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Particle size segregation can have a significant feedback on the motion of many
hazardous geophysical mass flows such as debris flows, dense pyroclastic flows and
snow avalanches. This paper develops a new depth-averaged theory for segregation
that can easily be incorporated into the existing depth-averaged structure of typical
models of geophysical mass flows. The theory is derived by depth-averaging the
segregation-remixing equation for a bi-disperse mixture of large and small particles
and assuming that (i) the avalanche is always inversely graded and (ii) there is a linear
downslope velocity profile through the avalanche depth. Remarkably, the resulting
‘large particle transport equation’ is very closely related to the segregation equation
from which it is derived. Large particles are preferentially transported towards the
avalanche front and then accumulate there. This is important, because when this
is combined with mobility feedback effects, the larger less mobile particles at the
front can be continuously shouldered aside to spontaneously form lateral levees that
channelize the flow and enhance run-out. The theory provides a general framework
that will enable segregation-mobility feedback effects to be studied in detail for the
first time. While the large particle transport equation has a very simple representation
of the particle size distribution, it does a surprisingly good job of capturing solutions
to the full theory once the grains have segregated into inversely graded layers. In
particular, we show that provided the inversely graded interface does not break it
has precisely the same solution as the full theory. When the interface does break,
a concentration shock forms instead of a breaking size segregation wave, but the
net transport of large particles towards the flow front is exactly the same. The
theory can also model more complex effects in small-scale stratification experiments,
where particles may either be brought to rest by basal deposition or by the upslope
propagation of a granular bore. In the former case the resulting deposit is normally
graded, while in the latter case it is inversely graded. These completely opposite
gradings in the deposit arise from a parent flow that is inversely graded, which raises
many questions about how to interpret geological deposits.

1. Introduction
Granular avalanches are very effective at sorting particles by size, through a

combination of ‘kinetic sieving’ and ‘squeeze expulsion’ (Middleton 1970; Savage &

† Email address for correspondence: nico.gray@manchester.ac.uk
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Figure 1. A schematic diagram of an avalanche flow front and the inversely graded particle
size distribution within the interior. Large particles rise up into the faster-moving near-surface
layers of the avalanche and are transported to the flow front, where they can be overrun and
then recirculated, by particle size segregation, to form a bouldery margin. The basal layer of
small particles is of thickness η and the total depth of the avalanche is h. The downslope
coordinate x is inclined at an angle ζ to the horizontal.

Lun 1988). As the grains are sheared past one another, the avalanche dilates sufficiently
for small particles to be able to preferentially percolate down into gaps that open
up beneath them under gravity and, once underneath, they gradually lever the larger
particles upwards to equilibrate the solids volume fraction and pressure. Larger
particles therefore tend to rise towards the surface of the flow and the smaller
particles percolate down to the bottom to create an ‘inversely graded’ particle size
distribution (Middleton & Hampton 1976). Since the upper layers of the avalanche
move faster than the lower ones, there is a net transport of large particles towards
the flow front as shown in the schematic diagram in figure 1. Once the coarse grains
reach the front they may accumulate, either by being overrun and recirculated again
by particle size segregation (Costa & Williams 1984; Pierson 1986; Iverson 1997;
Pouliquen, Delour & Savage 1997) or by being pushed along en masse in front of the
flow (Pouliquen & Vallance 1999).

The accumulation of larger less mobile particles at avalanche fronts can have a
significant influence on the bulk motion of geophysical mass flows, and is the source
of instabilities that can spontaneously generate self-channelizing leveed flows (Pierson
1986; Iverson & Vallance 2001; Iverson 2003) and digitate lobate terminations (Calder,
Sparks & Gardeweg 2000). The photograph in figure 2 shows an example of this
in a snow avalanche that has uprooted trees and entrained debris as it destroyed
approximately 200 m2 of forest in the Puschlav valley. The deposit has a well-
developed snout that is almost entirely composed of tree stumps and coarse debris,
and the interior is bounded by lateral levees that are composed of the same material as
the front. Such deposits are formed by the larger more resistive material that reaches
the front, being continuously shouldered aside by the more mobile interior, to create
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Figure 2. Snow avalanche with levees formed from debris at Val Prada, Switzerland (Courtesy
P. Bartellt, WSL-Institut für Schnee- und Lawinenforschung, Davos). The avalanche occurred
on the Val Prada torrent, located near Poschiavo in the Puschlav valley on the 9th February
2009. The avalanche was released from five different zones in a large basin and was estimated
to be between 100 000 to 150 000 m3. One of the zones was located above a forest, and
approximately 200 m2 was destroyed, entraining dirt, trees and scree into the avalanche. In
this picture the slope is about 10◦ and eyewitnesses report the avalanche travelling at constant
velocity of 2–5 m s−1 before coming to rest.

stationary lateral levees that channelize the flow and enhance the overall run-out
distance. Similar features are also observed in both wet and dry snow avalanches
(e.g. Jomelli & Bertran 2001; Bartelt & McArdell 2009), water-saturated debris flows
(e.g. Pierson 1986; Iverson 1997, 2003), rock avalanches (e.g. Bertran 2003) and dense
pyroclastic flows (e.g. Calder et al. 2000; Iverson & Vallance 2001). On a much smaller
laboratory scale, fingering instabilities and leveed channels can also be produced with
dry mixtures of large rough grains and smaller smoother particles (e.g. Pouliquen
et al. 1997; Pouliquen & Vallance 1999; Félix & Thomas 2004; Aranson, Malloggi &
Clement 2006; Goujon, Dalloz-Dubrujeaud & Thomas 2007).

All of these flows are examples of ‘segregation-mobility feedback’ phenomena in
which the evolving particle size distribution has a direct effect on the local mobility of
the avalanche. Other examples include longer run-out caused by segregation-induced
changes to the velocity profile (Phillips et al. 2006; Linares-Guerrero, Goujon & Zenit
2007; Rognon et al. 2007), petal formation in rotating drums (Hill, Gioia & Amaravadi
2004; Zuriguel et al. 2006) and the formation of two-dimensional stratification patterns
in Hele-Shaw cells (Williams 1968; Grasselli & Herrmann 1997; Gray & Hutter
1997; Makse et al. 1997; Baxter et al. 1998), where the more resistive grains that
accumulate at the flow front are deposited onto the underlying substrate, rather than
being continuously shouldered aside into lateral levees (Gray & Ancey 2009).
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In order to properly understand some of these important and complex effects, it is
necessary to develop mathematical models that can not only compute the evolving
particle size distribution within the avalanche, but the effect that this has on (i) the
local mobility of the flow, (ii) the velocity profile through the depth of the avalanche
and (iii) the basal deposition. One of the major obstacles in achieving this goal is that
nearly all existing models for granular avalanches use a system of depth-averaged
equations to compute the thickness h and depth-averaged velocity ū (e.g. Grigorian,
Eglit & Iakimov 1967; Savage & Hutter 1989; Iverson 1997; Gray, Wieland & Hutter
1999; Pouliquen 1999a; Wieland, Gray & Hutter 1999; Iverson & Denlinger 2001;
Gray, Tai & Noelle 2003; Pitman et al. 2003; Gruber & Bartelt 2007; Mangeney
et al. 2007). Whereas simple theories for kinetic sieving and squeeze expulsion require
the full three-dimensional velocity field u (Savage & Lun 1988; Dolgunin & Ukolov
1995; Gray & Thornton 2005; Gray & Chugunov 2006; Thornton, Gray & Hogg
2006). It is possible to reconstruct u from ū using bulk incompressibility and assumed
velocity profiles through the avalanche depth (Gray & Ancey 2009) to solve for
the three-dimensional concentration of small particles φ. It would, however, be very
useful to have a description that fitted naturally into the depth-averaged avalanche
framework. This paper addresses this need by deriving a new equation that is able to
capture the essential processes involved in the transport of large particles towards a
flow front.

2. Governing equations
In this section the depth-averaged avalanche equations and the particle size

segregation equations are briefly reviewed, before using some of the results to derive
a new depth-averaged theory for large particle transport in granular avalanches.

