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SUMMARY
Several problems of practical interest in robotics can be
modelled as the convolution of functions on the Euclidean
motion group. These include the evaluation of reachable
positions and orientations at the distal end of a robot
manipulator arm. A natural inverse problem arises when
one wishes to design rather than to model manipulators.
Namely, by considering a serial-chain robot arm as a
concatenation of segments, we examine how statistics of
known segments can be used to select, or design, the
remainder of the structure so as to attain the desired statistical
properties of the whole structure. This is then a deconvolution
density estimation problem for the Euclidean motion group.
We prove several results about the convergence of these
deconvolution estimators to the true underlying density under
certain smoothness assumptions. A practical implementation
to the design of planar robot arms is demonstrated.

KEYWORDS: Degenerate diffusion; Fourier analysis;
Gaussian distribution; Inverse problem; Irreducible repres-
entations; Kinematics; Manipulator arm.

1. Introduction
A robotic manipulator arm is a device that is used to position
and orient objects. A manipulator is constructed of rigid
links and actuators, such as motors or hydraulic cylinders,
which cause all motion of the arm. If the actuators have
only a finite number of states, as is the case with stepper
motors or pneumatic cylinders, the arm has a finite number
of configurations and only a finite number of reference frames
(i.e. elements of the rigid-body-motion group) are reachable
by the hand. Discrete-state manipulator arms have been
studied almost from the beginning of the field of robotics1,2,
and were independently studied in the 1980s in the former
Soviet Union.3 Since the mid 1990s there has been a revival of
interest in these devices.4,5 The set of all reachable positions
and orientations is called the workspace. Studying properties
of the workspace, as well as designing manipulators that have
desired workspace properties are topics which have received
considerable attention.6,7 In the Introduction of ref. [8], a
survey of various classes of manipulators is detailed (see
also ref. [9]).
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One can think of a two-dimensional discrete-state
manipulator as an object which is constructed out of a series
of platforms that are stacked, or cascaded, on top of each
other (see for example Fig. 2 in ref. [10]). Since each actuator
(which in this case is a pneumatic cylinder in parallel with a
viscous dashpot) has two stable states, a very large but finite
number of states are reachable by the end. This kind of arm
is attractive because it requires no feedback control, and is
very inexpensive to construct.

For discretely actuated manipulators, Chirikjian and Ebert-
Uphoff observed that the density of reachable frames
determines how accurately a random position and orientation
can be reached.11,12 This density information is also
important in planning the motions of discretely actuated
manipulator arms.13 Density is calculated in principle by
dividing a compact subset of the Euclidean motion group
containing the workspace into finite but small volume
elements.11,12 The number of positions and orientations
reachable by the end of the manipulator which lie in each
volume element is stored. Dividing this number by the
volume element size gives the average density in each
element.

It is an important aspect of the manipulator design problem
to specify the density of reachable frames throughout the
workspace. That is, areas which must be reached with
great accuracy should have high density, and those areas of
the workspace which are less important need less density.
However, to compute this workspace density function
using brute force enumeration of states is computationally
intractable for a large number of segments, e.g. it requires
a huge number of evaluations of the kinematic equations
relating actuator state to the resulting end frame for a
manipulator.

In the current presentation, we will restrict the discussion to
planar robot arms. In this context, the concept of convolution
of real-valued functions on SE(2), the three-dimensional
Euclidean motion group, provides a powerful computational
tool for computing this density efficiently.11,12 Let us denote
an arbitrary element of SE(2) as x. If we imagine that the
manipulator is divided into two connected parts, a density
function k(x) can be associated with those frames reachable
by the end of the lower half of the manipulator, and a density
function f (x) can be associated with the end of the upper
half of the manipulator. The density k is defined relative to
the base frame, and f treats the frame at the end of the lower
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segment as the base frame. That is f (x) = k(x) when the
manipulator is cut into two equal parts and there are an even
number of identical modules. However, k and f will not be
the same function in more general scenarios. By adjusting
kinematic parameters such that actuator strokes are limited
or extended, the set of reachable frames (and thus the density)
is altered. This is achieved mechanically by simply inserting
or removing rigid stoppers that specify the physical actuator
length corresponding to the discrete states.

While it may not be possible to calculate all of the
frames to compute the density function of the workspace,
it is often feasible to compute a smaller number of frames
for each of the two segments. The density of the whole
workspace is then generated by the convolution of these two
functions: ∫

SE(2)
k(y)f (y−1x) dy = h(x).

Our objective then is to reconstruct the density f based on
observations from h when k is known.

We would also like to add that the implementation of
the proposed deconvolution method essentially involves a
non-linear optimization with respect to a low-dimensional
parameter space using gradient descent. The main technical
contribution of this paper involves the fact that because
we are approaching this problem in the natural geometry
of the Euclidean motion group SE(2), we are essentially
embedding the problem in the constraint set and therefore
are not burdened by invoking boundary conditions if
approached as a constraint optimization problem. This allows
us to obtain error bounds with respect to the sample size
and truncation level without having to specify boundary
conditions.

We will now provide a summary of this paper. In Section 2,
we review the representation theory of the Euclidean motion
group of the plane and the corresponding Fourier analysis. In
Section 3, we go over diffusions on SE(2) and, in particular,
the Gaussian and degenerate distributions are introduced. In
Section 4, we state precisely the deconvolution problem along
with the deconvolution density estimator, while in Section 5
we present numerical results along with a demonstration of
a practical implementation of the deconvolution procedure.
In Section 6, we present some technical results which
demonstrate some desirable theoretical properties of our
procedure. Finally, all proofs and numerical discussions are
collected in the Appendix section.

