R: (1.2)

The ®ux-function f : R ! R is non-convex and changes sign precisely at one
point uI. The initial data u0 : R ! R is a function of bounded variation. It is well
known (see [14]) that smooth solutions of (1.1), (1.2) may develop discontinuities
in ­ nite time, so we are led to consider weak solutions in a distributional sense.

In recent years, many authors have shown interest in studying the presence of
`non-classical’ shocks in the solutions of some scalars [1, 3, 10, 13] or systems of
conservation laws [8, 12, 21], as, for example, in nonlinear elasticity and magneto-
hydrodynamics [5,16,17,19,22], as well as some numerical evidence of the presence
of this kind of shock in the solutions of the equations [11,13].

Non-classical shocks are discontinuities that do not satisfy the usual Lax inequal-
ities (see x 2) on the speed of propagation. For n £ n systems of conservation laws,
they can be overcompressive when there are more than n+1 characteristics imping-
ing on the shock, or undercompressive when there are less than n + 1 characteris-
tics impinging on it (see the book of Bressan [7] for an overview of the basics of
hyperbolic systems of conservation laws). For scalar conservation laws, non-classical
shocks are always undercompressive.

Non-classical solutions of (1.1), (1.2) are weak solutions that may contain non-
classical shocks. Such solutions are usually related to zero di¬usion-dispersion limits
(see [15] and the references cited therein) such as

@tu + @xf (u) = "@xxu + ® "2@xxxu; " ! 0 with ® ­ xed: (1.3)
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Usually, every n£n physical system of conservation laws comes with an associated
strictly convex entropy, that is, a strictly convex function U : Rn ! R, and an
associated entropy ®ux F : Rn ! R such that @tU (u) + @xF (u) = 0 for all smooth
solutions u = u(t; x) of the system. For weak solutions, equality must be substituted
by an entropy inequality, i.e.

@tU (u) + @xF (u) 6 0; (1.4)

in a distributional sense. For genuinely nonlinear systems, equation (1.4) selects the
discontinuities that are admissible. In this way, every associated Riemann problem
(see x 2) admits a unique self-similar solution that is the combination of a certain
number of admissible waves. In turn, this allows us to construct a solution to the
associated Cauchy problem, at least when the data are of small total variation.

On the other hand, for non-convex scalar equations, one entropy inequality is not
enough to single out a unique way of solving the Riemann problem. This happens
because there are too many non-classical shocks that are entropy admissible. So we
need to supplement the entropy inequality by an additional kinetic relation (see [3,
10] and the references therein), or, equivalently, by using a kinetic function ’. For
weak solutions obtained as limits of di¬usive-dispersive approximations, the form
of ’ is related to the admissible travelling waves for the associated equation (1.3).
The kinetic relation thus permits us to recover some information that was neglected
at the hyperbolic level. By imposing both the entropy condition and the kinetic
relation, it is possible to construct a unique solution of each associated Riemann
problem.

In [1, 3], non-classical solutions are constructed by wave-front tracking meth-
ods [2,7] under some mild assumptions on the ®ux function f and the kinetic func-
tion ’. This technique consists of constructing a sequence of piecewise constant
approximate solutions and then using a compactness argument to ­ nd a solution
in the limit.

The purpose of this paper is to study the special case of the one-dimensional
Buckley{Leverett equation (see x 6), applying techniques similar to those introduced
in [1, 3]. More precisely, we will study the class of equations presented in [13], to
which the Buckley{Leverett equation belongs. Unfortunately, these equations do
not satisfy the assumptions made in [1, 3, 4], and hence a new analysis is needed
for this class. One of the main features is that it is possible to describe many
properties of their kinetic function. As a matter of fact, in [13], the authors study
the discontinuities that are admissible for a di¬usive-dispersive regularization and
prove, for the Buckley{Leverett equation under some additional hypotheses, the
existence of a solution of every Riemann problem with data taking values in the
interval [0; 1]. Starting from these solutions, we derive properties of the underlying
kinetic function related to the travelling waves of the regularization. This allows
us to use front-tracking techniques to prove the existence of weak non-classical
solutions of the Cauchy problem (1.1), (1.2). Moreover, we will prove the existence
under more general hypotheses than those in [13], also simplifying the description
of the Riemann solutions.

The main di¬erence between classical and non-classical solutions is that the latter
ones may be non-monotone and not total variation diminishing. Indeed, interactions
between relatively small waves can generate big non-classical shock waves with a
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consequent large increment of the total variation. To deal with this situation, for
the class of ®uxes considered, a new functional is introduced, equivalent to the total
variation and decreasing along approximate solutions.

The paper is organized as follows. After some preliminaries, section 3 deals with
the solution to the Riemann problem and its relations with the results in [13]. Then
the wave-front-tracking algorithm is explained. Section 4 reports the complete list
of all the possible interaction patterns under hypotheses (H1){(H3), while the main
existence result of this paper is stated and proved in x 5. The special case of the
one-dimensional Buckley{Leverett equation is considered in x 6.

2. Preliminaries

We consider scalar equations (1.1) with the following hypotheses on the ®ux func-
tion f .