2.1. Depth-averaged avalanche models

Let Oxz define a coordinate system with the x axis pointing down a slope inclined
at an angle ζ to the horizontal and the z axis being the upward pointing normal as
shown in figure 1. The avalanche velocity u has components u(x, z, t) and w(x, z, t) in
the downslope and normal directions, respectively. The free surface of the avalanche
lies at a height s(x, t) and the basal topography on which it flows is defined by its
height b(x). The difference defines the avalanche thickness

h(x, t) = s(x, t) − b(x). (2.1)

Although there is some dilation and contraction of the material, it is commonly
assumed that the avalanche is incompressible

∂u

∂x
+

∂w

∂z
= 0, (2.2)

which is a reasonable first approximation. This can be integrated through the
avalanche depth by using Leibniz’ integral theorem (e.g. Abramowitz & Stegun
1970) for exchanging the order of integration and differentiation with respect to a
variable λ

∂

∂λ

∫ s(λ)

b(λ)

f dz =

∫ s(λ)

b(λ)

∂f

∂λ
dz +

[
f

∂z

∂λ

]s(λ)

b(λ)

, (2.3)

to give ∫ s

b

(
∂u

∂x
+

∂w

∂z

)
dz =

∂

∂x

(∫ b

s

u dz

)
−

[
u

∂z

∂x
− w

]s

b

. (2.4)
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Defining the depth-averaged avalanche velocity

ū =
1

h

∫ s

b

u dz, (2.5)

and using the kinematic boundary conditions (e.g. Savage & Hutter 1989)

∂z

∂t
+ u

∂z

∂x
− w = 0, at z = s(x, t) and z = b(x), (2.6)

the depth-averaged mass balance becomes

∂h

∂t
+

∂

∂x
(hū) = 0. (2.7)

A similar integration procedure that incorporates the surface and basal kinematic and
traction boundary conditions can be used to derive a depth-integrated momentum
balance equation in the downslope direction (e.g. Savage & Hutter 1989; Gray et al.
1999, 2003). Assuming that the avalanche is shallow, the normal momentum balance
implies that the pressure is lithostatic

p = ρg(s − z) cos ζ, (2.8)

where ρ is the density of the material and g is the constant of gravitational
acceleration. To close the model it is necessary to include a simplified representation
of the normal stress gradients in the downslope direction. There are essentially two
variants of the theory; one group that uses a simplified Mohr–Coulomb rheology
(e.g. Savage & Hutter 1989; Iverson 1997; Gray et al. 1999; Iverson & Denlinger
2001) and another that assumes that the internal stress is dominated by the isotropic
pressure field (e.g. Grigorian et al. 1967; Pouliquen 1999a; Gray et al. 2003; Pitman
et al. 2003; Cui, Gray & Johannesson 2007; Gray & Cui 2007; Gruber & Bartelt
2007; Mangeney et al. 2007). In both cases the resulting depth-averaged downslope
momentum balance takes the form

∂

∂t
(hū) +

∂

∂x

(
Fhū2

)
+

∂

∂x

(
1

2
Kg cos ζh2

)
= hg cos ζ

(
tan ζ − u

|u|µ − ∂b

∂x

)
, (2.9)

where F = u2/ū2 is the velocity shape factor and µ is the coefficient of basal friction.
For the Mohr–Coulomb models, the earth pressure coefficient K jumps between two
limiting stress states as the avalanche switches from divergence to convergence (see
e.g. Savage & Hutter 1989). In the isotropic pressure models K = 1 and (2.7) and (2.9)
reduce to the same mathematical structure as the shallow water equations. The source
term on the right-hand side of (2.9) represents the physical effects of gravitational
acceleration, basal friction and basal topography gradients.

2.2. Models for particle size segregation and diffusive remixing

Savage & Lun (1988) derived the first theory for segregation in granular avalanches
using information entropy ideas, and Dolgunin & Ukolov (1995) wrote down a
similar model that included the diffusive effects of particle remixing. More recently
Gray & Thornton (2005), Thornton et al. (2006) and Gray & Chugunov (2006)
have derived segregation models from mixture theory, which are compatible with the
assumptions made in the derivation of the depth-averaged avalanche equations, i.e.
the flow is shallow, it satisfies bulk incompressibility (2.2) and has a lithostatic pressure
distribution through its depth (2.8). The processes of kinetic sieving and squeeze
expulsion are modelled as a percolation process that is driven by perturbations to
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the lithostatic pressure distribution. The fines carry less of the load as they percolate
downwards and the large grains support correspondingly more of the overburden
pressure, until they separate out into a pure phase. This places restrictions on the
functional form of the segregation flux (Gray & Thornton 2005), which is presented
here in its simplest form. While the derivations of Gray and co-workers differ from
that of Savage & Lun (1988) and Dolgunin & Ukolov (1995), all of these theories
take the general form

∂φ

∂t
+

∂

∂x
(φu) +

∂

∂z
(φw) − ∂

∂z
(qφ(1 − φ)) =

∂

∂z

(
D

∂φ

∂z

)
, (2.10)

where 0 � φ � 1 is the volume fraction of small particles per unit granular volume,
q is the mean segregation velocity, D is the coefficient of diffusive remixing and the
volume fraction of large particles is equal to 1 − φ. The segregation flux, −qφ(1 − φ),
has the property that it shuts off when there are either all large particles or all
fines, which automatically keeps φ ∈ [0, 1]. The segregation rate q and the diffusion
coefficient D may contain further dependencies on φ (e.g. Savage & Lun 1988), as
well as the grain size ratio, the shear rate and the local solids volume fraction, but, so
far, there has been very little experimental work (e.g. Savage & Lun 1988; Valance &
Savage 2000; Golick & Daniels 2009) or discrete element simulations (e.g. Khakhar,
McCarthy & Ottino 1999; Gray & Chugunov 2006) to determine these functional
dependencies.

Equation (2.10) is subject to the condition that there is no flux of small particles
across the surface and basal boundaries

qφ(1 − φ) + D
∂φ

∂z
= 0 at z = s(x, t), and z = b(x). (2.11)

The segregation-remixing equation (2.10) is defined in two space dimensions and
requires the two-dimensional velocity components (u, w) of the bulk flow field. These
can be reconstructed from ū using assumed downslope velocity profiles through the
avalanche depth, together with the incompressibility condition (2.2), as in Gray &
Ancey (2009). Alternatively (u, w) can be computed directly using the new constitutive
law for dense granular avalanches (Jop, Forterre & Pouliquen 2006), which Rognon
et al. (2007) have suggested may be modified for binary mixtures. A third possibility
is to incorporate a simplified description of the segregation process into a depth-
averaged model, i.e. to reduce the dimension of the segregation equation, so that
there is no need to reconstruct the velocity components (u, w).

2.3. Derivation of a depth-averaged segregation model

Defining the depth-averaged concentration of small particles and the depth-averaged
flux of small particles as

φ̄ =
1

h

∫ s

b

φ dz, and φu =
1

h

∫ s

b

φu dz, (2.12)

the segregation-remixing equation (2.10) can be integrated through the avalanche
depth using Leibniz’ integral theorem (2.3) to give

∂

∂t
(hφ̄) +

∂

∂x

(
hφu

)
−

[
φ

(
∂z

∂t
+ u

∂z

∂x
− w

)]s

b

=

[
qφ(1 − φ) + D

∂φ

∂z

]s

b

. (2.13)

The first square-bracketed term is identically zero due to the surface and basal
kinematic conditions (2.6) and the second square-bracketed term is identically zero
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because of the no-flux condition (2.11). It follows that the depth-integrated segregation
equation (2.13) reduces to

∂

∂t
(hφ̄) +

∂

∂x

(
hφu

)
= 0, (2.14)

which no longer has any explicit dependence on q and D, although the depth-averaged
concentration of small particles φ and the depth-averaged small particle flux φu may
still be dependent on both of these parameters.

In order to close, the model expressions must be devised for the depth-averaged
quantities φ̄ and φu defined in (2.12). There are many possible model assumptions
that could be made at this point, but we are motivated by the stratification pattern
experiments of Gray & Hutter (1997) and Gray & Ancey (2009), which showed
(i) that the inverse grading could develop very rapidly, (ii) that the grains could
be very sharply segregated by size and (iii) that there was considerable evidence
of strong shear through the avalanche depth. We will therefore assume that the
avalanche segregates instantaneously, so that the particle size distribution is always
sharply inversely graded, i.e.