2. Notation
We will use this section to set the notations; we will closely
follow those of the Section III in ref. [8].

The Euclidean motion group SE(2) is the semidirect
product of the special 2 × 2 orthogonal group SO(2) with
R2. That is SE(2) = SO(2) � R2. We denote elements of
SE(2) as g = (A, a) ∈ SE(2) where A ∈ SO(2) and a ∈ R2.
For any g1 = (A1, a1) and g2 = (A2, a2) in SE(2), the group
law is written as g1g2 = (A1A2, a1 + A1a2), and g−1 =
(A′, −A′a), where superscript ′ means transpose. The unit

element is (I2, 0) ∈ SE(2), where Iν is the ν × ν identity
matrix and 0′ = (0, 0).

It is convenient to think of elements in SE(2) as 3 × 3
matrices

g =
(

A a
0′ 1

)
, (2.1)

where A ∈ SO(2), a ∈ R2. In polar coordinates, (2.1) would
be written as

g(r, θ, φ) =

⎛⎜⎝cos φ − sin φ r cos θ

sin φ cos φ r sin θ

0 0 1

⎞⎟⎠ , (2.2)

where φ, θ ∈ [0, 2π) and r ≥ 0. Then the group action and
inverse is just matrix multiplication and inversion of (2.2),
respectively.

For the unit element (I2, 0) ∈ SE(2), define the Lie algebra
se(2) as the tangent space of SE(2) at the unit element. By
differentiating and evaluating Eq. (2.2) at the unit element,
one can see that se(2) = so(2) + R2, a vector space sum,
where so(2) is the Lie algebra of SO(2), i.e. the tangent
space of the latter at I2. In particular, we have the following
matrices as a basis for se(2):

X1 =

⎛⎜⎝0 −1 0

1 0 0

0 0 0

⎞⎟⎠ , X2 =

⎛⎜⎝0 0 1

0 0 0

0 0 0

⎞⎟⎠ ,

X3 =

⎛⎜⎝0 0 0

0 0 1

0 0 0

⎞⎟⎠ , (2.3)

where X1 is a basis for so(2) and X2 and X3 are the basis for
R2.

We note that (2.3), collectively, represent the coordinate
axes of se(2), the tangent space of SE(2) at the unit element.
An arbitrary X ∈ se(2) will therefore be a linear combination
of (2.3) and thus for small displacements from the unit ele-
ment, one can consider the one-parameter subgroup exp(tX)
of se(2), where exp: se(2) → SE(2) is the exponential
map. The left invariant vector field on se(2) can now be
defined by

X̃f = d

dt
f (g exp(tX))

∣∣∣
t=0

,

where f : SE(2) → R. This is the directional derivative of
f at g ∈ SE(2) in the direction exp(tX). Thus, with respect
to the bases (2.3), we have

exp(tX1) =

⎛⎜⎝cos t − sin t 0

sin t cos t 0

0 0 1

⎞⎟⎠ ,
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exp(tX2) =

⎛⎜⎝1 0 t

0 1 0

0 0 1

⎞⎟⎠ ,

exp(tX3) =

⎛⎜⎝1 0 0

0 1 t

0 0 1

⎞⎟⎠ , (2.4)

for t ∈ R. In polar coordinates, the left invariant vector fields
are

X̃1 = ∂

∂φ
,

X̃2 = cos(φ − θ)
∂

∂r
+ sin(φ − θ)

r

∂

∂θ
, (2.5)

X̃3 = −sin(φ − θ)
∂

∂r
+ cos(φ − θ)

r

∂

∂θ
.

In rectangular coordinates, the left invariant vector fields are

X̃1 = ∂

∂φ
,

X̃2 = cos(φ)
∂

∂x
− sin(φ)

∂

∂y
, (2.6)

X̃3 = sin(φ)
∂

∂x
+ cos(φ)

∂

∂y
.

Thus by using either (2.5) or (2.6), we can define differential
operators on SE(2) as we will do in Section 3.

2.1. Irreducible unitary representations
The collection of inequivalent irreducible unitary representa-

tions of SE(2) denoted by ŜE(2) is characterized by a positive
real number p ∈ R+ = [0, ∞). The unitary representation
U (g, p) has the property

U (g, p) = U (A, a, p) = U (I2, a, p) U (A, 0, p).

After an appropriate orthonormal basis of the space of square
integrable functions on the unit circle, L2(S1), is chosen, the
matrix elements of U (g, p) are expressed as

u�m(g, p) = 1

2π

∫ 2π

0
e−i�ψe−i(a1p cos ψ+a2p sin ψ)eim(ψ−φ)dψ,

where �, m ∈ Z, i2 = −1 and g = (A, a) = (φ, a1, a2)
parameterized in rectangular coordinates, or

u�m(g, p) = im−�e−i[mφ+(�−m)θ]Jm−�(pa),

where �, m ∈ Z, g = (A, a) = (φ, θ, a), a = (a2
1 + a2

2)1/2,
parameterized in polar coordinates and Jν(x) is the νth
order Bessel function. The matrix elements satisfy the
orthogonality relation∫

SE(2)
u�1m1 (g, p1)u�m(g, p)dg = 4π2

p
δ�1�δm1mδ(p1 − p),

where �, �1, m, m1 ∈ Z, p, p1 ∈ R+ and δ is the Dirac or
Kronecker delta function.

2.2. Fourier analysis on SE(2)
Let f ∈ L1(SE(2)) ∩ L2(SE(2)), the integrable and square
integrable functions on SE(2). We define the Fourier
transform on SE(2) with respect to an irreducible unitary
representation as

f̂ (p) =
∫

SE(2)
f (g)U (g−1, p) dg. (2.7)

The matrix elements of the transform are given as

f̂�m(p) =
∫

SE(2)
f (g)u�m(g−1, p) dg,

where �, m ∈ Z and p ∈ R+.
Fourier inversion is defined by

f (g) =
∫ ∞

0
tr (f̂ (p)U (g, p))p dp, (2.8)

where ‘tr’ stands for the trace of the object in question.
Explicitly,

f (g) =
∞∑

�=−∞

∞∑
m=−∞

∫ ∞

0
f̂�m(p)um�(g, p)p dp.

