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This paper develops optimal tests for model selection between two nested models
in the presence of underlying parameter instability+ These are joint tests for both
parameter instability and a null hypothesis on a subset of the parameters+ They
modify the existing tests for parameter instability to allow the parameter vector
to be unknown+ These test statistics are useful if one is interested in testing a null
hypothesis on some parameters but is worried about the possibility that the param-
eters may be time varying+ The paper provides the asymptotic distributions of
this class of test statistics and their critical values for some interesting cases+

1. INTRODUCTION

This paper develops optimal tests for model selection between two nested mod-
els in the presence of underlying parameter instability in the data+ The model
selection procedure considered in this paper is hypothesis testing; in fact, when
the competing models are nested, the problem of testing which model is best
among the two is to test the significance of additional variables that are present
only under the largest model+ The tests proposed in this paper thus jointly test
for both parameter instability and a null hypothesis on a subset of the parameters+

The main contribution of this paper is to address simultaneously the two prob-
lems of testing parameter instability and model selection among nested mod-
els+ It is argued that tests for model selection fail to detect parameter instability
and that tests for parameter instability are not designed to choose between nested
models+ If the goal is to jointly test parameter stability and select a model, then
it is possible to identify a class of optimal tests+ The optimal tests modify exist-
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ing tests for parameter instability to allow them to reject the incorrect model+
This is achieved by imposing, rather than estimating, the parameters of interest
under the null, thus making the statistic not invariant to shifts in these parameters+

The tests presented in this paper are useful in situations in which one is inter-
ested not only in whether the explanatory variables proposed by some eco-
nomic model are statistically significant in explaining the observed data, but
also in whether this relationship is stable over time+ For example, these tests
would be useful if one is interested in testing whether inflation or exchange
rates are random walks but is also worried about the possibility that parameters
may be varying over time ~see Clark and McCracken, 2005; Rossi, 2005!+

The strand of research closest to this paper is that concerning tests for param-
eter instability, in particular the works by Chow ~1960!, Quandt ~1960!, Ploberger
and Krämer ~1990, 1992!,Andrews ~1993!,Andrews and Ploberger ~1994!, Sow-
ell ~1996!, Ghysels and Hall ~1990!, Ghysels, Guay, and Hall ~1998!, and Elliott
and Müller ~2003!+ However, these tests are designed to detect parameter insta-
bility only, whereas this paper is also concerned about testing hypotheses on
the parameter vector and, hence, treats it as unknown+

An alternative way to deal with model selection issues in the presence of
parameter instability is to do a two-stage procedure: first test whether there is
parameter instability; then test which model, among the competing ones, is the
best description of the data+ In some special cases analyzed in this paper, that
is, for the special weighting distributions over the local alternatives analyzed in
Section 3, the test statistics in the two stages are asymptotically independent+
In this case, it is easy to fix the size in each stage of the procedure so that the
two-stage procedure will have an overall correct size asymptotically+ However,
this result is not true for general weighting distributions+ In addition, two-stage
tests have advantages and disadvantages+ The advantage is that if we reject we
know which part of the alternative we reject; the disadvantage is that the test
will not have the optimal weighted average power for alternatives that are equally
likely+

The paper is organized as follows+ Section 2 derives the optimal tests for
testing the joint hypothesis of parameter stability and model selection and pro-
vides their asymptotic distribution+ Section 3 discusses special tests and reports
their asymptotic critical values, and Section 4 compares their asymptotic local
powers+ Section 5 concludes+ Proofs of the results are in Appendix A, whereas
Appendix B contains the tables of asymptotic critical values+

2. MODEL SELECTION IN THE PRESENCE OF UNDERLYING
PARAMETER INSTABILITY

2.1. Heuristics

To gain some intuition about the results in this paper, consider a simple exam-
ple where the data generating process ~DGP! is as follows and the time of the
break is known:
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yt � bt � et ; bt � �b1 for t � 1,2, + + + ,t

b2 for t � t� 1, + + + ,T
; et; i+i+d+ N~0,se2!+ (1)

If the researcher is interested in testing whether the parameter bt is constant
over time and equal to a specific value b0, a possible test statistic would be

ChowT
* �
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where Zb1 � ~10t!(t�1
t yt and Zb2 � @10~T � t!#(t�t�1

T yt are the sample aver-
ages of yt in the two subsamples+ By adding and subtracting the full sample
average Zb � ~10T !(t�1

T yt inside the square of the first addend on the numer-
ator, ~2! can be rewritten as
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Thus, the test is decomposed in two components: the one on the left is a test on
b, and the one on the right is the standard Chow test for structural break+ Hence,
the test achieves power in detecting deviations from b0 by adding to the tradi-
tional test for structural break a component that is variant to constant shifts in
the mean+ The asymptotic distribution of the test can easily be found in this
case because the two components are independent+1 Let B1~+! denote a scalar
Brownian motion and BB1~+! denote a scalar Brownian bridge and p� @t0T # +
Note that the first component on the right-hand side in ~3! is asymptotically the
square of a standardized normal ~B1~1!2!, whereas the distribution of the sec-
ond component is known from Andrews ~1993! to be BB1~p!

20p~1 � p!+ As a
result, the asymptotic distribution of this modified Chow test will be

ChowT
*n B1~1!

2 �
BB1~p!

2

p~1 �p!
+ (4)

Thus, the first component, which makes the test powerful in detecting constant
shifts in the mean, adds a chi-square component to the limiting distribution of
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a standard Chow test for parameter instability+ This example provides an easy
and intuitive explanation of the asymptotic distribution of the tests considered
in this paper+

2.2. Framework

This section describes the class of models considered in this paper and the
assumptions under which the results are valid+ The parametric model applies to
a stationary and ergodic time series process+

Assumption 1+ For each T, the sequence $xt,T %t�1
T consists of the first T

elements of an r-dimensional stationary and ergodic process+ The parameter
space Q is a compact subset of Rk + For notational simplicity, xt will be used
to denote xt,T +

The class of local alternatives allows both for structural changes and for non-
linear hypotheses on the parameters+

Assumption 2 ~Local alternatives!+ The local alternatives ~HAT ! are speci-
fied as

ut,T � u* �
1

MT
g�g,p, t

T
�, (HAT

~1!)

a~u* ! �
1

MT
Sa, (HAT

~2!)

where g~g,p, s!, for s � @0,1# , is a k-dimensional step function, g � Ri, p �
~0,1! j denotes the times of the structural changes as fractions of the sample
size ~ j being the number of such breaks!, a~u*! � 0 is a possibly nonlinear
restriction that identifies the true parameter value under the null hypothesis when
there is no structural change, and Sa denotes its local alternative+

Hence, the parameter u is unknown and possibly time-varying+ The class of
estimators considered here are extremum estimators that minimize the objec-
tive function QT ~u!, which depends on both the data and the sample size+ The
focus will be on the restricted estimator Du:

Du � arg min
u�Q

ZQT ~u! s+t+ a~u!� 0, where ZQT ~u! [ FT ~u!
'WT FT ~u!, (5)

where FT ~u! � ~10T !(t�1
T f ~xt ,u! is the sample analogue of E~ f ~xt ,u!!, the

moment condition that is equal to zero at the true parameter value, and E~+! is
the expected value function+ The moment condition is such that f : Rr � Rk r

Rm and WT is a ~sequence of ! positive semidefinite matrices+ Note that our
framework allows for both exactly and overidentified generalized method of
moments ~GMM!+
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The next assumptions are sufficient to ensure consistency and identification
of the estimator ~see Sowell, 1996, p+ 1100; see also Andrews, 1993!+2 Further-
more, the class of estimators is restricted to efficient GMM estimators, and
Assumption 6 provides a sufficient condition for efficiency+

Assumption 3 ~Identification!+ limTr`E @ f ~x,u!# � 0 only if u � u*+

Assumption 4 ~Smoothness and boundedness!+ ~i! u* � interior~Q!; ~ii!
f ~x,u! is continuously partially differentiable in a neighborhood Y of u*, ∀u �
Q; ~iii! the functions f ~x,u! and ¹u f ~x,u! [ ~]0]u! f ~x,u! are measurable
functions of x ∀u � Q and E @7 f ~x, u * !72 # is finite; ~iv! E @ f ~xt , u * !# �
0,E @ f ~xt ,u*!'f ~xt ,u*!# � `, and supu�Q7 f ~xt ,u!7 � ` ∀t � 1, + + + ,T and
T � 1,2, + + + ; each element of f ~xt ,ut,T ! is uniformly square integrable ∀t �
1, + + + ,T and T � 1,2, + + + ; ~v! M � limTr`E @¹u f ~x,u*!# � Rm�k has full col-
umn rank, where ¹u f ~x,u*! � ~]0]u! f ~x,u!6u�u* and M 'WT M is nonsingular;
~vi! $xt % is strong mixing with strong mixing coefficients $a~n!1�20b% � `
with b � 2, and the individual elements of f ~xt ,ut,T ! have finite absolute
moments E @6 f ~i !~xt ,ut,T !6b# for i � 1, + + + ,m+