φ =

{
0 l � z � s,

1 b � z � l.
(2.15)

This is equivalent to the assumption that q −→ ∞, which is a valid limit if the lateral
length scale for complete segregation is much smaller than the typical length scale of
the avalanche. The depth-averaged concentration is then equal to

hφ̄ = l − b = η, (2.16)

where η is the thickness of the basal layer of small particles shown schematically in
figure 1. Following Gray & Thornton (2005) the downslope velocity is assumed to be
linear with depth

u = αū + 2(1 − α)ū

(
z − b

h

)
, 0 � α � 1, (2.17)

with a parameter α that allows the profile to vary from plug flow for α = 1, to simple
shear for α =0, and linear shear with basal slip for intermediate values. This is able to
capture the leading-order behaviour of flows on both smooth (Savage & Hutter 1989)
and rough slopes (Gray & Ancey 2009), although more general profiles are possible.
Using (2.15) and (2.17) it follows that the depth-averaged flux of small particles

hφu = ηū − (1 − α)ūη
(
1 − η

h

)
, (2.18)

which is independent of the parameters q and D used in the segregation-remixing
equation (2.10). Substituting (2.16) and (2.18) into (2.14) yields an important new
equation for the evolution of the inversely graded shock interface height η

∂η

∂t
+

∂

∂x
(ηū) − ∂

∂x

(
(1 − α)ūη

(
1 − η

h

))
= 0. (2.19)

An equivalent and almost identical equation for the evolution of the large particle
thickness χ = h − η is obtained by subtracting (2.19) from (2.7) to give

∂χ

∂t
+

∂

∂x
(χū) +

∂

∂x

(
(1 − α)ūχ

(
1 − χ

h

))
= 0. (2.20)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

01
1X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211201000011X


112 J. M. N. T. Gray and B. P. Kokelaar

In general, either (2.19) or (2.20) can be used to calculate the inversely graded
interface position. In this paper we will use (2.19). We will refer to it as the ‘large
particle transport equation’ or ‘transport equation’ for short, because it preferentially
transports large particles towards the avalanche front. The easy way to see this is
to calculate the large and small particle transport velocities from (2.20) and (2.19),
which are

ul = u + (1 − α)uη/h, (2.21)

us = u − (1 − α)uχ/h, (2.22)

respectively. The depth-averaged velocity u determines the flow direction and hence
the direction of the front. Equation (2.21) implies that provided there is shear, the
large particles will move towards the front faster than the average velocity ū, unless
there are no small particles in that region of the flow. While (2.22) implies that the
small particles will be transported towards the flow front slower than average, unless
there are no large particles left. The transport term in (2.19) has the property that
it shuts off when η = 0, h and when the transport rate (1 − α)ū/h is equal to zero.
Since the transport rate is proportional to the downslope velocity shear through the
avalanche depth, it is equal to zero when the material is stationary (ū = 0) and when
there is plug flow (α = 1). In this case the transport equation (2.19) degenerates to the
same form as the thickness equation (2.7) and h/η is conserved.

The large particle transport equation represents the first attempt to include size
segregation and shear into the depth-averaged avalanche framework. It encapsulates
the key physical effects that drive the transport of large grains towards a flow
front. Despite its simplicity (2.19) has considerable power because it reduces a two-
dimensional problem to a one-dimensional one. This opens up the realistic possibility
of coupling the basal friction µ of the bulk flow to the evolving particle size distribution
within the avalanche, to model the subtle ‘segregation-mobility’ feedback effects
discussed by Pouliquen et al. (1997), Pouliquen & Vallance (1999) Iverson & Vallance
(2001), Phillips et al. (2006) and Gray & Ancey (2009). The properties of the transport
equation (2.19) will be investigated in this paper, using either prescribed avalanche
thickness and velocity distributions or simplified uncoupled solutions for the bulk
flow.

2.4. Non-dimensionalization

It is convenient to introduce non-dimensional variables that reflect the shallowness of
the avalanche and typical magnitudes for the thickness H , length L and velocity U

x = Lx̃, (z, h, η) = H
(
z̃, h̃, η̃

)
, t = (L/U )̃t , (u, ū, w) = U

(
ũ, ˜̄u, εw̃

)
, (2.23)

where the aspect ratio of the avalanche ε =H/L is small. In the conventional scaling
for smooth beds (Savage & Hutter 1989), the velocity magnitude U =

√
Lg is set by

a balance between acceleration and gravity. For rough beds a different velocity
magnitude arises (Gray & Ancey 2009), because the gravitational acceleration
is balanced by the frictional resistance to motion (Pouliquen 1999b). Since we
are investigating uncoupled solutions to the transport equation in this paper, the
magnitude of U is left as general as possible at this stage. With the scalings (2.23),
the non-dimensional form of the large particle transport equation (2.19) remains
essentially unchanged

∂η

∂t
+

∂

∂x
(ηū) − ∂

∂x

(
(1 − α)ūη

(
1 − η

h

))
= 0, (2.24)
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where the tildes are dropped for simplicity. Using the identity

φ̄ =
η

h
, (2.25)

the transport equation (2.24) can be rewritten as an equation for the depth-averaged
concentration of small particles

∂

∂t
(hφ̄) +

∂

∂x

(
hφ̄ū

)
− ∂

∂x

(
(1 − α)hūφ̄

(
1 − φ̄

))
= 0. (2.26)

This is very closely analogous to the non-dimensional segregation equation without
diffusive effects (D =0), which becomes

∂φ

∂t
+

∂

∂x
(φu) +

∂

∂z
(φw) − ∂

∂z
(Srφ(1 − φ)) = 0, (2.27)

where Sr = qL/(HU ) is the non-dimensional segregation number. Equation (2.26) is
one-dimensional and has a quadratic dependence on φ̄ in the x direction, while (2.27)
is two-dimensional and has a quadratic dependence on φ in the z direction. Previous
analysis of the hyperbolic segregation equation (e.g. Gray & Thornton 2005; Gray,
Shearer & Thornton 2006; Thornton et al. 2006; Shearer, Gray & Thornton 2008)
implies that small particles tend to percolate downwards with speed ws = w−Sr (1−φ),
while large particles tend to rise with velocity wl =w +Srφ, collecting in a pure phase
adjacent to the free surface. Since the segregation velocities are almost identical
in form to the transport velocities (2.22) and (2.21) in the depth-averaged model,
this immediately suggests that the transport equation (2.24) will develop higher
concentrations of large particles near the avalanche front.

3. Interface transport and breaking size segregation waves
The transport equation (2.24) assumes that the segregation rate is infinite and that

the large particles are always inversely graded. While this achieves great simplification,
it means the theory can not represent the detailed structure of the two-dimensional
expansion fans and concentration shocks (Gray & Thornton 2005; Gray et al. 2006;
Thornton et al. 2006; Shearer et al. 2008; Gray & Ancey 2009) that enable the
particles to readjust into a stable inversely graded configuration. The theory, however,
does a remarkably good job of representing solutions to problems once the grains
have become inversely graded as will be shown here.

3.1. Interface transport

Consider the transport of a monotonically decreasing shock interface η. Assuming
that the avalanche is steady and uniform, the large particle transport equation (2.24)
becomes

∂η

∂t
+

∂

∂x

(
αη + (1 − α)η2

)
= 0, (3.1)

where ū and h are assumed to be equal to unity by virtue of the scalings (2.23).
Expanding out the derivatives this can also be written as

∂η

∂t
+ u(η)

∂η

∂x
= 0, (3.2)

where the non-dimensional downslope velocity

u(η) = α + 2(1 − α)η. (3.3)
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Equation (3.2) has exactly the same form as that derived by Gray et al. (2006) for the
evolution of the shock separating large particles above from small particles below (see
their equation (4.20)), and closely resembles the inviscid Burgers’ equation. Hence,
provided that the particles are already sharply segregated and the shock interface does
not break, the depth-averaged model (2.24) and the full segregation theory (2.26) give
precisely the same result.

The position of the shock interface can be computed by the method of
characteristics. For initial data (xo, ηo) at t = to the solution is

η = ηo, on x = xo + u(ηo)(t − to). (3.4)

An example of this is shown in figure 3 for an initial discontinuity at x =0 between
constant upstream height ηup = 0.1 and downstream height ηdown = 0.9. Since the
velocity is greater nearer the top of the flow the downstream interface moves faster
than the upstream side and an expansion fan forms. The interface height within this
expansion is linear in x and its gradient decreases with increasing time

η =
1

2(1 − α)

(x

t
− α

)
, x ∈ [u(ηup)t, u(ηdown)t]. (3.5)

The expansion fan is centred at x = 0 at t =0 and can be seen more clearly in terms
of characteristics on the (x, t) diagram in figure 4. Characteristic lines with the lower
angle of inclination correspond to interfaces that are higher in the flow and move
faster downstream.

