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A fully three-dimensional boundary-integral method (BIM) is developed for the
interaction of drops, suspended in a uniform far-field flow at small Reynolds number, with
arbitrary Lyapunov surfaces. The close approach of fluid interfaces to solid surfaces poses
significant challenges for numerical BIM implementations, due to the highly singular
behaviour of single- and double-layer boundary integrals. Two new methods are described
that generalize the accurate calculation of the highly singular surface integrals used by
high-order desingularization techniques. The first method is semi-analytical, and applies
to axisymmetric solid obstacles (in an arbitrary three-dimensional configuration). An
axisymmetric particle can be divided into a series of characteristic disks along its axis, for
which closed-form expressions for single and double layers are derived in terms of elliptic
integrals. To accommodate arbitrary smooth surfaces, a multimesh desingularization
method is introduced that calculates surface integrals utilizing a hierarchy of embedded
mesh resolutions, together with distance-activated mesh interactions. Several particle
shapes, including spherocylinders (capsules) and flat plates, are used to represent major
classes characteristic of porous media. A droplet approaching a capsule will break up
after forming two lobes, connected by a thin filament, on either side of the capsule. The
cross-sectional shape of the filament affects lubrication behaviour. A constriction made of
two parallel capsules, even of low aspect ratio, significantly retards drop passage compared
to two spheres. Trends in drop squeezing between two capsules are summarized over a
range of capillary number, viscosity ratio, drop size and capsule length. A constriction
of two coplanar plates results in notably different lubrication and squeezing behaviour.
Flow rectification is demonstrated for constrictions that are non-symmetrical with respect
to flow reversal, for several non-axisymmetric particles.

Key words: boundary integral methods, drops, porous media

1. Introduction

Emulsions are encountered in a variety of environments, such as multiphase flow
through fibrous materials, packed beds with complex pellet shapes and tortuous subsurface
settings. Fields ranging from separations processes to oil recovery to microfluidics stand
to profit from understanding of Stokes-flow droplet behaviour near complex surfaces.

† Email addresses for correspondence: alexander.zinchenko@colorado.edu,
robert.davis@colorado.edu
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Efforts toward high-resolution microscale numerical models of non-wetting emulsions in
complex environments have been stymied, chiefly due to the extremely close approach
of fluid–fluid interfaces to solid surfaces. The intervening lubrication layer critically
influences the interfacial dynamics, making it difficult to use a simplifying theory for these
regions, while also presenting formidable challenges for numerical methods. To overcome
some of these limitations, we introduce an extension to the boundary-integral method that
leverages both adaptive meshing and high-order singularity subtraction to allow simulation
of tight-squeezing drop motion between arbitrarily shaped smooth solid surfaces.

Although a common model for porous media is an ensemble of spherical particles
packed in space, several interesting classes of material fall outside this description,
such as packed beds of pellets or extrudates, fibrous material or experimental set-ups
such as planar constrictions. Probing detailed flow behaviour in such cases is difficult,
but there is a growing focus on pore-scale resolution (Blunt et al. 2013). Experimental
velocimetry methods, such as magnetic resonance or X-ray tomography (Al-Abduwani
et al. 2005; Huang et al. 2017), for visualizing and quantifying confined flows are
continually improving, strengthening the relationship with computational studies that can
provide direct comparisons. For example, Zarikos et al. (2018) used particle-tracking
velocimetry to track the interface as well as internal circulation of non-wetting drops
as they are trapped and remobilized within porous media. Krummel et al. (2013) and
Oughanem et al. (2015) investigated the recovery of trapped oil, based on capillary
number and oil ganglia size distribution, and they were able to resolve individual drops
using confocal microscopy and high-resolution micro-computed tomography, respectively.
Using similar techniques, Pak et al. (2015) identified a new single-pore mechanism of drop
fragmentation. Herring et al. (2013) demonstrate the dramatic effect that pore geometry
has on the shape and connectivity of the non-wetting phase (e.g. see figure 9 therein).
Typically these experiments involving porous media cover length scales beyond the reach
of simulation, while resolving small-scale flow and interfacial behaviour remains the
territory of high-resolution numerical models.