A useful property of Fourier transforms is that convolution
of two functions in the Fourier domain turns out to
be ordinary matrix multiplication. Indeed, let f, k ∈
L1(SE(2)) ∩ L2(SE(2)). Define the convolution,

(k ∗ f )(g) =
∫

SE(2)
k(x)f (x−1g) dx, (2.9)

for g ∈ SE(2). We have the following convolution property
for f, k ∈ L1(SE(2)) ∩ L2(SE(2))

k̂ ∗ f = f̂ k̂. (2.10)

In particular, for each p ∈ R+,

(
k̂ ∗ f

)
�m

(p) =
∞∑

q=−∞
f̂�q(p)k̂qm(p),

where �, m ∈ Z and p ∈ R+.

3. Diffusions and Distributions on SE(2)
We note that given the left invariant vector fields associated
with the basis of the Lie algebra se(2), any left invariant
differential operator can be written as sums of products
of these vector fields. A particularly important class is the
second-order partial differential operators where the interest
is due to the Markov (memoryless) property associated with
them and is sometimes referred to as diffusions.
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In particular, based on the left invariant vector fields, Eq.
(2.5) or (2.6), a second-order differential operator can be
expressed in general as

D =
3∑

i,j=1

σij X̃iX̃j +
3∑

i=1

X̃i , (3.1)

where μ = (μ1, μ2, μ3)′ ∈ R3 and � = (
σij

)
is a positive

semi-definite symmetric 3 × 3 matrix. For the purposes of
this paper, we will assume that μ and � are fixed, although
they do not have to be in general.

For some smooth ω : SE(2) × R+ → R the differential
operator (3.1) induces the following partial differential
equation or diffusion:

∂

∂t
ω = Dω, (3.2)

where ω(x, 0) = f (x) is some initial condition f (x), x ∈
SE(2). In the case where f is a Dirac delta function, the
solution to Eq. (3.2) is called the fundamental solution. The
above is also referred to as the Fokker–Planck or Kolmogorov
equations.

Let C∞(SE(2)) be the set of infinitely continuous
differentiable functions on SE(2). For f ∈ C∞(SE(2)), let

̂̃
Xjf (p) = ̂̃

Xj (p)f̂ (p), (3.3)

where ̂̃
X1(p) = −i

(
�δ�,m

)
,̂̃

X2(p) = i
p

2

(
δ�,m+1 + δ�,m−1

)
, (3.4)

̂̃
X3(p) = p

2

(
δ�,m+1 − δ�,m−1

)
,

where i2 = −1 and p ∈ R+.
Applying (3.3) and (3.4) to (3.1), we obtain

K(p) =
3∑

i,j=1

σij
̂̃
Xi(p)̂̃Xj (p) +

3∑
i=1

μi
̂̃
Xi(p), (3.5)

for p ∈ R+. Thus applying the Fourier transform to (3.2)
results in the ordinary differential equation

d

dt
ω̂ = K(p)ω̂,

which has as solution

ω̂(p, t) = etK(p)f̂ (p),

for t ∈ R+. By Fourier inversion (2.8) the fundamental
solution is

kt (x) =
∫ ∞

0
tr
(
etK(p)U (x, p)

)
pdp, (3.6)

for t ∈ R+.

The above is a general description of the flow diagram
illustrated in Fig. 3 of ref. [8].

3.1. The Gaussian distribution on SE(2)
In the situation where μ = (0, 0, 0)′ and � = I3, then Eq.
(3.1) is of course the Laplacian on SE(2) which we denote
by

 = X̃2
1 + X̃2

2 + X̃2
3.

Consequently, the corresponding diffusion is the heat
equation on SE(2),

∂

∂t
ω = ω,

where ω(x, 0) = f (x).
In this situation the corresponding Eq. (3.5) is represented

as

G(p) =
3∑

j=1

̂̃
X

2

j (p),

for p ∈ R+. Consequently,

etG(p) = (
e−t(m2+p2)δ�m

)
,

so that the fundamental solution to Eq. (3.2) is

gt (x) =
∫ ∞

0

∞∑
m=−∞

(
e−t(m2+p2)umm(x, p)

)
pdp,

for t ∈ R+ and x ∈ SE(2) which we will call the Gaussian
distribution on SE(2). It is worth pointing out that through a
change of variables, we can reduce (3.1) to this case when �

is of full rank.

3.2. Degenerate distributions on SE(2)
In the situation where � is not of full rank, it is still
possible to use (3.6). Again, by a change of variables, we can
assume � is diagonal with diagonal entries σ11, σ22, σ33 ≥
0, and where σjj = 0 for some j = 1, 2, 3. This would
result in a class of degenerate diffusions associated with
a class of degenerate second-order differential operators
otherwise known as hypoelliptic operators, a term first used
by Hörmander14 in a much more general setting than the
current one.

Of particular interest is when σ22 or σ33 vanish, which
has been extensively studied in the robotics literature, by
Chirikjian et. al. (see refs. [8, 15, 16]). In addition to
the robotics literature, the above author recognized that
probability density functions in position and orientation
associated with certain kinds of polymer chains can be
described as a degenerate diffusion process on motion
groups. This kind of process (and the resulting probability
densities) has subsequently been observed in phenomena
ranging from phase noise in optical communication
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systems17, dead-reckoning error distributions in non-
holonomic mobile robots18 and the application closest to
the current paper: the workspace densities of manipulators .8

For physical reasons, to be explained in Section 5.1, it is
assumed that σ11, σ33 > 0 while σ22 = 0, with μ ∈ R3. With
this in mind, define

C(p) = σ11
̂̃
X

2

1(p) + σ33
̂̃
X

2

3(p) +
3∑

i=1

μi
̂̃
Xi(p),

for p ∈ R+. Define the resulting fundamental solution

ct (x) =
∫ ∞

0
tr
(
etC(p)U (x, p)

)
pdp, (3.7)

for t ∈ R+.
For some vector space V with norm ‖ · ‖, and an operator

A : V → V, define the operator norm by

‖A‖2
op = sup

‖v‖=1
‖Av‖2 . (3.8)

In the case where A = (a�m)�,m∈Z, for some T > 0 fixed,
we will denote its (2T + 1) × (2T + 1) finite dimensional
compression by AT = (a�m)|�|,|m|≤T .