Assumption 5 ~Constraints!+ a~u! is continuously partially differentiable in
a neighborhood Y of u*, ∀u � Q; A [ ¹ua~u*! � Rr�k has rank r � k+

Assumption 6 ~Efficiency in the class of GMM estimators!+ The asymptotic
variance of the GMM estimator is efficient in the class of GMM estimators:
$WT

�1%T�1
`

p
&& S [ limTr`E @TFT ~u

*!FT ~u
*!'# � Rm�m+

When the alternative hypothesis of interest is either HAT
~1! or HAT

~2! then opti-
mal tests are available+ In the former case, an optimal test when the break date
is known is the Chow ~1960! test, and when the break date is unknown, a class
of tests with optimal weighted average power is that of Andrews and Ploberger
~1994!; although Andrews’ Sup-LR test ~see Andrews, 1993! is not a member
of that class, Andrews and Ploberger, 1993, show its asymptotic admissibility
against alternatives that are sufficiently distant from the null hypothesis!+ In
case the alternative is HAT

~2! only, the likelihood ratio test ~and the asymptoti-
cally equivalent Wald and Lagrange multiplier @LM# tests! is asymptotically
locally most powerful among all invariant tests, and, hence, it is optimal ~see
Engle, 1984!+

However, when both hypotheses are of interest then considering separately
tests for parameter instability and likelihood ratio tests is not sufficient any-
more+ This paper identifies a class of tests that are optimal, in the sense of
having the highest asymptotic local power function for some specified alterna-
tives+ This class of tests is discussed in Section 2+3+

2.3. Optimal Tests

We are interested in constructing a LM test statistic for testing jointly alterna-
tives HAT

~1! and HAT
~2!+ The test builds on partial sums of the form
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FsT ~ Du! [
1

T (t�1

@sT #

f ~xt , Du!, s � @0,1# , (6)

where the partial sums are evaluated at the restricted estimator vector, Du+When
Assumptions 1– 6 are satisfied, the asymptotic distribution of the partial sums
of sample moments under the null and the alternative hypotheses is stated in
Results 1 and 2, which follow+ For notational convenience, let RM [ S�102M �
Rm�k and partition it as RM � ~ RMb, RMd!+ Also, let n denote weak convergence
to the relevant stochastic process and p

&& denote convergence in probability+

RESULT 1 ~Distribution under the alternative hypothesis!+ If Assumptions
1–6 are satisfied, then

MT WT
102 FsT ~ Du!n Z~s! [ Bm~s!� s PHBm~1!� s RM PD ' Sa

� RM�
0

s

g~g,p, r! dr � s RMD�102HD 102�
0

1

g~g,p, r! dr,

(7)

where Bm~{! is an m-dimensional standard Brownian motion, PD ' [ D�1A' �
~AD�1A' !�1, D [ RM ' RM, H [ Ik � D�102A'~AD�1A' !�1AD�102, Ik is a k-
dimensional identity matrix, PH [ RMD�102HD�102 RM ', and both H and PH are
idempotent with rank equal to ~k � r! .

See Appendix A for proofs+ Result 2 shows the asymptotic distribution of the
standardized moment condition under the null hypothesis that there is no param-
eter instability in any of the coefficients and that a subset of parameters satis-
fies some restriction condition as follows+

Assumption 7 ~Null hypothesis!+ Under the null hypothesis ~H0!:

ut,T � u* for all t, T, (H0)

where u* satisfies a~u*! � 0+

RESULT 2+ ~Distribution under the null hypothesis!+ If Assumptions 1 and
3–7 are satisfied then

CWT
102MT FsT ~ Du!n �

BBk�r ~s!

Br ~s!

Bm�k~s!
� (8)
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for an orthonormal matrix C such that PH � C 'LC, CC ' � Im, and L �

�Ik�r 0

0 0� . Here BBk�r~s! is a ~k � r!-dimensional Brownian bridge and

@Br~s!',Bm�k~s!'# ' is an ~m � k � r!-dimensional vector Brownian motion. The
Brownian motions and the Brownian bridges are independent.

Note that, under the null hypothesis, the asymptotic distribution of the stan-
dardized partial sum of moment conditions is composed by both Brownian
bridges and Brownian motions+ The ~k � r!-dimensional Brownian bridge com-
ponent derives from the parameters that are not specified under the null+ In
fact, this component is a partial sum of mean zero moment conditions, where
the zero mean is obtained by estimating the drift+3

The alternative hypothesis will add drift components to the moment condi-
tions, as Result 1 shows+ In particular, the drift components originate both from
deviations from the parameter stability hypothesis and from deviations from
the specified null hypothesis on the value of the parameters+ For the local alter-
natives considered in this paper, the normalized partial sum of the sample
moments evaluated under the null hypothesis converges to a stochastic process
denoted by Z~s!+ Under the local alternative, Z~s! satisfies the following sto-
chastic differential equation:

dCZ~s! � � dBBk�r ~s!

dBm�k�r ~s!
�� Cv~s! ds, (9)

where v~s! [� RM PD ' Sa � RMg~g,p, s!� RMD�102HD 102~*0
1 g~g,p, r! dr!+ Under

the null hypothesis, the same expression holds with v~s!� 0+ To get some insight,
rearrange ~7!:4

Z~s! � ~Im � PH !�Bm~s!� RM��
0

s

g~g,p, v! dv�� s RM PD ' Sa�
� PH�BBm~s!� RM�

0

s�g~g,p, v!���
0

1

g~g,p, r! dr�� dv� (10)

so that

dCZ~s! � ~I � L!C @dBm~s!� RMg~g,p, s!� RM PD ' Sa#

� LC�dBBm~s!� RM�g~g,p, s!���
0

1

g~g,p, r! dr���
� � dBBk�r ~s!

dBm�k�r ~s!
�� �C ~1! RM�g~g,p, s!���

0

1

g~g,p, r! dr��
C ~2! RM~g~g,p, s!� PD ' Sa! � ,
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where C ~1! and C ~2! are, respectively, the first ~k � r! and the last ~m � k � r!
rows of C+ Thus, the null hypothesis puts restrictions on both the Brownian
motions and the Brownian bridge components+ In fact, it is a joint hypothesis
on parameter instability ~affecting the Brownian bridge component! and on the
parameters ~affecting the Brownian motion component!+ This differs from the
Sowell ~1996! case ~see the discussion following his eqn+ ~3!, p+ 1091!, where
the alternative only places restrictions over Brownian bridges+ However, Sow-
ell ~1996! derived optimal tests in terms of the Radon–Nikodym derivative of
the measure implied by the null hypothesis for both the Brownian motion and
the Brownian bridge components ~see the proof of his Thm+ 3!, so we can apply
a similar argument+ Thus, the test with the greatest weighted average power,
according to some weighting functions R~h,p! ~on h for every p! and J ~p!
~on p!, rejects the joint null hypothesis of no structural break and a~u*!� 0 if

��z~h,p! dR~h,p! dJ ~p! � ka , (11)

where z~h,p! � exp ��
0

1

v~s!' dZ~s!�
1

2
�

0

1

v~s!'v~s! ds	 ,
(12)

h [ @ Sa,g '# ' � R2p�1, and ka is defined so that the test has size a+

3. SPECIAL TESTS5

The leading case of the class of alternatives for structural break is that of alter-
natives that are linear in the parameters, that is, g~g,p, s! � EG~p, s!g+ In the
case of a single structural break, EG~p, s! � 1~s � p!G, where 1~s � p! is the
indicator function, equal to one if s � p and zero otherwise, and G is a ~k � p!
matrix identifying the p-dimensional vector of time-varying parameters, say,
G � @Ip 0q�p# + Let us define

A~p! � � � PD RM ' 0

�~1 �p!G 'A' PD RM ' G ' RM '�� Z~1!

