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We seek to examine the changes in velocity-gradient structure (local streamline
topology) and related dynamics as a function of Reynolds number (Reλ). The analysis
factorizes the velocity gradient (Aij) into the magnitude (A2) and normalized-gradient
tensor (bij ≡ Aij/

√
A2). The focus is on bounded bij as (i) it describes small-scale

structure and local streamline topology, and (ii) its dynamics is shown to determine
magnitude evolution. Using direct numerical simulation (DNS) data, the moments
and probability distributions of bij and its scalar invariants are shown to attain Reλ
independence. The critical values beyond which each feature attains Reλ independence
are established. We proceed to characterize the Reλ dependence of bij-conditioned
statistics of key non-local pressure and viscous processes. Overall, the analysis
provides further insight into velocity-gradient dynamics and offers an alternative
framework for investigating intermittency, multifractal behaviour and for developing
closure models.
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1. Introduction
Velocity-gradient dynamics underlies many critical turbulence phenomena such

as intermittency, multifractality, streamline topology, material-element deformation
and scalar mixing (Soria et al. 1994; Blackburn, Mansour & Cantwell 1996; Martín
et al. 1998b; Suman & Girimaji 2010; Danish, Suman & Girimaji 2016). It is of
fundamental interest to understand velocity-gradient dynamics and develop Lagrangian
closure models that capture key turbulence features (Girimaji & Pope 1990; Martín,
Dopazo & Valiño 1998a; Jeong & Girimaji 2003; Chevillard et al. 2008; Meneveau
2011; Pereira, Moriconi & Chevillard 2018). The multifractal and intermittent nature
of velocity gradients renders characterization of their dynamics quite challenging
(Yakhot & Sreenivasan 2005; Donzis, Yeung & Sreenivasan 2008; Yeung, Zhai &
Sreenivasan 2015). It has been demonstrated in recent literature (Yakhot & Donzis
2017) that intermittency effects manifest even at Reynolds number Reλ ∼ O(10) and
are significant by Reλ∼O(100). To complement the findings of the above studies, the
goal of this investigation is to establish the Reλ dependence of the internal structure of
the velocity gradients and constituent dynamical processes. We demonstrate that such
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an examination leads to improved insight into important aspects of velocity-gradient
dynamics, including a clear distinction between internal structure and magnitude
effects.

We factorize the velocity-gradient tensor (Aij) into the magnitude (A2-Frobenius
norm of A) and normalized velocity-gradient tensor b (Girimaji & Speziale 1995;
Bikkani & Girimaji 2007; Bechlars & Sandberg 2017):

bij = Aij

A
where A=

√
A2 =√AmnAmn. (1.1)

The tensor b is of intrinsic physical interest as it provides insight into many structural
features of turbulence such as local streamline topology and the orientation between
strain rate eigendirections and vorticity (Ashurst et al. 1987; Wang et al. 2014). The
tensor bij is mathematically bounded and thus expected to be more amenable to
analysis and closure modelling. Furthermore, it is demonstrated that the processes
requiring closure in the equations for bij and A2 are identical. Thus, the evolution of
unbounded-A2 can be cast in terms of bounded-bij dynamics.

The goal of the present study is to exploit the bounded nature of the bij tensor to
examine the velocity-gradient structure and non-local processes. We seek to:

(i) Develop appropriately scaled bij and A2 evolution equations and exhibit that the
processes requiring closure in the two cases are similar.

(ii) Examine the Reλ dependence of the velocity-gradient structure: bij-moments,
probability density functions (PDFs) and invariants (q and r). Although q and
r are bounded, the normalization does not guarantee self-similarity at different
Reynolds numbers.

(iii) Establish the Reλ dependence of the unclosed non-local pressure and viscous
processes in the bij and A2 evolution equations conditioned upon q and r.

The work employs forced isotropic turbulence simulation data in the Taylor-scale
Reynolds number range Reλ = 1 to 588. The remainder of the paper is arranged as
follows. Section 2 contains the evolution equations of A2, bij and its invariants. A brief
description of the data sets used in the study is given in § 3. The Reλ dependences
of various velocity-gradient features are presented in § 4. The paper concludes in § 5
with a brief summary.

