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A nonlinear Schrödinger equation for the envelope of two-dimensional gravity–
capillary waves propagating at the free surface of a vertically sheared current of
constant vorticity is derived. In this paper we extend to gravity–capillary wave
trains the results of Thomas et al. (Phys. Fluids, 2012, 127102) and complete the
stability analysis and stability diagram of Djordjevic & Redekopp (J. Fluid Mech.,
vol. 79, 1977, pp. 703–714) in the presence of vorticity. The vorticity effect on
the modulational instability of weakly nonlinear gravity–capillary wave packets is
investigated. It is shown that the vorticity modifies significantly the modulational
instability of gravity–capillary wave trains, namely the growth rate and instability
bandwidth. It is found that the rate of growth of modulational instability of short
gravity waves influenced by surface tension behaves like pure gravity waves: (i) in
infinite depth, the growth rate is reduced in the presence of positive vorticity and
amplified in the presence of negative vorticity; (ii) in finite depth, it is reduced
when the vorticity is positive and amplified and finally reduced when the vorticity
is negative. The combined effect of vorticity and surface tension is to increase
the rate of growth of modulational instability of short gravity waves influenced
by surface tension, namely when the vorticity is negative. The rate of growth of
modulational instability of capillary waves is amplified by negative vorticity and
attenuated by positive vorticity. Stability diagrams are plotted and it is shown that
they are significantly modified by the introduction of the vorticity.

Key words: capillary waves, surface gravity waves, waves/free-surface flows

1. Introduction
Generally, gravity–capillary waves are produced by wind which generates a shear

flow in the uppermost layer of the water and consequently these waves propagate
in the presence of vorticity. These short waves play an important role in the initial
development of wind waves, contribute to some extent to the sea surface stress and
consequently participate in air–sea momentum transfer. Accurate representation of
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the surface stress is important in modelling and forecasting ocean wave dynamics.
Furthermore, the knowledge of their dynamics at the sea surface is crucial for satellite
remote sensing applications.

In this paper we consider both the effect of surface tension and vorticity due to
a vertically sheared current on the modulational instability of a weakly nonlinear
periodic short wave trains. Recently, Thomas, Kharif & Manna (2012) have derived
a nonlinear Schrödinger (NLS) equation for pure gravity water waves on finite
depth with constant vorticity. Their main findings were (i) a restabilization of the
modulational instability for waves propagating in the presence of positive vorticity
whatever the depth and (ii) the importance of the nonlinear coupling between the
mean flow induced by the modulation and the vorticity. One of our aims is to
extend Thomas’ investigation to the case of gravity–capillary waves propagating on a
vertically sheared current.

The number of studies on the computation of steadily propagating periodic gravity
waves on a vertically sheared current is quite large. For a brief review one can refer
to the paper by Thomas et al. (2012). On the other hand, investigations devoted to
the calculation of nonlinear gravity–capillary waves in the presence of horizontal
vorticity are rather scarce. One can cite Bratenberg & Brevik (1993) who used a
third-order Stokes expansion for periodic gravity–capillary waves travelling on an
opposing current and Hsu et al. (2016) who extended this work to the case of co-
and counter-propagating waves. Kang & Vanden-Broeck (2000) computed periodic
and solitary gravity–capillary waves in the presence of constant vorticity on finite
depth. They derived analytical solutions for small-amplitude waves and numerical
solutions for steeper waves. Using the bifurcation theory, Wahlen (2006a,b) proved
the rigorous existence of periodic capillary waves and capillary–gravity waves in the
presence of an arbitrary vorticity distribution. For a review on this aspect of the
problem, one can refer to the paper by Wahlen (2007). More recently, Martin &
Matioc (2014) demonstrated the existence of steady periodic capillary–gravity waves
with a piecewise constant vorticity distribution.