(H1) f is C2.

(H2) It has a single in®ection point at uI. The function is convex up for u < uI and
convex down for u > uI, i.e. f 00(u)(u ¡ uI) < 0 for u 6= uI, f 000(u) < 0 for all u.

(H3) For u close to uI, for some K 2 R, H 6= 0 and p 2 N, we have the expansion

f (u) = f (uI) + K(u ¡ uI) + H(u ¡ uI)
2p + 1 + o((u ¡ uI)

2p+ 1):

We will also choose the usual entropy pair

U (u) = 1
2
u2; F (u) =

Z u

sf 0(s) ds: (2.1)

In x 6, we will restrict our attention to the one-dimensional Buckley{Leverett equa-
tion.

We want to construct a sequence of piecewise constant approximate solutions
u ¸ (t; x) that converge to a solution u(t; x) in the limit. For this purpose, we need
strong convergence in L1 and, as usual, this amounts to proving a uniform upper
bound on the total variation of u ¸ (t; ¢) for all t > 0 and ¸ 2 N (see [7]).

The building block in the de­ nition of u ¸ is the Riemann Problem, i.e. the Cauchy
problem when the initial datum is of the form

u(0; x) =

(
u¡ if x < 0;

u + if x > 0:
(2.2)

The solution of the Riemann problem (1.1), (2.2) is a self-similar function u(t; x) =
v(x=t). More precisely, in the phase space, the solution consists of a certain number
of constant states divided by elementary waves: shocks, rarefactions or one-sided
contact discontinuities. Rarefaction waves are piecewise Lipschitz solutions of (1.1),
(2.2) of the form

u(t; x) =

8
><

>:

u¡ if x 6 f 0(u¡)t;

u if f 0(u¡)t 6 x = f 0(u)t 6 f 0(u+ )t;

u + if x > f 0(u + )t;
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while a shock wave is a discontinuous solution of (1.1), (2.2) of the form

u(t; x) =

(
u¡ if x < ¶ t;

u + if x > ¶ t;

where u¡, u+ and the shock speed ¶ satisfy the Rankine{Hugoniot equation (see [7])

¶ (u + ¡ u¡) = f(u+ ) ¡ f (u¡):

A shock is compressive when its speed satis­ es the Lax inequality f 0(u + ) 6 ¶ 6
f 0(u¡). Otherwise, in the scalar case, it is undercompressive.

To solve the Riemann problem we need to decide which elementary waves should
be considered to be admissible. For systems of conservation laws in the literature,
there are several admissibility criteria, among which the more common are the
vanishing viscosity, the entropy dissipation and the Lax stability criterion. For gen-
uinely nonlinear systems and for small discontinuities, these three conditions are
proved to be equivalent. Instead, for shocks with larger amplitude and non-convex
®uxes, we can use the Oleinik{Liu criterion (see [18,20]).

In [10], the authors analyse the shocks that are admissible under a vanishing
viscosity-dispersion criterion. For f(u) = u3, they prove the existence of travelling-
wave solutions of the di¬usive-dispersive approximate equation

@tu + @xf (u) = "@xxu + ® "2@xxxu; ® > 0; (2.3)

corresponding to discontinuities of the conservation law (1.1) that violate Lax
inequalities. These kind of discontinuities are commonly called `non-classical shocks’
and, for scalar equations, are undercompressive, i.e. characteristics enter from one
side but exit from the other side of the discontinuity. Assuming these discontinu-
ities to be admissible, and supplementing the equation by an additional entropy
inequality and a `nucleation criterion’, Hayes and LeFloch prove the existence of a
unique solution of the Riemann problem (1.1), (2.2) for every u¡, u + , depending
L1-continuously on the left and right states.

In [1], the authors prove the existence of non-classical solutions (i.e. solutions
that admit non-classical waves) to the Cauchy problem (1.1), (1.2) starting from
the Riemann solver proposed in [10]. The results are then extended to a more
general class of equations [3].

In another paper, Hayes and Shearer [13] (also see [6] for a generalization of their
results) analyse the travelling waves for a di¬usive-dispersive approximation for a
class of ®uxes satisfying hypotheses (H1), (H2) and prove the existence of a solution
of the Riemann problem for equation (6.1) under some additional hypotheses (see
assumptions 5.1, 5.2 in [13]). In the following sections, we will show how to prove
the existence of non-classical solutions based on the Riemann solver introduced
in [13], using an approach analogous to that in [1,3].

3. The Riemann problem and approximate solutions

In this section we want to de­ ne a sequence of piecewise constant approximate
solutions to the Cauchy problem (1.1), (1.2), applying a front tracking scheme. The
starting point is the solution of the Riemann problem (1.1), (2.2). In [3], it is shown
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that in order to de­ ne the solution for every pair of left and right states u¡, u + , it
is su¯ cient to give an entropy pair U , F together with a kinetic function ’. The
knowledge of ’ is su¯ cient to describe the admissible waves that will be used to
solve, in a unique way, every Riemann problem. Under the hypotheses made in [3],
for each u 2 R, the value ’(u) represents the unique state that can be connected
to the right of u with an admissible non-classical undercompressive shock. In this
paper and under hypotheses (H1){(H3), it will represent the unique state that can
be connected to the left of u with an admissible non-classical undercompressive
shock.