Simulation techniques for large-scale multiphase systems include the lattice-Boltzmann,
volume of fluid and boundary-integral methods, each of which occupy a niche within the
field of computational fluid dynamics. Lattice-Boltzmann techniques represent a powerful
simulation tool for large-scale flows interacting with complex boundaries; the following
four examples utilized various lattice-Boltzmann methods to model the behaviour of the
non-wetting phase within porous media. Mantle, Sederman & Gladden (2001) provide
exact comparisons between magnetic resonance imaging results and lattice-Boltzmann
simulations for Stokes flow in a packed bed of pellets, after scanning the experimental
matrix and reconstructing it for their computer model. Pan, Hilpert & Miller (2004)
demonstrated the application of three-dimensional (3-D) lattice-Boltzmann methods to
large-scale, confined multiphase flow between spherical particles or within spherical
cavities. Hao & Cheng (2010) calculated the relative permeabilities of a packed-sphere
bed, as well as that of carbon paper, modelled as a matrix of high-aspect-ratio fibres.
They concluded that, for this anisotropic fibrous matrix, flow direction has negligible
effect on the relative permeability. Finally, Yiotis, Talon & Salin (2013) showed the
existence of several flow regimes depending on Bond number for liquid blobs within
realistic 2-D pore structures. The volume of fluid method has also been used to model
drop breakup when flowing between cylinders, such as the 2-D study of Dietsche &
Neubauer (2009). Ardekani, Dabiri & Rangel (2009) used this method to demonstrate
that a drop may become perforated when pinched between two particles in shear flow.
When implementing any of these techniques, a persistent problem is precisely capturing
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the evolution of the fluid–fluid interfaces, especially in the proximity of the solid phase.
The boundary-integral method resolves these interfaces explicitly, by reformulating the
multiphase Stokes problem such that collocation points need only exist on boundaries
as pioneered by Rallison & Acrivos (1978). The deformation and near breakup of
drops confined between parallel plates was simulated by Janssen & Anderson (2008),
demonstrating drop breakup modes consistent with experiment. Zinchenko & Davis (2013)
simulated many (50–100) clean drops in pressure-driven flow through a bed of randomly
packed spheres, including treatment of cascading drop breakup.

The boundary-integral method (BIM) is a powerful tool for low-Reynolds-number flow,
and utilizes an integral formulation of the Stokes equations to explicitly resolve interfaces.
BIM allows for efficient calculation of interfacial motion at high orders of accuracy, but it
comes at the cost of highly singular boundary integrals wherever two interfaces approach
each other closely, as is certainly the case for tight-squeezing drops. This formidable
numerical issue is typically addressed with adaptive meshing (see Kropinski (1999) for an
example in two dimensions) or singularity subtraction techniques that rely on analytical
expressions for various contributions to the potential (Rallison & Acrivos 1978). For
example, Fan, Phan-Thien & Zheng (1998) use a completed double-layer formulation to
allow simulation of solid-sphere suspensions that can approach each to within 5 % of their
radius. Zinchenko & Davis (2006) were able to stably simulate drops trapped between
solid particles with drop–solid spacing 1 % of the particle size, by constructing analytical
expressions to desingularize the single- and double-layer contributions from spherical
and spheroidal particles. Obtaining these closed-form expressions is non-trivial even for
simple shapes; for spheroids, infinite series involving spheroidal harmonics are required.
In the case of prolate and oblate spheroids, these expressions were shown to be fast
convergent. Analytical desingularization of BIM is also successful for tight drop squeezing
through a torus using the tool of toroidal harmonics (Ratcliffe, Zinchenko & Davis 2010).
For more complex shapes, however, analytical BIM desingularizations are unlikely to be
available. Therefore we introduce two methods, one of which is semi-analytical but limited
to drop squeezing between axisymmetric shapes (in arbitrary 3-D orientations, though),
and the second one is general for boundary-integral simulations of drops squeezing
between arbitrary Lyapunov surfaces.