We have the following useful property whose proof is
in Appendix 3. The main motivation of this result is in
the bounding of the mean integrated squared error of the
degenerate diffusion illustrated in Section 5 and is explicitly
stated as Corollary 6.3.

Theorem 3.1. For the degenerate distribution (3.7),

e−t max{σ11,σ33}(T2+3p2/2) ≤ ‖etCT(p)‖2
op ≤ e−t min{σ11,σ33}(T2+p2/2),

where p, t, T ∈ R+.

4. Deconvolution
Let X, Y, Z be SE(2) random elements and suppose we
observe Y according to

Y = ZX, (4.1)

where Y and X are assumed independent. Let X, Y, Z have
densities f, h, k, respectively. Through (4.1), the relation
among the densities can be described by convolution, h =
k ∗ f , (2.9).

Now consider the Fourier transforms of each of the
densities, where by (2.7), we have f̂ (p), ĥ(p) and k̂(p) for
each p ∈ R+, respectively. By (2.10) we have,

ĥ(p) = f̂ (p)k̂(p),

p ∈ R+. In coordinates, we have

ĥ�m(p) =
∑

q

f̂�q(p)k̂qm(p),

p ∈ R+, �, m ∈ Z. Define (k̂(p))−1 = (k̂−1
qm(p))q,m∈Z as the

(formal) inverse to k̂(p), p ∈ R+. Then

f̂�m(p) =
∑

q

ĥ�q(p)k̂−1
qm(p), (4.2)

for p ∈ R+. The reason we have said formal inverse is
because k̂(p) is often a compact (infinite-dimensional)
operator hence the inverse would not exist. One would
therefore have to regularize the problem through truncation
as done later in the paper.

4.1. Statistical estimation
Statistically, (4.1) is describing the non-Euclidean analogue
of observations Y made up of the measurement X we desire
but cannot observe, multiplied by another random quantity
Z. In the context of manipulator design, if we imagine that
the manipulator is divided into two connected parts, then a
density function k(z) can be associated with those frames
reachable by the end of the lower half of the manipulator,
which is assumed known, and a density function f (x) can be
associated with the end of the upper half of the manipulator
for which we do not know. Our interest is in the unknown f

while it is assumed that k is known, or estimated by some
prior experiment. Since f is unknown, h is also unknown,
hence ĥ is unknown. Nevertheless, we assume that a random
sample Y1, . . . , Yn is available. This will allow us to construct
an empirical version:

ĥn
�m(p) = 1

n

n∑
j=1

u�m

(
Y−1

j , p
)
, (4.3)

for |�|, |m| ≤ T and p ≤ T . By (4.2) an estimator for f̂ is
therefore

f̂ n
�m(p) =

∑
|q|≤T

ĥn
�q(p)k̂−1

T ,qm(p), (4.4)

where k−1
T ,qm(p) are the elements of the inverse to the

compression kT (p) for p ∈ R+, |�|, |m| ≤ T . We can then
produce a non-parametric deconvolution density estimator of
f by (2.8) and the Fourier inversion is

f n(x) =
∫ T

0

∑
|�|,|m|≤T

f̂ n
�m(p)um�(g, p)pdp. (4.5)

We note that the truncation T > 0 is there for the purpose of
reducing the general infinite-dimensional problem down to
a finite-dimensional one. The theoretical properties of (4.5)
will be examined in Section 6. What we first want to establish
are some practical issues with respect to the implementation.

5. Practical Implementation
In this section, we will put to use the statistical estimation of
Section 4.1 into a practical robot design problem originally
proposed in ref. [10] and informally discussed in Section 1.
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Fig. 1. Scatter plot of workspace density.

In general, suppose that one of the halves of the
manipulator has been designed (k(z) is specified and
generates the Z data), and the problem is to design the other
half of the manipulator (find f (x) that generates the X data)
so that the density function for the workspace of the whole
manipulator comes as close as possible to a desired density
function h(y) that generates the Y data. One must then solve
the inverse problem

f ∗ k(y) = h(y),

for f (x). Once f (x) is known, the methods developed in ref.
[4] can be used to find the appropriate kinematic parameters
in the manipulator arm.

To be concrete, let us explicitly detail the design problem
where we will make use of the following workspace density
figures for illustration as has been established in ref. [8].

Both figures are illustrations of a 16-module robot design
problem where 8 modules (black) have already been designed
with the ensuing workspace probability density shown as
coloured contours at the terminal module, and the blue-dotted
lines are the contours of the workspace density established at
the beginning of the robot design. In Fig. 1, if the remaining
eight modules are to be constructed with no change in robot
design, then a typical sample path would be the eight-module
(red) path with the coloured contours at the end representing
the probability density of the ensuing workspace.

It is however possible that after eight modules (black)
have been constructed, a change in the original robot design
needs to be implemented whereby a different region of the
workspace needs emphasis. In Fig. 1, the eight-module (blue)
path represents such a change where the ensuing workspace
density is shown by the solid coloured contours at it’s
terminal module. This is further emphasized in Fig. 2 where
after the eight module (black) manipulator design has been
built, the remaining eight modules (both red and blue) are
typical sample paths of the ensuing construction emphasizing
different probability density weights in different regions of
the workspace.

Fig. 2. Scatter plot of workspace density.

We note that the characteristics of the above represents the
manner in which a robot design problem could actually be
conceived of physically. Here, we detail the manner in which
the kinematic parameters can be adjusted to achieve such
outcomes.