3.2. Breaking size segregation waves

Breaking size segregation waves (Thornton & Gray 2008; Gray & Ancey 2009) are a
very important and common feature of bi-disperse granular flows and form whenever
small grains are sheared over the top of large particles. Within these waves small
particles percolate down into the slower moving layers of the avalanche and squeeze
the larger ones up into the faster moving flow near the free surface. Breaking size
segregation waves therefore recirculate large particles back towards the front of an
avalanche and the smaller ones towards the tail. A simple compression problem with
a monotonic decrease in the interface height η is sufficient to generate a breaking
wave at some finite time later. For instance, Thornton & Gray (2008) assumed that
the interface

η =

⎧⎪⎨
⎪⎩

0.9, −0.8 > x,

(1 − x)/2, −0.8 � x � 0.8,

0.1, 0.8 < x,

(3.6)

as shown in figure 5. Prior to the wave breaking the steepening of the interface
is the same for both the depth-averaged transport theory and the two-dimensional
segregation model. The characteristics (3.4) and the initial condition (3.6) imply that
for α =0 the linear section of the interface is given by

η =
x − 1

2(t − 1)
, −0.8 + 1.8t � x � 0.8 + 0.2t, (3.7)

and it becomes vertical at x = 1 at time t = 1. After t = 1 a breaking wave forms in the
two-dimensional size segregation theory (Thornton & Gray 2008), which propagates
downstream at approximately unit speed and oscillates backwards and forwards like
a spinning rugby ball as shown in figure 5. The structure of the time-dependent
breaking wave is complex and so far exact solutions have been generated only for the
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Figure 3. A series of vertical sections through a unit-thickness avalanche showing the
evolution of the particle size distribution with increasing time. There is a linear downslope
velocity profile through the avalanche depth with no slip at the base (α = 0). The avalanche is
sharply segregated with all the large particles (white) above the small (grey) ones. The shock
interface η between the two species has an initial discontinuity at x = 0 and lies at a height
0.1 upstream and 0.9 downstream. At subsequent times this forms an expansion fan with a
linear transition between the two states. The solution is identical for both the one-dimensional
depth-averaged transport theory and the full two-dimensional hyperbolic segregation model.

initial phase of breaking (McIntyre et al. 2007). Numerical simulations (Thornton &
Gray 2008) indicate that the oscillations slowly decay to leave an exact steady-state
solution (Thornton & Gray 2008), which consists of two expansions fans and two
shocks that are arranged in a lens-like structure. The numerical solution shown in
figure 5 is computed using a non-oscillatory central scheme with a minmod slope
limiter (Nessyahu & Tadmor 1990; Jiang et al. 1998; Jiang & Tadmor 1998), which is
a high-resolution shock-capturing method that has successfully been used to compute
the flow of avalanches past obstacles (Tai et al. 2002; Gray et al. 2003; Cui et al.
2007; Gray & Cui 2007).
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Figure 4. An (x, t) diagram corresponding to the problem in figure 3, showing the
characteristic lines and the expansion fan centred at x = 0 at t = 0. The characteristics are
more steeply inclined for lower interface heights η and hence information propagates more
slowly downstream.

In the equivalent large particle transport problem the breaking size segregation
wave is replaced by a discontinuity in the shock interface height η. This is shown as
a solid line in figure 5. At such discontinuities η satisfies the jump condition (see e.g.
Chadwick 1999; Gray et al. 2006, for a general derivation)

η(ū − vn) =
[[
(1 − α)ūη

(
1 − η

h

)]]
, (3.8)

where vn is the normal speed of the shock and the jump bracket f = f2 − f1 is the
difference of the enclosed quantity on the forward and rearward sides of the shock
(denoted by the subscripts 2 and 1, respectively). For a unit-thickness avalanche with
depth-averaged velocity ū =1 this implies that the shock speed

vn = α + (1 − α)(ηup + ηdown), (3.9)

which is precisely the same as the speed of the steadily breaking wave found by
Thornton & Gray (2008) (see their equation (2.25)). For α = 0 the shock position

xshock = t, t > 1. (3.10)

The complete structure of the characteristics and the shock in the depth-averaged
solution is shown on an (x, t) diagram in figure 6. The characteristics in the linearly
inclined section in (3.6) converge to the point (1, 1) where a shock is formed and
then propagates downstream with unit speed. A comparison of the two-dimensional
segregation theory and the one-dimensional transport solution shown in figure 5
shows that they are identical prior to t = 1, and, at subsequent times, the complex
structure of the breaking wave is replaced by a shock that travels at the correct speed.
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Figure 5. A comparison between the solution of the steepening wave problem of Thornton &
Gray (2008) using the one-dimensional transport equation and that using the two-dimensional
segregation equation. Initially the upstream interface lies at height ηup = 0.9 and is connected
to the downstream interface at height ηdown = 0.1 by a linear transition in the region
−0.8 <x < 0.8. The two-dimensional solution is represented with a contour scale with darker
grey corresponding to higher concentrations of small particles and white to purely large
particles. The interface position in the one-dimensional theory is represented by a solid line.
Up until t = 1 the solutions are identical, but after t = 1 a breaking size segregation wave
forms in the two-dimensional theory. This is represented as a shock in the interface height in
the one-dimensional theory. An animated version is available with the online version of this
paper (supplementary movie 1 available at journals.cambridge.org/flm).

This is a considerable simplification of the theory, while still retaining the key features
of the relative transport of large and small particles in the downstream direction.

3.3. Breaking wave interaction

The simple transport equation is also able to capture the essence of the lens interaction
problem of Thornton & Gray (2008). In this problem the initial interface lies at a
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Figure 6. An (x, t) diagram of the depth-averaged solution of the breaking wave problem of
Thornton & Gray (2008) showing the characteristics as thin lines and the shock as a thick
line. The linear section steepens and breaks along its entire length at time t = 1 at position
x = 1 forming a shock that travels downstream at unit speed.

height

η =

⎧⎪⎨
⎪⎩

0.9, −1.3 > x,

0.5, −1.3 � x � 1.3,

0.1, 1.3 < x,

(3.11)

and generates two breaking size segregation waves that move at different speeds
downstream as shown in figure 7. The higher one is faster than the lower one, because
the bulk velocity u is greater near the free surface. Shortly after t = 3 the two waves
interact and merge with one another to form a single breaking wave that moves at
approximately unit speed downstream. In the equivalent transport problem the shock
relation (3.8) can again be used to calculate the motion of the shocks that replace
the breaking size segregation waves. For α = 0, it follows that the upper shock moves
with non-dimensional speed 1.4 and the lower one at speed 0.6, and their positions
are

xupper = −1.3 + 1.4t, xlower = 1.3 + 0.6t, (3.12)

respectively. They meet at x =3.25 at time t = 3.25 and merge to form a single shock
that moves with unit speed downstream with position

xmerge = t, t > 3.25, (3.13)

as shown in figure 7. The complete evolution can be summarized in the (x, t) diagram
shown in figure 8, which shows how the characteristics run into either side of all three
shocks.
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Figure 7. A comparison between the solution of the wave merging problem of Thornton &
Gray (2008) using the one-dimensional transport equation and that using the two-dimensional
segregation equation. The same contour scale as in figure 5 is used. Initially the upstream
interface has two discontinuities at x = −1.3 and 1.3 that separate an upstream section at
height 0.9 from a middle section with height 0.5 and a downstream section of height 0.1.
The discontinuities form two breaking size segregation waves that propagate downstream and
merge to form a single wave that moves at approximately unit speed. The one-dimensional
transport solution (solid line) represents the breaking waves as shocks in the interface height.
An animated version is available with the online version of this paper (supplementary
movie 2).