The general problem formulation, non-dimensional form and description of
particle shapes are provided in § 2. The boundary-integral equations and additional
implementation details are discussed in § 3. Two distinct methods for high-accuracy
calculation of desingularization integrals over various classes of particles are introduced
in § 4. The objective of devising these methods was to overcome a fundamental
limitation of the boundary-integral method, namely its numerical breakdown when fluid
interfaces closely approach solid surfaces, in cases where analytical or extrapolation
techniques are not suitable. Using either of these methods in conjunction with the
suite of high-order desingularization techniques outlined by Zinchenko & Davis (2006),
generalizes high-accuracy BIM simulations to previously untenable multiphase systems.
One method is semi-analytical and applies to axisymmetric particles. The other, termed
the multimesh method, is purely numerical but can accommodate arbitrary smooth
shapes. Close agreement is observed between the two desingularization methods, for drop
squeezing between cylindrical particles over a range of parameters. The semi-analytical
method is considerably faster, and both methods are susceptible of parallelization. To
achieve stable simulations over the full range of desired particle shapes, particularly those
with high curvature, a coordinated adaptive remeshing scheme for the droplet was also
devised, capable of economically maintaining the high resolution of an unstructured mesh
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FIGURE 1. Particle shapes used to construct constrictions (as well as individual-particle
obstacles, in the case of the capsule). The capsule is a cylinder capped with hemispheres on
either end. The half-capsule is a capsule cut in half lengthwise, and then capped with a bevel
of radius 0.2L. The flat plate is a simple 4 × 8 × 0.2L rectangular prism with bevelled edges.
Particles not shown to scale.

within a specific spatial region. In §§ 5 and 6, we report the simulated behaviour of drops
squeezing between several general classes of particle shapes.

2. Problem formulation

Consider a single freely suspended, neutrally buoyant drop within a uniform far-field
flow, approaching one or more complex-shaped particles fixed in space; Newtonian
quasi-steady Stokes flow is assumed inside and outside the drop. The boundary-integral
formulation assumes all surfaces have smoothly varying normals. Still, the class of
smooth, closed surfaces is an infinite parameter space; herein we focus on rounded
cylinders (capsules) and thin, rounded cuboids (plates), as models for common
experimental set-ups as well as fibrous and other porous media. Several well-defined
asymmetric constrictions and particles are also considered (§§ 5.4 and 5.5), in order to
elicit more complex drop behaviour. For spheres, capsules and derivative particles, the
characteristic length L is a radius of the solid particle (figure 1). In the case of rounded
plates, L is defined as the gap between two plates forming a constriction. The drop centre is
initially placed 10L upstream from the particles’ basal plane, unless noted otherwise. The
ratio of the drop viscosity (μd) and external medium viscosity (μe) is λ = μd/μe and the
uniform far-field velocity carrying the drop towards the constriction is u∞. The capillary
number is defined as

Ca = μe|u∞|
σ

ã
L
, (2.1)

where ã is the non-deformed drop radius and σ is the constant surface tension of the
surfactant-free drop interface.

Other important metrics used to quantify drop dynamics include the drop–particle
gap and the drop velocity. The gap between the drop and each solid particle is defined
as the minimum distance between the two mesh polyhedra, assuming flat triangulation.
The high-resolution solid-particle meshes were used for increased accuracy of the gap
calculation. The instantaneous drop velocity U , defined as the volume-averaged fluid
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velocity u inside the drop, can be calculated through the divergence theorem as

U = 〈u〉 = 1

Ṽ

∫
S̃
(u · n)(x − x̃c) dS, (2.2)

where Ṽ is the drop volume, n are outward surface unit normals at points x on the surface
and x̃c is the drop centroid. In what follows, U is the component of U along u∞.