5.1. Properties of degenerate distribution and sampling
For illustrative purposes and in line with ref. [8], let us write
the degenerate diffusion as

∂ω

∂t
= (

βX̃2
1 + εX̃2

3 + αX̃1 + X̃3
)
ω, (5.1)

to describe the evolution of the workspace density function
in SE(2). In particular, with respect to (3.7), σ11 =
β, σ22 = 0, σ33 = ε, μ1 = α, μ2 = 0 and μ3 = 1. The
practical reason for this specification is due to the fact
that motors between segments either rotate or elongate in
one direction. Consequently, variability occurs only in the
angular component X1 and one of the translational axis X3.

The Fourier transform of the solution to (5.1) will be
written as

ĉt (p|α, β, ε) = exp

{
t

(
β̂̃X2

1(p) + ε̂̃X2

3(p) + α̂̃X1(p)

+ ̂̃
X3(p)

)}
, (5.2)

for p ∈ R+ and the resulting density (3.7). Hence,
fundamental solution to (5.1), will be written as

ct (φ, θ, r|α, β, ε) =
∫ ∞

0
tr (ĉt (p|α, β, ε)U (φ, θ, r, p)) pdp,

(5.3)
g = g(φ, θ, r) ∈ SE(2) as in (2.2) with φ, θ ∈ [0, 2π), r ≥ 0
and t > 0.

The degenerate distribution (5.3) is also written with
respect to the parameters β, ε > 0 and α ∈ R. Collectively,
the parameters (α, β, ε) determine the shape of the three-
dimensional workspace density over the domain (φ, θ, r)
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Fig. 3. Scatter plot α = 0, β = 1, ε = 0.

in general; however, only the two-dimensional positional
workspace density over (θ, r) is needed to illustrate the
effects of the parameter. Indeed, let

ct (θ, r|α, β, ε) =
∫ 2π

0
ct (φ, θ, r|α, β, ε) dφ (5.4)

be the marginal density with respect to the SO(2) element φ.
The effect of increasing t > 0 spreads the domain and

the function out since it is a diffusion. The extensibility
parameter ε extends or fattens the area of the workspace as
it increases. The flexibility parameter β enlarges the support
of the workplace density for larger values, and the symmetry
parameter α introduces a shift towards one side depending
on whether it is positive or negative. This is detailed in Fig. 5
along with explanations in ref. [8]. We would also like to
recall Theorem 1 which provides the truncation bound of
Eq. (5.4).

Applying the Euler–Maruyama method (see ref. [19] and
Appendix A), one can generate samples from the degenerate
distribution (5.3) in SE(2) given any parameters (α, β, ε).

5.2. Fitting kinematic parameters
We will generate the sample Z1, . . . , Zn of k and the
sample X1, . . . , Xn of f , where both are from the degenerate
distribution with varying parameters according to Eq. (5.3).

The sample Y1, Y2, . . . , Yn in SE(2), defined by Y = ZX

will then be generated where the empirical Fourier transform
of the convoluted workspace density can be obtained by (4.3).
We will then define f̂ n

�m(p) according to (4.4), whereby we
seek to find the optimal values of the parameters α, β and ε,
by minimizing the cost function

C(α, β, ε) =
∫ P

0
‖f̂ n(p) − ĉt (p|α, β, ε)‖2p dp (5.5)

over certain bandwidth (frequency parameters or smoothing
parameter of the Fourier density estimation) P > 0, where
ĉt (p|α, β, ε) is defined in Eq. (5.2).

Minimization of Eq. (5.5) can be solved by taking
a gradient descent approach. The basic gradient descent
procedure is to compute the numerical derivatives

∂C
∂xi

≈ C(x + εei) − C(x)

ε
,

where x = (α, β, ε)′. Since the gradient is the direction of
steepest ascent, we step in the opposite direction by updating

x �→ x − ε

3∑
i=1

∂C
∂xi

ei,

where ei, i = 1, 2, 3 is the standard basis for R3. Then we
re-evaluate C at this new value of x, recompute the gradient
and iterate until C is below a specified threshold error.

5.3. Implementation
Figure 3 shows the scatter plot of the samples generated
by this method with α = 0, β = 1, ε = 0 and t = 1. The
left panel is the scatter plot of the samples (n = 700), the
middle panel is the contour plot of the marginal density of the
model and the right panel is the contour plot of the estimated
marginal density based on the sample. This will serve as our
density f .

Similarly, the k density is specified by the diffusion model
with α = 0, β = 0.7, ε = 0 and t = 0.5. Figure 4 shows the
marginal contour plots of the sample density (left), estimated
diffusion density (middle) and the original diffusion density
(right).

Here, we report on a numerical experiment consisting of
a sample size of n = 700. The functions k and f are that of
the degenerate distribution (5.2) with kinematic parameters
α = 0, β = 0.7, ε = 0, t = 0.5 and α = 0, β = 1, ε = 0,
t = 1, respectively.

Figure 5 shows the results of the numerical experiment.
Starting with Fig. 5(a), the red dots are the scatter plot
of samples drawn from h = k ∗ f , while the blue dots are
the scatter plot of samples drawn from f . Figure 5(b) is
the estimated marginal density of f , while Fig. 5(c) is the
marginal contour plot of the true f . Finally, Fig. 5(d) is
the estimated kinematic density. We note that because of
near singularity, a pseudo-inverse is used (see ref. [10] for
details of regularization). As one can see, recovery of the true
workspace density appears very satisfactory.

Fig. 4. Contour plot α = 0, β = 0.5, ε = 0.1.
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Fig. 5. Sampling deconvolution and kinematic parameter
estimation.

Fig. 6. Error plot α = 0, β = 0.5, ε = 0.1.

A number of numerical experiments were performed
with equally satisfactory results and therefore, numerical
evidence dictates that the deconvolution density estimator
(4.5) provide stable and accurate estimates. By using large
bandwidth and truncation size of the Fourier matrices, one
can also achieve even greater accuracy but of course with
higher computational cost. In the above experiment, we
used a truncation of T = 10. We note, however, that the
inversion of the truncated Fourier matrices may introduce
larger errors and therefore the truncation effect requires
further investigation.