The precise form of ’ is recovered by the results in [13] (see also [6]), where a
wave is considered admissible if its left and right states u¡ and u + can be connected
by a travelling wave for the di¬usive-dispersive approximation

@tu + @xf(u) = ¬ "@xxu ¡ ­ "2@xxxu; (3.1)

for some values of ¬ ; ­ > 0. Denoting ® = ¬ =
p

­ , this amounts to saying that, for
some s, the couples (u¡; 0) and (u + ; 0) are two equilibria of the system of ordinary
di¬erential equations

u0 = v;

v0 = ® v ¡ (f(u) ¡ f (u¡) ¡ s(u ¡ u¡));

which can be connected by a heteroclinic orbit [13]. If, in addition, (u¡; 0) and
(u + ; 0) are saddle points, then we say that u¡ ! u + is a saddle-to-saddle connec-
tion. The main result in [13] (see x 4 and theorem 4.1 in [13]) is summarized in the
following.

Theorem 3.1. The discontinuity connecting u¡ and u+ is an undercompressive
shock if and only if u¡ ! u + is a saddle-to-saddle connection and the Rankine
Hugoniot condition holds with s equal to the speed of the travelling wave.

Let ® = ® 0 > 0, and suppose that there is a saddle-to-saddle connection u0
¡ ! u0

+

for some u0
¡ < uI < u0

+ . Then, for each ® > 0 near ® 0, there is u ¤ = u¤ ( ® ) < uI

and a C1 function g(u¡), u¡ < u¤ , such that

(a) u¡ ! u + is a saddle-to-saddle connection with speed s if and only if

u¡ < u¤ and s = g(u¡) =
f(u+ ) ¡ f (u¡)

u + ¡ u¡
:

(b)
dg

du¡
(u¡) > 0 for u¡ < u ¤ .

(c) Writing u+ = u + (u¡), we have

du +

du¡
(u¡) < 0 for u¡ < u¤ :

(d) limu¡ ! u¤¡ g(u¡) = f 0(u ¤ ).

A similar result holds for u0
¡ > uI and some u ¤ ¤ .
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Thanks to this result, Hayes and Shearer show the existence, under some addi-
tional hypotheses (assumptions 5.1, 5.2 in [13]), and provide the form of the solution
of the Riemann problem for every choice of the left and right states, giving a com-
plete description of the wave curve. The global overview is somewhat complex.
Moreover, the list of all the possible interaction patterns would be long and com-
plex to write. Here we adopt a di¬erent point of view. Given a state u¡, instead
of the right wave curve starting from u¡, i.e. the collection of all the states that
can be connected to u¡ on the right, we study the left wave curve from u¡. We
believe that this approach simpli­ es the computations, giving a clear idea of the
geometry of the solutions and allowing the use of the machinery introduced in [1,3].
Moreover, it should clarify the choice of the additional hypotheses introduced by
Hayes and Shearer and also provides the existence of the Riemann solver without
assumption 5.2 of [13].

To describe the left wave curve, we ­ rst need some notations. For simplicity,
assume that f : R ! R. For every u 6= 0, we denote by ½ (u) the unique value such
that

f ( ½ (u)) ¡ f (u)

½ (u) ¡ u
= f 0( ½ (u)):

In fact, the existence of ½ for all u is not guaranteed by (H1){(H3) only, but we have
to put some additional assumptions on the ­ rst derivative of the ®ux, for example
(if f : R ! R), limjuj! 1 f 0(u) = ¡ 1. We do not want to specify such assumptions,
but just assume the existence of ½ .

From (d), we easily get that the limit u ¤
+ := limu¡ ! u¤¡ u + (u¡) must satisfy

f (u¤
+ ) ¡ f (u ¤ )

u ¤
+ ¡ u ¤ = f 0(u¤ );

and hence u ¤ = ½ (u¤
+ ).

Analogously, we can see that the limit u ¤ ¤
+ := limu ¡ ! u¤¤+ u + (u¡) satis­ es u ¤ ¤ =

½ (u ¤ ¤
+ ).

By theorem 3.1, the function u 7! u + (u) is invertible. We call ’(v) = (u + )¡1(v)
the inverse, which is de­ ned on the set ] ¡ 1; u ¤ ¤

+ ] [ [u ¤
+ ; +1[. In the framework

of [13], we call ¬ (v) the middle equilibrium between ’(v) and v such that

f (’(v)) ¡ f(v)

’(v) ¡ v
=

f( ¬ (v)) ¡ f (v)

¬ (v) ¡ v
:

Take uI < u + . With the notations introduced, the solution of the Riemann problem
(u¡; u+ ) is described as follows.

(S1) If uI 6 u+ 6 u ¤
+ , the solution coincides with the classical Oleinik{Liu solu-

tion [18,20].

(S2) If u¤
+ < u + , we have some subcases.