The solid particles used to build constrictions are shown in figure 1. A capsule, or
spherocylinder, is a round cylinder capped with hemispheres, with a maximum dimension
L. A range of lengths L are tested; however, a default of L = 6 is used for parametric
studies. A half-capsule is constructed by dividing a capsule (L = 6) in half lengthwise,
and capping the resulting sharp edge with a circular bevel of radius 0.2L. As shown
below, constrictions are formed by two parallel capsules or half-capsules, separated
by a minimum gap of 0.5L. A plate is a rectangular prism bevelled to preserve its
original maximal dimensions. The plate dimensions are 4 × 8 × 0.2L, where L is the
minimum distance between two plates forming a constriction. In addition to satisfying
the assumption of smooth surfaces in the boundary-integral formulation below, rounding
sharp edges on solids also serves to preserve a finite lubrication layer between the drop
and solid and prevent excessive local deformation of the drop interface.

3. Desingularized boundary-integral formulation

The present boundary-integral formulation for drops interacting with arbitrary smooth
particles utilizes the suite of desingularization methods detailed by Zinchenko & Davis
(2006), but replaces all involved analytical desingularization integrals with semi-analytical
or numerical integrals. The semi-analytical desingularization for axisymmetric particles
and the numerical method for arbitrary surfaces are outlined in § 4. The Hebeker
representation is used for each solid-particle contribution as a linear combination
of single-layer and double-layer potentials, and the interfacial stress contribution is
desingularized for both drop self-interactions and drop–solid contributions. The resulting
Fredholm integral equations of the second kind are well behaved for tight-squeezing drops,
for which drop–solid separation distances can be several orders of magnitude smaller than
the system’s characteristic length.

Let Ñ be, for generality, the number of drops in the system (with the same viscosity
ratio λ), S̃ be the surfaces of these drops, N̂ be the number of solid particles and Ŝ be the
surfaces of these particles. The no-slip boundary condition u = 0 is enforced for the fluid
velocity on the solid boundaries. The far-field velocity u∞( y) away from the particles
and drops can be an arbitrary Stokes flow (although a uniform u∞ was assumed in the
present simulations). Standard Wielandt’s deflation is beneficial to avoid ill conditioning
at extreme viscosity ratios. To this end, the system is cast in terms of w = u − κu′, where
κ = (λ− 1)/(λ+ 1) and u′ is the rigid-body projection (see below) of u on a drop surface.
At every time step, the following system of equations is solved for modified interface
velocity w on drops and Hebeker density q on solid surfaces (Zinchenko & Davis 2006):

w( y) = 2F ( y)
λ+ 1

+ κ

⎡
⎣2

Ñ∑
β=1

∫
S̃β

w(x) · τ (r) · n(x) dSx − w′( y)+ n( y)

S̃α

∫
S̃α

w · n dS

⎤
⎦

+ 2
λ+ 1

N̂∑
β=1

∫
Ŝβ

q(x) · [2τ (r) · n(x)+ ηG(r)] dSx (3.1)
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for y ∈ S̃α (α = 1 · · · Ñ) and

q( y) = F ( y)+ (λ− 1)
Ñ∑
β=1

∫
S̃β

w(x) · τ (r) · n(x) dSx

+
N̂∑
β=1

∫
Ŝβ

q(x) · [2τ (r) · n(x)+ ηG(r)] dSx (3.2)

on solid-particle surfaces ( y ∈ Ŝα, α = 1 · · · N̂). Here, dSx is the surface element for the
integration point x, r = x − y, n is the unit normal to a surface, η > 0 is the Hebeker
parameter (the choice of η affects the algorithm robustness, but not the solution upon
numerical convergence) and prime indicates rigid-body projection. The latter is calculated
as w′( y) = A + B × ( y − x̃c

α), where A is the average of w over the drop surface S̃α, x̃c
α

is the drop surface centroid and the vector B is calculated from the solution of a 3 × 3
system with a positive–definite matrix (Zinchenko, Rother & Davis 1997):

{∫
S̃α

[(x − x̃c
α)