To our knowledge, the unique study concerning the modulational instability
of gravity–capillary waves travelling on a vertically sheared current is that of
Hur (2017). The stability of irrotational gravity–capillary waves has been deeply
investigated by several authors. Djordjevic & Redekopp (1977) and Hogan (1985)
derived nonlinear envelope equations and considered the modulational instability of
periodic gravity–capillary waves. Note that in the gravity–capillary range, three-wave
interaction is possible whereas modulational instability corresponds to a four-wave
resonant interaction. The numerical computations were extended to capillary waves
by Chen & Saffman (1985) and Tiron & Choi (2012). Zhang & Melville (1986)
investigated numerically the stability of gravity–capillary waves including, besides the
four-wave resonant interaction, three-wave and five-wave resonant interactions. For a
review on the stability of irrotational gravity–capillary waves, one can refer to the
review paper by Dias & Kharif (1999).

This study is devoted to the modulational instability of weakly nonlinear gravity–
capillary wave packets propagating at the surface of a vertically sheared current of
finite depth. In § 2, the governing equations are given and the nonlinear Schrödinger
equation in the presence of surface tension and constant vorticity is derived by using a
multiple scale method. In § 3, the linear stability analysis of a weakly nonlinear wave
train is carried out as a function of the Bond number, the dispersive parameter and
the intensity of the vertically sheared current.
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FIGURE 1. Shear flow in the fixed frame where c is the wave velocity. (a) Waves
propagating downstream (Ω > 0). (b) Waves propagating upstream (Ω < 0).
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FIGURE 2. Shear flow in the reference frame moving with the surface current velocity.
(a) Waves propagating downstream (Ω > 0). (b) Waves propagating upstream (Ω < 0).

2. Derivation of the NLS equation in the presence of surface tension and
vorticity

We consider the modulational instability of weakly nonlinear surface gravity–
capillary wave trains in the presence of vorticity. Our investigation is confined to
two-dimensional water waves propagating in finite depth. Viscosity is disregarded and
the fluid is considered incompressible. The geometry configuration is presented in
figures 1 and 2. We choose an Eulerian frame (Oxyz) with unit vectors (ex, ey, ez).
The vector ey is oriented upwards so that the gravity is g = −gey with g > 0. The
equation of the undisturbed free surface is y = 0 whereas the disturbed free surface
is y= ζ (x, t). The bottom is located at y=−h.

The waves are travelling at the surface of a vertically sheared current of constant
vorticity. In the fixed frame, the underlying current is given by u0(y)= (U0 +Ωy)ex

where Ω is the current intensity and U0 is the current velocity at the surface. Note that
the vorticity is −Ω . We choose a reference frame moving with the horizontal velocity
U0. Consequently, in this frame of reference, the current at the surface vanishes. In
the moving frame the fluid velocity is given by

u(x, y)=Ωyex +∇φ, (2.1)

where ∇φ(x, y, t) is the wave induced velocity. The waves are potential due to the
Kelvin theorem which states that vorticity is conserved for a two-dimensional flow
of an incompressible and inviscid fluid with external forces derived from a potential.
There is no loss of generality if the study is restricted to carrier waves with positive
phase speeds so long as both positive and negative values of Ω are considered.
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The potential φ satisfies the Laplace equation

∇
2φ = 0, (2.2)

and the Euler equation can be written as follows

∇

(
φt +

1
2

u2
+

P
ρw
+ gy

)
= u∧ω, (2.3)

with ω the vorticity vector along z, P the pressure and ρw the water density. Subscripts
stand for derivatives of corresponding variables.

Using the Cauchy–Riemann relations

ψy = φx, ψx =−φy, (2.4a,b)

where ψ is the streamfunction

u∧ω=∇
(

1
2Ω

2y2
+Ωψ

)
. (2.5)

The Euler equation (2.3) can be rewritten as follows

∇

(
φt +

1
2
φ2

x +
1
2
φ2

y +Ωyφx + gy−Ωψ +
P
ρw

)
= 0. (2.6)

Spatial integration gives the Bernoulli equation

φt +
1
2
φ2

x +
1
2
φ2

y +Ωyφx + gy−Ωψ +
P
ρw
=C(t). (2.7)

In the presence of surface tension at the free surface y= ζ (x, t), the Laplace law is
written as

P= Pa − T
ζxx

(1+ ζ 2
x )