2. Governing equations
Differentiating the incompressible Navier Stokes equation with respect to spatial

coordinates (xj) yields the evolution equation of the velocity-gradient tensor (Cantwell
1992),

d
dt
(Aij)+ AikAkj =− ∂2p

∂xi∂xj
+ ν ∂

2Aij

∂xk∂xk
; i, j= 1, 2, 3. (2.1)

Using the incompressibility condition Aii = 0, the isotropic pressure Hessian term can
be written as

AikAki =− ∂2p
∂xi∂xi

. (2.2)

The non-local anisotropic pressure Hessian and the viscous diffusion term are

H ij =− ∂2p
∂xi∂xj

+ ∂2p
∂xk∂xk

δij

3
; T ij = ν ∂

2Aij

∂xk∂xk
. (2.3a,b)
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Velocity-gradient structure and dynamics 165

Thus, the velocity-gradient equation may be written as

dAij

dt
+ AikAkj − 1

3
AmkAkmδij = H ij + T ij. (2.4)

In a Lagrangian reference frame, the Aij-dynamics depends upon the non-local
pressure and viscous terms. One of the earliest attempts at developing closure models
for velocity-gradient dynamics was made by Vieillefosse (1982) by neglecting the
non-local terms. There have since been several Lagrangian velocity-gradient models
that develop closure for H ij and T ij to replicate turbulence behaviour. However, the
intermittent nature of the velocity-gradient magnitude renders the modelling rather
challenging. Recently, Pereira et al. (2018) have used multifractal considerations, to
first model A2 and then determine the closure for Aij-evolution.

We seek an alternative approach by segregating the evolution of the magnitude
(A2) from that of normalized velocity-gradient tensor bij as defined in (1.1). We
propose that modelling bij first has advantages due to the boundedness of the tensor
components. Further, bij is of intrinsic interest as it characterizes the orientation of
velocity gradients and local flow structures.

2.1. Mathematical bounds of bij

Longitudinal bij-components satisfy the incompressibility condition,

bii = b11 + b22 + b33 = 0, (2.5)
⇒ b33 =−(b11 + b22). (2.6)

By virtue of normalization, the following inequality holds true:

b2
11 + b2

22 + b2
33 6 1. (2.7)

Applying (2.6) in the above inequality we obtain the following constraint:

b2
11 + b2

22 + b11b22 6
1
2 . (2.8)

The bounds of b11 subject to the above constraint can be obtained as

1
2

(
−
√

2− 3b2
22 − b22

)
6 b11 6

1
2

(√
2− 3b2

22 − b22

)
. (2.9)

Now let us examine the minimum possible value of the lower bound. Minimizing the
lower bound yields a b22 value of

b22 = 1√
6
. (2.10)

Similarly, the upper bound attains the maximum value when

b22 =− 1√
6
. (2.11)

Therefore, b11 or any other longitudinal velocity gradient is bounded as

−
√

2
3 6 bij 6

√
2
3 ∀i= j. (2.12)

Transverse components can be the sole non-zero element in the velocity-gradient
tensor. These components are only constrained by normalization and are therefore
only limited by unity,

−1 6 bij 6 1 ∀i 6= j. (2.13)
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2.2. Evolution equations of A2 and bij

Multiplying the velocity-gradient equation (2.4) through by Aij/A3 yields

Aij

A3

d
dt
(Aij)=−AijAikAkj

A3
+ 1

3A3
AkmAmkδijAij + AijH ij

A3
+ AijT ij

A3
. (2.14)

Using the incompressibility condition, we obtain the following equation:

1
A3

dA2

dt
= 1

A3

d
dt
(AijAij)=−2bijbikbkj + 2bijhij + 2bijτij, (2.15)

where the non-local physics is incumbent in the normalized anisotropic pressure
Hessian and viscous diffusion terms:

hij = H ij

A2
and τij = T ij

A2
. (2.16a,b)

It is convenient to describe magnitude evolution in terms of θ ≡ log(A2):

dθ
dt′
= Iθ +Pθ + Vθ ; (2.17)

where the normalized time and inertial, pressure and viscous contributions are

t′ , At, Iθ =−2bijbikbkj, Pθ = 2bijhij, Vθ = 2bijτij. (2.18a−d)

Next we turn our attention to the evolution of the normalized tensor bij:

dbij

dt
= d

dt

(
Aij

A

)
= 1

A
dAij

dt
− Aij

2

(
1
A3

dA2

dt

)
. (2.19)

Using (2.4), (2.15) and (2.19), the governing equation for bij is obtained in normalized
time t′:

dbij

dt′
=−bikbkj + hij + τij + 1

3
bmkbkmδij + bij(bmkbkn − hmn − τmn)bmn. (2.20)

The processes that require closure in the bij-equation – the non-local pressure
term hij and viscous term τij – are same as those in the A2-equation. Although
the boundedness of hij and τij are not guaranteed, the requirement that bij be
bounded renders modelling the pressure and viscous terms more tractable. Once the
bij-evolution closure model equation is developed, the magnitude equation requires no
further closure modelling.