(i) If u + < u¡, the solution consists of a rarefaction wave connecting u¡ to
u + .

(ii) If ¬ (u + ) 6 u¡ < u + , the solution consists of a classical Lax shock
connecting u¡ to u + .
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(iii) If ’(u + ) < u¡ < ¬ (u + ), the solution is given by a classical shock con-
necting u¡ to ’(u + ) followed by a non-classical undercompressive shock
connecting ’(u + ) to u + .

(iv) If u¡ 6 ’(u + ), the solution consists of a rarefaction wave connecting u¡
to ’(u + ) followed by a non-classical undercompressive shock connecting
’(u+ ) to u + .

Notice that the obtained solution can be non-monotone. An analogous description
holds for the case u+ < uI, with all the signs reversed and u¤ ¤

+ in place of u ¤
+ .

Finally, if u+ = uI, then the solution of the Riemann problem (u¡; u + ) is always
given by a rarefaction wave.

Concerning assumption 5.2 of [13], as suggested by Hayes and Shearer and as
seen above, it is not necessary to solve the Riemann problems.

For simplicity, we write (but in the following we shall drop the tilde accent)

~’(u) :=

(
’(u) if u < u ¤ ¤

+ or u¤
+ < u;

½ (u) if u ¤ ¤
+ 6 u 6 u ¤

+ ;

and de­ ne ¬ (u) = ½ (u) for u ¤ ¤
+ 6 u 6 u ¤

+ . Then the solver (S1) can be viewed as
a subcase of (S2) for which subcase (iii) never happens. In this case (or, generally,
when ’(u) = ½ (u)), the discontinuity connecting ’(u) to u is not properly a non-
classical shock, but a one-sided contact discontinuity, i.e. its speed is equal to the
characteristic speed of the left state. Nevertheless, for simplicity, it will be conve-
nient to also consider these discontinuities as non-classical shocks. Notice that, by
theorem 3.1 (c) and the de­ nition of ½ , it follows that ’ is monotone decreasing.

Now we will describe how to construct piecewise constant approximate solutions
of (1.1), (1.2) by wave-front tracking [2,7]. First we start to approximate the initial
datum u0 with a sequence of piecewise constant functions u ¸ such that u ¸ ! u0

in L1 and TV(u ¸ ) 6 C ¢ TV(u0). Next, for each ¸ , we locally solve each Riemann
problem arising at each discontinuity point of u ¸ by using the chosen Riemann
solver. Since we want a piecewise constant function, due to the presence of rarefac-
tions, we have to do it in an approximate way. More precisely, every rarefaction
front is split into many small discontinuities, no larger than ¯ ¸ > 0, where ¯ ¸ ! 0
as ¸ ! 1. Each small jump travels with the characteristic speed of the left state
(but, indeed, any speed between the characteristic speed on the left and right state
will work). In this way, we de­ ne a piecewise constant function for small t. Now
we prolong each front emerging from the Riemann problems at time 0 until two of
these waves interact. A new Riemann problem is set and again we approximately
solve it. The only di¬erence is that, for positive times, the rarefaction fronts are
substituted by a unique rarefaction shock with equal size. In this way, we de­ ne a
function u ¸ (t; x). To prove that u ¸ (t; x) is globally de­ ned for all positive times, we
need to prove that this procedure can be iterated and this follows by proving that
the total numbers of waves and interactions are ­ nite (see x 5).

Next, to prove convergence of (a subsequence of) u ¸ in L1
loc, we need to supply

a uniform bound on the total variation of u ¸ (t; ¢). Since TV(u ¸ (t; ¢)) is constant
outside the interaction times, we are led to study how the total variation changes
across each interaction. To this end, in [1, 3], a new functional V is introduced,
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equivalent to the total variation and such that V(u ¸ (t; ¢)) is decreasing in time.
The precise form of V is obtained by listing all the possible interaction patterns
and carefully studying how the total variation changes across each of them.

We want to use similar techniques to the class of equations satisfying (H1){(H3)
and, in particular, to (6.1).

4. List of wave interactions

In the following we shall list all the possible interaction patterns. For each of them,
we will identify the incoming and outgoing wavefronts. Keeping in mind the point
of view introduced in the previous section, we will consider a right incoming wave
connecting the states um and ur interacting with a left incoming wave connecting the
states ul and um . For simplicity, we will assume ur > uI ­ xed (the case ur < uI being
similar) and let um and ul vary. In the following, we will use R, C and NC to denote
a rarefaction wave, a classical and a non-classical shock, respectively. Moreover, we
will use, for example, the notation (C; R) ! (R) to denote an interaction between
a left incoming classical shock and a right incoming rarefaction wave, producing an
outgoing rarefaction wave.

The result is similar to that obtained in [1].

4.1. The case um > ur

Since um > ur, the right incoming wave is a rarefaction. The left incoming one
cannot be a rarefaction too, otherwise they would not interact. Hence it must be a
shock wave, classical or non-classical. Thus ul < um .

There are various subcases.