4. Stratification patterns
Segregation often occurs when granular materials are poured into a heap for

storage or filled into silos and bins (Williams 1968; Makse et al. 1997). This can be a
significant problem in industry, where inconsistent blending degrades the quality and
consistency of the product (Johanson 1978). Various types of patterns form in the
deposits, which reflect both the roughness and size of the particles (Herrmann 1998)
and the rate at which they are poured (Gray & Hutter 1997; Baxter et al. 1998).
At higher rates, when basal deposition is the dominant mechanism for stopping the
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Figure 8. An (x, t) diagram of the depth-averaged solution of the wave merging problem of
Thornton & Gray (2008) showing the characteristics as thin lines and the shocks as thick lines.
The upper shock travels downstream faster than the lower one, and they merge at t = 3.25 at
x = 3.25 to form a single shock that travels downstream at speed unity.

grains, a ‘triangular’ pattern forms with the highest concentrations of large particles
farthest from the source. At lower flow rates, when the avalanche is brought to rest
by the upslope propagation of a granular bore or shock wave (e.g. Gray & Hutter
1997; Gray et al. 2003) the inversely graded layers in the avalanche are preserved in
the deposit and form alternating stripes of large and small particles that lie parallel
to the free surface.

Recently, Gray & Ancey (2009) found a regime in which grains came to rest by both
basal deposition and shock wave propagation. Their experiments were performed in a
Hele-Shaw cell with a 3 mm gap and an approximately 50:50 mix by volume of 500–
600 µm white sugar crystals and 210–420 µm spherical dark iron powder. A digital
photo of an avalanche front propagating down the surface of the pile is shown in
figure 9(a). The large white particles that form part of the current flow have been
highlighted by overlaying a darkened image of the initial deposit. The flow front is
entirely composed of large particles, but within the interior a layer of small particles is
sandwiched between large grains at the free surface and a carpet of deposited coarse
particles at the base. Gray & Ancey (2009) suggested that there was a ‘segregation
mobility feedback effect’ in which large particles that were sheared to the flow front,
experienced greater resistance to motion and were deposited to enable the avalanche
to continue to propagate downslope.

Within the interior the deposition stops and a steady uniform flow develops.
Although there are some exponentially small motions deeper down in the pile
(Jesuthasan, Baliga & Savage 2006), the main transition from the flowing avalanche
to an essentially stationary body occurs just above the penultimate layer of large par-
ticles. The avalanche is therefore still inversely graded even though the particle size
distribution looks like a small particle sandwich. When the flow is brought to rest by
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(a) (b)

Small particle sandwich

Coarse rich front

Flowing
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Figure 9. Two composite images showing (a) the propagation of an avalanche front down
the surface of a stratified pile and (b) the jump in the avalanche thickness and inversely graded
interface height (across the white line) as a flowing avalanche is brought to rest by an upslope
propagating granular bore. The images all come from the same experiment and are constructed
from panels (a), (g), (o) and (t) shown in figure 1 of Gray & Ancey (2009). The white grains
are 500–600 µm sugar crystals and the region with a slightly mottled appearance consists of
210–420 µm dark iron spheres. A shaded overlay of the initial deposit has been used in (a)
to highlight large grains that form part of the current flow. Each image is 36.1 mm wide by
38.2 mm high and an animation showing the deposition of two avalanches is available with
the online version of this paper (supplementary movie 3).

the upslope propagation of a granular bore, as shown in figure 9(b), the avalanche
increases in thickness and the inverse grading is preserved in the final deposit.

The stratification pattern experiments shown in figure 9(a, b) are interesting, because
even though the parent flow is inversely graded in both cases they show that two
qualitatively different mechanisms for deposition give rise to completely opposite
gradings in the final deposit. In figure 9(a) basal deposition close to the flow front
leads to a normally graded deposit that is overrun by the avalanche, while in figure 9(b)
a diffuse shock wave brings the grains to rest and preserves the inverse grading in
the final deposit. It is of considerable interest to see whether the transport theory can
capture these phenomena.

4.1. A travelling wave solution near a depositing front

In order to apply the large particle transport equation to a depositing avalanche
front, the theory must first be generalized to include the effects of basal deposition.
Assuming that the flow is shallow, the basal kinematic condition (e.g. Gray 2001)
becomes

∂b

∂t
+ ub

∂b

∂x
− wb = d at z = b(x, t), (4.1)

where (ub, wb) are the velocity components at the base of the avalanche and d

is the normal deposition rate per unit area per unit time. Depth integrating the
incompressibility condition (2.2) and the segregation equation (2.10) through the
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avalanche depth and substituting the kinematic condition (4.1) yields

∂h

∂t
+

∂

∂x
(hū) = −d, (4.2)

∂η

∂t
+

∂

∂x
(ηū) − ∂

∂x

(
(1 − α)ūη

(
1 − η

h

))
= −φbd, (4.3)

where φb is the small particle concentration at the base of the avalanche. The inversely
graded concentration distribution (2.15) implies that there are either (i) large particles
at the bottom of the flow (φb = 0) and (4.3) is trivially satisfied by

η = 0 (4.4)

or (ii) there are small particles (φb = 1) and the transport equation reduces to

∂η

∂t
+

∂

∂x
(ηū) − ∂

∂x

(
(1 − α)ūη

(
1 − η

h

))
= −d. (4.5)

The deposition term on the right-hand side of (4.5) is the same as that in (4.2), which
is consistent with the notion that all the particles that are deposited are small when
there are small particles at the base of the flow.

Motivated by the observations in figure 9(a) and following Gray & Ancey (2009), a
travelling wave solution is sought in a frame moving downslope with speed uF . Using
the transformation

ξ = x − uF t, τ = t, (4.6)

and assuming that ub =wb =0, the kinematic condition (4.1) implies that the
deposition rate d = −uF ∂b/∂ξ . Substituting this into the depth-averaged mass balance
equation (4.2) and the transport equation (4.5) implies that

∂

∂ξ
(h(ū − uF ) − uF b) = 0, (4.7)

∂

∂ξ

(
−ηuF + ū

η2

h
− uF b

)
= 0. (4.8)

The first of these equations can be integrated subject to the condition that h = b = 0
at the avalanche front to give

b = λh, where λ =
ū − uF

uF

. (4.9)

When there is no deposition the depth-averaged mass balance equation (4.7) implies
that ū is equal to the front velocity uF (Pouliquen 1999b). Problems with deposition
are notoriously difficult and there is presently no complete theory to determine the
deposition rate d . One approach is to prescribe d (e.g. Doyle et al. 2007) based on
experimental observations (Lajeunesse, Mangeney-Castelnau & Vilotte 2004; Lube
et al. 2004). This paper follows Gray & Ancey (2009) who instead prescribed the
depth-averaged velocity

ū = (1 + λ)uF , (4.10)

to be constant throughout the avalanche.
Steady uniform flows develop on rough beds over a range of angles ζ1 � ζ � ζ2,

which Pouliquen (1999a) and Pouliquen & Forterre (2002) used to derive a new
friction law appropriate for these surfaces. In addition, rough beds also support
travelling flow fronts, which propagate downslope at constant speed and have a
constant depth-averaged velocity throughout the flow. Their free surface shape s(ξ )
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Figure 10. The solution of the transport equation at a depositional flow front. The small
particle region is shown in grey and the large particle region is shown in white. The free
surface s and basal deposition surface b are shown with solid black lines, the hatched region is
empty and the dot-dashed lines show the particles paths of the bulk flow. The material above
the no-mean flow line zuF

(dashed line) moves towards the front, and that below it moves
backwards.

can then be calculated from the depth-averaged downslope momentum balance (2.9)
using the rough bed friction law. Pouliquen (1999b) did this numerically using the
exponential form of his friction law for rough beds (Pouliquen 1999a). More recently,
Gray & Ancey (2009) used Pouliquen & Forterre’s (2002) modified reciprocal form
of the friction law to derive the exact solution

ξ = (1 + γ )s +
(1 + γ )2

3γ

[
ln

(
(1 −

√
s)2

s +
√

s + 1

)
+ 2

√
3 atan

(
1 + 2

√
s√

3

)
− π√

3

]
, (4.11)

where

γ =
tan ζ2 − tan ζ1

tan ζ − tan ζ1

− 1, (4.12)

and ζ2 and ζ1 are the maximum and minimum angles for which steady uniform
flows are observed. The solution is illustrated in figure 10, which shows that the
avalanche front is located at ξ =0 and that as ξ −→ −∞ the free-surface height
s −→ 1. This solution implicitly assumes that the maximum free-surface height H is
used to scale the vertical coordinate in (2.23) and that the horizontal length scale
L = H/(tan ζ2 − tan ζ1). The results that follow are not dependent on the precise
form of the avalanche front and Gray & Ancey’s (2009) profile is used primarily to
enable direct comparison with their two-dimensional solutions for the small particle
concentration.