Z~p!�pZ~1!�, (13)

V~p! � � PDD PD ' ~1 �p! PDD102~I � H !D102G

~1 �p!G 'D102~I � H !D102 PD ' ~1 �p!G 'D102 @I � ~1 �p!H #D102G�+
(14)

The optimal test statistic described by ~11! becomes ** exp $h 'A~p! �
1
2
_h 'V~p!h% dR~h,p! dJ ~p!+ As in Sowell ~1996!, different choices of the weight-
ing function R~h,p! lead to different test statistics+ The weighting function con-
sidered here is an ~r � p!-dimensional multivariate normal distribution with zero
mean and covariance U~p!+ When the time of the break is not known and we
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are interested in the test statistic that gives equal weight to alternatives that are
equally difficult to detect when p is known, so that U~p!�1 � ~10c!V~p!, then
the test statistic in ~11! becomes *P~exp $ 12

_ ~c0~1 � c!!F*~p!%! dJ ~p! where P
is the support of J ~p! and FT

* ~p! � A~p!'V~p!�1A~p!+ The latter is a Wald
test for the fixed and known p scenario+ The test statistic can be estimated as

TSc,T
AP* ��

P
�exp � 1

2

c

1 � c
FT
* ~p!	� dJ ~p!, (15)

FT
* ~p! � LM1 � LM2~p!,

where

LM1[� 1

T��WT
102(

t�1

T

ft ~ Du!�' ZV1�WT
102(

t�1

T

ft ~ Du!�
LM2~p! [

1

p~1 �p!

1

T �(t�1

@Tp#

ft ~ Du!�p (
t�1

T

ft ~ Du!�' ZS�102' ZV2

� ZS�102�(
t�1

@Tp#

ft ~ Du!�p (
t�1

T

ft ~ Du!�, (16)

ZV1 � ZC1
'~ ZC1 ZC1

' !�1 ZC1, ZC1[ ~ ZA ZD�1 ZA' ! ZA ZD�1 ZRM ',

ZV2 � ZC2
'~ ZC2 ZC2

' !�1 ZC2 , ZC2[G ' ZRM ',

ZD � ZRM ' ZRM, ZA �
1

T (t�1

T

�u a~ Du!, ZRM � ZS�102
1

T (t�1

T

�u ft ~ Du!,

ZS �
1

T (t�1

T �ft ~ Du!�
1

T (t�1

T

ft ~ Du!��ft ~ Du!�
1

T (t�1

T

ft ~ Du!�'
if ft~+! are independent and identically distributed ~i+i+d+!; otherwise ZS is esti-
mated with a Newey–West heteroskedasticity and autocorrelation consistent
~HAC! estimator+ The limiting distribution of this test statistic under the null
hypothesis is described in the following proposition+

PROPOSITION 1+ Let Assumptions 1–6 hold. The test statistic for testing
a~u*! � 0 against HAT

~1! and HAT
~2! with the greatest average power according to

the weighting function R~h,p! ; N~0, cV~p!�1! , for V~p! defined in (14), is
the test statistic defined in (15). Its asymptotic distribution under the null hypoth-
esis is

TSc,T
AP*n �

P
�exp � 1

2

c

1 � c
F*~p!	� dJ ~p!, (17)

F*~p! [ � BBp~p!
'BBp~p!

p~1 �p!
� Br ~1!

'Br ~1!�+ (18)
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Proposition 1 shows that TSc,T
AP* is a weighted average of LM tests+ As noted

previously, the difference between the asymptotic distribution of the tests defined
in this paper and that of the test for structural break only is that the latter does
not have the Br~1!'Br~1! component+ This component arises from testing restric-
tions on u over the whole sample+ In fact, it corresponds to a centered chi-
square with r degrees of freedom, the usual limiting distribution of the Wald
test statistic for testing hypotheses on a parameter vector+ Appendix A shows
that both the tests for structural break and the classical tests obtain as special
cases of ~24!+

Although this paper is mainly concerned about testing a null hypothesis on
the parameters in the presence of possible parameter instability, instabilities may
also affect other aspects of the model, namely, the overidentifying restrictions
~OIRs!+ Hall and Sen ~1999! and Sowell ~1996! show that the population moment
conditions can be decomposed into two orthogonal components: identifying
restrictions—the part used in estimation—and overidentifying restrictions—
the part unused in estimation+ Hall and Sen ~1999! propose tests for the struc-
tural stability of the OIRs+ Their approach turns out to be useful to discriminate
between situations in which the instability is confined to the parameters alone
and those in which the instability permeates other aspects of the model+ In what
follows, we examine the relationship between the tests proposed by Hall and
Sen ~1999! and those proposed in the present paper, and we show that the Hall
and Sen ~1999! results do carry over to the tests proposed in this paper+

The tests proposed by Hall and Sen ~1999! are as follows:

sup OT [ sup
p

OT ~p!, av OT [ �
P

OT ~p! dJ ~p!,

exp OT [ log��
P

exp� 1

2
OT ~p!� dJ ~p!�,

where OT ~p! [ T OFT ~ Zb1, Zb2, Zd,p!' ZG OFT ~ Zb1, Zb2, Zd,p!+ Hall and Sen ~1999! find
that their test statistics are asymptotically independent of tests for parameter
instability+ They also show that their tests have no local power against param-
eter variation and tests for parameter variation have no local power against insta-
bility in the OIRs+ This latter result follows from the fact that the components
of OT ~p! are orthogonal to the components of LM2~p!+ In fact, they show that

OFT ~ Zb1, Zb2 , Zd,p! � @I2 � ~I � S102 RM~ RM ' RM !�1 RM 'S�102 !# OFT ~b0 ,b0 ,d0 ,p!

� op~1!

~see Hall and Sen, 1999, eqn+ ~A+4!; Andrews, 1991, p+ 848, for the more gen-
eral case of subsets of parameters!, where � denotes the Kronecker product+
Thus, the rescaled moment conditions in OT ~p! become

~I2 � S�102 ! OFT ~ Zb1, Zb2 , Zd,p! � @I2 � ~I � RM~ RM ' RM !�1 RM ' !#

� ~I2 � S�102 ! OFT ~b0 ,b0 ,d0 ,p!� op~1!,
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and it is clear that they are orthogonal to LM2~p!, which instead builds on RM
~see equation ~16!!, as RM '~I � RM~ RM ' RM !�1 RM '! � 0+

Note that all of the preceding results still hold in our framework+ Also, note
that the components in LM1 are orthogonal to the components of OT ~p! too,
as LM1, like LM2~p!, builds on RM+ Thus, the results in Hall and Sen ~1999!
do carry over to the test statistics QLRT

* , Mean-WaldT
* , and Exp-WaldT

*+ More
details are provided in Section 4+

From now until the end of this section, we specialize the preceding findings
to situations in which the researcher is interested in testing hypotheses on a
subset of the parameters+ This is discussed in the following corollary+

COROLLARY 1 ~Null hypotheses on subsets of parameters!+ Let the param-
eter vector u � Rk be partitioned as u� @b ',d '# ', where b � R p and d � Rq+
Let Assumptions 1 and 3–6 hold. Let Assumption 2 be replaced by Assumption
2
'
: bt,T � b* � ~1

MT !gb~g,p, t0T ! and b* � b0 � ~1

MT !bA + It follows

that

MT WT
102 FsT ~b0 , Dd!n Bm~s!� s OPdBm~1!� s~Im � OPd ! RMb bA

� RMb�
0

s

gb~g,p, r! dr � s OPd RMb�
0

1

gb~g,p, r! dr, (19)

where OPd [ RMd~ RMd' RMd !�1 RMd' � Rm�m+ Also, v~s! in (9) becomes v~s! [
� RMbgb~g,p, s! � OPd RMb~*0

1 gb~g,p, v! dv! � ~Im � OPd! RMbbA+

We will finally consider special cases of TSc,T
AP* that have been considered in

the literature for tests for structural break only+ Each of these special cases has
greatest weighted average power against particular forms of parameter instabil-
ity+We will analyze the form that the optimal test proposed in this paper assumes
for these particular forms of parameter instability+

Andrews and Ploberger Test. Let bt � b1~p! for t � 1,2 , + + + , @Tp# and bt �
b2~p! for t � @Tp# � 1, + + + ,T, where @{# denotes the greatest integer function+
Also, to simplify notation, let ft~bk! [ ft~xt ,bk,d!, ft~ Zbk! [ ft~xt , Zbk, Zd!, ft~b0! [
ft~xt ,b0, Dd!, k �1,2+ Let u~p![ ~b1,b2,d!, Zu~p![ ~ Zb1, Zb2, Zd! be the unrestricted
GMM estimator under the hypothesis that there is a break at the fraction @Tp#
of the sample and let Du~p! be the constrained estimator+ Thus, the Wald test for
a fixed and known p can be estimated as either6

Wald: FT
* ~p! � T ~R Zu~p!� r!'~RV~ Zu~p!!R ' !�1~R Zu~p!� r!,

(20)

Distance metric form: FT
* ~p! � OQ~ Du~p!!� OQ~ Zu~p!!, or (21)

Lagrange multiplier: FT
* ~p! � LM1 � LM2~p!, (22)
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where notation is in Table 1+ The table assumes that ft~+! consists of mean zero
uncorrelated random variables+ When ft~+! consists of mean zero but serially
correlated random variables then consistent estimation of ZS1, ZS2, ZS, and ZG
requires a HAC estimator ~e+g+, see Newey and West, 1987!+ Note that ~22! is
particularly easy to calculate+ It is simply the sum of the two LM tests to test
HAT
~1! and HAT

~2! separately+ Then, Proposition 2 follows+

PROPOSITION 2+ Let Assumptions 1, 2
'
, and 3–6 hold. The test statistic

for testing b � b* against bt,T � b* � ~1

MT !bA � ~1

MT !g1~s � p! with
the greatest average power according to the weighting function R~h,p! ;
N~0, cV~p!�1! , for V~p! defined in (14) with either (20), (21), or (22). Its
asymptotic distribution under the null hypothesis is

TSc
AP*n �

P
�exp � 1

2

c

1 � c
F*~p!	� dJ ~p!, (23)

F*~p! [ � BBp~p!
'BBp~p!

p~1 �p!
� Bp~1!