3/2
, (2.8)

where Pa is the atmospheric pressure and T surface tension.
The dynamic boundary condition at the free surface y= ζ is

φt +
1
2
φ2

x +
1
2
φ2

y +Ωζφx + gζ −Ωψ −
T
ρw

ζxx

(1+ ζ 2
x )

3/2
= 0. (2.9)

Without loss of generality, we set Pa = 0 and incorporate C(t) into the potential φ.
Along with these, we have the kinematic free surface boundary condition

ζt + ζx(φx +Ωy)− φy = 0, y= ζ (x, t), (2.10)

and the bottom boundary condition

φy = 0, y=−h. (2.11)

Following Thomas et al. (2012) we can remove ψ by differentiating (2.9) with respect
to x. Then using relations (2.4), keeping in mind that we are dealing with weakly
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nonlinear waves (low wave steepness), and that (2.9) is evaluated at y= ζ , we get the
equation

φtx + φtyζx + φx(φxx + φxyζx)+ φy(φxy + φyyζx)+Ωζxφx

+Ωζ(φxx + φxyζx)+ gζx +Ω(φy − φxζx)

−
T
ρw

(
ζxxx −

3
2
ζ 2

x ζxxx − 3ζ 2
xxζx

)
= 0, y= ζ (x, t), (2.12)

that matches the one derived by Thomas et al. (2012) for T = 0.
Following Davey & Stewartson (1974), we look for solutions depending on slow

variables (ξ , τ ) = (ε(x − cgt), ε2t) where ε = ak (ε � 1) and a, k and cg are the
amplitude, wavenumber and group velocity of the carrier wave, respectively. The
system of governing equations becomes

ε2φξξ + φyy = 0, −h 6 y 6 ζ (ξ, τ ), (2.13a,b)

φy = 0, y=−h, (2.14)

ε2ζτ − εcgζξ + εζξ (εφξ +Ω[y+ h])− φy = 0, y= ζ (ξ, τ ), (2.15)

ε3φτξ − ε
2cgζξ + ε

3φτyζξ − ε
2cgφξyζξ + ε

3φξ (φξξ + φξyζξ )

+ εφy(φξy + φyyζξ )+ ε
2Ωζξφξ + ε

2Ωζ(φξξ + φξyζξ )+ εgζξ

+Ω(φy − ε
2φξζξ )− ε

3 T
ρw

(
ζξξξ −

3
2
ε2ζ 2

ξ ζξξξ − 3ε2ζ 2
ξξζξ

)
= 0, y= ζ (ξ, τ ).

(2.16)

An asymptotic solution to the system (2.13)–(2.16) is sought in the following form

φ =

+∞∑
n=−∞

φnEn, ζ =

+∞∑
n=−∞

ζnEn, (2.17a,b)

where E = ei(kx−ωt) is a plane wave with ω the frequency of the carrier wave. We
impose that φ−n = φ̄n and ζ−n = ζ̄n where the bar denotes complex conjugate, so that
the functions are real. The amplitudes φn and ζn are then expanded in a perturbation
series in terms of ε= ak

φn =

+∞∑
j=n

εjφnj, ζn =

+∞∑
j=n

εjζnj. (2.18a,b)

The terms depending on surface tension occur only at a higher order. The expansions
(2.18) are substituted into the system of equations. The linear Laplace equation (2.13)
is easier to handle, since solutions can be derived iteratively. Here we will simply
write the first-order solution for φ11 that is obtained by using the bottom boundary
condition (2.14)

φ11 = A(ξ , τ )
cosh[k(y+ h)]

cosh(kh)
, (2.19)

where the slow-varying function A(ξ , τ ) will be used to express all other terms.
Higher-order expansions of the Laplace equation introduce more unknown functions
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into the solutions. Nevertheless, through expansions of the boundary conditions they
can all be combined to A(ξ , τ ).

The evolution of this unknown will depend on the initial condition A(ξ , 0). We then
use (2.18) in the dynamic and kinematic free surface boundary conditions, and collect
terms of equal power in ε and E, which allows the expressions for the ζij and φij to
be found successively.