In order to solve the two-dimensional segregation equation (2.27) near a depositing
avalanche front, Gray & Ancey (2009) mapped the (ξ, z) coordinates into a set
of streamfunction coordinates (ξ, ψ) that linearized the problem. The streamfunction
coordinates are also useful for solving the transport equation (4.3) and are constructed
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by calculating the velocity integral

ψ =

∫ z

0

u(ξ, z′) − uF dz′. (4.13)

Assuming that the downslope velocity is linear with depth and zero at the base

u =

⎧⎨
⎩2ū

(
z − b

h

)
, b � z � s,

0, 0 � z � b,

(4.14)

the streamfunction

ψ =

{
ū

h

(
z2 − κzh + λ2h2

)
, b � z � s,

−uF z, 0 � z � b,
(4.15)

where κ is a function of the deposition parameter λ

κ = 2λ +
1

1 + λ
. (4.16)

The streamfunction ψ is zero at the surface and base of the flow and attains a local
minimum on the no-net flow line at z = zuF

. This marks the point where the bulk
velocity u is equal to the front velocity uF and is shown with a dashed line in figure 10.
The dot-dashed lines are used to illustrate lines of constant ψ , which are also particle
paths of the bulk flow field. Substituting the definition z = η+b into the first equation
in (4.15) implies that the streamfunction ψ can also be expressed as

ψ = −ηuF + ū
η2

h
− uF b, (4.17)

which is of precisely the same form as the term in round brackets in (4.8).
The streamfunction coordinates (ξ, ψ) therefore also linearize the one-dimensional
transport equation, which becomes

∂ψ

∂ξ
= 0 ⇒ ψ = ψL. (4.18)

It follows from (4.4) and (4.18) that either the shock interface height η equals zero
or it lies along a constant streamline ψL of the bulk flow field. Physically these two
solutions correspond to the coarse-grained flow front and the incoming inversely
graded avalanche. The solutions are exactly the same as in the two-dimensional
theory, where they are joined together by a breaking size segregation wave that lies at
a unique position behind the flow front (Gray & Ancey 2009). In the one-dimensional
transport theory the solutions are instead joined by a shock in η that satisfies the
jump condition (3.8). Assuming that interface height on the forward side of the shock,
η2, is zero and that the shock travels at the same speed as the front, the rearward
interface height

η1 =
huF

ū
. (4.19)

Substituting (4.18) and (4.19) into the streamfunction (4.17) implies that the shock is
located at the point where the basal topography is of height

bshock = −ψL

uF

, (4.20)
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(a)

(b)

Figure 11. The solution of the transport equation at a depositional flow front is plotted
in a more realistic aspect ratio (a) and a rotated and cropped image of the experimental
avalanche front of figure 9(a) is shown for comparison (b). Note that both the exact solution
and experiment have a large rich flow front that is connected to a small particle sandwich in
the interior.

which is indicated by the black dot in figure 10. This also corresponds to the position
where the large particle path ψL intersects with the basal topography, which can easily
be shown by substituting η =0 into the streamfunction (4.17). The shock therefore
connects the two branches of the ψL streamline at the point where it intersects the
basal topography as shown in figure 10.

Ahead of the shock lies the coarse-grained front and behind it lies the inversely
graded avalanche. It follows that large particles are deposited ahead of the shock
and small particles are laid down behind the shock. Even though the avalanche is
inversely graded, the combination of deposition at the base and continued flow over
the top implies the grains are deposited in a normally graded configuration separated
by a contact discontinuity at height

z = bshock , (4.21)

as shown in figure 10. The complete solution is also shown in a more realistic aspect
ratio in figure 11(a) together with a rotated close-up view of the experimental flow
front in figure 11(b) for comparison. Although the representation of the particle size
distribution is relatively crude, this simple theory is able to reproduce the broad
features of the flow, which include a coarse rich flow front and a layer of small
particles that is sandwiched between two layers of large particles as observed in the
experiment.

The solution relies on all the large particles that reach the front being deposited.
There are therefore no solutions if the incoming shock lies on a particle path that
is recirculated within the avalanche. The critical curve, between solutions and no
solutions, corresponds to the particle path that starts at minus infinity at the height
where the velocity is twice the front speed uF . This intersects the basal topography at
a height b = λ/(1 + λ) as ξ −→ −∞. The value of the streamfunction on this path is

ψ∞
2uF

= −uF

λ

1 + λ
, (4.22)

and it follows that for

ψ∞
2uF

� ψL � 0 : bshock =
−ψL

uF

, (4.23)

ψL < ψ∞
2uF

: no solution. (4.24)

In the limit as Sr −→ ∞ the breaking size segregation wave in the full two-dimensional
segregation theory (Gray & Ancey 2009) collapses onto a shock located at s =
− ψL(1 + λ)/(uFλ) (see their equation (3.39)). Using the identity b = λs/(1 + λ) it
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is easy to recover (4.23). The one-dimensional transport equation (4.3) and the full
two-dimensional segregation theory are therefore exactly equivalent in the limit as
Sr −→ ∞. One of the major advances that Gray & Ancey (2009) made was the
construction of an exact solution for the large particle paths near the avalanche
front. They showed that the particles that entered into the breaking size segregation
wave were recirculated, forming closed loops (see their figure 13), while all the large
particles that were sheared to the flow front were overrun and deposited. In the limit
as Sr −→ ∞ the width of the breaking wave tends to zero, and the closed loops have
to jump at the shock. Transport theory therefore implies that those large particles
that are not deposited are still recirculated at the flow front.

4.2. Deposition of a stripe by a granular bore

Consider now the problem of how the flowing particles at the surface of the heap
are brought to rest by an upslope propagating granular bore (Gray & Hutter 1997),
which is a critical process in the formation of stratified deposits. The increase in
the avalanche thickness and the speed of the propagation of the bore are controlled
by the depth-averaged mass and momentum jump conditions (e.g. Gray et al. 2003),
while the jump in the inversely graded interface height η is controlled by the transport
jump condition (3.8). These can be summarized by the relations

h(ū − vn) = 0, (4.25)

hu(u − vn) + 1
2
h2ε cos ζ = 0, (4.26)

η(ū − vn) − (1 − α)ūη(1 − η/h) = 0, (4.27)

where the velocity magnitude is assumed to scale as U =
√

gL. An interesting
observation from figure 9(b) is that the velocity shear within the avalanche implies
that there is a much higher mass flux of particles near the free surface than at the base
of the flow. As a result, when the grains are brought to rest the upper layer of large
particles expands proportionately more than the layer of fines. This can be seen most
clearly in the online video that accompanies this paper and is shown schematically in
figure 12. The stationary layers below the avalanche are unaffected by the bore.

This subtle effect is captured by the transport jump condition (4.27). Assuming that
the grains are stationary on the downstream side of the shock (ū2 = 0) and using the
mass jump condition (4.25), the height of the interface on the downstream side of the
shock can be expressed as

η2 = η1 +

(
h2

h1

− 1

)(
αη1 + (1 − α)

η2
1

h1

)
. (4.28)

This implies that the interface height η2 will be greater than the incoming height η1

provided h2 >h1. Dividing (4.28) by h2 and using the definition η = hφ̄ the depth-
averaged small particle concentration on the downslope side is

φ̄2 = φ̄1 −
(

1 − h1

h2

)
(1 − α)

(
φ̄1 − φ̄2

1

)
. (4.29)

The concentration φ̄2 is therefore less than the upslope concentration φ̄1, provided
h2 > h1 and the velocity profile is not plug-like (α 	= 1). The transport theory predicts
that the upper layer of large particles will thicken more than the small particle layer
at the base, provided there is velocity shear.

As all the necessary variables can be measured from figure 9(b) it is interesting to
test the accuracy of the predictions. Recalling that the base of the avalanche lies just

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

01
1X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211201000011X


Large particle transport in granular free-surface flows 127

O

x

z

ū2 = 0

Figure 12. A schematic diagram showing how the layer of large particles expands more than
the layer of fines as it is brought to rest by a normal shock wave propagating upstream with
speed vn. Prior to the shock the avalanche is sheared through its depth h1, and the small
particle layer is of thickness η1. After the shock has passed, the grains are stationary with a
total thickness h2 and a small particle depth η2.

above the penultimate layer of large grains in the deposit, it follows that upstream of
the bore

h1 = 3.8 mm, η1 = 2.53 mm ⇒ φ̄1 = 0.66, (4.30)

and downstream of it

h2 = 5.38 mm, η2 = 3.16 mm ⇒ φ̄2 = 0.58. (4.31)

Substituting the measured values of h1, η1 and h2 into (4.29) and assuming that
there is simple shear (α = 0), the depth-averaged small particle concentration in the
stationary deposit is

φ̄2 = 0.59, (4.32)

which is within 3 % of the measured value of 0.58. Despite its simplicity, the one-
dimensional depth-averaged transport theory is able to capture these subtle features
of the flow.