Case 1 ((C; R) ! (R)). When ul 2 [ur; um ]. Since ul > ur, then the interaction
produces a rarefaction wave from ul to ur.

Case 2 ((C; R) ! (C)). When ul 2 [¬ (ur); ur). In this case, the incoming rarefac-
tion cancels out with a part of the incoming shock.

Case 3 ((C; R) ! (C; NC)). When ul 2 (’(ur); ¬ (ur)) and ul > ¬ (um ). In this
case, ¬ (um ) < ¬ (ur) and there are two outgoing waves: a classical shock connecting
ul to ’(ur) followed by the non-classical shock connecting ’(ur) to ur. Notice that
the solution is non-monotone.

Case 4 ((C; R) ! (R; NC)). In this case, ul 2 ( ¬ (um ); ’(ur)] and ¬ (um ) < ’(ur).
The interaction produces a rarefaction between ’(ur) and ul followed by a non-
classical shock.

Case 5 ((NC; R) ! (C; NC)). When ul = ’(um ) and ’(ur) < ’(um ). The out-
going waves are a classical shock connecting ul to ’(ur) and a non-classical shock
from ’(ur) to ur.

Case 6 ((NC; R) ! (R; NC)). When ul = ’(um ) and ’(um ) 6 ’(ur). The out-
going waves are a rarefaction connecting ul to ’(ur) and a non-classical shock from
’(ur) to ur.
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4.2. The case um 2 [®(ur); ur)

This means that the right incoming wave is a classical shock. The left incoming
wave can be either a shock or a rarefaction. In the case um > uI, we have the
following subclasses.

Case 7 ((R; C) ! (C)). When ul 2 (um ; ur). The outgoing wave is a shock con-
necting ul and ur.

Case 8 ((C; C) ! (C)). When um > ul > maxf ¬ (ur); ¬ (um )g.

Case 9 ((C; C) ! (C; NC)). When ul 2 ( ¬ (um ); ¬ (ur)) and ¬ (um ) < ¬ (ur). The
interaction produces a classical shock connecting ul to ’(ur) and a non-classical
shock from ’(ur) to ur.

Case 10 ((NC; C) ! (C)). If ul = ’(um ) with ’(um ) > ¬ (ur).

Case 11 ((NC; C) ! (C; NC)). If ul = ’(um ) with ’(ur) < ’(um ) < ¬ (ur). Again,
a classical shock connecting ul to ’(ur) and a non-classical shock from ’(ur) to ur

are produced.

Case 12 ((NC; C) ! (R; NC)). If ul = ’(um ) with ’(ur) > ’(um ). In this case,
the outgoing waves are a rarefaction connecting ul to ’(ur) and a non-classical
shock from ’(ur) to ur.

The following deals with the case ¬ (ur) 6 um < uI.

Case 13 ((NC; C) ! (C)). If ul = ’(um ). The non-classical shock is cancelled out.

Case 14 ((C; C) ! (C)). If um < ul 6 ¬ (um ). Then the incoming classical shock
is cancelled out.

Case 15 ((R; C) ! (C)). If ¬ (ur) 6 ul < um .

Case 16 ((R; C) ! (C; NC)). If ’(ur) < ul < ¬ (ur). The interaction generates a
classical shock from ul to ’(ur) and a non-classical shock from ’(ur) to ur.

Case 17 ((R; C) ! (R; NC)). If ’(ur) > ul. The interaction generates a rarefaction
connecting ul to ’(ur) and a non-classical shock from ’(ur) to ur.

4.3. Case um = ’(ur)

The right incoming front is a non-classical shock connecting um to ur. The left
incoming wave cannot be a rarefaction, since the two waves would not meet. Hence
it must be a shock; classical when ul 2 ( ¬ (ur); ¬ (um )] and non-classical when ul =
’(um ).

Case 18 ((C; NC) ! (C)). If ¬ (ur) < ul 6 ¬ (um ). The non-classical shock cancels
out and a classical shock is produced.

Case 19 ((NC; NC) ! (C)). If ul = ’(um ). The two incoming non-classical shocks
cancel out and a classical shock wave is generated.
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5. Existence of solutions

In this section we will prove the existence of a non-classical solution of (1.1), (1.2)
under hypotheses (H1){(H3) and (H4) (see below).

It is easy to check that the total strength of waves (measured in the classical
way) may well increase after an interaction, for example, in all cases in which a
non-monotone pro­ le is produced after the interaction (see also [1]). More precisely,
it decreases in cases 1, 2, 4, 6, 7, 8, 10, 13, 14, 15, 17, 18 and 19, while it increases
in cases 9, 11 and 16. This also implies that the total variation of the solutions may
well increase in time. In case 16, it appears that the increment in the total strength
of waves across the interaction is of the order of the total strength of the incoming
ones. Hence it cannot be controlled by the decrease of a Glimm-type functional as
in [9].