'Bp~1!�+ (24)

As special cases, we have

(a) cr `: Exp-WaldT
*[ plim

cr`
TSc,T

AP*n �
P
�exp � 1

2
F*~p!	� dJ ~p!, (25)

(b) cr 0: Mean-WaldT
*[ plim

cr0
2�TSc,T

AP*� 1

c
�n �

P

F*~p! dJ ~p!+ (26)

The special cases that correspond to extreme values of the parameter c are
similar to those in Andrews and Ploberger ~see also Andrews, Lee, and Ploberger,
1996!+ When c r ` ~c r 0!, more weight is assigned to alternatives about
parameter instability further from ~closer to! the null hypothesis+

Andrews (1993) Sup-LR Test. A test statistic commonly considered in the
literature of structural breaks is the Quandt likelihood ratio ~QLR! test statis-
tic ~or Sup-LR test!, which is the supremum ~over all possible break dates!
of the Chow statistic designed for these alternatives for a fixed break date+
Andrews ~1993! derived its asymptotic distribution+ The modified QLR test
statistic for the alternatives specified in this paper can be obtained by letting
c0~1 � c! r ` in ~17!, which gives

QLRT
* � sup

p
FT
* ~p!+ (27)

The limiting distribution of ~27! under the null hypothesis is given in the fol-
lowing proposition+
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Table 1. Notation related to equations ~20!, ~21!, and ~22!

OQ~b1,b2,d! [ OFT ~b1,b2,d,p!' ZG OFT ~b1,b2,d,p!

Wald test

Zu~p! � arg min
b1,b2 ,d

OQ~b1,b2 ,d!

OFT ~b1,b2,d,p! � � 1

T
(
t�1

@Tp#

ft ~b1!
',

1

T
(

t�@Tp#�1

T

ft ~b2 !
'�' � R2m�1

R [ � Ip �Ip 0p�q

pIp ~1 �p!Ip 0p�q
�, r [ �0p�1

b0
�

V~ Zu~p!! � @M~p!' ZGM~p!#�1

M~p! [ �pMb 0 pMd

0 ~1 �p!Mb ~1 �p!Md
� � R2m�1

ZG [ �p ZS1 0

0 ~1 �p! ZS2
��1

p
&& G � �pS 0

0 ~1 �p!S��1

� R2m�2m

ZS1 �
1

@Tp#
(
t�1

@Tp#�ft ~ Zb1!�
1

@Tp#
(
t�1

@Tp#

ft ~ Zb1!��ft ~ Zb1!�
1

@Tp#
(
t�1

@Tp#

ft ~ Zb1!�'

ZS2 �
1

T � @Tp#
(

t�@Tp#�1

T �ft ~ Zb2 !�

(
t�@Tp#�1

T

ft ~ Zb2 !

T � @Tp#
��ft ~ Zb2!�

(
t�@Tp#�1

T

ft ~ Zb2!

T � @Tp#
�'

Lagrange multiplier test

LM1 [ 10T�WT
102 (

t�1

T

ft ~b0 !�' ZV1�WT
102 (

t�1

T

ft ~b0 !�
LM2~p! [

1

p~1 �p!

1

T � (t�1

@Tp#

ft ~b0 !�p (
t�1

T

ft ~b0 !�'
� ZS�102' ZV2 ZS�102� (

t�1

@Tp#

ft ~b0 !�p (
t�1

T

ft ~b0 !�
ZV1 � C1

'~C1 C1
' !�1C1, C1 � RMb' ~I � OPd!

ZV2 � C2
'~C2 C2

' !�1C2 , C2 � RMb'

ZS �
1

T
(
t�1

T �ft ~b0 !�
1

T
(
t�1

T

ft ~b0 !��ft ~b0 !�
1

T
(
t�1

T

ft ~b0 !�'
Distance metric test

Du~p! � arg min
b1,b2 ,d

OQ~b1,b2 ,d! s+t+ Ru~p! � r

Note: Table 1 assumes that ft~+! consists of mean zero uncorrelated random variables+ When ft~+! consists of
mean zero but serially correlated random variables, then consistent estimation of ZS1, ZS2, ZS, and ZG requires a HAC
estimator ~e+g+ Newey and West, 1987!+
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PROPOSITION 3+ Let Assumptions 1, 2
'
, and 3–6 hold. The test statistic

for testing b � b* against bt,T � b* � ~1

MT !bA � ~1

MT !g1~s � p! with
the greatest average power according to the weighting function R~h,p! ;
N~0, cV~p!�1! , for V~p! defined in (14) and c such that c0~1 � c! r `, is
(27), whose asymptotic distribution under the null hypothesis is

QLRT
* n sup

p
F*~p!+ (28)

Nyblom (1989) Test. Another test for parameter instability is that consid-
ered by Nyblom ~1989! and Nyblom and Mäkeläinen ~1983!+ These authors
derive the locally most powerful invariant ~to translations and scale transfor-
mations! test for constancy of the parameter process against the alternative that
the parameters follow a random walk process:7

bt � bt�1 � et , et; N�0,
1

T 2 se
2 OG�+ (29)

The modified Nyblom test statistic for testing whether bt is equal to b0 is

NyblomT
* ��

0

1

~T{¹bQ1, @pT #~b0 , Dd!' ZVN
�1¹bQ1, @pT #~b0 , Dd!!J ~p! dp, (30)

where ZVN � RMb' ~Im � OPd' ! RMb � R p�p and the gradient of the objective func-
tion is defined as

¹bQ1, @pT #~b0 , Dd! [
1

T (t�1

@Tp#

¹bFT ~b0 , Dd!'S�1 ft ~xt ,b0 , Dd!+

Note that ~30! is a generalization of the locally best invariant test statistic
proposed by Nabeya and Tanaka ~1988! for the case in which b is known and
equal to b0+ The test proposed in this paper is more general than that of Nabeya
and Tanaka, as estimation is not restricted to the ordinary least squares case
and b can be a vector+ Appendix A shows that the asymptotic distribution of
the modified Nyblom statistic under the null hypothesis is as follows+

PROPOSITION 4+ Let Assumptions 1, 2
'
, and 3–6 hold. The test statistic

for testing b � b0 against bt,T � b0 � ~1

MT !bA � bt�1,T � et , et ;
N~0, ~10T 2 !se

2 OG! with the greatest average power according to the weight-
ing function R~h,p! ; N~0, cV~p!�1! , for V~p! defined in (14), is (30). Its
asymptotic distribution under the null hypothesis is

NyblomT
* n �

0

1

Bp~p!
'Bp~p!J ~p! dp+ (31)
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Tables B1–B4 in Appendix B report critical values for the optimal tests for
J ~p! uniformly distributed on @0+15, 0+85# +8 The significance levels considered
in the tables are 10%, 5%, 2+5%, and 1%+ The critical values are obtained by
simulating the asymptotic distributions described in this section+ The number
of Monte Carlo replications is 5,000+ Notice that all the values in Tables B1–B3
are higher than those for the corresponding tests for structural break only, the
reason being that the optimal tests add the nonnegative component Bp~1!'Bp~1!
~see equation ~24!!+

4. ASYMPTOTIC LOCAL POWER ANALYSIS

The local power properties of the optimal tests derived previously can be com-
pared with those of tests for parameter instability only and those of tests for
a~u*! � 0 only+ The comparison can be made both theoretically and by Monte
Carlo simulations+