The calculations are somewhat tedious but some steps are of interest. At first, the
linear dispersion relation is derived

ω2
+ σΩω− σgk(1+ κ)= 0, (2.20)

where σ = tanh(µ) with µ= kh and κ = Tk2/ρwg.
As mentioned above, we consider a carrier wave travelling from left to right whose

frequency ω, phase velocity cp and group velocity cg are

ω=−
Ωσ

2
+

√(
Ωσ

2

)2

+ gσk(1+ κ), (2.21)

cp =−
Ωσ

2k
+

√(
Ωσ

2k

)2

+
gσ
k
(1+ κ), (2.22)

cg =−
Ωh
2
(1− σ 2)+

(1− σ 2)(Ω2hσ/2+ gµ(1+ κ))+ gσ(1+ 3κ)√
Ω2σ 2 + 4gkσ(1+ κ)

. (2.23)

The relation between A(ξ , τ ) and ζ11 is the following

ζ11 = i
ω(1+ X)
g(1+ κ)

A(ξ , τ ), (2.24)

where X = σΩ/ω.
From the above dispersion relation we can show easily that X >−1. We note that

X depends also on the surface tension through ω and its associated dispersion relation.
It is also to be noted that the expression of the mean-flow term, which is important
in the development of the modulational instability, is similar to that of Thomas et al.
(2012). Nevertheless, surface tension takes place through the phase velocity cp, the
group velocity cg and ω.

(cg(cg +Ωh)− gh)φ01,ξ =

(
gσ
c2

p

(2ω+ σΩ)+ k2cg(1− σ 2)

)
|A|2, (2.25)

and

gζ02 = (cg +Ωh)φ01,ξ − k2(1− σ 2)|A|2. (2.26)

Although the expressions are identical to those of Thomas et al. (2012), it should be
noted that the surface tension acts through the dispersion relation, affecting ω, cp and
cg.

At order O(ε3E) the nonlinear Schrödinger equation is found for the potential
envelope A, so that

iAτ + αAξξ = γ |A|2A, (2.27)

where the coefficients α and γ depend on (κ, Ω, kh).
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Then the dispersion coefficient reads

α =
−ω

k2σ(2+ X)

[
σρ2
+µ

1+ X
1+ κ

(σ [σ +µ(1− σ 2)] − 1)

+µ(1− σ 2)(ρ −µσ)X −
κ

1+ κ
α1

]
, (2.28)

with

α1 = −µ(1+ X)(1− σ 2)(µσ − 1)+ σ(1+ X)(1+ 2ρ)

+ 2
(
σρ +µ(1− σ 2)X − 2

σκ

1+ κ
(1+ X)

)
, (2.29)

where ρ = cg/cp is here the ratio of the group velocity to the phase velocity of the
carrier. It can be expressed in a concise form

ρ =

(1− σ 2)µ+ (1+ X)
(
σ +

2σκ
1+ κ

)
σ(2+ X)

, (2.30)

which depends only on µ, κ and X = σΩ/ω.
The nonlinear coefficient is

γ =
k4

2ω(1+ X)(2+ X)

− 3σ 2κ

1+ κ
(1+ X)2 − 2(1+ κ)(1− σ 2)[(1+ X)2 − σ 2

]

+ σ 2(1+ X)(8+ 6X)+
1+ X

σ 2 − κ(3− σ 2 + 3X)
γ1

+ 2
(1+ X)(2+ X)+ ρ(1+ κ)(1− σ 2)

(1+ κ)
(
ρ2 +µρ

X
σ
−
µ(1+ X)
σ (1+ κ)

) γ2

 , (2.31)

with

γ1 = 9− 10σ 2
+ σ 4

+ (18− 4σ 2
− 4σ 4)X + (15+ 3σ 2)X2

+ (6+ 2σ 2)X3
+ X4

+ κ
[
21− 10σ 2

+ σ 4
+ (42+ 2σ 2

− 4σ 4)X

+ (30+ 12σ 2)X2
+ (9+ 5σ 2)X3

+ X4
]
, (2.32)

and finally

γ2 = (1+ κ)
[
(1+ X)2

(
1+ ρ +

µX
σ

)
+ 1+ X − σ(ρσ +µX)