2.3. Evolution of bij invariants
Let p, q and r represent the invariants of b:

p=−bii = 0, q=− 1
2 bimbmi, r=− 1

3 bimbmkbki. (2.21a−c)

These invariants are of interest as the local streamline structure can be classified into
four distinct topologies based on q and r (Chong, Perry & Cantwell 1990). Now, we
seek equations for q and r. Using (2.20), the following equation for inner product of
b is obtained

d
dt′
(binbnj) = −2bikbknbnj + 2

3
bmkbkmbij + 2binbnjbmqbmkbkq + hinbnj + binhnj

− 2hmqbmqbinbnj + τinbnj + binτnj − 2τmqbmqbinbnj. (2.22)
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Taking the trace of (2.22), the evolution equation of q is determined as

dq
dt′
=−3r+ 2qbijbikbkj − hin(bni + 2qbin)− τin(bni + 2qbin)= Iq +Pq + Vq, (2.23)

where Iq, Pq and Vq represent inertial, pressure and viscous contributions towards the
evolution of q:

Iq =−3r+ 2qbijbikbkj, Pq =−hin(bni + 2qbin), Vq =−τin(bni + 2qbin). (2.24a−c)

To obtain the equation of r, we first derive the equation for triple inner product of
b using (2.20) and (2.22):

d
dt′
(bilblnbnj) = −3bilblkbknbnj + bilbljbmkbkm + 3bilblnbnjbmqbmkbkq + (bilhlnbnj

+ bilblnhnj + hilblnbnj − 3hmqbmqbilblnbnj)+ (bilτlnbnj + bilblnτnj

+ τilblnbnj − 3τmqbmqbilblnbnj) . (2.25)

Applying the Cayley–Hamilton Theorem,

bilblkbkj + pbikbkj + qbij + rδij = 0, (2.26)

in the trace of (2.25), the evolution equation of r is obtained as follows:

dr
dt′
= 2

3
q2 + 3rbijbikbkj − hmn(bimbni + 3rbmn)− τmn(bimbni + 3rbmn)= Ir +Pr + Vr,

(2.27)
where the local (inertial and isotropic pressure), anisotropic pressure and viscous
contributions in the evolution of r are

Ir = 2
3 q2 + 3rbijbikbkj, Pr =−hmn(bimbni + 3rbmn), Vr =−τmn(bimbni + 3rbmn).

(2.28a−c)

The goal of the remainder of this paper is to use DNS data sets to establish the Reλ
dependence of the statistics of bij, q and r. Then we will also characterize the effect of
changing Reynolds number on unclosed pressure (hij) and viscous (τij) processes by
examining the evolution of q, r and θ . The investigation of the unclosed invariants
will yield further insight into velocity-gradient dynamics and provide guidance for
developing closure models.

3. DNS data sets
DNS data sets used in this study have been obtained from the following sources:

Donzis research group at Texas A&M University (Donzis et al. 2008; Yakhot &
Donzis 2017) and Johns Hopkins Turbulence Database (Li et al. 2008). These data
sets have been widely used in the literature to study velocity-gradient dynamics,
intermittency and anomalous scaling (Donzis et al. 2008; Donzis & Sreenivasan
2010; Johnson & Meneveau 2016; Yakhot & Donzis 2017). Twelve forced isotropic
incompressible turbulence data sets with Taylor Reynolds number (Reλ) ranging from
1 to 588 are used in this work. The details of these simulations are shown in table 1.
Here,

Reλ ≡ u′λ/ν (3.1)
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Reλ Grid points kmaxη Source

