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The analysis of the Parker–Moffatt problem, recently revisited in Pezzi et al.
(Astrophys. J., vol. 834, 2017, p. 166), is here extended by including Hall
magnetohydrodynamics and two hybrid kinetic Vlasov–Maxwell numerical models.
The presence of dispersive and kinetic features is studied in detail and a comparison
between the two kinetic codes is also reported. Focus on the presence of non-
Maxwellian signatures shows that – during the collision – regions characterized
by strong temperature anisotropy are recovered and the proton distribution function
displays a beam along the direction of the magnetic field, similar to some recent
observations of the solar wind.
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1. Introduction
The interaction of two oppositely propagating Alfvénic wave packets has been

studied for more than half a century. This interaction has been proposed as an
elementary step in the analysis of magnetohydrodynamics (MHD) turbulence (Elsässer
1950; Iroshnikov 1964; Kraichnan 1965; Dobrowolny, Mangeney & Veltri 1980a,b;
Velli, Grappin and Mangeney 1989; Sridhar & Goldreich 1994; Goldreich & Sridhar
1995; Ng & Bhattacharjee 1996; Matthaeus et al. 1999; Galtier et al. 2000; Verdini,
Velli and Buchlin 2009; Howes & Nielson 2013; Nielson, Howes and Dorland
2013). Indeed, in the framework of ideal incompressible MHD, large-amplitude
perturbations in which the magnetic b and bulk velocity u fluctuations are either
perfectly correlated, or perfectly anti-correlated, are solutions of the governing
equations. To induce nonlinear couplings among the fluctuations, and therefore to
excite turbulence, it is necessary to simultaneously consider magnetic fluctuations b
and velocity fluctuations u that have an arbitrary sense of correlation. This may be
accomplished by superposing the two senses of correlation, in Alfvén units, u=+b
and u=−b.
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Based on these considerations, Moffatt (1978) and Parker (1979) analysed the
collision of large-amplitude Alfvén wave packets in the framework of incompressible
MHD, observing that their interaction is limited to the time interval in which they
overlap. During this temporal window wave packets can transfer energy and modify
their spatial structure; however, after the collision, packets return to undisturbed
propagation without further interactions. The Parker–Moffatt problem has been
recently revisited in Pezzi et al. (2017) (hereafter, Paper I) with the motivation
to extend its description to the realm of the kinetic plasmas. In fact, the scenario
described by Parker & Moffatt is potentially applicable to astrophysical plasmas
such as the solar wind (Belcher & Davis 1971; Bruno, Bavassano & Villante 1985;
Verdini et al. 2009) or solar corona (Matthaeus et al. 1999; Tomczyk et al. 2007),
where Alfvénic perturbations represent one of the main components of fluctuations.
However, since such systems often exhibit compressive activity as well as dispersion
and kinetic signatures (Marsch 2006; Sahraoui, Galtier & Belmont 2007; Alexandrova
et al. 2008; Gary, Saito & Narita 2010; Valentini et al. 2011; Servidio et al. 2012;
Bruno & Carbone 2013; Valentini et al. 2014; He et al. 2015; Servidio et al. 2015;
Lion, Alexandrova and Zaslavsky 2016; Perrone et al. 2016; Roberts et al. 2016), it
is of considerable interest to include these features in the analysis of the Parker &
Moffatt problem.

In particular, in Paper I, it has been found that during the wave packets interaction,
as prescribed by Parker & Moffatt, nonlinear coupling processes cause the magnetic
energy spectra to evolve towards isotropy, while energy transfers towards smaller
spatial scales. Moreover, the new ingredients introduced with the kinetic simulation
(Hall and kinetic effects) play a significant role and several features of the evolution
in the Vlasov case differ with respect to the MHD evolution. Here we extend that
study to discern the role of dispersive and genuinely kinetic effects, supplementing the
previously considered MHD and Vlasov simulations, by introducing also a Hall MHD
(HMHD) simulation. Moreover, we also examine this basic problem by means of a
hybrid particle-in-cell simulation (HPIC), which allows comparison of two different
numerical approaches (hybrid Vlasov–Maxwell and HPIC), which refer to the same
physical model. We may anticipate that, in the HPIC case, the system dynamics
at small scales is affected by the presence of particles thermal noise and only the
features related to large spatial scales are properly recovered during the evolution of
the two wave packets. Based on this consideration, we employ mainly the hybrid
Vlasov–Maxwell (HVM) simulation to highlight the presence of kinetic effects during
the wave packets interaction. In particular, during the collision of the wave packets,
the proton velocity distribution function (VDF) exhibits a beam along the background
magnetic field direction, similar to some solar wind observations (He et al. 2015).
We note that the present paper compares results from four different models in the
context of a single physical problem, and is therefore also a contribution in the spirit
of the ‘turbulence dissipation challenge’ that has been recently discussed in the space
plasma community (Parashar et al. 2015b).