]
− κ(1+ X)(2+ X). (2.33)

We can check that these coefficients reduce to those of Djordjevic & Redekopp (1977),
or Hogan (1985) in deep water, if Ω=0 and to those of Thomas et al. (2012) if κ=0.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

62
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.627


NLS equation for gravity–capillary waves with shear 153

The last term in brackets of (2.31) corresponds to the coupling between the mean
flow due to the modulation and the vorticity which occurs at third order. This coupling
was found by Thomas et al. (2012) for the case of pure gravity waves and has an
important impact on the stability analysis of progressive wave trains.

We can see that in (2.31) there are two possible singularities that one should avoid,
either

σ 2
− κ(3− σ 2

+ 3X)= 0, (2.34)

which corresponds to the first gravity–capillary resonance at κc= σ
2/(3− σ 2) without

vorticity, associated with the Wilton ripple phenomenon, or

ρ2
+ ρ

µX
σ
−
µ(1+ X)
σ (1+ κ)

= 0, (2.35)

which is rewritten as follows

c2
g +

gµ
ω

X
1+ κ
1+ X

cg −
g2µσ

ω2

1+ κ
1+ X

= 0. (2.36)

In the absence of vorticity, the latter condition reduces to c2
g = gh which matches

the long wave/short wave resonance as shown by Davey & Stewartson (1974) and
Djordjevic & Redekopp (1977). From equation (2.21) we can derive the following
relation

ω2
= gσk

1+ κ
1+ X

. (2.37)

Substituting this expression for ω2 into (2.36) gives

c2
g +Ωhcg − gh= 0, (2.38)

which admits as solution the group velocity of a carrier wave travelling from left to
right

cg =−
Ωh
2
+

√
gh+Ω2h/4. (2.39)

The right-hand side of (2.39) is the phase velocity of a long gravity wave propagating
on a linear shear current of intensity Ω . Consequently, the long wave/short wave
resonance persists in the presence of vorticity.

3. Stability analysis and results
Let us write ζ in the form

ζ = 1
2(εaei(kx−ωt)

+ c.c.)+O(ε2), (3.1)

where a= 2ζ11 is the envelope of the free surface elevation and c.c. denotes complex
conjugation. Using (2.24) the NLS equation (2.27) is rewritten for the complex
envelope a(ξ , τ ) as follows

iaτ + αaξξ = γ̃ |a|2a, (3.2)
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where

γ̃ =
g2

4ω2

(
1+ κ
1+ X

)2

γ . (3.3)

The nonlinear coefficient γ̃ can be written in a more compact form

γ̃ =
ω2

4k2σ 2
γ . (3.4)

In this section we consider the stability of a Stokes wave solution of the NLS
equation (3.2) to infinitesimal disturbances.

Equation (3.2) admits the following solution

as(τ )= a0e−iγ̃ a2
0τ , (3.5)

with the initial condition a0.
We consider infinitesimal perturbations to this solution, in amplitude δa(ξ , τ ) and

in phase δw(ξ , τ ), so that the perturbed solution a′s is written as

a′s = as(1+ δa)eiδw . (3.6)

Substituting this expression in the NLS equation (3.2), linearizing and separating
between real and imaginary parts, yields to a system of linear coupled partial
differential equations with constant coefficients. Then, this system admits solutions of
the form

δa = δa0e
i(pξ−Γ τ),

δw = δw0e
i(pξ−Γ τ).

}
(3.7)

The necessary and sufficient condition for the existence of non-trivial solutions is

Γ 2
= αp2(2γ̃ a2

0 + αp2). (3.8)

The Stokes wave solution is stable when α(2γ̃ a2
0 + αp2) > 0 and unstable when

α(2γ̃ a2
0 + αp2) < 0.