2I − (x − x̃c
α)(x − x̃c

α)] dS
}

· B =
∫

S̃α

(x − x̃c
α)× w dS. (3.3)

The single-layer terms containing the Hebeker parameter η serve to complete the range
of boundary-integral operators; without these terms, the double-layer boundary-integral
contribution could not accommodate non-zero hydrodynamic forces or torques acting on
the solid particles. The inhomogeneous term is

F ( y) = u∞( y)+ 2σ
μe

Ñ∑
β=1

∫
S̃β

k(x)n(x) · G(r) dSx , (3.4)

where k is the mean surface curvature k(x) = (k1 + k2)/2, with k1, k2 being the principal
curvatures at x. Normal vectors and curvatures are calculated using the high-order method
introduced in Zinchenko & Davis (2006), which provides accurate values even for very
elongated drops; a validation of this method is provided in appendix C. Finally, G(r)
and τ (r) are the free-space Green tensor and the corresponding fundamental stresslet,
respectively

G(r) = − 1
8π

[
I
r

+ rr
r3

]
, τ (r) = 3

4π

rrr
r5
. (3.5a,b)

Despite the singularities in the kernels (3.5a,b) at r → 0, all self-integrals (3.1), (3.2)
and (3.4) (i.e. when the observation point y lies on an integration surface) are convergent
due to τ · n = O(1/r) (cf. |τ |∼1/r2). However, the singular and near-singular behaviour
of the integrands (for droplet–droplet, droplet–particle and particle–particle interactions)
must be alleviated, as described in the next section, for a successful numerical solution.
After such desingularizations, (3.1) and (3.2) are solved by Generalized Minimal Residual
(GMRES) iterations, and the drop node positions are time integrated using a second-order
Runge–Kutta scheme. The time step is determined by the empirical formula introduced

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

88
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.881


Complex obstacles 908 A33-7

by Zinchenko & Davis (2005)

Δt = KΔtμe

σ
min(Δx, 0.7Δx2), (3.6)

where

Δx2 = min
i,j

∥∥x j − x i

∥∥ , x i ∈ S̃, x j ∈ Ŝ (3.7)

is the minimum distance between mesh nodes on the drop and a solid surface, but
excluding pairs (i,j) for which x j is the solid-particle node closest to x i, or x i is the
drop node closest to x j. This exclusion is possible due to near-singularity subtractions,
and the coefficient 0.7 is an empirical correction. A value of KΔt = 8.75 was found to be
economical and stable over a wide range of parameters. Mesh quality (roughly, the absence
of nearly degenerate mesh triangles) is maintained using passive mesh stabilization, as
in Zinchenko & Davis (2006), and in some cases the customizable remeshing technique
described in § 4.

4. Numerical method

4.1. General desingularization formulae
A repository of desingularization techniques that permit stable hydrodynamic interactions
between drops and solid particles is provided by Zinchenko & Davis (2006), including
drop and solid self-interactions, solid–solid interaction, solid–drop and drop–solid
contributions. In certain cases (solid self-interaction, solid–solid interaction and
solid–drop contributions), additional integrals appear during the subtraction procedure
that must be calculated with near-analytical accuracy to facilitate tight-squeezing
simulations. The complete desingularization expressions and relevant ‘high-accuracy
integrals’ in each case are listed below.

For solid self-interaction ( y ∈ Ŝα), singularity subtraction is provided by

∫
Ŝα

q(x) · [2τ (r) · n(x)+ ηG(r)] dSx

= q( y)+
∫

Ŝα

[q(x)− q( y)] · [2τ (r) · n(x)+ ηG(r)] dSx + ηq( y)
∫

Ŝα

G(r) dSx , (4.1)

where the final integral on the right-hand side of (4.1) must be computed with high
accuracy.