Let us first consider the theoretical local power properties of the various tests+
To facilitate a comparison with the tests existing in the literature, we focus on
the tests discussed in the second part of Section 3, and, for brevity, we analyze
only ~25!+9 Let Du� ~b0, Dd!+ From ~22! and ~25!, and using the notation in Table 1,
we have that

log~Exp-WaldT
* ! �

1

2
LM1 � log�

P
�exp � 1

2
LM2~p!	� dJ ~p!+

Appendix A shows that

~a! V1
102~1

MT !WT

102(t�1
T ft ~ Du! n Zp

~1!;
Zp
~1! [ Bp~1! � V1

102~I � OPd! RMbbA � V1
102~I � OPd ! RMb *0

1 gb~s! ds+
~b! V2

102~~1

MT !WT
102 @(t�1

@Tp# ft ~ Du! � p(t�1
T ft ~ Du!# ! n Zp

~2!~p!;
Zp
~2!~p! [ BBp~p! � ~1 � p!V2

102 RMb *0
p gb~g,p, r! dr �

pV2
102 RMb *p

1 gb~g,p, r! dr+10

~c! Under the null hypothesis, LM1 and LM2~p! are asymptotically indepen-
dent; this follows from the fact that Bp~1! and BBp~p! are independent+
Thus, if one performs two tests, LM1 and *P~exp $ 12

_LM2~p!%! dJ ~p!, each
at size 1 � M1 � a, then the joint test will have size a+ However, this
two-stage test, by construction, will not have the highest weighted aver-
age power according to the weight function in Proposition 1+

~d! LM1 n Zp
~1!'Zp

~1! , and thus it may have no power to detect structural
breaks ~the alternative described in HAT

~1! !+ In fact, Zp
~1! does not depend

on *0
p gb~s! ds+ Thus, for example, the power versus alternatives where

the break function is such that *0
1 gb~s! ds � 0 will be equal to the size+

~e! LM2 n Zp
~2!~p!'Zp

~2!~p!, and thus it has no power to detect constant
shifts in the parameters ~the alternative described in HAT

~2! !+ In fact, Zp
~2!
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does not depend on bA+ Thus, for example, the power versus alternatives
in which there is no break but bA � 0 will be equal to the size+

~f ! The test for parameter instability only can be obtained by substituting
a~u! � 0, A � 0, PH � I in the proof of Result 1, so that asymptotically
it behaves like Zp

~2!~p!, which is the same as in Andrews ~1993!, and
conclusions similar to those in ~d! hold+ In fact, upon inspection, it is
clear that LM1 is the standard LM test for testing b � b0, whereas
LM2~p! has the same asymptotic distribution as the LM test for param-
eter instability+

To verify these insights, we perform some Monte Carlo simulations+ A vari-
ety of DGPs is considered, paying particular attention to situations where the
standard tests fail to detect the alternative hypothesis+ For simplicity, only a
univariate model is considered:

yt � bt,T � et et; N~0,1!, T � 100, b0 � 0 (32)

The likelihood ratio LR1 tests whether the parameter equals b0, whereas param-
eter instability tests check whether bt,T is constant; optimal tests jointly test the
two hypotheses+ The parameter instability tests ~TVP! considered here are the
Andrews and Ploberger exponential Wald tests ~Exp-WaldT !, the Nyblom test
~NyblomT !, and the Quandt likelihood ratio ~QLRT !+ The optimal tests are
Exp-WaldT

* , QLRT
* , and NyblomT

* defined in Section 3+ The nominal size is 5%+
We consider the following DGPs+11

Design 1. bt,T � b0 � bA~1

MT ! ∀t

Figure 1a shows the asymptotic local power of the tests as a function of bA+
It shows that when the parameter is not time-varying, the likelihood ratio LR1

is the most powerful test, according to the Neyman and Pearson lemma+ The
test designed to detect structural break, Exp-WaldT , has a flat power function
around the size of the test, whereas the Exp-WaldT

* test is almost as powerful as
the LR1 test+

Design 2. bt,T � b0 � ~1

MT !bA1~t � @T02# !

Design 2 involves a single break in the data+ This particular alternative is
both a deviation of the parameter vector from the null hypothesis and a struc-
tural break, so all the tests ~the most powerful likelihood ratio test, LR*,12 the
TVP, and the optimal tests! should detect it+ This is in fact what Figure 1b
shows+

Design 3. bt,T � �b0 � bA~1

MT ! for t � 1 up to t � @T02#

b0 � bA~1

MT ! for t � @T02#� 1 up to T

Figure 1c shows that, in this design, the shift in the parameter vector is not
detected by a simple likelihood ratio ~LR1! because the statistic on which it is
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based ~the average of the observations! is invariant to it; in fact, notwithstand-
ing the structural break, the average over the whole sample is asymptotically
equal to b0+ Although the TVP test is the most powerful, the optimal test is
powerful too+

Design 4. bt � b0 � bt�1 � ut , where ut ; N~0,su
20T 2 ! is independent from

et and su
2 � 0

The asymptotic local power functions for this design are depicted in Fig-
ure 1d as functions of the parameter su

2 � 0+When su
2 � 0 then bt is constant,

whereas when su
2 � 0 then bt is a random walk with no drift+ The test designed

for this hypothesis is the Nyblom test; the LR1 test is also powerful+ The reason
is that LR1 is detecting deviations from the null hypothesis by comparing the
sample average with the null hypothesis and the sample average is not a con-
sistent estimate of the true parameter value+ Note that the optimal Nyblom test
is powerful too+

The results of the simulations suggest the following conclusions+ First, the
tests that maintain some power across all the designs considered here are the
optimal tests+ For all the other tests there is at least one design ~a particular

Figure 1. Asymptotic power functions of 5% tests for Designs 1– 4+

978 BARBARA ROSSI

https://doi.org/10.1017/S0266466605050486 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466605050486


direction away from the null hypothesis! in which the power is flat around the
size of the test+ Hence, they are not “robust” across designs, whereas the opti-
mal tests are+ Second, let us consider a two-stage testing procedure, where the
first stage tests whether there is a structural break ~by using either QLRT or Exp-
WaldT ! and the second stage, conditionally on the first stage, tests hypotheses
on the parameters ~by using the LR1 test!+ Let the tests be labeled “Seq.QLR”
and “Seq.Exp-Wald,” respectively+ In the special cases considered in Section 3
~obtained with particular weighting matrices!, the two stages of the test are
asymptotically independent+ By choosing a size equal to 1 � M1 � 0+95, the
joint significance level will be the desired nominal level, 0+95+ Figure 2 shows
that there is no clear ranking between the sequential tests and the optimal tests+
The power ranking will depend on the direction of the alternative hypothesis+
However, by construction, the optimal tests will have the greatest average local
power+ Two-stage independent tests have advantages and disadvantages+ The
advantages are that if we reject we know which part of the alternative we reject
and that the first-stage test could be used if the researcher is unsure about which
elements of the parameter vector are subject to instability+ The disadvantage is
that they will not have the optimal weighted average power for alternatives that

Figure 2. Comparison of asymptotic power functions of 5% selected optimal tests with
the naive sequential test ~across different designs!+
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are equally likely; in other words, if we want tests that are invariant to nonsin-
gular linear transformations of the hypothesis, we cannot construct the test as
formed by two independent components, as two-stage tests are not invariant to
these transformations+

Finally, to investigate the properties of the Hall and Sen ~1999! test for OIRs,
we consider the following experiment+

Design 5+ This design introduces instability in the OIRs+ We introduce one
OIR by using the following set of moment conditions: ft � ~et , zt

* et !
' where zt

*

is an instrument such that zt
*� zt � et~bA{1~t � 1

2
_ T !� bA{1~t � 1

2
_ T !! and zt;

N~0,1! is independent of et + Note that when bA � 0 then the OIR is valid and
stable; on the other hand, it becomes unstable when bA � 0+ Figure 3 compares
the power functions of the Exp-WaldT , the Exp-WaldT

* , and the Exp-OT tests for
this design ~see Figure 3d!+ To explore the properties of the Exp-OT test in the
presence of parameter instability or constant shifts in the parameters, the figure
also compares these tests in Designs 1–3 ~where all the tests in Figure 3 now
build on the two-dimensional moment condition!+ Figure 3 clearly shows that
the Exp-WaldT , Exp-WaldT

* , and Exp-OT tests have power only against devia-

Figure 3. Comparison of asymptotic power functions of 5% selected optimal, TVP,
and OIRs tests ~across different designs!+
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tions from their specific null hypotheses+ In particular, the Exp-WaldT and
Exp-WaldT

* do not have power against instabilities in the OIRs, and the Exp-OT

test does not have power against parameter instability or against the joint hypoth-
eses considered in this paper, ~HAT