As in [3] (see also [1]), we de­ ne a new functional V, equivalent to the usual
total variation functional TV, such that V decreases in time along the approximate
solutions. More precisely, let u : R 7! R be a piecewise constant function and let x ¬ ,
¬ = 1; : : : ; N , be the points of discontinuity of u. Let

V(u) :=
NX

¬ = 1

¼ (u(x¬ ¡ ); u(x¬ +)); (5.1)

where ¼ (ul; ur) is a measure of the strength of the wave connecting ul to ur. In the
case ¼ (ul; ur) = jur ¡ ulj, the functional V(u) is precisely the total variation of u.
To compensate the increase of the total variation in some interactions, we have to
rede­ ne the strength of a wave by giving less weight to all non-classical shocks and
classical shocks that cross the in®ection point, i.e. for which (ul ¡ uI)(ur ¡ uI) < 0.

For simplicity, by a linear change of variable in u, from now we can assume that
uI = 0. Following [3], we de­ ne c(ul; ur) := (ul ¡ ’(ur)) sgn(ur) and set

¼ (ul; ur) :=

(
(Á(ul) ¡ Á(ur)) sgn(ul ¡ ur) sgn(ur) if c(ul; ur) > 0;

Á(ur) + Á(ul) ¡ 2Á(’(ur)) if c(ul; ur) 6 0;
(5.2)

where Á : R 7! R is a continuous function that is increasing (respectively, decreas-
ing) for u positive (respectively, negative) and such that Á(0) = 0. It appears that
the strength of a non-classical shock is counted less than what it would be with the
standard total variation [3].

Let ª (u) := sgn(u)(Á(u) ¡ Á(’(u))). As in [3], it is possible to prove that when
ª is monotone increasing, the piecewise constant approximate solutions u ¸ (t) are
well de­ ned and uniformly bounded for all ¸ and all t > 0. Fix a bound M > 0 on
the L 1 -norm of the initial data. Then we have the following.

Proposition 5.1. If ª is monotone increasing, then V is equivalent to TV in the
sense that there exist C1; C2 > 0 such that C1V(u) 6 TV(u) 6 C2V(u) for all piece-
wise constant functions u with kukL 1 6 M . Moreover, the function t 7! V(u ¸ (t))
is monotone non-increasing for all ¸ 2 N.

Proof. For the ­ rst statement, see lemma 5.5 in [3]. Concerning the second one,
it su¯ ces to show that V decreases across every interaction. Let u1, u2 and u3 be
three states separated by two interacting waves of strength ¼ ¡

1 and ¼ ¡
2 . Assume,
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for simplicity, that u3 > 0. By construction, there are at most two outgoing waves
of strength ¼ +

1 and (possibly) ¼ +
2 , say. Denote by

¢V = ( ¼ +
1 + ¼ +

2 ) ¡ ( ¼ ¡
1 + ¼ ¡

2 ) =: § + ¡ § ¡

the variation of V across the interaction. The monotonicity property of V can be
checked case by case following the complete list of interactions given above, or we
can argue in the following way. First of all, by the very de­ nition of ¼ , we have

§ + = ¼ (u1; u3)

for every outgoing pattern. Moreover, if sgn(uj)(ui ¡ ’(uj)) > 0 for all i < j, then
¼ (ui; uj) = §(Á(ui) ¡ Á(uj)) for i < j, the sign depending on sgn(ui ¡ uj) sgn(uj).
By the de­ nition of ¼ , it easily follows that whenever si;j := sgn(ui ¡ uj) sgn(uj)
is constant for all i < j, then

¼ (u1; u3) = ¼ (u1; u2) + ¼ (u2; u3): (5.3)

Now, ­ rst of all, notice that the monotonicity of ’ excludes cases 5 and 12.
Cases 8, 9, 10, 11, 13, 14, 18 and 19 satisfy the previous property, and hence,

by (5.3), it follows that ¢V = 0.
In cases 1, 2, 3, 7, 15 and 16, the value of si;j is not constant. If, for example,

s1;3 = s1;2 = 1 = ¡ s2;3, then we have

¼ (u1; u3) = (Á(u1) ¡ Á(u2)) + (Á(u2) ¡ Á(u3)) = ¼ (u1; u2) ¡ ¼ (u2; u3);

and hence ¢V = ¡ 2¼ (u2; u3). A similar result holds when s1;3 = s2;3 = ¡ s1;2.
It remains to check cases 4, 6 and 17, for which sgn(u3)(u1 ¡ ’(u3)) < 0.
In case 4, we can compute

¢V = (Á(u1) + Á(u3) ¡ 2Á(’(u3))) ¡ [(Á(u2) ¡ Á(u1)) + (Á(u2) ¡ Á(u3))]

= ¡ 2(Á(u2) ¡ Á(u3)) ¡ 2(Á(’(u3)) ¡ Á(u1))

< 0:

In case 17, we have

¢V = (Á(u1) + Á(u3) ¡ 2Á(’(u3))) ¡ [(Á(u1) ¡ Á(u2)) + (Á(u3) ¡ Á(u2))]

= ¡ 2(Á(’(u3)) ¡ Á(u2))

< 0:

Finally, in case 6, we have

¢V = ¡ 2[(Á(u2) ¡ Á(’(u2))) ¡ (Á(u3) ¡ Á(’(u3)))];

which is non-positive thanks to the monotonicity property of ª . This completes the
proof.