Prior to the conclusion of this section, it is worth
pointing out some further numerical features that arise in the
implementation. Figure 6 shows the tendencies of the error
(left panel) and the value of the cost function (right panel)
to decrease with respect to the larger sample sizes which
is to be expected. Here, the samples are generated using
parameter set: {α = 0, β = 0.5, ε = 0.1}, the frequency
parameter is p = 0, . . . , 10 with step size of 0.2 and the
Fourier matrices are truncated at size 10 (21 × 21 matrix).
The error is normalized error and defined as

error = ‖xmodel − xestimate‖
‖xmodel‖ .

Another observation is the effect of the bandwidth on the
accuracy of the method. As shown in Fig. 7 , the error tends
to drop as the bandwidth increases, as expected also. We

Fig. 7. Bandwidth effect on error.

note that using large bandwidth is particularly important for
reducing errors in deconvolution due to the fact that inversion
of a truncated Fourier matrix (estimated from the samples)
will introduce more error. We will look at some theoretical
properties in the next section which can quantify this affect.

6. Theoretical Properties
In this section, we will examine theoretical properties
associated with (4.5). The following asymptotic notations
will be used. Let {an} and {bn} denote two real sequences
of numbers. We write an  bn to mean an ≤ Cbn for
some C > 0, as n → ∞, the Vinogradov notation. We will,
however, use the notation an = o(bn) to mean an/bn → 0, as
n → ∞. Consequently, the expression, o(1) would mean a
sequence converging to 0.

First let us define a class of functions with the property

�s(SE(2), Q) =
{

f :
∫ ∞

0

∑
�,m

(1 + �2 + m2 + p2)s

× ∣∣f̂�m(p)
∣∣2 pdp < Q2

}
, (6.1)

for s > 3/2, a Sobolev-type condition.
Second, let us assume k satisfies

sup
p≤T

∥∥k̂−1
T (p)

∥∥2
op ≤ exp

{
T ρ

γ

}
, (6.2)

for some ρ, γ > 0 and third,

sup
p≤T

∑
|m|≤T

∞∑
q ′=−∞

∣∣∣∣∣∣δq ′m −
∑
|q|≤T

k̂q ′q(p)k̂−1
qm(p)

∣∣∣∣∣∣
2

= o(T −2s),

(6.3)
as T → ∞.

We have the following main result:
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Theorem 6.1. Suppose k satisfies Eqs. (6.2) and (6.3). If
f ∈ �s(SE(2), Q) for some s > 3/2 and

T = (
γ ln n − γ ln(ln n)κ

)1/ρ
,

where κ > (2s + 3)/ρ, then

E‖f n − f ‖2 ≤ 9Q2 (γ ln n)−2s/ρ (1 + o(1)) ,

as n → ∞.

Condition (6.2) reflects the degree of ill posedness and in
the case of the degenerate and Gaussian distributions, ρ = 2.
Although Eq. (6.3) appears technical, one can see that in
the case of diagonal operators, the condition follows. Hence,
the Gaussian distribution has that property. In fact, with a
little effort one can show that the degenerate distribution also
satisfies Eq. (6.3). Therefore, we can apply this result to the
cases of the Gaussian and degenerate distributions.

Corollary 6.2. Suppose k is the Gaussian distribution. If
f ∈ �s(SE(2), Q) for some s > 3/2 and

T =
(

1

t
ln n − 1

t
ln(ln n)κ

)1/2

,

where κ > s + 3/2, then

E‖f n − f ‖2 ≤ 9Q2

(
1

t
ln n

)−s

(1 + o(1)) ,

as n → ∞.

Recalling Theorem 3.1, we have the following result which
is useful in describing the relationship of the workspace
density to the truncation or threshold errors and kinematic
parameters of Section 5.

Corollary 6.3. Suppose k is the degenerate distribution. If
f ∈ �s(SE(2), Q) for some s > 3/2 and

T =
(

1

2 max{σ11, σ33}t ln n− 1

2 max{σ11, σ33}t ln(ln n)κ
)1/2

,

where κ > s + 3/2, then

E‖f n − f ‖2 ≤ 9Q2

(
1

2 max{σ11, σ33}t ln n

)−s

(1 + o(1)) ,

as n → ∞.

By choosing Q = ln n, we can make everything data
dependent. Indeed we have the following.

Corollary 6.4. Suppose k is the Gaussian distribution. If
f ∈ �s(SE(2), ln n) for some s > 2 and

T =
(

1

t
ln n − 1

t
ln(ln n)κ

)1/2

,

where κ > s + 3/2, then

E‖f n − f ‖2 ≤ 9t s (ln n)−s+2 (1 + o(1)) ,

as n → ∞.

Corollary 6.5. Suppose k is the degenerate distribution. If
f ∈ �s(SE(2), ln n) for some s > 2 and

T =
(

1

2 max{σ11, σ33}t ln n− 1

2 max{σ11, σ33}t ln(ln n)κ
)1/2

,

where κ > s + 3/2, then

E‖f n − f ‖2 ≤ 9 (2 max{σ11, σ33}t)s (ln n)−s+2 (1 + o(1)) ,

as n → ∞.

Appendix A: Sampling the degenerate distribution
Consider the stochastic differential equation in R3:

dXt = adt + BdWt, (A1)

where a and B are constant drift and diffusion terms, Xt is a
stochastic process in R3 and Wt is Brownian motion in R3.
The corresponding Fokker–Planck equation is

∂f

∂t
= −

3∑
i=1

ai
∂f

∂xi
+ 1

2

3∑
i,j=1

∂2f

∂xi∂yj

(
BB ′)

ij
.

By a change of variables x �→ ξ , where ξ = ξ (φ, θ, r) as in
(2.2), this leads to the diffusion

∂f

∂t
= −

3∑
i=1

aiX̃if +
3∑

i,j=1

σij X̃iX̃jf,

where 1
2BB ′ = �.