~1! ! and ~HAT
~2! !+

5. SUMMARY COMMENTS

This paper shows that there exists a class of locally most powerful tests for
testing the joint hypothesis of model selection between two nested models and
parameter stability+ This paper introduces this class of tests, states the assump-
tions under which they are valid, and works out their asymptotic distributions+
It also derives some special cases that apply for specific forms of parameter
instability+ These tests are easy to calculate, and this paper reports their ~asymp-
totic! critical values+ Joint tests such as the ones developed in this paper could
also be adapted to the case of multiple breaks, along the lines of Bai and Per-
ron ~1998! and Elliott and Müller ~2003!+We leave this issue for future research+

NOTES

1+ In fact, the standard Chow test can be rewritten as a Wald test: ~t~T � t!0T !~~ Zb1 � Zb2 !
20

se
2! � op~1! and Zb and ~ Zb1 � Zb2! are independent+ To see why, note that cov~ Zb1 � Zb2, Zb! �

cov~ Zb1 � Zb2,p Zb1 � ~1 � p! Zb2! � pvar~ Zb1! � ~1 � p!var~ Zb2! � p~10p!se2 � ~1 � p!~10~1 �
p!!se

2 � 0+
2+ The assumptions used in this paper are stronger than necessary, and the results are expected

to hold if the assumptions are relaxed as in Andrews ~1993!+ I thank G+ Elliott and U+ Muller for
pointing this out+

3+ For example, when the process is univariate and such that yt � b0 � et , et ; i+i+d+ N~0,1!,
b0 � 0 ~as in the introductory example at the beginning of the paper! then the partial sum of
moments is

1

MT (t�1

@Ts#

~ yt � Zb! �
1

MT (t�1

@Ts#

yt �
1

MT (t�1

@Ts# 1

T (t�1

T

yt �
1

MT (t�1

@Ts#

yt � s
1

MT (t�1

T

yt ,

and the origin of the Brownian bridge is evident+ If there were no restrictions under the null hypoth-
esis, then the asymptotic distribution of CWT

102MT FsT ~b0 , Dd! would be ~BBq~s!' Bm�q~s!'!' , which
is the Sowell ~1996! result+ When there are restrictions on a subset of p parameters under the null
hypothesis, these will show up as p-Brownian motions, in addition to the previous components+
These are Brownian motions because they are the limiting distribution of a partial sum of mean
zero moment conditions, where the zero mean is obtained by imposing, rather than estimating, the
drift+ In the previous example, in this case the partial sum of moments is

1

MT (t�1

@Ts#

~ yt � b0 ! �
1

MT (t�1

@Ts#

yt ,

and the origin of the Brownian motion is clear+ The Bm�q~s! component corresponds to the over-
identified moment restrictions+

4+ The result follows because RMD�102HD 102 � RMD�102HD�102 RM ' RM � PH RM, PH RM PD ' � 0 and
~I � PH ! RM PD ' � RM PD ' , which can be verified by direct calculations+
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5+ I consider only two-sided alternatives here; one may generalize the argument to one-sided
alternatives+

6+ For completeness, let us mention that the LM statistic can also be obtained as
T{¹b OQ~b0,b0, Dd!' ZV�1¹b OQ~b0,b0, Dd! where ZV is a consistent estimator of E~T{¹b OQ~ Du!¹b OQ~ Du!'! �
R2p�2p+ However, the LM formula provided in the main text is easier to calculate+

7+ The notation is the same as in Nyblom and Mäkeläinen ~1983!; O OG is a known matrix and se
2

is a scalar+ See also King ~1980!, King and Hillier ~1985!, and Stock and Watson ~1998!+
8+ Trimming values are required+ See Andrews ~1993!+
9+ A similar analysis applies to the optimal mean Wald, QLR, and Nyblom tests+

10+ See also Appendix A for more details+ Note that � RMb *0
p gb~g,p, r! dr �

p RMb *0
1 gb~g,p, r! dr � �~1 � p! RMb *0

p gb~g,p, r! dr � p RMb *p
1 gb~g,p, r! dr+

11+ Note that different Monte Carlo experiments could be designed in which all models are
possibly ~dynamically! misspecified, as in Corradi and Swanson ~2001!+ This setup would not be
the one for which the optimal tests proposed in this paper are designed, so it is not investigated+

12+ LR* is the likelihood ratio test for testing b2 � b0 conditional on knowing that b1 � b0 ~see
the example at the beginning of Section 2!+
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APPENDIX A: Proofs

Proof of Result 1. To simplify notation, let ft~xt , Du! be denoted as ft~ Du! and ut,T be
denoted by ut + The restricted estimator Du satisfies the following first-order conditions
for minimizing the Lagrangian Q~u! � a~u!'l, where l is the ~r � 1! vector of LMs:

0 � ¹uQ~ Du!� ¹u a~ Du!' Dl, (A.1)

0 � a~ Du!+

Take a mean value expansion of ft~ Du! around u*:

ft ~ Du! � ft ~u
* !� ¹u ft ~ Nu!{~ Du� u* !, (A.2)

where Nu is a intermediate point ~in euclidean distance! between Du and u*, and by con-
sistency of Du, Nu p

&& u*+ Summing ~A+2! from t � 1 to @sT # gives FsT ~ Du! � FsT ~u
*! �

¹uFsT ~ Nu!{~ Du � u*!, which, evaluated at s � 1 and premultiplied by ¹uFT ~ Du!'WT , gives

¹uQ~ Du! � ¹uFT ~ Du!'WT FT ~u
* !� ¹uFT ~ Du!'WT¹uFT ~ Nu!{~ Du� u* !+ (A.3)

Another mean value expansion of a~ Du! around u* gives

a~ Du! � a~u* !� A~ Nu!~ Du� u* !+ (A.4)

Thus, combining ~A+1!, ~A+3!, and ~A+4! and A~ Nu! p
&& A:

��¹uFT ~ Du!'WT FT ~u
* !MT

�a~u* !MT � � �¹uFT ~ Du!'WT¹uFT ~ Nu! A'

A 0��~ Du� u* !MT

lMT �� op +

(A.5)
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Define D[ RM ' RM, A[ A~u*!, P[ D�102A'~AD�1A'!�1AD�102, and H[ I � P+ Solving
~A+5! for ~ Du � u*! gives

MT ~ Du� u* ! � �D�102HD�102¹uFT ~ Du!'WT FT ~u
* !MT

� D�1A'~AD�1A' !�1a~u* !MT � op + (A.6)

By substituting ~A+6! in ~A+2!, summing from t � 1 to @sT # , and premultiplying
by MT WT

102 , we have

MT WT
102 FsT ~ Du! � MT WT

102 FsT ~u
* !

�
1

MT (t�1

@sT #

WT
102¹u ft ~ Nu!D�102HD�102¹uFT ~ Du!'WT FT ~u

* !

�
1

MT (t�1

@sT #

WT
102¹u ft ~ Nu!D�1A'~AD�1A' !�1a~u* !� op + (A.7)

Next, a mean value expansion of FsT ~u
*! around ut implies

FsT ~u
* ! � FsT ~ut !�

1

T (t�1

@sT #

¹u ft ~ Nut !~u* � ut !, (A.8)

where Nut is an intermediate point between ut and u*+ Substituting ~A+8! in ~A+7!, we
have

MT WT
102 FsT ~ Du!

� MT WT
102 FsT ~ut !�

1

MT (t�1

@sT #

WT
102¹u ft ~ Nut !~u* � ut !

�
1

MT (t�1

@sT #

WT
102¹u ft ~ Nu!D�102HD�102¹uFT ~ Du!'WT FT ~ut !

�
1

T (t�1

@sT #

WT
102¹u ft ~ Nu!D�102HD�102¹uFT ~ Du!'WT

1

MT (t�1

T

¹u ft ~ Nut !~u* � ut !