Now the problem is to show the existence of a suitable function Á with the desired
properties. To this end, we shall make another assumption.

(H4) u¬ (u) 6 0 and j’[2](u)j < juj for all u 6= 0, where ’[2] denotes the second
iterate of ’ (see [3]).
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This assumption, which may seem technical, can be explained as follows. The
condition u¬ (u) 6 0 (namely, (u ¡ uI)( ¬ (u) ¡ uI) 6 0 in the general case uI 6= 0)
is justi­ ed by lemma 3.2 of [13], where it has been proved that, when ® f 000 < 0,
all the shocks connecting two states on the same side of uI are admissible. If one
had u¬ (u) > 0 for some u, then, as in theorem 3.3 of [3], it would be possible to
prove that the Riemann solver does not depend L1-continuously on the left and
right states, or even worse, it would be possible to ­ nd more than one solution
to some Riemann problems. It can also be explained by saying that when the
states live in the same region of convexity, then the solution must be classical.
Secondly, j’[2](u)j < juj is a strengthened version of (5.5) (see below). If one had
j’[2](u)j = juj for some u 6= 0, then it would be possible to construct, in the same
spirit of example 7.2 in [3], a solution of (1.1), (1.2) whose total variation blows
up in ­ nite time. Since we are interested in BV solutions, the second assumption
in (H4) seems natural.

Theorem 5.2. Under hypotheses (H1){(H4) and if U(u) = 1
2
u2, there exists a Lip-

schitz continuous function Á that is increasing (respectively, decreasing) for u posi-
tive (respectively, negative), Á(0) = 0 and such that ª (u) = sgn(u)(Á(u) ¡ Á(’(u)))
is increasing.

Proof. Basically, we want to use the contraction mapping principle applied to a
suitable functional Banach space X and map T as in [3]. Let M > 0 be a bound
on the L 1 -norm of the initial data. To apply the result in [3], we have to check the
validity of the following hypotheses.

(i) The discontinuity connecting ’(u) and u is an entropy-admissible non-clas-
sical shock.

(ii) ’ is Lipschitz continuous and decreasing.

(iii) u¬ (u) 6 0.

(iv) There exists "0 > 0 such that

Lip[¡"0 ;"0] ’[2] < 1; sup
u 2 [¡M;M ]nf0g

’[2](u)

u
< 1: (5.4)

Conditions (ii), (iii) are satis­ ed. Concerning (iv), by theorem 3.1, it follows that
there exists a threshold under which the solution of the Riemann problem is clas-
sical. More precisely, if u ¤ ¤

+ 6 u 6 u ¤
+ , then ’(u) = ½ (u). By (H3), proceeding as in

lemma 2.1 of [3], it is possible to prove that ’0(0) = ½ 0(0) > ¡ 1 and, by continu-
ity, (’[2])0(u) = ’0(’(u))’0(u) < 1 if u is small enough. Hence the ­ rst inequality
of (5.4) follows.

Moreover, in [3] it is proved that (i) implies

0 6 sgn(u)’[2](u) 6 juj for all u 6= 0: (5.5)

This, together with ’0(0) > ¡ 1 and (H4), implies the second relation of (5.4).
It remains to prove that the shock connecting ’(u) and u is entropy admissible.

This is guaranteed by [12], where it is proved that shock waves obtained as limits
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of the di¬usive-dispersive approximation (1.3) satisfy the entropy inequality (1.4),
where U (u) = 1

2
u2. We remark that this could not be true for other entropies.

In the end, the results of [3, x 5] hold, thus proving the existence of a function Á
with the desired properties.

We conclude with the main theorem.

Theorem 5.3. Let u ¸ , ¸ 2 N, be a sequence of piecewise constant approximate
solutions constructed by wavefront tracking, as before. If hypotheses (H1){(H4) hold
and U (u) = 1

2u2, then (up to a subsequence) u̧ converges to a non-classical solution
u of (1.1), (1.2), also satisfying the entropy inequality (1.4).

Proof. By proposition 5.1 and theorem 5.2, it follows that V(u̧ (t)) is uniformly
bounded for all ¸ and t > 0, and so is TV(u ¸ (t)) thanks to proposition 5.1. By
Helly’s theorem, there exists a subsequence of u ¸ converging to a function u in
L1

loc(R + £ R). As in [2,7], one shows that u is a weak solution of (1.1), (1.2), i.e. for
every function ¿ with compact support in [0; 1) £ R, there holds

Z 1

0

Z 1

¡1
[u(t; x)@t ¿ (t; x) + f (u(t; x))@x ¿ (t; x)] dxdt +

Z 1

¡1
u0(x) ¿ (0; x) dx = 0;

and that satis­ es also the single entropy inequality (1.4), i.e. for every positive
function ¿ with compact support in R £ R, it satis­ es

Z 1

0

Z 1

¡1
[U (u(t; x))@t ¿ (t; x) + F (u(t; x))@x ¿ (t; x)] dxdt > 0;

where U and F are as in (2.1).