The paper is organized as follows: in § 2 the theoretical models and the numerical
codes are presented. In § 3, we compare the several simulations by focusing on the
description of some fluid-like diagnostics. Section 4, examines kinetic signatures in
the HVM simulation. Finally we conclude in § 5 by summarizing our results.

2. Theoretical models and numerical approaches
As discussed above, here we approach the problem concerning the interaction of

two Alfvénic wave packets by means of fluid and hybrid kinetic numerical simulations.
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For problems such as this, the system dimensionality is fundamental: in fact, a proper
description should consider a three-dimensional physical space (i.e. three-dimensional
wave vectors), where both parallel and perpendicular cascades are taken into account
(Howes 2015; Parashar et al. 2015a, 2016). However, the dynamical range of the
spatial scales (wavenumbers) represented in the model is equally important to capture
nonlinear couplings during the wave packet interaction. Furthermore, performing a
kinetic HVM simulation which contemporaneously includes a full three-dimensional
3D-3V phase space (three dimensions in physical space, three dimensions in velocity
space) while also retaining a good spatial resolution is too demanding for the present
high performance computing capability. Given that numerous runs are required to
complete a study such as the present one, a fully 3D approach would be prohibitive.
Therefore we adopt a 2.5D physical space, where vectorial fields are three-dimensional
but their variations depend only on two spatial coordinates (x and y). It is worth noting
that a 2.5D physical space captures the qualitative nature of many processes very
well even though there might be some quantitative differences for some processes
(Karimabadi et al. 2013; Wan et al. 2015; Li et al. 2016).

The fluid models here considered are MHD and Hall MHD, whose dimensionless
equations are:

∂tρ +∇ · (ρu)= 0 (2.1)

∂tu+ (u · ∇)u=− β̃2ρ∇(ρT)+ 1
ρ

[(∇×B)×B] (2.2)

∂tB=∇×
[

u×B− ε̃
ρ
(∇×B)×B

]
(2.3)

∂tT + (u · ∇)T + (γ − 1)T(∇ · u)= 0. (2.4)

In (2.1)–(2.4) spatial coordinates x= (x, y) and time t are respectively normalized to L̃
and t̃A= L̃/c̃A. The magnetic field B=B0+ b is scaled to the typical magnetic field B̃,
while mass density ρ, fluid velocity u, temperature T and pressure p= ρT are scaled
to typical values ρ̃, c̃A = B̃/(4πρ̃)1/2, T̃ and p̃= 2κBρ̃T̃/mp (κB being the Boltzmann
constant and mp the proton mass), respectively. Moreover, β̃ = p̃/(B̃2/8π) is a typical
value for the kinetic to magnetic pressure ratio; γ = 5/3 is the adiabatic index and
ε̃ = d̃p/L̃ (with d̃p= c̃A/Ω̃cp the proton skin depth) is the Hall parameter, which is set
to zero in the pure MHD case. Details about the numerical algorithm can be found
in Vásconez et al. (2015), Pucci et al. (2016).

On the other hand, hybrid Vlasov–Maxwell simulations have been performed by
using two different numerical codes: the HVM code (Valentini et al. 2007) and a
HPIC code (Parashar et al. 2009). For both cases, protons are described by a kinetic
equation, while electrons are a Maxwellian, isothermal fluid. In the Vlasov model, an
Eulerian representation of the Vlasov equation for protons is numerically integrated.
In the HPIC method, the distribution function is Monte Carlo discretized and the
Newton–Lorentz equations are updated for the ‘macro-particles’. Electromagnetic
fields, charge density and current density are computed on a grid (Dawson 1983;
Birdsall & Langdon 2004).