1 2563 105.6 Yakhot & Donzis (2017)
6 2563 34.8 Yakhot & Donzis (2017)
9 2563 26.6 Yakhot & Donzis (2017)
14 2563 19.87 Yakhot & Donzis (2017)
18 2563 15.59 Yakhot & Donzis (2017)
25 2563 11.51 Yakhot & Donzis (2017)
35 643 1.45 Yakhot & Donzis (2017)
86 2563 2.83 Donzis et al. (2008)
225 5123 1.34 Donzis et al. (2008)
385 10243 1.41 Donzis et al. (2008)
414 10243 1.32 JHTDB: Li et al. (2008)
588 20483 1.39 Donzis et al. (2008)

TABLE 1. Details of forced isotropic incompressible turbulence data sets used.

where u′ is the root-mean-square (r.m.s.) velocity and ν is the kinematic viscosity. λ
(Taylor microscale) and ε (dissipation rate) are given by

λ= (15ν(u′)2/ε)1/2, ε = 2ν〈SijSij〉. (3.2a,b)

Here, kmaxη is the highest resolved wavenumber (kmax) normalized by the Kolmogorov
length scale (η). All the derivatives used in this study are calculated using spectral
methods.

4. Results and discussion
We start by exhibiting the known features of velocity gradients as a function of

Reynolds number – anomalous scaling of the normalized higher-order moments and
increasingly stretched exponential tails of the probability density functions (PDFs). We
then contrast the known Aij behaviour against the bij moments and PDF. Then the Reλ
dependence of various velocity-gradient dynamics processes conditioned on q and r is
established.

4.1. Unnormalized velocity-gradient statistics

Even-order moments (MA
2n for n = 2, 3, 4, 5, 6) of the longitudinal velocity gradient

(A11 = ∂u/∂x) given by

MA
2n =

A11
2n

A11
2n (4.1)

are plotted as a function of Reλ in figure 1. Here, ( ) implies volume averaging. It
is observed that for Reλ 6 9, the moments are nearly Gaussian. For Reλ > 9, the
values of all the moments steadily increase with Reλ in agreement with the anomalous
scaling observed by Yakhot & Donzis (2017). Note that the Reλ-range considered in
this study is much wider than that of Yakhot & Donzis (2017). Anomalous scaling of
the moments is a clear indication of the intermittent behaviour of Aij. This observation
is further reinforced in the PDF plots of velocity gradients.
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FIGURE 1. (Colour online) Even-order moments (M2n for n = 2, 3, 4, 5, 6) of A11 as
a function of Reλ. Dashed lines represent Gaussian moments, i.e. MG
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reference.

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

10-8

10-9

PD
F

PD
F

-10 -5 0 5 10

Re¬ Re¬

Re¬

A11/�¯A2˘ A12/�¯A2˘

1
6
9
14
18
25
35
86
225
385
414
588

100

10-2

10-4

10-6

10-8

-20 -15 -10 -5 0 5 10 15 20

100

10-1

10-2

10-3

-2 -1 0 1 2

100

10-1

10-2

10-3
-2 0 2

(a) (b)

FIGURE 2. (Colour online) PDF of velocity-gradient component (a) A11/
√〈A2〉 (b)

A12/
√〈A2〉 for different Reλ.

The PDFs of A11 and A12 are shown in figure 2. As expected, at sufficiently high
Reλ, the longitudinal and transverse PDFs exhibit stretched exponential tails that
grow with increasing Reλ (Kailasnath, Sreenivasan & Stolovitzky 1992; Chevillard &
Meneveau 2006; Schumacher et al. 2014).
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FIGURE 3. (Colour online) Even-order moments (M2n for n = 2, 3, 4, 5, 6) of b11 as
a function of Reλ. Dashed lines represent Gaussian moments, i.e. MG

2n = (2n − 1)!! for
reference.

Another feature of turbulent flows relevant to this study is the dissipative anomaly
(Donzis, Sreenivasan & Yeung 2005). In the asymptotic limit of high Reλ, the
normalized energy dissipation rate (εL/u′3) asymptotes to a constant value of
approximately 0.4–0.45. Here, L is the integral length scale and u′ is the r.m.s.
velocity. In other words, the normalized mean energy dissipation rate is independent
of viscosity provided the value of Reλ is sufficiently high. The onset of this dissipative
anomaly in forced isotropic turbulence is observed at Reλ ∼ 200 (Sreenivasan 1998;
Kaneda et al. 2003; Donzis et al. 2005). We will invoke this result later in the study.