This effect can also be picked up by the two-dimensional segregation theory. The
solution is assumed to be inversely graded on either side of the granular bore and
to have stable inversely graded shocks at heights η1 and η2, respectively. The mass
balance of small particles implies that∫ η1

0

ρ1(u1 − vn) dz =

∫ η2

0

ρ2(u2 − vn) dz. (4.33)

Assuming that the changes in density are negligible and that the bulk velocity
u1 =αū1 + 2(1 − α)ū1z/h1 upstream of the bore and u2 = 0 downstream of it, the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

01
1X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211201000011X


128 J. M. N. T. Gray and B. P. Kokelaar

integral (4.33) implies that the downstream interface height

η2 = η1 + α

(
ū1

−vn

)
η1 + (1 − α)

(
ū1

−vn

)
η2

1

h1

. (4.34)

This is equivalent to the jump condition (4.27) and can be put into the same form as
(4.28) by using the mass jump relation (4.25). The two-dimensional segregation theory
therefore makes exactly the same prediction as the depth-integrated large particle
transport equation.

5. Large particle accumulation at a non-depositing flow front
An exact steady-state solution for the particle size distribution near a steadily

depositing flow front was constructed in § 4.1, by ensuring that all the large particles
that reached the front were deposited. In this section a related problem is investigated
in which there is no deposition and instead the large particles accumulate at a steadily
propagating avalanche front. Transforming to a frame moving with the front speed
uF ,

ξ = x − uF t, τ = t, (5.1)

implies that the non-dimensional depth-averaged mass balance (2.7) becomes

∂h

∂τ
+

∂

∂ξ
(h(ū − uF )) = 0. (5.2)

Assuming that the shape of the flow front is independent of time implies that either

h = 0, or ū = uF . (5.3)

For non-trivial solutions the depth-integrated velocity is therefore constant throughout
the avalanche. This is a direct consequence of mass balance rather than a model
assumption, as in (4.10) of the depositing flow problem. The coordinate transformation
(5.1) and the time independence of the flow front (5.3) imply that the large particle
transport equation (2.24) reduces to

∂η

∂τ
− ∂

∂ξ

(
(1 − α)uF η

(
1 − η

h

))
= 0. (5.4)

Since uF is constant this equation can be expanded to give

∂η

∂τ
+ (1 − α)uF

(
2η

h
− 1

)
∂η

∂ξ
= (1 − α)uF

η2

h2

dh

dξ
, (5.5)

which can be solved by the method of characteristics. Introducing a parameter λ
running along the characteristic curves the corresponding characteristic differential
equations are

dτ

dλ
= 1,

dξ

dλ
= (1 − α)uF

(
2η

h
− 1

)
,

dη

dλ
= (1 − α)uF

η2

h2

dh

dξ
. (5.6)

The second and third of these equations uncouple from the first and imply that

d

dξ

(
−(1 − α)uF η

(
1 − η

h

))
= 0. (5.7)

Assuming that the topography is flat (b = 0) and that the downslope velocity profile
through the depth of the avalanche is given by (2.17), the streamfunction coordinate
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0
0

0.2

0.4

0.6

0.8

1.0

z z = h/2

A

C

B

Figure 13. A vertical section through the front of an avalanche showing the bulk
streamfunction ψ using dot-dashed lines. The streamline corresponding to ψ =ψo is highlighted
as a solid line. The hatched region above z = h is grain-free and the dashed line at z = h/2
marks the line of no-net flow relative to the moving front. The characteristics propagate
information about the interface height η along a fixed streamline ψo. Point A moves towards
the front before reaching the no-mean flow line at point B and moving backwards towards
point C. An interface that initially lies at point C will move backwards immediately.

(4.13) becomes

ψ = −(1 − α)uF η
(
1 − η

h

)
, (5.8)

and linearizes (5.7). Substituting (5.8) into (5.7) and integrating implies that

ψ = ψo = (1 − α)uF Ψo, (5.9)

is a constant. The characteristic curves therefore propagate along the streamlines
of the bulk flow. The streamfunction ψ is zero at the surface and base of the
avalanche, and it attains a local minimum ψmin = − (1−α)uF h/4 at z = h/2. Provided
ψmin � ψo � 0, there are two solutions for the shock height η for any given value of h

η =

⎧⎪⎪⎨
⎪⎪⎩

h +
√

h2 + 4Ψoh

2
, h/2 � η � h,

h −
√

h2 + 4Ψoh

2
, 0 � η � h/2,

(5.10)

where the constant Ψo is defined in (5.9). The streamlines close to an avalanche
front are illustrated schematically in figure 13. Each line of constant ψ = ψo carries
information about the position of the interface η along it. If η >h/2 then information
propagates towards the flow front, while if η <h/2 information is carried back away
from it. To calculate how quickly this information propagates along each streamline
it is necessary to solve the first and second equations in (5.6) using (5.10), which yields
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an ordinary differential equation for the position ξ as a function of time

dξ

dτ
= ±(1 − α)uF

√
1 +

4Ψo

h(ξ )
. (5.11)

The plus/minus sign on the right-hand side is dependent on whether the interface is
on the upper or lower branch of the streamline in (5.10). At the surface and base of
the flow (5.11) can be integrated directly, since Ψo is zero. Assuming that the interface
initially lies at point ξo on the free surface h, its position at later times is given by

ξ =

{
ξo + (1 − α)uF τ, τ � τturn,

−ξo − (1 − α)uF τ, τ > τturn,
(5.12)

where

τturn = − ξo

(1 − α)uF

(5.13)

is the time that the information reaches ξ =0 and starts travelling back along the line
z = 0. Conversely, a point that starts at the base at point ξo stays on the base for all
time and its horizontal position

ξ = ξo − (1 − α)uF τ. (5.14)

To determine the position of the interface on internal streamlines, (5.11) must
be solved for a given thickness distribution h(ξ ). It is possible to solve the problem
numerically using the exact solution (4.11) for Pouliquen & Forterre’s (2002) reciprocal
form of the friction law. However, it is instructive to use a simple profile that allows
for exact integration, e.g.

h = − tanh(βξ ), x ∈ (−∞, 0], (5.15)

where β is the inverse length scale of the front. By using the chain rule and (5.15)
to substitute for dξ/dh, (5.11) can be written as the separable ordinary differential
equation

±(1 − α)βuF

dτ

dh
=

(
−1

1 − h2

)√
h

h + 4Ψo

. (5.16)

If the initial position of the interface (ξo, ηo) lies above the no-mean flow line,
ηo > ho/2, where ho = h(ξo), then it is transported towards the flow front along the
streamline Ψo = −ηo(1 − ηo/ho), as for point A in figure 13. The current position is
computed by integrating (5.16) with the positive root to give

(1 − α)βuF τ = I (h) − I (ho), (5.17)

where the function

I (h) =
1

2
√

1 − 4Ψo

ln

(
1

2A

)
+

1

2
√

1 + 4Ψo

ln

(
1

2B

)
, (5.18)

and

A =
2Ψo − 2Ψoh + h −

√
1 − 4Ψo

√
h2 + 4Ψoh

1 + h
, (5.19)

B =
2Ψo + 2Ψoh + h +

√
1 + 4Ψo

√
h2 + 4Ψoh

1 − h
. (5.20)
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For a given time τ the height of the avalanche at the current interface position h

can be determined by iterating for h ∈ [hturn , 1] using (5.17); the interface height η

lies on the upper branch of the streamline, which is determined by the positive root
in (5.10). The interface moves along the streamline until it reaches the no-mean flow
line at point B in figure 13 at position ξturn and time τturn , where

ξturn = tanh−1(4Ψo)/β, (5.21)

(1 − α)βuF τturn = I (hturn) − I (ho), (5.22)

and hturn = h(ξturn). For τ > τturn the interface moves back along the lower branch of
the streamline Ψo towards point C. Integrating along the negative branch of (5.16)
and applying the condition that h = hturn at τ = τturn implies that for τ > τturn

(1 − α)βuF (τturn − τ ) = I (h) − I (hturn ), (5.23)

which can alternatively be expressed as

(1 − α)βuF (2τturn − τ ) = I (h) − I (ho), (5.24)

using (5.22). For ηo >ho/2 and τ > τturn the position of the interface on the streamline
Ψo can therefore be found by iterating for h ∈ (0, hturn) using (5.24) and then
substituting the result into the lower branch of (5.10). The final case, in which
ηo � h0/2, occurs when the interface starts on the lower branch of the streamline, as
for point C in figure 13, and moves away from the front. Integrating (5.16) with the
negative root subject to the initial condition that h(0) = ho implies that the avalanche
thickness h can be found by iterating for h ∈ (0, hturn) using

−(1 − α)βuF τ = I (h) − I (ho), (5.25)

and η is given by substituting the result into the negative branch of (5.10). In each
of the three cases (5.17), (5.24) and (5.25) the horizontal position ξ of the interface is
given by inverting (5.15).