Solid–solid interactions are transformed slightly differently, but contain the same
integral requiring near-analytical treatment

∫
Ŝβ

q(x) · [2τ (r) · n(x)+ ηG(r)] dSx

=
∫

Ŝβ

[q(x)− q(x∗)] · [2τ (r) · n(x)+ ηG(r)] dSx + ηq(x∗)
∫

Ŝβ

G(r) dSx , (4.2)

where x∗ = x∗( y, β) is the mesh node on Ŝβ closest to y ∈ Ŝα /= Ŝβ .
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Likewise, the single-layer part of the solid–drop contribution utilizes a simple
regularization also involving G(r)

∫
Ŝβ

q(x) · G(r) dSx =
∫

Ŝβ

[q(x)− q(x∗)] · G(r) dSx + q(x∗)
∫

Ŝβ

G(r) dSx . (4.3)

Finally, the high-order near-singularity subtraction used for the solid–drop double-layer
contribution was found to be especially critical for stable tight-squeezing simulations. To
this end, for y on a drop surface S̃α and its nearest mesh node x∗ on a solid surface Ŝβ , the
density function q(x) near x∗ is approximated by q(x∗) plus a linear function L (x − x∗);
the coefficients of the linear form L are found by least-squares fitting to the values of
Δq(x j) = q(x j)− q(x∗) in the solid mesh nodes x j directly connected to x∗. Subtracting
q(x∗)+ L (x − x∗) from q(x) completely desingularizes the double-layer part of the
solid–drop contribution in (3.1), but gives rise to added-back integrals, which need to
be handled either analytically (possible only for a few shapes), or, in general, numerically
with high accuracy. This desingularization can be written as

∫
Ŝβ

q(x) · τ (r) · n(x) dSx

=
∫

Ŝβ

⎡
⎣q(x)− q(x∗)−

∑
j∈A(x∗)

(cj · (x − x∗))Δq(x j)

⎤
⎦ · τ (r) · n(x) dSx

+
∑

j∈A(x∗)

[cjΔq(x j)] · 3
4π

∫
Ŝβ

[r · n(x)]rrr
r5

dSx , (4.4)

where A(x∗) is the set of nodes directly connected to x∗; the vector coefficients cj depend
only on the local mesh geometry near x∗ and are pre-calculated as detailed in § 3 of
Zinchenko & Davis (2006).

So, high-accuracy computation of three integral terms is required. Up to a factor, we
denote these terms as

G1( y, β) ≡
∫

Ŝβ

1
r

dSx , G2( y, β) ≡
∫

Ŝβ

rr
r3

dSx , (4.5a,b)

Ψ ( y, β) ≡
∫

Ŝβ

(r · n(x))rrr
r5

dSx . (4.6)

It is advantageous that the second-rank tensor G2 and the third-rank tensor Ψ are fully
permutable in their indices, thus reducing the amount of work to calculate these tensors.

4.2. Semi-analytical desingularization for axisymmetric particles
Axisymmetric particles permit semi-analytical calculation of the integrals (4.5a,b) and
(4.6), by closed-form azimuthal integration around the particle axis of rotation, with
external numerical integration along the particle half-contour. This kind of approach has
been widely used in axisymmetric boundary-integral solutions (e.g. Rallison & Acrivos
1978; Lee & Leal 1982; Davis 1999; Ratcliffe et al. 2010) by reducing the azimuthal
integration to elliptic integrals (as discussed in detail by Pozrikidis 1992). In the present
3-D work, analytical azimuthal integration for the high-order subtraction tensor (4.6) is a
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C

y

z

x0

x

O
Ŝβ

ρ

FIGURE 2. An axisymmetric particle oriented as a surface of revolution Ŝβ around the z-axis.
The single- and double-layer contributions of circular segments can be calculated analytically
using elliptic integrals. For a given representative circle C, the origin O may be placed at its
centre, with the x-axis in plane but oriented away from the observation point x0. Cylindrical
coordinates (ρ,ψ, z) are used for deriving elliptic integral calculations.

more cumbersome, but still very efficient approach. As shown in figure 2, a representative
integration circumference C is the perimeter of a representative disk of radius ρ, a
sufficient number

◦
N of which form an approximation to the axisymmetric volume. The

surface integral of a function f (x) is simply
∫

Ŝβ

f (x) dSx =
∫
ρ ds

[∮
C

f (x) dΨ
]
, (4.7)

where Ψ ∈ [−π,π] is the azimuthal angle of rotation around the particle axis, and ds is
the contour length element along the particle’s half-contour.