The growth rate of instability is then

Γi = p(−2γ̃ αa2
0 − α

2p2)1/2. (3.9)

We set α = ωα2/k2 and γ̃ = ωk2γ̃1, so that α2 and γ̃1 are dimensionless functions of
µ= kh, X = σΩ/ω and κ only. The growth rate of instability becomes

Γi =
ω p
k2
(−2γ̃1α2a2

0k4
− α2

2p2)1/2. (3.10)

The maximal growth rate is obtained for p =
√
−γ̃1/α2 a0k2 and its expression is

Γimax =
√
−γ̃1/α2

√
−γ̃1α2 ω(a0k)2. Note that instability occurs when γ̃1 and α2 have

opposite signs.
The growth rate of instability is written in the following dimensionless form

Γi

ωa2
0k2
= p̃ (−2γ̃1α2 − α

2
2 p̃2)1/2, (3.11)

where p̃= p/(a0k2).
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FIGURE 3. Dimensionless maximal growth rate of modulational instability as a function
of Ω in finite depth (µ = 2) and deep water (µ = ∞). Solid line (κ = 0.005, µ = 2);
dot-dashed line (κ = 0.005, µ=∞); dotted line (κ = 0, µ= 2); dashed line (κ = 0, µ=
∞). Γ0 imax is the maximal growth rate for Ω = 0.

The dimensionless bandwidth of instability is 1p̃ =
√
−2γ̃1/α2 and 1p/k =√

−2γ̃1/α2 a0k.
For κ = 0 and Ω 6= 0, equation (3.11) gives the rate of growth of Thomas et al.

(2012). Figure 3 shows plots of the dimensionless maximal growth rate of the
modulational instability of pure gravity waves and gravity waves influenced by the
surface tension effect (κ = 0.005) as a function of Ω for infinite and finite depths.
We can observe that the combined effect of surface tension and vorticity increases
significantly the rate of growth of the modulational instability of short gravity waves
propagating in finite depth and in the presence of negative vorticity (Ω > 0) whereas
the effect is insignificant in deep water. For positive vorticity (Ω < 0) the curves
almost coincide at finite depth and deep water and the increase of the rate of growth
due to surface tension is of the order of κ .

For Ω = 0 and κ 6= 0, equation (2.20) of Djordjevic & Redekopp (1977) becomes

iaτ −
ω

8k2

1− 6κ − 3κ2

(1+ κ)2
aξξ =

k2ω

16
8+ κ + 2κ2

(1− 2κ)(1+ κ)
|a|2a, (3.12)

for the envelope of the surface elevation in deep water.
The coefficients γ̃1 and α2 corresponding to this NLS equation are

γ̃1 =
1
16

8+ κ + 2κ2

(1− 2κ)(1+ κ)
, α2 =−

1
8

1− 6κ − 3κ2

(1+ κ)2
. (3.13a,b)

Consequently, the rate of growth of the modulational instability of pure capillary wave
trains on an infinite depth, obtained for κ→∞, is

Γi→
ω

8k2
(3a2

0k4p2
− 9p4)1/2 as κ→∞, (3.14)

which can be found in Chen & Saffman (1985). The wavenumber of the fastest-
growing modulational instability is pmax = a0k2/

√
6 and the maximum growth

rate is ω(a0k)2/16. Tiron & Choi (2012) have extended the linear stability of
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finite-amplitude capillary waves on deep water subject to superharmonic and
subharmonic perturbations without a vorticity effect.

We have considered the case of pure capillary waves on deep water (κ→∞ and
µ→∞) in the presence of vorticity (Ω 6= 0). The corresponding analytic expressions
of γ̃1 and α2 are

γ̃1 =−
3+ 14X + 23X2

+ 11X3
− 3X4

24(X + 1)(3X + 2)
, (3.15)

α2 =
3(X + 1)(X2

+ X + 1)
(2+ X)3

, (3.16)

where X =Ω/ω and ω=−Ω/2±
√
(Ω/2)2 + k3T/ρw.