4.2. Normalized velocity-gradient statistics
In this subsection, we investigate the statistical characteristics of the tensor b. The
even-order moments of b11 are given by

Mb
2n =

b11
2n

b11
2n . (4.2)

Even-order moments (Mb
2n for n = 2, 3, 4, 5, 6) of b11 at different Reλ are plotted

in figure 3. b11-moments are sub-Gaussian and nearly invariant across the entire Reλ-
range. This behaviour is to be expected as bij is bounded by unity. This also clearly
demonstrates the contrast between the Reynolds number scaling of bij and Aij.

We will next examine the PDFs of bij at different Reλ. In figure 4(a,c) we
present b11- and b12-PDFs, respectively, over the lower range of Reynolds numbers
(Reλ 6 35). In this range, the PDF undergoes slight changes in shape with changing
Reλ. Figure 4(b,d) show that for Reλ > 35, both b11- and b12-PDFs converge to
a characteristic shape, which remains unchanged at higher Reλ. This statistical
self-similarity is anticipated from the collapse of higher-order moments of b11
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FIGURE 4. (Colour online) PDF of (a,b) normalized longitudinal velocity gradient b11 and
(c,d) normalized transverse velocity gradient b12 for (a,c) Reλ = 1–35 and (b,d) Reλ =
35–588.

to constant values. Note that the minimum and maximum longitudinal (b11) and
transverse (b12) velocity-gradient values are in accordance with the bounds obtained
analytically in (2.12) and (2.13).

4.3. Invariants of normalized velocity-gradient tensor
Delving further, we examine the marginal PDFs of q and r in figures 5 and 6.
Figure 5(a) shows that in the range where Reλ 6 25, the q-PDF appears to have a
characteristic shape but shows discernible statistical variation about this shape. For
25 6 Reλ 6 225 (figure 5b), the distribution shifts towards more negative values of
q with increasing Reλ. In this range the probability of strain-dominated topology
(q < 0) increases, while that of rotation-dominated topology (q > 0) decreases. This
is due to the fact that viscosity affects the strain-dominated topologies more than
rotation-dominated topologies and lower viscous influence at higher Reynolds numbers
causes a higher percentage of strain-dominated topologies to be generated. Finally,
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FIGURE 5. (Colour online) q-PDF for (a) Reλ = 1, 6, 9, 14, 18 and 25 and for (b) Reλ =
25, 35, 86, 225, 385, 414 and 588.
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FIGURE 6. (Colour online) r-PDF for (a) Reλ = 1, 6, 9, 14, 18 and 25 and for (b) Reλ =
25, 35, 86, 225, 385, 414 and 588.

q-PDF attains a self-similar shape for flows above Reλ∼ 200. In the middle range of
Reλ ∈ (25, 200) the PDF transitions from one characteristic shape to another.

Unlike q-PDF, the r-PDF shows only a subtle Reλ dependence. It may be noted
from figure 6 that irrespective of the Reλ value, r-PDF peaks at r = 0. The shape
of r-PDF remains fairly unchanged while its peak increases with Reλ in the range
Reλ ∈ (1, 200). It appears to be invariant above Reλ ∼ 200. Note that the variation in
r-PDF with Reλ is minimal compared to q-PDF.

The q–r joint PDFs are plotted in figure 7 for different Reλ. Figure 7(a–f ) shows
the variation in shape of the q–r joint PDF in the low-Reλ range. At Reλ= 1, the joint
PDF is fairly symmetric about the q-axis and does not have a preferential distribution
along the zero-discriminant (restricted Euler) line in the fourth quadrant. In fact, at
this Reλ the distribution resembles that of invariants of a Gaussian field (Pereira,
Garban & Chevillard (2016)). As Reλ increases in the range (1, 9), the q–r joint PDF
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FIGURE 7. (Colour online) q–r joint PDF filled contour plots for Reλ = (a) 1, (b) 6, (c)
9, (d) 14, (e) 18 and ( f ) 25. q–r joint PDF line contour plots for Reλ = (g) 25 to 225
and (h) 225 to 588. The contour levels are identical for all plots: the colour scheme for
(a–f ) is shown in (a).

changes shape significantly and begins to develop a high-density region along the
zero-discriminant line. It acquires a teardrop-like shape around Reλ= 9. This value is
in the same range as the transition Reλ for onset of anomalous scaling of Aij moments
(Yakhot & Donzis (2017)). For 9<Reλ6 225, the contours undergo refinements in the
teardrop shape. Figure 7(g) clearly depicts these changes, amounting to an increase
in the probability of strain-dominated topologies with respect to rotation-dominated
topologies with increasing Reλ. This reiterates the observation from the marginal PDF
of q (figure 5). Finally, the joint PDF contours become invariant for Reλ > 200, as
shown in figure 7(h).