Thus, for a fixed t ∈ R+, define J (x)dx = adt + Bdx =
adt + BdWt , where J is the Jacobian of the transformation
x �→ ξ , as specified in Section III of ref. [8]. Consequently
we can recover ξ = J−1x by sampling from (A1).

Appendix B: Proof to Section 3
We will prove Theorem 3.1 for the (5.1) diffusion since it
pertains directly to our numerical experiment. The more
general case follows along the same lines.

Let X0 = (u, 0) ∈ se(2). Then exp(tX0) = (tu, I2) and

X̃0f (x, A) = Au · ∇xf (x, A), (B1)

where x, u ∈ R2, A ∈ SO(2), f : SE(2) → R is differ-
entiable, ∇x is the gradient and ‘·’ is the dot product.
For f ∈ L2(SE(2)), the Fourier transform f̂ (p) induces a
representation of L2(SO(2)) by

f̂ (p)v(U ) =
∫

SE(2)
f (a, A)eipa·ω(U )v(A−1U )dadA, (B2)
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where ω(U )′ = Xe2, e2 = (0, 1)′ for U ∈ SO(2) and v ∈
L2(SO(2)). Consequently,

̂̃
X0f (p)v(U ) = −ipf̂ (p)u · ω(U )v(U ), (B3)

and so C(p) of Eq. (5.1) can be written in the equivalent form

C(p) = β̂̃X2

1(p) − εp2V 2 + α̂̃X1 − ipV,

where V (U ) = e′
2Ue2. Also define the operator

L(p) = −β̂̃X2

1(p) + εp2V 2.

We note that both C and L are operators on the Hilbert
space L2(SO(2)), where L2(SO(2)) = span{einφ, 0 ≤ φ <

2π, n ∈ Z}. Let VT = span{einφ, 0 ≤ φ < 2π, −T ≤ n ≤
T } ⊂ L2(SO(2)) and denote CT and LT as the restriction
of C and L on VT , respectively.

By the Trotter product formula, for any v ∈ VT ,

etCT v= lim
n→∞

(
e(t/n)β̂̃X2

1−(t/n)εp2V 2
e(t/n)α̂̃X1 e−(t/n)ipV

)n
v.

As the factors e(t/n)α̂̃X1 and e−(t/n)ipV are unitary, hence
‖etCTv‖op is bounded by

∥∥e(t/n)β̂̃X2

1 − (t/n)εp2V 2∥∥n

op‖v‖.

Since β̂̃X2

1 − εp2V 2 is a negative self-adjoint operator, we
have∥∥e(t/n)β̂̃X2

1 − (t/n)εp2V 2‖n
op = ‖etβ

̂̃
X

2

1 − tεp2V 2∥∥
op.

(B4)

Suppose a = min{β, ε}, b = max{β, ε}. Let f (φ) =∑n=T
n=−T aneinφ ∈ VT and ‖f (φ)‖ = 1, i.e.

∑n=T
n=−T a2

n = 1.
Then it can be shown that

‖LT f (φ)‖2 ≤ b2(T 2 + 3p2/2)2.

Since einφ is a unit vector

LT einφ = (βn2 + εp2 sin2 φ)einφ,

hence,

‖LT einφ‖2 = 1

2π

∫ 2π

0
(βn2 + εp2 sin2 φ)2einφe−inφdφ

= 1

2π

∫ 2π

0
(β2n4 + 2βn2εp2 sin2 φ

+ ε2p4 sin4 φ)dφ

= β2n4 + 2βn2εp2/2 + 3

8
ε2p4

> (βn2 + εp2/2)2

≥ a2(n2 + p2/2)2.

So,

‖LT ‖op > a(T 2 + p2/2).

Consequently,

a(T 2 + p2/2) ≤ ‖LT ‖op ≤ b(T 2 + 3p2/2).

Since

‖etCT ‖op = ‖e−tLT ‖op,

hence,

e−tb(T 2+3p2/2) ≤ ‖etCT‖op ≤ e−ta(T 2+p2/2),

as required.
Appendix C: Proofs to Section 6
Let us first calculate the bias. We note that

f (g) − Ef n(g) =
∫ ∞

0

∑
�

∑
|m|>T

f̂�m(p)um�(g, p)pdp

+
∫ ∞

0

∑
|�|>T

∑
|m|≤T

f̂�m(p)um�(g, p)pdp

+
∫ ∞

T

∑
|�|≤T

∑
|m|≤T

f̂�m(p)um�(g, p)pdp

+
∫ T

0

∑
|�|≤T

∑
|m|≤T

(
f̂�m(p) − Ef̂ n

�m

)
× um�(g, p)pdp. (C1)

Applying Plancherel formula to (C1), we get

‖f − Ef n‖ ≤
⎧⎨⎩
∫ ∞

0

∑
�

∑
|m|>T

|f̂�m(p)|2pdp

⎫⎬⎭
1/2

+
⎧⎨⎩
∫ ∞

0

∑
|�|>T

∑
|m|≤T

|f̂�m(p)|2pdp

⎫⎬⎭
1/2

+
⎧⎨⎩
∫ ∞

T

∑
|�|≤T

∑
|m|≤T

|f̂�m(p)|2pdp

⎫⎬⎭
1/2

+
⎧⎨⎩
∫ T

0

∑
|�|≤T

∑
|m|≤T

|f̂�m(p)

−Ef̂ n
�m(p)|2pdp

}1/2
. (C2)

Now ∫ ∞

0

∑
�

∑
|m|>T

|f̂�m(p)|2pdp ≤ Q2T −2s, (C3)
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0

∑
|�|>T

∑
|m|≤T

|f̂�m(p)|2pdp ≤ Q2T −2s, (C4)

and ∫ ∞

T

∑
|�|≤T

∑
|m|≤T

|f̂�m(p)|2pdp ≤ Q2T −2s, (C5)

consequently, by (C3), (C4) and (C5), we can bound the first
three terms following the inequality in (C2).