Figure 14 shows a specific example of the solution that illustrates how large
particles are transported to the flow front and then accumulate there. At τ = 0 the
front is initially composed of all small particles in the region ξ ∈ (−10, 0). For τ > 0
large particles are fed in at the boundary, at ξ0 = −10, above an interface which
lies at η =0.8h0. The initial discontinuity forms an expansion fan that is advected
downstream towards the front, leaving behind a steady interface that lies along a
streamline. For parameters α = 0 and ū = 1, the fastest moving part of the interface,
which lies at the free surface, reaches the flow front ξ =0 at τ = 10. After this time it
moves back along the base. The interior interface is also swept along the streamlines
and becomes triple valued after τ = 10, with the shape of the interface indicated
by a dotted line in figure 14. As the interface breaks, a shock is formed and its
position is determined by a shock fitting procedure (e.g. Whitham 1974). The shock
forms at ξ = 0 at τ = 10 and grows in amplitude with increasing time as it propagates
backwards relative to the moving front. It separates a coarse grained flow front from
the inversely graded avalanche behind, which continuously supplies more large grains
that are then recirculated at the front. It is this type of two-dimensional configuration
that, when appropriately coupled to the bulk flow, is likely to be unstable in three-
dimensions, spontaneously producing lateral levees as in figure 2, in which the resistive
large grains are removed by lateral transport rather than by basal deposition.
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Figure 14. A series of vertical sections through the avalanche showing how large particles are
transported towards the flow front and then accumulate there for parameters α = 0 and ū = 1.
At τ = 0, small (grey) particles occupy the region (−10, 0) and subsequently large particles
(white) are input at ξ0 = −10 above 0.8h0. The avalanche free surface h = − tanh(βξ ) with
β =0.3 is shown by a solid line. The large particles reach the front at τ = 10 and the interface
(dotted line) becomes triple valued. A shock fitting procedure is used to determine the position
of the shock, which propagates backwards relative to the front with increasing time. An
animated version is available with the online version of this paper (supplementary movie 4).

6. Conclusions
Particle size segregation and velocity shear are the two key mechanisms that

transport large particles towards an avalanche front and then allow those large
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particles that reach it to recirculate and accumulate there. In this paper the
segregation-remixing equation has been integrated through the avalanche depth,
assuming that (i) the avalanche is always inversely graded and (ii) the velocity shear
is linear with depth, to derive a depth-averaged large particle transport equation (2.19)
that can model these effects. This may be viewed as the simplest in a hierarchy of
segregation models, with two-dimensional hyperbolic segregation theory (Savage &
Lun 1988; Gray & Thornton 2005; Thornton et al. 2006) providing more detailed
information about how unstably stratified particles readjust into a stable configuration
(Gray et al. 2006; Shearer et al. 2008) and are recirculated in the flow (Thornton &
Gray 2008; Gray & Ancey 2009) and, at the most complex level, the parabolic
segregation-remixing equation (Dolgunin & Ukolov 1995; Gray & Chugunov 2006),
which is able to reproduce the diffuse concentration profiles of steady-state bi-disperse
particle dynamics simulations. The depth-averaged theory is appropriate for flows in
which the large and small particles segregate rapidly from one another, and it has two
key advantages. Firstly, one spatial dimension is removed from the problem, which
makes it much easier to calculate the solution, and secondly, it is not necessary to
know the precise values of the non-dimensional parameters q and D required by the
full theory, since the transport equation is independent of them.

Although the one-dimensional transport equation has only a relatively simple
representation of the particle size distribution, it does a surprisingly good job of
capturing the essence of two-dimensional solutions to hyperbolic segregation theory.
In particular, the equation for the inversely graded interface (3.2) between the large
and small particles prior to breaking is exactly the same as equation (4.20) that Gray
et al. (2006) derived for the full theory. Moreover, once the interface breaks a shock
forms, whose speed (3.9) is precisely the same as Thornton & Gray (2008) calculated
in their equation (2.25) for the speed of the breaking size segregation wave. The net
transport of large particles towards the flow front is therefore the same in the two
theories, with a shock replacing the breaking size segregation wave as shown in figures
5 and 7. In § 5 it was shown that the theory automatically captures the accumulation
and recirculation of large particles at a flow front, which is crucial for the development
of bouldery flow fronts in geophysical mass flows. When this process is combined
with basal deposition, in § 4.1, steadily travelling waves can develop that deposit all
the large particles that reach the flow front. Intriguingly, even though the avalanche is
inversely graded, the caterpillar track motion of the avalanche in this two-dimensional
flow implies that the deposited grains are normally graded. This contrasts strongly
with avalanches that are brought to rest by granular bores, in § 4.2, which preserve
the inversely graded stratified layers in the deposit. An inversely graded avalanche
may therefore produce diametrically opposite final gradings, dependent on how the
grains were brought to rest, which has important implications for the inferences that
geologists can draw from sedimentary and pyroclastic flow deposits.

Large particle transport theory fits naturally into the depth-averaged framework
of existing avalanche models and opens up the realistic possibility of coupling the
evolving particle size distribution to the bulk dynamics. We may therefore envisage
a new generation of avalanche models that are able to capture ‘segregation-mobility’
feedback effects. In one dimension, this would result in a system of three equations:
the depth-averaged mass balance equation, the large particle transport equation and
the depth-averaged downslope momentum balance equation, which in dimensional
form are

∂h

∂t
+

∂

∂x
(hū) = −d, (6.1)
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∂η

∂t
+

∂

∂x
(ηū) − ∂

∂x

(
(1 − α)ūη

(
1 − η

h

))
= −φbd, (6.2)

∂

∂t
(hū) +

∂

∂x

(
Fhū2

)
+

∂

∂x

(
1

2
Kg cos ζh2

)
= hS − ubd, (6.3)

where φb and ub are the concentration and downslope velocity at the base of the flow
and the source term

S = g cos ζ

(
tan ζ − u

|u|µ − ∂b

∂x

)
. (6.4)

The coupling can be achieved by making (i) the basal friction µ, (ii) the basal
deposition d , (iii) the velocity shape profile F or (iv) the earth pressure coefficient K ,
dependent on the local composition of the flow. The simplest coupling is through a
composition-dependent friction coefficient µ, which represents changes in friction as
the proportion of large and small grains varies. The differential friction may arise
because the grains have different surface properties, or shapes, e.g. small spheres
mixed with larger irregular grains. Very little is known about the friction of such
mixtures, and there are some surprising effects (e.g. Félix & Thomas 2004; Goujon
et al. 2007) even for large and small spheres on a rough slope. Another means of
coupling is through the velocity shape factor F . For the linear velocity profile (2.17)
used in this paper, F =1 + (1 − α)2/3. However, it should be noted that if the value
of α changes with η, then this modifies both the shape factor F in (6.3) as well as the
shear rate in (6.2). For more complex nonlinear velocity fields the flux function hφu

in the depth-integrated segregation equation (2.14) must therefore be recomputed,
which will yield a modified form for the large particle transport equation (6.2). The
transport equation also generalizes easily to two dimensions, yielding a system of
four equations, that should be able to capture the fingering effects of Pouliquen
et al. (1997) by building-in frictional feedback. More complex couplings are needed
for debris flows (Iverson 2003), where there are additional density effects, as well as
feedback from the particle size distribution on the evolving internal pore pressure,
which in turn modifies the basal friction.
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