Due to the high wave frequency of capillaries on deep water we assume |X| � 1.
The coefficients γ̃1 and α2 become

γ̃1 =−
1
16

(
1+ 13

6 X
)
+O(X2), (3.17)

α2 =
3
8

(
1+

X
2

)
+O(X2). (3.18)

The rate of growth of the modulational instability of capillary waves on deep water
in the presence of vorticity is

Γi =
ω p
8k2

√
3a2

0k4 − 9p2 + (8a2
0k4 − 9p2)X +O(X2), (3.19)

and in dimensionless form

Γi

ω a2
0k2
=

p̃
8

√
3− 9p̃2 + (8− 9p̃)X +O(X2). (3.20)

The maximal growth rate of instability is obtained for p = (1 + 5X/6)a0k2/
√

6 +
O(X2) and its value is (1+ 13X/6)ωa2

0k2/16+O(X2). The bandwidth of modulational
instability is 1p= (1+ 5X/6)a0k2/

√
3.

Consequently, the rate of growth of modulational instability of capillary waves in
deep water is larger for negative vorticity (X > 0) than for positive vorticity (X < 0).
The bandwidth of the instability presents the same trend.

In figure 4 we show the dimensionless rate of growth of the modulational instability
of pure capillary waves in finite depth as a function of the wavenumber of the
perturbation, for several values of Ω . The rate of growth of the instability increases
as Ω increases, as with infinite depth.

The sign of the product αγ̃ determines the stability of the solution under
infinitesimal perturbations. If the product is positive then the solutions are modulation-
ally stable, otherwise they are modulationally unstable and grow exponentially with
time. Davey & Stewartson (1974) and Djordjevic & Redekopp (1977) showed that
this criterion, which works for one-dimensional propagation, can be extended to
the case of two-dimensional propagation. In this way, our stability diagrams could
be compared to those of Djordjevic & Redekopp (1977) when Ω = 0. The linear
stability analysis only captures the linear part of the instability, and thus its onset.
We plot in the (µ = kh, κ)-plane, for fixed values of the vorticity Ω , the unstable
and stable regions. As a check, the instability diagrams we obtain are compared
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FIGURE 4. Dimensionless growth rate of the modulational instability of pure capillary
waves in finite depth (µ = 2) as a function of the dimensionless wavenumber of the
perturbation for several values of Ω . Ω = 0 (solid line); Ω = 2 (dashed line); Ω = −2
(dotted line).

-1 0
X
1 2 3

0

µ

1

2

3

4

FIGURE 5. The (µ, X)-instability diagram for gravity waves, matching the results of
Thomas et al. (2012) (dashed lines). Here, there is no surface tension. The unstable
regions are in grey whereas stable regions are in white. For X = 0 (or Ω = 0) the value
kh≈ 1.363 is found, below which there is no instability.

in figures 5 and 6 with those obtained by Thomas et al. (2012) for κ = 0 and
Djordjevic & Redekopp (1977) for Ω = 0. In that way, we can verify that these
limiting cases are reproduced correctly. Following Djordjevic & Redekopp (1977),
the boundaries of the unstable regions have been numbered from 1 to 5. Curve 1
crosses the µ-axis at the point corresponding to restabilization of the modulational
instability. Note that this feature holds for two-dimensional water waves. Curve 2
corresponds to vanishing of the dispersive coefficient α and minimum phase velocity
(cg = cp) whereas along curves 3 and 4 the nonlinear coefficient γ̃ is singular. These
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FIGURE 6. The (µ, κ)-instability diagram for gravity–capillary waves, matching the results
from Djordjevic & Redekopp (1977) (dashed lines). Here, there is no vorticity. The
unstable regions are in grey whereas stable regions are in white.

singularities define Wilton and long wave/short wave resonances, respectively. The
Wilton ripple phenomenon considered herein corresponds to a bifurcation in which a
steady progressive gravity–capillary wave can double its wavelength and the associated
value of κ is given implicitly by

κ =
σ 2ω(κ)

(3− σ 2)ω(κ)+ 3σΩ
. (3.21)

The critical value depends strongly on Ω and consequently curve 3 becomes distorted
as |Ω| increases, this trend is amplified when vorticity intensity is large.

Curve 4 corresponds to the long wave/short wave resonance. The group velocity
cg of the short gravity–capillary wave matches the phase velocity of the long gravity
wave influenced by vorticity (see (2.39)). Significant resonant wave interaction is to be
expected in this case. Note that because (3.2) breaks down for these two resonances
a different analysis and scaling is required.