Dimensionless HVM equations are:

∂tf + v · ∇f + 1
ε̃
(E+ v×B) · ∇vf = 0 (2.5)

E− meε̃
2

mp
1E = −ue ×B− ε̃β̃

2n

(
∇Pe − me

mp
∇ ·Π

)
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+ me

mp

[
u×B+ ε̃

n
∇ · (n(uu− ueue))

]
(2.6)

∂B
∂t
=−∇×E; ∇×B= j, (2.7a,b)

where f = f (x, v, t) is the proton distribution function. In (2.5)–(2.7), velocities v
are scaled to the Alfvén speed c̃A, while the proton number density n = ∫ f d3v,
the proton bulk velocity u = n−1

∫
vf d3v and the proton pressure tensor Πij =

n−1
∫
(v − u)i (v − u)j f d3v, obtained as moments of the distribution function, are

normalized to ñ = ρ̃/mp, c̃A and p̃, respectively. The electric field E, the current
density j=∇×B and the electron pressure Pe are scaled to Ẽ= (c̃AB̃)/c, j̃= cB̃/(4πL̃)
and p̃, respectively. Electron inertia effects have been considered in Ohm’s law to
prevent numerical instabilities (where me/mp = 0.01 for me the electron mass), while
no external resistivity η is introduced. A detailed description of the HVM algorithm
can be found in Valentini et al. (2007). On the other hand, the hybrid PIC run has
been performed using the P3D hybrid code (Zeiler et al. 2002) and all the numerical
and physical parameters are the same as the HVM run. The code has been extensively
used for reconnection and turbulence (e.g. Malakit et al. 2009; Parashar et al. 2009).

In both classes of performed simulations (fluid and kinetic), the spatial domain
D(x, y)=[0, 8π]× [0, 2π] is discretized with (Nx,Ny)= (1024, 256) in such a way that
1x=1y and spatial boundary conditions are periodic. For the HVM run, the velocity
space is discretized with a uniform grid with 51 points in each direction, in the region
vi=[−vmax, vmax] (with vmax= 2.5c̃A) and velocity domain boundary conditions assume
f = 0 for |vi| > vmax (i = x, y, z). In the HPIC case, the number of particles per
cell is 400. Moreover βp = 2v2

th,p/c̃
2
A = β̃/2 = 0.5 (i.e. vmax = 5vth,p), ue = u − ε̃j/n,

ε̃ = 9.8 × 10−2, kdp = ε̃−1 ' 10 and kde =
√

mp/me × ε̃−1 ' 100. The background
magnetic field is mainly perpendicular to the x–y plane: B0=B0(sin θ, 0, cos θ), where
θ = cos−1[(B0 · ẑ)/B0] = 6◦ and B0 = |B0|.

In the initial conditions, ions are isotropic and homogeneous (Maxwellian velocity
distribution function in each spatial point) for both kinetic simulations.

Large-amplitude magnetic b and bulk velocity u perturbations are introduced, while
no density perturbations are taken into account (which implies non-zero total pressure
fluctuations). Initial perturbations consist of two Alfvénic wave packets with opposite
velocity–magnetic field correlation. The packets are separated along x and, since B0,x 6=
0, they counter-propagate. The nominal time for the collision, evaluated with respect
to the centre of each wave packet, is τ ' 58.9.

The magnetic field perturbation b has been built in such a way that B0 · b = 0
is satisfied in each spatial point. Then the velocity field perturbation u is built by
imposing that u and b are correlated (anti-correlated) for the wave packet which
moves against (along) B0x. A detailed discussion about the properties of the initial
perturbations can be found in Paper I. The condition B= |B| = const is not satisfied
by our initial perturbations, while this condition would be a requirement in defining
a large-amplitude Alfvén mode in the context of a compressible MHD model. This
suggests that pressure and density fluctuations are generated during the wave packet
evolution.

The perturbation intensity is 〈b〉rms/B0 = 0.2, therefore the Mach number is Ms =
〈u〉rms/vth,p = 0.4, where r.m.s. refers to the root mean square value. The intensity
of fluctuations with respect to the in-plane field B0x is quite strong, with a value of
approximately 2. This last parameter can be associated with τnl/τcoll (characteristic
nonlinear time τnl; characteristic collision time τcoll), whose value gives insight about
the type of turbulence which could be generated. Here τnl/τcoll' 0.5, hence nonlinear
effects are important to approach a strong turbulence scenario.
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(a)

(b)

(c)

(d)

FIGURE 1. Contour plot of the out-of-plane component of the current density jz(x, y) at
several time instants t= 29.5 (a), t= τ = 58.9 (b), t= 70.7 (c) and t= 98.2 (d). From left
to right, each column refers to the MHD, HMHD, HVM and HPIC cases, respectively.
For the HPIC simulation, jz(x, y) has been smoothed in order to remove particle noise.

3. Numerical results: a comparison between several codes
In this section we focus on the description of the results of the four different

simulations (MHD, HMHD, HVM and HPIC) by focusing on some ‘fluid’-like
diagnostics which help to understand the system dynamics and, also, to compare the
numerical codes.