The joint q–r PDF exhibits three distinct ranges of variation with Reλ. In the range
Reλ ∈ (1, 10), it shows significant qualitative variation from near-Gaussian behaviour
to a teardrop-like shape. Small quantitative changes are evident in the contours for
10 6 Reλ 6 200. Finally, an invariant joint distribution in the characteristic teardrop
shape is attained for Reλ > 200.
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FIGURE 8. (Colour online) Conditional averages of inertial (circles), pressure (triangles)
and viscous (squares) contributions in (a) 〈dq/dt′|q〉, (b) 〈dq/dt′|r〉, (c) 〈dr/dt′|q〉 and (d)
〈dr/dt′|r〉 for different Reλ (refer to (2.23) and (2.27); colour scheme is given in (b)).

4.4. Evolution of bij-invariants and A2

In this subsection we study the dynamics of q- and r-evolution which lays the
foundation for modelling both bij and A2. We also characterize the Reλ dependence
of θ -dynamics conditioned on q and r. We consider the Reλ range 86–588 in this
subsection to understand the role of different turbulent processes in q, r-phase space.

The averages of inertial, pressure and viscous terms of dq/dt′ (2.23) conditioned on
q and r are plotted in figure 8(a,b). The inertial and pressure terms conditioned on q
show a Reλ dependence at low Reλ and attain nearly invariant forms for Reλ > 225.
The viscous term conditioned on q shows a significant Reλ dependence at low Reλ
values, but is nearly invariant in the higher range. All q-evolution terms conditioned
on r appear to be completely insensitive to Reλ.

The conditional averages of local (inertial and isotropic pressure), anisotropic
pressure and viscous contributions in dr/dt′ (as shown in (2.27)) are reasonably
insensitive to Reλ, as shown in figure 8(c,d). The average viscous contributions
(Vr) conditioned on both q and r are negligible in comparison to the other terms.
This suggests that r-evolution is relatively impervious to viscosity and dominated by
inertial and pressure terms. The fact that the probability distribution of r is nearly
insensitive to Reλ (figure 6b) is consistent with this inference.
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FIGURE 9. (Colour online) Conditional averages of inertial (circles), pressure (triangles)
and viscous (squares) contributions in the θ -evolution equation conditioned on (a) q and
(b) r for different Reλ (refer to (2.17); colour scheme as given in a).

The different processes in the θ -evolution (as given in (2.17)) conditioned on q and
r are plotted in figure 9(a,b). The average inertial term (Iθ ) is positive for almost all
q and r values – implying that inertia is a source of A2. The sign of the pressure
contribution (Pθ ) depends on the q and r values. Expectedly, the viscous term (Vθ )
is negative across all values of q and r, indicating that it is always a sink of A2.
Viscous effects are stronger in strain-dominated topologies (q < 0) and weaker in
rotation-dominated topologies (q> 0). However, it is nearly independent of r. Overall,
the conditionally averaged inertial and pressure processes in the θ -equation appear to
approach asymptotic behaviour at high Reλ (∼ 200). The viscous term on the other
hand appears to have a discernible Reλ dependence throughout the Reλ range.

Finally, we plot the conditional variance of the unclosed pressure and viscous terms
in the q-, r- and θ -evolution equations in figure 10. The variance of the pressure
term in q-evolution conditioned on both q and r have invariant forms irrespective of
Reλ (figure 10a,c). However, the conditional variance of the viscous contribution to
dq/dt′ (figure 10b,d) does not converge even in the high-Reλ limit. In fact, it shows a
progressive increase in the magnitude of the variance with increasing Reλ. Similarly,
the conditional variance of the anisotropic pressure contribution in the r-evolution is
invariant with changing Reλ (figure 10e,g). On the other hand, the variance of the
viscous term increases with increasing Reλ (figure 10f,h). We also observe that the
variance of Pθ conditioned on both q and r exhibits reasonable collapse, while that
of Vθ exhibits a distinct Reλ dependence, with the magnitude increasing with Reλ
(figure 10i–l).