�
1

MT (t�1

@sT #

WT
102¹u ft ~ Nu!D�1A'~AD�1A' !�1a~u* !� op + (A.9)

Letting T r `, we have

MT WT
102 FsT ~ut !n Bm~s! ,

1

T (t�1

@sT #

WT
102¹u ft ~ Nut !MT ~u* � ut ! p

&& � RM�
0

s

g~g,p, r! dr, ~ included s � 1!,

1

MT (t�1

@sT #

WT
102¹u ft ~ Nu!D�102HD�102¹uFT ~ Du!'WT FT ~ut !n s RMD�102HD�102 RM 'Bm~1!,
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1

MT (t�1

@sT #

WT
102¹u ft ~ Nu!D�102MD�102¹uFT ~ Du!'WT

1

T (t�1

T

¹u ft ~ Nut !~u* � ut !

p
&& �s RMD�102HD�102 RM ' RM�

0

1

g~g,p, r! dr,

1

MT (t�1

@sT #

WT
102¹u ft ~ Nu!D�1A'~AD�1A' !�1a~u* ! p

&& s RMD�1A'~AD�1A' !�1 Sa+

By substituting the preceding expressions in ~A+9!, we have

MT WT
102 FsT ~ Du!n Bm~s!� s PHBm~1!� s RMD�1A'~AD�1A' !�1 Sa

� RM�
0

s

g~g,p, r! dr � s RMD�102HD102�
0

1

g~g,p, r! dr, (A.10)

where PH [ RMD�102HD�102 RM ' , which proves Result 1+ �

Proof of Result 2. To prove Result 2, note that under the null hypothesis Sa � 0 and
g~+! � 0 so that only the first two components on the right-hand side of ~A+10! are
relevant+ Note also that PH is a projection matrix with rank ~k � r! so that PH � C 'LC,

where L � �Ik�r 0

0 0� and C is an orthonormal matrix such that CC ' � Im+ Thus

C @Bm~s!� s PHBm~1!#� CBm~s!� sLCBm~1!, which has the same distribution as Bm~s!�
sLBm~1!� ~BBk�r~s!',Bm�~k�r!~s!'!', because C is orthonormal+ Hence, Result 2 follows+

�

Proof of Corollary 1. Let D � �D11 D12

D21 D22
� and D�1 � �D11

� D12
�

D21
� D22

�� + Also, let the

restrictions be linear restrictions on subsets of the parameters, so that A � @Ip�p I 0p�q# +
Let RMu� @ RMb I RMd# , OPd [ RMd~ RMd' RMd ! RMd'+ Corollary 1 follows from ~A+10! by using the
following results ~a!–~e!+ ~Results ~a!–~d! follow from direct calculation+ Details are
provided in an Appendix available upon request+!

~a! PH � OPd
~b! RMD�102HD 102 � OPd RM
~c! RMD�1A'~AD�1A'!�1 � ~I � OPd! RMb
~d! Db � b0

~e! g~+! � @gb~+! 0q�p# �

Proof of (13) and (14). Let Assumption 2 hold and let the class of alternatives be
linear in the parameters: g~g,p, s!� EG~p, s!g+ Thus v~s!, defined following ~9!, becomes

v~s! � �� RM PD ' � RM EG~p, r!� RMD�102HD102��
0

1

EG~p, r!' dr��� Sag� +
Let h [ ~ Sa,g '!' and define a~s! to be such that v~s!' � h 'a~s!, that is:

a~s! � �
� PD RM '

� EG~p, r!' RM ' ���
0

1

EG~p, r!' dr�'D102HD�102 RM '� +
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The term A~p! is defined as *0
1 a~s! dZ~s!, and V~p! is defined as *0

1 a~s!a~s!' ds+
When there is only one break, and EG~p, s!� 1~s � p!G, then direct calculations show
that

A~p! � � � PD RM 'Z~1!

�G ' RM ' @Z~1!� Z~p!#� ~1 �p!G 'D102HD�102 RM 'Z~1!�
� � � PD RM ' 0

�~1 �p!G 'A' PD RM ' G ' RM '�� Z~1!

Z~p!�pZ~1!�, (A.11)

V~p! � � PDD PD ' ~1 �p! PDD102~I � H !D102G

~1 �p!G 'D102~I � H !D102 PD ' ~1 �p!G 'D102 @I � ~1 �p!H #D102G�+
(A.12)

�

Proof of Propositions 1–3. When the weighting function is an ~r � p!-dimensional
multivariate normal distribution with zero mean and covariance U~p! then in this case,
and for two-sided alternatives, the optimal tests in ~11! simplify to ~by completing the
square and integrating out the parameter vector!

TS ��� 6U~p!�1 6102

6V~p!� U~p!�1 6102
exp� 1

2
A~p!'~V~p!� U~p!�1 !�1A~p!	� dJ ~p!+

(A.13)

When U~p!�1 � ~10c!V~p! then ~up to a constant factor that does not matter!

TS ��� 6U~p!�1 6102

6V~p!� U~p!�1 6102
exp� 1

2
F*~p!	� dJ ~p!,

F*~p!� A~p!'V~p!�1A~p!+ (A.14)

By using ~A+12! and standard formulas for the inverse of a partitioned matrix,

V~p!�1 � �
1

p
AD�1A' �

1

p
AD�1G

�
1

p
G 'D�1A'

1

p~1 �p!
G 'D�1G� + (A.15)

By combining ~A+15! with ~A+11! and ~A+14!, one finds that

F*~p! � �Z~1!' I
$Z~p!�pZ~1!% '

Mp~1 �p! ��C1
'~C1 C1

' !�1C1 0

0 C2
'~C2 C2

' !�1C2
�

� � Z~1!

Z~p!�pZ~1!

Mp~1 �p!
�, (A.16)

where C1[ ~AD�1A'!�1AD�1 RM ' has dimension ~r � m! and C2[G ' RM ' has dimension
~ p � m!+ Notice that C1~I � PH ! � C1 so that C1 Z~1! � C1 Bm~1!+ Thus, Zr ~1! [
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~C1 C1
' !�102C1 Z~1! is an r-vector of independent standard normals and $Zp~p! �

pZp~1!% [ ~C2 C2
' !�102C2 $Z~p! � pZ~1!% is a p-vector of independent Brownian

bridges because $~C1 C1
' !�102C1%$~C1 C1

' !�102C1%
' � Ip ~same for C2!+ Hence:

A~p!'V~p!�1A~p! � Zr ~1!
'Zr ~1!�

$Zp~p!�pZp~1!%
'$Zp~p!�pZp~1!%

p~1 �p!
+ (A.17)

Thus, under the null hypothesis:

F*~p! � Br ~1!
'Br ~1!�

BBp~p!
'BBp~p!

p~1 �p!
+ (A.18)

Proposition 1 thus follows from Result 1 and the continuous mapping theorem, and Prop-
ositions 2 and 3 follow directly from Proposition 1, Corollary 1, and the results in Andrews
and Ploberger ~1994!+ �

Asymptotic Local Power. Under the alternative hypothesis, and using ~10!:

Z~1! � ~I � PH ! �Bm~1!� RM PD ' Sa � RM�
0

1

g~s! ds	 ,
Z~p!�pZ~1! � BBm~p!� ~1 �p! RM�

0

p

g~s! ds �p RM�
p

1

g~s! ds,

and substituting these into ~A+16!:

F*~p! � Zr
~1!'Zr

~1!� Zp
~2!~p!'Zp

~2!~p!, (A.19)

where

Zr
~1! [ Br ~1!� ~C1 C1

' !�102C1 RM��
0

1

g~s! ds � PD ' Sa� , (A.20)

Zp
~2!~p! [

$Bp~p!�pBp~1!%

Mp~1 �p!

� ~C2 C2
' !�102C2 RM�� 1 �p

p �102�
0

p

g~s! ds �� p

1 �p�102�
p

1

g~s! ds�+
(A.21)

Note that when A � @Ip 0p�q# � G, g~+! � @Ip 0q�p#gb~+!, then r � p, C1 [
RMb' ~I � OPd! ~see ~c! in the proof of Corollary 1! and C2 [ RMb' ; note also that
RMb' ~I � OPd! RMb � ¹bbQ � ¹bdQ~¹ddQ!�1¹dbQ+ In addition, note that when p is fixed

and Sa � 0, which is the case examined by Chow ~1960! for testing the existence of
structural breaks only, only @I I 0#A~p! and @I I 0#V~p!@I ' I 0'# ' are relevant so that the
test becomes F~p!n BBp~p!

'BBp~p!0p~1 � p!, which is the result of Andrews ~1993!
~see also Sowell, 1996!+ Notice also that when p � 1, which is the case without struc-
tural break, the result is the classical test statistic for tests on a subset of p parameters:
Bp~1!'Bp~1! ; x~ p!

2 because BBp~1! � 0 and Bp~1! is a p-dimensional multivariate stan-
dard normal distribution+

The proof that ~20!, ~21!, and ~22! are asymptotically equivalent under both the null
hypothesis and the local alternatives follows from applying results similar to those in
Andrews ~1993! and Newey and McFadden ~1994!+ �
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Proof of Proposition 4. The ~modified! Nyblom test statistic for testing both param-
eter instability and that the parameter vector is equal to some value b0 was defined as

NyblomT
* ��

0

1

~T{¹bQ1, @pT #~b0 , Dd!' ZVN
�1¹bQ1, @pT #~b0 , Dd!!J ~p! dp, (A.22)

where ZVN � R2p�2p is a consistent estimate of the asymptotic variance of ¹bQ~b0, Dd!
and the gradient function is defined as

¹bQ1, @pT #~b0 , Dd! [
1

T (t�1

@Tp#

¹bFT ~b0 , Dd,p!'S�1 ft ~xt ,b0 , Dd!+ (A.23)

Notice that ~10T !(t�1
@Tp# ft ~xt ,b0 , Dd! is the first component of OFT ~b0, Dd,p!, so that one

would expect the asymptotics to be driven by B~p!+ In fact, let Dd be estimated on obser-
vations 1,2 , + + + ,T and take a mean value expansion to obtain

MT¹bQ1, @pT #~b0 , Dd! � ¹bFT ~u0 !
' ZS�1

1

T (t�1

@Tp#

ft ~u0 !MT

�
1

T (t�1

@Tp#

¹bFT ~u0 !
' ZS�1¹d ft ~u0 !