Figure 1 reports a direct comparison between the simulations, showing the contour
plots of the out-of-plane component of the current density jz = (∇ × B) · ẑ. Vertical
columns from left to right in figure 1 refer to MHD, HMHD, HVM and HPIC
simulations, respectively; while each horizontal row refers to a different time instant:
t= 29.5 (a), t= τ = 58.9 (b), t= 70.7 (c) and t= 98.2 (d).

Significant differences are recovered in the MHD case with respect to the HMHD,
HVM and HPIC runs. While the MHD evolution is symmetric with respect to the
centre of the x direction, in the other cases this symmetry is broken also before the
wave packets interaction due to the presence of dispersive effects which differentiate
the propagation along and across the background magnetic field. Moreover, during the
wave packets overlap (figure 1b), smaller scale structures are formed in the HMHD
and the HVM cases with respect to the pure MHD evolution, while the HPIC run
– despite the fact that it recovers several significant features of the wave packets
interaction – suffers from the presence of particle thermal noise, which has been
artificially smoothed out in figure 1.

After the collision (figure 1c,d), the difference between the MHD and the other
simulations becomes stronger. In particular, some vortical structures at the centre of
the spatial domain are recovered in the HMHD and HVM cases, in contrast to the
pure MHD case. Moreover, the Vlasov simulation exhibits some secondary ripples
in front of each wave packet whose nature could be related to some wave-like
fluctuations. These secondary, low-amplitude ripples are not recovered in the other
simulations: in fact, they cannot be appreciated in the HPIC run where the noise
prevents the formation of such structures while in the Hall simulation they are only
roughly visible. The nature of these low-amplitude ripples is compatible with a
Kinetic Alfvén Waves activity and will be reported in detail in a separate paper.

In order to compare models and codes, we display, in figure 2, the temporal
evolution of the energy variations 1E. Black, red and blue lines indicate respectively
the kinetic 1Ekin, thermal 1Eth and magnetic 1EB energy variations, while each
panel from (a) to (d) refers to the MHD, HMHD, HVM and HPIC runs, respectively.
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(a) (b)

(c) (d)

FIGURE 2. Temporal evolution of the energy terms: 1Ekin (black), 1Eth (red) and 1EB
(blue) for the MHD, HMHD, HVM and HPIC runs.

The evolution of 1Ekin and 1EB is quite comparable in all the performed simulations
and, in the temporal range where the wave packets collide, magnetic and kinetic
energy is exchanged. On the other hand, the evolution of the thermal energy 1Eth
differs in the HPIC case compared to the other simulations. Indeed, 1Eth remains
quite close to zero for all the simulations except for the HPIC run, where it grows
almost linearly due to the presence of numerical noise. It is worth to note that, as
the number of particles increases, the evolution of 1Eth becomes closer to the one
obtained in the MHD, HMHD and HVM simulations.

The scenario described by Moffatt and Parker is also based on the property, in
ideal incompressible MHD, that two wave packets separately conserve energy, which
is equivalent to conservation of both total energy and cross-helicity σc. It is natural
therefore to examine evolution of cross-helicity as well as the evolution of the
residual energy σr, which gives information about the relative strength of magnetic
fluctuations and the fluid velocity fluctuations. Figure 3(a,b) shows the temporal
evolution of normalized residual energy σr (a) and the normalized cross-helicity σc
(b). These quantities are defined as follows: σr = (eu − eb)/(eu + eb)= 2eu/(e+ + e−),
where er = eu − eb, e± = 〈(z±)2〉/2 (z± = u ± b), eu = 〈u2〉/2 and eb = 〈b2〉/2;
σc= (e+− e−)/(e++ e−)= 2ec/(eu+ eb), with ec=〈u · b〉/2. In each panel of figure 3,
black, dashed blue, dashed green and red lines refer to MHD, HMHD, HVM and
HPIC cases, respectively.
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(a) (b) (c)

FIGURE 3. Temporal evolution of the normalized residual energy σr(t) (a), cross-helicity
σc(t) (b) and generalized cross-helicity σg(t) (c). In each panel black, blue, green and red
lines indicate the MHD, HMHD, HVM and HPIC simulations, respectively.

Figure 3(a) shows the evolution of the normalized residual energy σr, which is
similar in all the simulations. In particular σr' 0 in the initial stage, it oscillates when
the wave packets overlap and finally it returns to σr ' 0 after the collisions. The σr
oscillations are well correlated with the oscillations of 1EB and 1Ekin observed in
figure 2.