Therefore, we find that conditional statistics (mean and variance) of the pressure
contribution to q-, r- and θ -evolution become nearly invariant for Reλ > 200. The
mean-viscous contribution to q- and r-evolution also exhibits self-similarity beyond
Reλ> 200. On the other hand, the conditional mean of the viscous term in θ -evolution
shows a quantitative increase in magnitude with Reλ. The conditional variance of
pressure processes in q-, r- and θ -evolution are independent of Reλ while that of
the viscous contribution shows steady growth in magnitude with increasing Reλ. This
implies that the Reλ dependence in the velocity-gradient dynamics is solely due to
viscous effects, which is to be expected.
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FIGURE 10. (Colour online) Conditional variance of pressure and viscous terms in the
q-, r- and θ -equations conditioned on q and r: (a) Var(Pq|q) versus q, (b) Var(Vq|q)
versus q, (c) Var(Pq|r) versus r, (d) Var(Vq|r) versus r, (e) Var(Pr|q) versus q, ( f )
Var(Vr|q) versus q, (g) Var(Pr|r) versus r, (h) Var(Vr|r) versus r, (i) Var(Pθ |q) versus
q, ( j) Var(Vθ |q) versus q, (k) Var(Pθ |r) versus r and (l) Var(Vθ |r) versus r for different
Reλ (colour scheme is given in a).
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4.5. Lagrangian velocity-gradient modelling
One of the long-term goals of this work is to develop a Lagrangian stochastic model
for velocity gradients along the lines of Girimaji & Pope (1990). The main distinction
is that we plan to develop a model for bij-evolution rather than Aij-evolution, as was
the case in Girimaji & Pope (1990).

It is anticipated that hij and τij will be more tractable than their Aij-counterparts. The
proposal is to decompose each term into a conditional mean and a stochastic (white
noise) term:

hij(b)= 〈hij|q, r, b〉 + h′ij(q, r, b), (4.3)

τij(b)= 〈τij|q, r, b〉 + τ ′ij(q, r, b). (4.4)

The conditional statistics (means and variances) established in this paper (figures 8–10)
provide guidance for this model development. Once hij and τij models are established,
Lagrangian evolution equations for A2 and Aij can be developed without the need for
any further closures ((2.4) and (2.15)).

5. Summary and conclusions
The main objective of the work is to clearly characterize the Reλ dependence of

the different aspects of velocity-gradient structure and dynamics. In the analysis, we
segregate the velocity-gradient magnitude (A2) from the normalized-gradient tensor bij.
The bij-tensor and the evolution of its invariants are the subject of this study. Some
of the key findings of this study are summarized below:

(i) Higher-order moments (Mb
2n) of bij do not show any statistically significant

variation across the entire range of Reλ investigated in this study. This is in
contrast with Aij, which exhibits a significant increase of normalized moment
values with increasing Reλ. Moreover, Aij-PDFs exhibit a clear stretch in tails as
Reλ increases, while bij-PDFs achieve self-similarity for Reλ > 35.

(ii) PDFs and joint PDFs of bij-invariants (q, r) are more sensitive to changing Reλ
than individual bij-components:
(a) The q–r joint PDF changes qualitatively for Reλ ∈ (1, 10) from Gaussian to

a teardrop shape.
(b) For Reλ ∈ (10, 200), the q–r joint PDF and marginal PDFs undergo minor

quantitative changes with increasing Reλ to accommodate an increasing
proportion of strain-dominated topologies.

(c) The q and r individual PDFs as well as the q–r joint PDF converge to the
characteristic teardrop shape for Reλ > 200. Note that this asymptotic
behaviour is observed in a similar range of Reλ as the onset of the
dissipative anomaly (Donzis et al. 2005).

(iii) Physical processes contributing to the evolution of bij-invariants and A2 are also
examined:
(a) For Reλ > 200, the conditional mean and variance of the unclosed pressure

term in the evolution of q, r and θ are independent of Reλ.
(b) The mean-viscous contribution to q- and r- evolution shows asymptotic

convergence for Reλ > 200. The mean-viscous contribution to θ -evolution
does not vary qualitatively but shows a continued quantitative dependence
on Reλ. The conditional variance of viscous term in all three evolution
equations continue to exhibit a Reλ dependence.
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(c) It is surmised that viscous processes are the primary source of the Reλ
dependence of A2.

In future works, we plan to develop closure models for hij and τij as a function of
q and r. This will lead to a Lagrangian closure model for bij-evolution, and ultimately
to A2-evolution.
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