5.1. An alternative approach

The previous approach lacks in supplying a precise form for V (and ¼ ). In [1]
and [4], an explicit formula for ¼ is given, provided some additional hypotheses are
satis­ ed. More precisely, we have the following.

(M1) ¡ 1 6 ’0(u) 6 0 and j’(u)j < juj for all u.

(M2) There exists ­ > 0 such that ’(u) = ½ (u) for all juj 6 ­ .

(M3) ¡ 1 6 ¬ 0(u) 6 0 for all u 2 R.

Then one can de­ ne

¼ (ul; ur) :=

8
><

>:

jul ¡ urj if ulur > 0;

jur ¡ (1 ¡ K(ur))ulj if ulur < 0; julj 6 j ¬ (ur)j;
jur + ’(ur) ¡ (2 ¡ K(ur)) ¬ (ur)j if ul = ’(ur);

where K is a Lipschitz continuous function satisfying the two conditions

K(u) = 0 if juj 6 ­ ;

K(u) 2 (0; 2) if juj > ­ ;
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together with some di¬erential inequalities. If we are interested in small data, then,
as in [4], it is possible to ­ nd an explicit piecewise constant function K satisfying
all the conditions and such that the corresponding functional V decreases in time
along piecewise constant approximate solutions. Condition (M1) is satis­ ed by all
u close to 0, while condition (M2) is satis­ ed by taking ­ = minfju ¤

+ j; ju ¤ ¤
+ jg.

Because of the smallness assumption on the data, this approach cannot be used in
the case of the one-dimensional Buckley{Leverett equation in the following section.
Condition (M3) is not guaranteed to be satis­ ed, too. This is why we chose a more
abstract approach, which indeed works for large L 1 data.

6. The one-dimensional Buckley{Leverett equation

Here we will consider an application of the results presented in the previous sections
to the one-dimensional inviscid Buckley{Leverett equation

@tu + @x

µ
k1(u)

k1(u) + k2(1 ¡ u)

¶
= 0; u 2 [0; 1]; (6.1)

in connection with a di¬usive-dispersive approximation

@tu + @x

µ
k1(u)

k1(u) + k2(1 ¡ u)

¶
= ¬ "@xxu ¡ ­ "2@xxxu; (6.2)

with ¬ > 0 and ­ > 0. When ­ = 0, equation (6.2) models the ®ow of two immiscible
®uids in porous media. Here, u and 1 ¡ u are the volume fractions of the two ®uids,
while k1(u) and k2(1 ¡ u) denote the respective permeabilities, divided by viscosity,
of the medium to the ®uids. The usual assumptions on ki are, for i = 1; 2,

(i) ki is monotonically increasing and convex; and

(ii) ki(0) = k0
i(0) = 0, k00

i (z) > 0 for 0 6 z 6 1 and ki(1) = 1=· i, where · 1, · 2

are the viscosities of the ®uids.

We remark that the term ¡ ­ "2@xxxu is not usually included in the model equation.
Nevertheless, as observed in [13], it can be part of the truncation error of a numerical
method. Indeed, the appearance of undercompressive shocks in simulations has
been proved in [11] and, for the present model, investigated in [13]. In the latter,
numerical evidences show that non-classical undercompressive shocks do appear in
the solutions of the Riemann problem for (6.2). Furthermore, some second-order
schemes applied to (6.1), as, for example, the two-step Richtmyer version of Lax{
Wendro¬, exhibit behaviour similar to (6.2). This justi­ es the analysis in case ­ > 0.

From the hypotheses on k1, k2, it is easily checked that the ®ux of (6.1) is non-
convex, and usually it has an S-shape pro­ le satisfying (H1){(H3) (see [13]).

In the speci­ c case of (6.1), where the u variable is restricted to take values in
[0; 1], it is not clear that the non-classical solution of the Riemann problem will
still take value in the same interval. In view of the monotonicity properties of the
function ’ that come from theorem 3.1, it is su¯ cient to ask that ’(1) 2 [0; 1],
more precisely, that it belongs to [0; u¤ ], and symmetrically, ’(0) 2 [u ¤ ¤ ; 1]. This
condition, which actually coincides with assumption 5.1 of [13], guarantees that
the Riemann solution still takes values in [0; 1] and clari­ es the choice made. As
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before, assumption 5.2 of [13] is not needed, and thus we prove existence under more
general assumptions. The Riemann solution is given by (S1), (S2) in x 3, where now
the variable u 2 [0; 1].

In the present case, if theorem 3.1 holds, ’(1); ’(0) 2 [0; 1] and (H4) is satis­ ed,
so are theorems 5.2 and 5.3, thus providing an existence result for the Cauchy
problem (6.1), (1.2), where the datum u0 : R ! [0; 1] is of bounded variation. The
validity of the hypotheses is investigated numerically in [13] for the special case
ki(u) = Kiu

2, with Ki > 0 and ¬ = ³ , ­ = 1 ¡ ³ with ³ 2 [0; 1], such that

f (u) = f (u; a) =
u2

u2 + a(1 ¡ u)2
;

with a = K2=K1.
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