Deeper insights are revealed by the evolution of the cross-helicity σc. Indeed,
for ideal incompressible MHD, the cross-helicity is conserved, and, for this initial
condition, σc = 0. Here, σc is well preserved in the MHD run despite this simulation
being compressible. This means that the compressible effects, introduced here by the
fact that initial perturbations are not pressured balanced, are not strong enough to
break the σc invariance. On the other hand, for the remaining simulations (HMHD,
HVM and HPIC), σc is not preserved: (i) it shows a jump around t = τ = 58.9, due
to the presence of kinetic and dispersive effects, and (ii) there is an initial growth
of σc followed by a relaxation phase. It seems also significant to point out that the
initial growth of σc occurs faster in the kinetic cases compared to the HMHD one.
This may reflect the fact that, the initial condition evolves differently in the Hall
MHD simulation compared to the kinetic runs.

In order to understand the role of the Hall physics, we computed the normalized
generalized cross-helicity σg = 2eg/(eu + eb), where eg = 0.5 〈u · b + ε̃ω · u/2〉 and
ω = ∇ × u, which is an invariant of incompressible HMHD (Turner 1986; Servidio,
Matthaeus & Carbone 2008). Figure 3(c) displays the temporal evolution of σg(t)
for the MHD (black), the HMHD (dashed blue), HVM (dashed green) and HPIC
(red) simulations. Note that the evolution of σg is trivial for the MHD simulation
since ε̃ = 0 (σg = σc). Moreover, it can be easily appreciated that, for the HMHD
case, σg is almost preserved and does not exhibit any significant variation due to
the collision itself, even though it shows a slight increase in the initial stages of the
simulation followed by a decay towards σg= 0 (similar to the growth of σc recovered
in figure 3b). On the other hand, the two kinetic cases, which exhibit a similar
behaviour, show a fast growth of σg in the initial stage of the simulations followed
by a decay phase (similar to the growth of σc recovered in figure 3b); then, during
the collision, σg significantly increases. We may explain the evolution of σc and σg
as follows. In the MHD run, compressive effects contained in the initial condition as
well as compressible activity generated during the evolution are not strong enough to
break the invariance of σc (i.e. of σg). Instead, in the Hall MHD simulation, the first
break of the σc invariance observed in the initial stage of the simulation cannot be
associated with the Hall effect since also σg is not preserved in this temporal region
and σc and σg have a similar evolution. On the other hand, the jump recovered in σc
around t' τ = 58.9 is significantly related to the Hall physics. In fact, since σg does
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FIGURE 4. Temporal evolution of 〈j2
z 〉 for the MHD (black), HMHD (blue), HVM (green)

and HPIC (red) simulations. For the HPIC simulation 〈j2
z 〉 has been smoothed in order to

remove particle noise.

not exhibit a similar jump at t ' τ , we argue that the physics which produces the
growth of σc is the Hall physics (which is taken into account in the invariance of σg).
Finally, the production of both σc and σg recovered in the kinetic simulations cannot
be completely associated with the Hall effect (which, of course, is still present) but
kinetic and compressive effects may have an important role.

In order to explore the role of small scales in the dynamics of colliding wave
packets, we computed the averaged mean squared current density 〈j2

z 〉 as a function of
time. This quantity indicates the presence of small scale activity (such as production
of small scale current sheets), and is reported in figure 4 for all the simulations. As
in the previous figures, black, blue dashed, green dashed and red lines refer to the
MHD, HMHD, HVM and HPIC cases, respectively. All models show a peak of 〈j2

z 〉(t)
around the collision time t' τ due to the collision of wave packets. After the collision,
some high-intensity current activity persists in all the simulations, which present a
qualitatively similar evolution of 〈j2

z 〉(t).
Other quantities that provide physical details about our simulations are ερ = 〈δρ2〉

(compressibility) and the enstrophy εω=〈ω2〉/2 (fluid vorticity ω). Note that δρ= ρ−
〈ρ〉. Figure 5 reports the temporal evolution of ερ (a) and εω (b) for all the runs. Black,
blue dashed, green dashed and red lines indicate respectively the MHD, HMHD, HVM
and HPIC cases. The ερ evolution shows that density fluctuations peak around t' 63.8
and t' 83.4. The two peaks are respectively associated with the collision between the
packets and with the propagation of magnetosonic fluctuations generated by the initial
strong collision which provide a sort of ‘echo’ of the original interaction. Moreover,
from the initial stage of the simulations, ερ exhibits some modulations, which are
produced by the absence of a pressure balance in the initial condition. In fact, as
packets start to evolve, low-amplitude fast perturbations (clearly visible in the density
contour plots, not shown here) propagate across the box and collide faster compared to
the ‘main’ wave packets themselves. Moreover, by comparing the different simulations,
one notices that, for t . 20, kinetic and Hall runs tend to produce a similar evolution
of ερ , slightly bigger compared to the MHD case. Then, around t'20, the HMHD run
displays a stronger compressibility with respect to the kinetic cases. This difference
is probably due to the presence of kinetic damping phenomena which occur in the
kinetic cases.
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(a) (b)