As for the last term we have the following:

Lemma C.1. Suppose

sup
p≤T

∑
|m|≤T

∞∑
q ′=−∞

∣∣∣∣δq ′m −
∑
|q|≤T

k̂q ′q(p)k̂−1
qm(p)

∣∣∣∣2 = o(T −2s),

then∫ T

0

∑
|�|≤T

∑
|m|≤T

∣∣f̂�m(p) − Ef̂ n
�m(p)

∣∣2 pdp = o(T −2s)

as T → ∞.

Proof. We have∑
|�|,|m|≤T

∣∣f̂�m(p) − Ef̂ n
�m(p)

∣∣2 (C6)

=
∑

|�|,|m|≤T

∣∣∣∣f̂�m(p) −
∑
|q|≤T

Eĥn
�q(p)k̂−1

qm(p)

∣∣∣∣2 (C7)

=
∑

|�|,|m|≤T

∣∣∣∣f̂�m(p) −
∑
|q|≤T

ĥ�q(p)k̂−1
qm(p)

∣∣∣∣2 (C8)

=
∑

|�|,|m|≤T

∣∣∣∣f̂�m(p) −
∑
|q|≤T

∞∑
q ′=−∞

f̂�q ′(p)

× k̂q ′q(p)k̂−1
qm(p)

∣∣∣∣2 (C9)

=
∑

|�|,|m|≤T

∣∣∣∣f̂�m(p) −
∞∑

q ′=−∞
f̂�q ′(p)

∑
|q|≤T

k̂q ′q

× (p)k̂−1
qm(p)

∣∣∣∣2 (C10)

=
∑

|�|,|m|≤T

∣∣∣∣ ∞∑
q ′=−∞

f̂�q ′(p)

(
δq ′m −

∑
|q|≤T

k̂q ′q

× (p)k̂−1
qm(p)

)∣∣∣∣2 (C11)

≤
∑

|�|,|m|≤T

∞∑
q ′=−∞

∣∣f̂�q ′(p)
∣∣2 ∞∑

q ′=−∞
|δq ′m

−
∑
|q|≤T

k̂q ′q(p)k̂−1
qm(p)|2 (C12)

=
∑
|�|≤T

∞∑
q ′=−∞

∣∣f̂�q ′(p)
∣∣2 ∑

|m|≤T

∞∑
q ′=−∞

∣∣∣∣δq ′m

−
∑
|q|≤T

k̂q ′q(p)k̂−1
qm(p)

∣∣∣∣2. (C13)

Therefore, we have∫ T

0

∑
|�|,|m|≤T

∣∣f̂�m(p) − Ef̂ n
�m(p)

∣∣2 pdp

≤ sup
p≤T

∑
|m|≤T

∞∑
q ′=−∞

∣∣∣∣δq ′m −
∑
|q|≤T

k̂q ′q(p)k̂−1
qm(p)

∣∣∣∣2

×
∫ T

0

∑
|�|,|m|≤T

|f̂�m(p)|2pdp

= sup
p≤T

∑
|m|≤T

∞∑
q ′=−∞

∣∣∣∣δq ′m −
∑
|q|≤T

k̂q ′q(p)k̂−1
qm(p)

∣∣∣∣2

×
∫

SE(2)
|f (x)|2dx

= o(T −2s),

as T → ∞. �

Consequently, by (C2) and Lemma C1, we obtain the
inequality∥∥Ef n − f

∥∥2  9Q2T −2s(1 + o(1)), (C14)

as T → ∞ for s > 3/2.
To compute the variance, we note that

‖f n − Ef n‖2 =
∫ T

0

∑
|�|,|m|≤T

∣∣f̂ n
�m(p) − Ef̂ n

�m(p)
∣∣2 pdp

=
∫ T

0

∑
|�|,|m|≤T

∣∣∣∣ ∑
|q|≤T

(
f̂ n

�q(p) − Ef̂ n
�,q(p)

)
× k̂−1

qm(p)

∣∣∣∣2pdp

≤ sup
p≤T

∥∥k̂−1
T (p)

∥∥2

op

∫ T

0

∑
|�|,|m|≤T

∣∣ĥn
�m(p)

− Eĥn
�m(p)

∣∣2 pdp. (C15)

Now∑
|�|,|m|≤T

E
∣∣ĥn

�m(p) − Eĥn
�m(p)

∣∣2

= 1

n

⎧⎨⎩ ∑
|�|,|m|≤T

E
∣∣u�(Y−1, p)

∣∣2 −
∑

|�|,|m|≤T

∣∣ĥ�m(p)
∣∣2⎫⎬⎭
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≤ 1

n

∑
|�|≤T

E

∞∑
m=−∞

∣∣u�m(Y−1, p)
∣∣2

= 1

n

∑
|�|≤T

E

∞∑
m=−∞

u�m(Y−1, p)um�(Y, p)

= 1

n

∑
|�|≤T

Eu��(e, p)

= T

n
, (C16)

here e denotes the unit element of SE(2). Here we used the
homomorphism property U (g, p)U (g−1, p) = U (gg−1, p)
along with the fact that U (g, p)∗ = U (g−1, p).

By taking expectation of (C15) and applying (C16), we
obtain,

E‖f n − Ef n‖2 ≤ sup
p≤T

∥∥k̂−1
T (p)

∥∥2
op

T 3

n
, (C17)

as n → ∞.
Now,

E‖f n − f ‖2 = E‖f n − Ef n‖2 + ‖Ef n − f ‖2

≤ sup
p≤T

∥∥k̂−1
T (p)

∥∥2

op

T 3

n
+ 9Q2T −2s(1 + o(1))

≤ exp

{
T ρ

γ

}
T 3

n
+ 9Q2T −2s(1 + o(1)).

(C18)

Now set

T = (γ ln n − γ ln(ln n)κ )1/ρ
,

where κ > (2s + 3)/ρ and the result follows.
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