� ~¹dFT ~u0 !
' ZS�1¹dF1,Tp~u0 !!

�1¹dFT ~u0 !
' ZS�1F1,Tp~u0 !MT

� RMb' ~Im � OPd !S�102
1

MT (t�1

@Tp#

ft ~u0 !� op~1!,

where F1, @Tp#~u0! [ ~10T !(t�1
@Tp# ft ~xt ,u0 ! has the following asymptotic distribution:

1

MT (t�1

@Tp#

ft ~u0 !n S
102Bm~p!+

Hence, ~A+23! is such that

¹bQ1, @pT #~b0 , Dd!n RMb' ~I � OPd !Bm~p!,

NyblomT
* ��

0

1

T{~¹bQ1, @Tp#~b0 , Dd!' ZVN
�1¹bQ1, @Tp#~b0 , Dd!!J ~p! dp

n �
0

1

Bm~p!
'~Im � OPd ! RMb~ RMb' ~Im � OPd ! RMb!�1 RMb' ~Im � OPd !

� Bm~p!J ~p! dp

��
0

1

Bp~p!
'Bp~p!J ~p! dp+ (A.24)

Notice that, like the ~modified! Andrews and Ploberger case for cr 0, this statistic is a
special case of ~A+13!; in fact, the NyblomT

* and the modified Mean-WaldT
* statistics

simply use two different weighting matrices+ Notice that in the structural break case
only, the test statistic is constructed on the basis of the first component of OFT ~ Zu,p! and
the estimation of b transforms the Brownian motion in ~A+24! into a Brownian bridge,
thus originating the Nyblom test statistic: *0

1 Bp~p!
'Bp~p!J ~p! dp+ �
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APPENDIX B: Asymptotic Critical Values for
the Optimal Test Statistics

Tables B1–B4 report critical values for the optimal tests and the QLRT
* test considered

in Section 3+ The significance levels considered in the tables are 10%, 5%, 2+5%, and
1%+ The critical values are obtained by simulating the asymptotic distributions described
in Section 3+ The number of Monte Carlo replications is 5,000+ ~The trimming values
considered are only 15% and 85% of the available sample, and the grid of points is
quite sparse; basically each observation is a point in the grid+!

Table B1. Asymptotic critical values of the Exp-Wald* statistic

p 0+10 0+05 0+025 0+01 p 0+10 0+05 0+025 0+01

1 2+449 3+134 3+817 4+6727 16 22+852 24+626 26+219 27+891
2 4+204 5+015 5+8842 6+8129 17 24+198 26+094 27+681 29+642
3 5+656 6+738 7+7042 8+9198 18 25+589 27+414 29+158 31+221
4 7+095 8+191 9+3191 10+421 19 26+603 28+352 30+111 31+930
5 8+744 9+824 10+9535 12+194 20 28+108 30+075 31+882 33+854
6 10+026 11+203 12+4487 14+039 25 34+138 36+177 37+908 40+342
7 11+42 12+630 13+8575 15+173 30 39+955 42+167 44+374 46+574
8 12+87 14+225 15+3435 16+751 35 45+947 48+183 50+325 53+100
9 14+138 15+537 16+9444 18+628 40 51+820 54+476 56+542 59+338

10 15+426 16+761 18+3168 19+786 50 63+098 65+688 68+191 71+299
11 16+758 18+467 19+5883 21+547 60 74+534 77+369 80+178 83+654
12 17+915 19+582 21+1368 22+686 70 86+038 89+291 92+120 94+955
13 19+288 20+945 22+7773 24+986 80 97+348 100+647 103+451 107+566
14 20+691 22+285 23+8681 25+579 90 108+533 111+558 114+873 118+682
15 21+626 23+385 24+799 26+675 100 119+749 123+685 126+987 130+755

Table B2. Asymptotic critical values of the Mean-Wald* statistic

p 0+10 0+05 0+025 0+01 p 0+10 0+05 0+025 0+01

1 4+263 5+364 6+675 8+151 16 41+340 44+565 47+377 50+509
2 7+292 8+743 10+301 12+190 17 43+575 46+872 49+775 54+276
3 10+014 11+920 13+569 15+653 18 46+090 49+403 52+342 56+298
4 12+422 14+362 16+138 18+346 19 48+138 51+509 54+585 58+149
5 15+539 17+523 19+338 21+712 20 50+814 54+100 58+022 62+096
6 17+753 19+877 22+094 24+777 25 61+834 66+202 69+063 73+344
7 20+105 22+389 24+434 27+024 30 72+719 76+963 80+804 86+127
8 22+858 25+397 27+349 30+508 35 84+301 88+682 92+603 97+196
9 25+369 27+844 30+348 32+944 40 95+549 99+918 104+361 109+622

10 27+318 30+039 32+374 35+668 50 116+933 121+688 126+194 131+524
11 30+130 32+994 35+295 38+451 60 138+852 144+073 148+816 155+288
12 32+078 34+880 37+380 41+187 70 160+519 166+723 171+577 178+353
13 34+609 37+691 40+609 44+264 80 182+513 188+975 193+457 200+146
14 37+205 40+418 43+179 46+328 90 204+115 210+106 215+101 222+797
15 38+986 42+184 44+786 47+969 100 225+565 232+309 239+094 246+113
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Table B3. Asymptotic critical values of the QLR* statistic

p 0+10 0+05 0+025 0+01 p 0+10 0+05 0+025 0+01

1 8+138 9+826 11+332 13+481 16 51+435 55+160 58+421 61+567
2 12+196 14+225 16+088 17+942 17 54+100 58+121 61+517 65+132
3 15+562 17+640 19+922 22+482 18 56+910 60+836 64+469 68+850
4 18+611 21+055 22+989 25+997 19 59+116 62+716 66+236 70+014
5 22+157 24+550 26+590 29+481 20 62+153 66+023 69+749 73+997
6 24+817 27+377 29+781 33+217 25 74+408 78+648 82+569 87+093
7 27+754 30+414 32+878 35+948 30 86+205 90+715 94+942 100+049
8 30+723 33+717 36+260 38+962 35 98+043 102+820 107+078 112+566
9 33+553 36+552 39+228 42+905 40 110+049 115+263 119+674 125+411

10 36+173 39+020 41+891 45+266 50 132+900 138+324 143+162 150+215
11 38+889 42+332 44+843 48+936 60 155+959 161+557 167+068 175+141
12 41+334 44+820 47+747 51+389 70 179+054 185+749 191+606 196+879
13 44+017 47+589 51+386 56+251 80 201+808 208+198 214+228 222+182
14 46+877 50+193 53+394 56+935 90 224+120 230+100 236+930 245+060
15 49+059 52+347 55+562 59+082 100 246+614 254+605 261+541 268+573

Table B4. Asymptotic critical values of the Nyblom* statistic

p 0+10 0+05 0+025 0+01 p 0+10 0+05 0+025 0+01

1 1+103 1+404 1+803 2+251 16 10+532 11+418 12+234 13+187
2 1+876 2+292 2+676 3+249 17 11+107 12+011 12+840 13+975
3 2+589 3+143 3+590 4+173 18 11+760 12+650 13+492 14+596
4 3+178 3+750 4+246 4+862 19 12+151 13+151 13+986 14+992
5 3+972 4+550 5+099 5+741 20 12+911 13+807 14+938 16+064
6 4+545 5+157 5+773 6+564 25 15+732 16+819 17+787 18+856
7 5+155 5+752 6+349 7+079 30 18+476 19+565 20+728 22+147
8 5+869 6+555 7+089 8+025 35 21+309 22+483 23+648 24+846
9 6+487 7+183 7+884 8+552 40 24+175 25+391 26+621 28+003

10 6+959 7+707 8+453 9+209 50 29+577 30+859 32+004 33+626
11 7+684 8+513 9+170 9+963 60 35+149 36+551 37+934 39+475
12 8+182 8+970 9+676 10+744 70 40+545 42+203 43+624 45+210
13 8+869 9+659 10+510 11+373 80 46+055 47+764 49+146 50+823
14 9+504 10+334 11+173 12+047 90 51+525 53+249 54+652 56+297
15 9+964 10+816 11+542 12+470 100 56+916 58+897 60+602 62+614
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