FIGURE 5. Temporal evolution of ερ(t) (a) and εω(t) (b). In each panel black, blue, green
and red lines indicate the MHD, HMHD, HVM and HPIC simulations, respectively. For
the HPIC simulation, εω(t) has been smoothed in order to remove particle noise.

(a) (b)

(d)

( f )

(c)

(e)

FIGURE 6. Magnetic energy power spectral densities Eb,y(kx)=
∑

ky
Eb(kx, ky) (a,c,e) and

Eb,x(ky) =
∑

kx
Eb(kx, ky) (b,d, f ) at three time instants: t = 29.5 (a,b), t = τ = 58.9 (c,d)

and t = 98.2 (e, f ). In each panel black, blue, green and red lines refer to the MHD,
HMHD, HVM and HPIC simulations, respectively, while cyan lines show the −5/3 slope
for reference. Moreover, to compare Eb,y(kx) and Eb,x(ky), the grey lines in each panel
refer only to the MHD simulation and report Eb,x(ky) (a,c,e) and Eb,y(kx) in (b,d, f ).

The enstrophy εω is displayed in figure 5(b). All the runs exhibit a similar evolution
of εω up to the wave packets collision. Then MHD and HMHD cases exhibit a quite
similar level of εω, slightly bigger compared to the one recovered in the HVM and
HPIC cases, where probably kinetic damping does not allow the formation of strong
vortical structures at small scales.

It is interesting to compare different simulations also by looking at power spectral
densities (PSDs). Figure 6 show the magnetic energy PSD integrated along ky
Eb,y(kx) =

∑
ky

Eb(kx, ky) (a,c,e) and along kx Eb,x(ky) =
∑

kx
Eb(kx, ky) (b,d,f ); while

each row respectively refers to t = 29.5 (a,b), t = τ = 58.9 (c,d) and t = 98.2 (e,f ).
The cyan dashed line shows the k−5/3 slope for reference while in each panel, black,
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blue, dashed green and red lines indicate respectively MHD, HMHD, HVM and
HPIC simulations. Moreover, to compare the two wavenumber directions, grey lines
in each panel report the corresponding PSD obtained from the MHD run, reduced
in the other direction (for example, in figure 6(a), the grey line refers to Eb,x(ky)

for the MHD simulation while other curves in the same panel report Eb,y(kx)). It
is interesting to note that, at t = 29.5, all the simulations exhibit a steep spectrum
in Eb,y(kx), related to the initial condition, while the difference in power between
Eb,y(kx) and Eb,x(ky) – the latter being significantly smaller than the former – tends
to reduce in the final stages of the simulations. This suggests, as described in
Paper I, the presence of nonlinear couplings which cause spectra to become more
isotropic. Moreover the comparison between the different simulations indicates that
the dynamics at large scales is described in a quite similar way for all runs, while
at small scales, some differences are revealed. In particular, the HPIC simulation is
affected by particle noise while the HVM run contains more energy at small scales
compared to MHD and HMHD. Note that the presence, in MHD and HMHD runs,
of an explicit resistivity prevents the population of small scales.

To summarize this section, we compared our numerical codes by analysing some
global diagnostics and we conclude that the Moffatt–Parker scenario is quite well
satisfied by MHD. However, other intriguing characteristics are observed when one
moves beyond the MHD treatment. Moreover, the comparison between kinetic codes
suggests that HVM and HPIC simulations display qualitatively similar features at
large scales. However, when one aims to analyse the dynamics at small scales, HPIC
simulations suffer from thermal particle noise. Magnetic energy spectra differ in the
HPIC case compared with the HVM case. Moreover, by comparing the jz contour
plots, one can easily appreciate how the HPIC simulation is affected by particle
noise. Based on these considerations, we continue the analysis of the kinetic features
produced in Alfvén wave packets collision by focusing only on the HVM case.