Now, we outline derivations for closed-form expressions for the integrals (4.5a,b)
and (4.6) over a representative circumference C, in terms of complete elliptic integrals
of the first and second kind. Let the origin O of the temporary coordinate system
(ρ cosψ, ρ sinψ, z) be at the centre of C, with its axis of revolution along the z-axis
(figure 2). Without loss of generality, the x-axis can be defined as antiparallel to the
shortest vector from the z-axis to the observation point x0. The observation point is then
x0 = (−ρ0, 0, z0) and the vector r = x − x0 between x0 and a integration point x on C is
given by

r = (ρ cosψ + ρ0, ρ sinψ, z − z0), (4.8)

and

r2 = [
(ρ + ρ0)

2 + (z − z0)
2] [

1 − k2 sin2 ψ

2

]
, where k2 = 4ρρ0

(ρ + ρ0)2 + (z − z0)2
.

(4.9)

The simplest contour integral over C relevant to computing G1 may be expressed as

∫ π

−π

1
r

dψ = c0

∫ π

−π

[
1 − k2 sin2 ψ

2

]−1/2

dψ = 4c0F, (4.10)

where c0 = ((ρ + ρ0)
2 + (z − z0)

2)−1/2 and F is the complete elliptic integral of the first
kind with modulus k. The relevant integrals over C for G2 and Ψ can be derived in a similar
manner and final expressions are provided in appendix A. Once G2 and Ψ are computed
in the special coordinate basis defined above, they are then transformed by usual tensor
transformation rules to the global basis used in the squeezing simulation.
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The present semi-analytical approach results in very fast and accurate calculation of
single- and double-layer desingularization integrals (4.5a,b) and (4.6) for axisymmetric
particles. Surface integrals calculated by (4.7) converge quickly with respect to

◦
N (with

second-order Euler external integration). For example, using a capsule (L = 6) as a test
particle and an observation point 0.01L away from the cylindrical section of particle
surface, all Ψ terms agree to within at least the fifth decimal point for

◦
N values of

1000 and 10 000. The former corresponds to a representative disk width of 0.006. Further
convergence tests and comparisons with the multimesh method are provided in § 5.1.

4.3. Multimesh desingularization
Desingularization for arbitrarily shaped particles can be achieved with direct numerical
calculation of G1, G2 and Ψ (4.5a,b) and (4.6), if sufficiently high resolution
meshes are used to discretize these surface integrals. Note that this ‘multimesh
desingularization method’ still requires particles to have smoothly varying normals
(i.e. to be Lyapunov surfaces). Extremely high resolutions are required for single- and
double-layer contributions to approach exact values, in order to accurately and stably
reproduce analytical or semi-analytical tight-squeezing results. Due to the singular nature
of the integrals, accuracy is more sensitive to mesh resolution as the observation point
approaches the particle surface; therefore, a hierarchy of embedded meshes is used for
multimesh desingularization.

Two high-resolution auxiliary meshes are used to compute the desingularization
integrals. The first high-resolution mesh typically has four times more triangles than
the basic mesh used for BIM calculations. The second is an ultra-high-resolution mesh,
typically 64 times denser than the basic mesh, as shown in figure 3(a,b). For particles
with higher surface area, the ultra-high-resolution mesh may have in excess of 2.5 million
triangles. Therefore, the two meshes are chained to each other: the indices of the 16
ultra-high-resolution triangles within each high-resolution triangle are pre-calculated and
stored. In contrast to boundary-integral calculations for desingularized terms on the
basic mesh, with mesh triangle contribution reassigned to vertices (a procedure due to
Rallison (1981) used in many prior simulations), such reassignment is disadvantageous for
multimesh calculations of the desingularization tensors. A primitive form is used instead:∫