Curves 1 and 5 correspond to simple zeros of the nonlinear coefficient γ̃ .
Curve 4 has the following asymptote

µ=

(
1+

Ω2

2
−

√
Ω2

4
(4+Ω2)

)(
9
4
κ −

3
4

)
, µ� 1, (3.22)

whereas curve 5 has the asymptote

µ =
9
4

(
1+

Ω2

2
−

√
Ω2

4
(4+Ω2)

)
κ +

1
4

(
−35+ 3Ω2

+
29Ω
√

4+Ω2
−

3Ω3

√
4+Ω2

)
,

µ� 1. (3.23)
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FIGURE 7. The (µ, κ)-instability diagram for Ω =−0.5 (positive vorticity). The dashed
lines correspond to Ω = 0.
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FIGURE 8. The (µ, κ)-instability diagram for Ω = 0.5 (negative vorticity). The dashed
lines correspond to Ω = 0.

For Ω = 0, the equations of Djordjevic & Redekopp (1977) are rediscovered except
that instead of −61/8 we found −35/4 which is slightly different. The asymptotes
have the same slope. In the region between these two asymptotes the capillary waves
(κ � 1) are modulationally stable. This feature was emphasized by Djordjevic &
Redekopp (1977) in the absence of vorticity.

In figures 7–14 the effect of positive and negative vorticity on the (µ = kh, κ)
diagrams is investigated. The curves of Djordjevic & Redekopp (1977) have been
plotted to show the effect of the vorticity. As it can be observed, the vorticity has a
significant effect on stability diagrams of gravity–capillary waves. Very recently, this
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FIGURE 9. Same as figure 7 for Ω =−1.
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FIGURE 10. Same as figure 8 for Ω = 1.

feature was emphasized by Hur (2017) who proposed a shallow water wave model
with constant vorticity and surface tension. This model presents some differences with
our approach: (i) dispersion is introduced heuristically and is fully linear; (ii) nonlinear
terms due to surface tension effect are ignored; (iii) the coupling between nonlinearity
and dispersion is not taken into account.

As positive vorticity (Ω < 0) increases, we observe in figures 7, 9, 11 and 13
along the µ-axis in the vicinity of κ = 0 an increase of the region where the Stokes
gravity–capillary wave train is modulationally stable. Consequently, gravity waves
influenced by surface tension behave as pure gravity waves (see Thomas et al.
(2012)). Nevertheless, a very thin tongue of instability persists, near κ = 0, in the
shallow water regime.
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FIGURE 11. Same as figure 7 for Ω =−1.5.
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FIGURE 12. Same as figure 8 for Ω = 1.5.

As the intensity of negative vorticity (Ω > 0) increases, the band of instability
along the µ-axis that corresponds to small values of κ becomes narrower, as shown
in figures 8, 10, 12 and 14. Contrary to the case of positive vorticity, the region of
restabilization along the µ-axis does not increase in the vicinity of κ = 0.

4. Conclusion
A nonlinear Schrödinger equation for capillary–gravity waves in finite depth with a

linear shear current has been derived which extends the work of Thomas et al. (2012).
The combined effect of vorticity and surface tension on the modulational instability
properties of weakly nonlinear gravity–capillary and capillary wave trains has been
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FIGURE 13. Same as figure 7 for Ω =−2.
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FIGURE 14. Same as figure 8 for Ω = 2.

investigated. The explicit expressions of the dispersive and nonlinear coefficients are
given as a function of the frequency and wavenumber of the carrier wave, the vorticity,
the surface tension and the depth. The linear stability to modulational perturbations
of the Stokes wave solution of the NLS equation has been carried out. Two kinds of
waves have been especially investigated that concern short gravity waves influenced by
surface tension and pure capillary waves. In both cases, the effect of vorticity is to
modify the rate of growth of the modulational instability and the instability bandwidth.
Furthermore, it is shown that the vorticity effect modifies significantly the stability
diagrams of the gravity–capillary waves.
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