4. Kinetic features recovered during the wave packets interaction

We begin a description of the kinetic signatures present in the Vlasov simulation
by looking at the temperature anisotropy. Figure 7 reports the contour plots of the
temperature anisotropy T⊥/T‖, where the parallel and perpendicular directions are
evaluated in the local magnetic field frame (LBF), at four time instants: t = 29.5
(a), t= τ = 58.9 (b), t= 70.7 (c) and t= 98.2 (d). Clearly, temperature anisotropy is
present even before the main wave packets collide, due to the fact that the initial wave
packets are not linear eigenmodes of the Vlasov equation and, hence, their dynamical
evolution leads to anisotropy production. Moreover, a more careful analysis suggests
that the left wave packet tends to produce regions where T⊥/T‖ < 1 close to the
packet itself (which, as can be appreciated in figure 1, is localized around x ' 9.5),
while the right wave packet (localized around x= 15.7) is characterized by T⊥/T‖> 1.
The presence of different temperature anisotropies is related to the broken symmetry
with respect to the centre of the x direction. Indeed, the dynamics of the wave packets
is different if they move parallel or anti-parallel to B0,x. This produces the different
temperature anisotropy recovered in figure 7(a).

When the packets collide (figure 7b), sheets characterized by a strong temperature
anisotropy (T⊥/T‖ > 1) are recovered, correlated spatially with the current density
structures. Then, at t = 70.7 (figure 7c), wave packets split again and a region,
localized at (x, y) ' (14.3, 1.0), where the temperature anisotropy suddenly moves
from values T⊥/T‖ < 1 towards T⊥/T‖ > 1 ones, is present. We will show that this

https://doi.org/10.1017/S0022377817000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377817000113


Colliding Alfvénic wave packets in MHD, Hall and kinetic simulations 11

(a)

(b)

(c)

(d)

FIGURE 7. Contour plots of the temperature anisotropy for the HVM run evaluated in the
local magnetic field frame (LBF) at four time instants: (a) t= 29.5, (b) t= τ = 58.9, (c)
t= 70.7 and (d) t= 98.2.

region also shows the presence of strong departures from the equilibrium Maxwellian
shape. At the final stage of the simulations (figure 7d), each wave packet continues
travelling, accompanied by a persistent level of temperature anisotropy, which is,
indeed, well correlated with the current structures.

It is interesting to point out that, beyond the presence of temperature anisotropies,
regions characterized by a non-gyrotropy are also recovered. Many methods have been
proposed by evaluating the non-gyrotropy (Aunai, Hesse & Kuznetsova 2013; Swisdak
2016). Here we adopt the measure Dng (Aunai et al. 2013), which is proportional to
the root-mean-square of the off-diagonal elements of the pressure tensor. Figure 8
shows the contour plots of Dng at four time instants: t = 29.5 (a), t = τ = 58.9
(b), t = 70.7 (c) and t = 98.2 (d). Moreover, for the temperature anisotropy, the
evolution of the two wave packets tends to produce non-gyrotropies also before
the wave packets collision (figure 8a). Then, during the collision (figure 8b,c), the
non-gyrotropy becomes more intense and it is also quite well correlated with the
current structures. At the final stage of the simulation (figure 8d), each wave packet
is characterized by a level of non-gyrotropy which is quite bigger compared to the
value before the collision. The presence of non-gyrotropic regions suggests that it is
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(a)

(b)

(c)

(d)

FIGURE 8. Contour plots of the degree of non-gyrotropy Dng, for the HVM run, evaluated
in the LBF at four time instants: (a) t=29.5, (b) t= τ =58.9, (c) t=70.7 and (d) t=98.2.

fundamental to retain a full velocity space where the VDF is let free to evolve and,
eventually, distort.

To further support the idea that kinetic effects are produced during the interaction
of the wave packets, we computed the L2 norm difference (Greco et al. 2012; Servidio
et al. 2012, 2015):

ε(x, y, t)= 1
n

√∫ [
f (x, v, t)− fM(x, v, t)

]2 dv, (4.1)

which measures the displacements of the proton VDF f (x, v, t) with respect to the
associated Maxwellian distribution function fM(x, v, t), built such that density, bulk
speed and total temperature of the two VDFs are the same. Figure 9 reports the
evolution of the εmax(t) = max(x,y) ε(x, y, t) as a function of time. Clearly, as for the
previous proxies of kinetic effects, also εmax moves away from zero in the early
phases of the simulation due to the fact that the initial condition is not a Vlasov
eigenmode. Moreover, after the first initial variation, εmax is almost constant until wave
packets interact. Then, during the collision, εmax grows and reaches its maximum at
t = 70.7, later than the wave packets collision. Then it decreases and saturates at
a value approximately two times bigger than the value before the collision, thus
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FIGURE 9. Temporal evolution of εmax(t) for the HVM run.

suggesting again that there is ‘net’ production of non-Maxwellian features in the
VDF during the wave packets interaction.

In order to appreciate the structure of ε in the spatial domain, figure 10(a)
shows the contour plot of ε(x, y, t) at the time instant t = 70.7 (when ε reaches
its maximum value). The ε contours are correlated with the current structures and
with the anisotropic/non-gyrotropic regions. Moreover, a blob-like region, where ε
reaches its maximum, is present. This area is associated with the region where the
temperature anisotropy moves from T⊥/T‖ < 1 values towards T⊥/T‖ > 1 ones (see
figure 7c). In this area the VDF strongly departs from the Maxwellian. Figure 10(b)
shows the three-dimensional isosurface plot of the VDF at t= 70.7 and in the spatial
point (x∗, y∗) where ε(x∗, y∗, t = 70.7) = max(x,y) ε(x, y, t = 70.7). A strong beam,
parallel to the local magnetic field direction, is observed in the VDF in figure 10.
The drift speed of the beam is approximately c̃A. The production of a beam due to
the interaction of two wave packets has also been pointed out by He et al. (2015).

5. Conclusion
In this paper we have described the interaction of two Alfvénic wave packets by

means of MHD, Hall MHD and hybrid kinetic simulations of the same physical
configuration. Kinetic simulations have been performed with two different codes: an
Eulerian Vlasov–Maxwell code (Valentini et al. 2007) and hybrid PIC code (Parashar
et al. 2009). By approaching the Parker & Moffatt problem within several physical
frameworks, we have comparatively analysed different effects (compressive, Hall and
kinetic) which contribute to the general, complex puzzle.

The analysis performed in Paper I, where MHD and Vlasov simulations were
compared, has been here extended by including the Hall MHD framework. In
particular, we showed how moving beyond the pure MHD treatment, dispersion, as
well as kinetic effects, play an important role. Furthermore, the analysis of HMHD
and kinetic runs allows us to separate the presence of dispersive and purely kinetic
features. It is also interesting to note that the compressive activity is different in the
Hall case compared to the kinetic runs, indicating that some kinetic damping processes
may be active in the Vlasov simulation. A separate type of comparison is afforded
by comparative analysis of the HPIC and HVM runs. While these methods should
describe, approximately, the same physics – i.e. the Vlasov treatment of collisionless
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(a) (b)

FIGURE 10. (a) Contour plots of ε(t) for the HVM run at t= 70.7. (b) Proton distribution
functions, in the spatial point (x∗, y∗) where ε(x∗, y∗, t)=max(x,y) ε(x, y, t) at t= 70.7. The
local magnetic field direction is indicated by a red line.

plasma dynamics – the comparison between the different codes is interesting from
a methodological perspective, and therefore represents a contribution to the turbulent
dissipation challenge (Parashar et al. 2015b). In particular, the two kinetic simulations
performed are able to take into account the dynamics which occurs at large spatial
scales and their comparison is successful in this range of scales. However the PIC
runs lacks accuracy when smaller spatial scales are produced by the collision of the
two wave packets, thus indicating that the Eulerian approach better describes the
dynamics of the system at small spatial scales. Of course the comparison is expected
to become better if the number of particles per cell in the PIC simulation gets bigger
(Camporeale & Burgess 2011; Franci et al. 2015).

Based on the last consideration, we have analysed the production of kinetic
signatures by focusing only on the HVM simulation. Several proxies which are
routinely adopted for highlighting the presence of kinetic features indicate that
wave packets tend to produce kinetic effects such as temperature anisotropies and
non-gyrotropies also before the main wave packets interaction. This is related to the
fact that the initial condition, consisting of quasi-Alfvénic wave packets, is neither a
Vlasov equilibrium nor a Vlasov eigenmode. Therefore it dynamically leads to the
production of kinetic features.

The analysis of kinetic effects before and after the main wave packets collide
indicates that kinetic features are enhanced by the collision itself and each wave
packet is significantly characterized by a strong degree of non-thermal signatures. In
particular the presence of non-gyrotropies suggests that descriptions based on reduced
velocity space assumptions may partially fail the description of such features. Finally,
similarly to the observations of He et al. (2015), during the wave packets collision, a
beam in the velocity distribution function is observed to form along the direction of
the local magnetic field. This characteristic may connect our results with the general
scenario of wave packets observed in natural plasmas such as the solar wind.
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