Ŝβ

f (x) dSx ≈
∑

i

f (xi)ΔSi, (4.11)

where the summation is over all triangles for a given triangulation of the surface Ŝβ , x i is
the triangle centroid and ΔSi is the flat triangle area. This form makes it straightforward
to use one mesh within a given cutoff distance rc from the observation point, and
another one beyond that radius, as illustrated in figure 3(c). Specifically, the distance
between a given observation point x0 and high-resolution triangle is determined using
the triangle centroid. If this distance is greater than the prescribed distance cutoff rc,
then this triangle is used as an area element ΔSi of the surface integral in (4.11).
Otherwise, the 16 corresponding ultra-high-resolution triangles are substituted to represent
this triangle contribution to (4.11). The desingularization integrals for solid self-interaction
and solid–solid interactions are calculated only once at the start of each simulation, so a
high distance cutoff (rc = 1.0L) was used with a negligible penalty on total CPU time. The
solid–drop contribution to the desingularization integrals is computed outside of GMRES
iterations, but still represents the slowest operation of the multimesh method. A distance
cutoff of rc = 0.4L for the solid–drop contribution was found sufficient to stably model
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High-res.

Standard

rc

x0

Ultra-high-res.

(a)

(b) (c)

FIGURE 3. Solid-particle meshes used for the L = 4 capsule by the multimesh
desingularization method. (a) The high-resolution (N̂ = 52 K) and ultra-high-resolution
(N̂ = 840 K) meshes used for numerical desingularization. The additional edges of the
ultra-high-resolution mesh are coloured cyan. (b) The basic mesh (N̂ = 13 K) used by the BIM
simulation for desingularized terms. (c) A given observation point x0 calculates per-triangle
values from the ultra-high-resolution mesh within a cutoff rc.

tight-squeezing or trapped drops with an accuracy approaching that of analytical methods,
as discussed in § 5.1.

Several technical issues arise due to the requirements of (i) quality meshing of arbitrary
shapes, (ii) obtaining machine precision for node positions, (iii) memory requirements
of ultra-high-resolution meshes and (iv) mesh chaining. An approximate mesh for each
particle resolution was created using the powerful open-source software Blender, which
has no limitation on mesh size and can easily handle meshes with N > 2.5 M, but
uses single-precision floating-point format for coordinates (which may create unwanted
numerical errors in tight-squeezing simulations). After node positions and connectivity
are exported from Blender, coordinates are read into the BIM program and adjusted to
double precision according to piecewise analytical functions that define a given particle
shape. Similarly, the surface normals at each node are calculated using analytical formulae
for a particular surface. A more general approach would be to use just node positions
on the solid surfaces and calculate the normals by the same tools as we employ for the
triangulated drop surface (appendix C), but such generality was not pursued in the present
calculations. Due to memory considerations, only one instance of each desingularization
mesh is saved in memory, and is translated and/or mirrored (see § 4.4) during calculations
over a given particle. Finally, an efficient algorithm was written to chain two meshes
to each other, i.e. to determine which ultra-high-resolution triangles lie within each
high-resolution triangle. The algorithm requires knowledge only of the node positions
and connectivity of the two meshes, assuming every high-resolution node coincides
with an ultra-high-resolution node. Briefly, coinciding nodes between the meshes are
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determined by position, and a nearby ultra-high-resolution triangle is associated with a
given high-resolution triangle if its centroid (projected along the surface normal) lies
within the perimeter of the high-resolution triangle.

4.4. Additional numerical considerations
Two configurations, drop flow around a single capsule and between two flat plates,
presented particular challenges regarding numerical stability and drop mesh quality. A
useful extension of the commonly used triangle subdivision scheme introduced by Cristini,
Bławzdziewicz & Loewenberg (2001) was developed, which is particularly effective when
remeshing contiguous regions on a drop. The simple idea is, given a list of all triangles
to be subdivided within a given region, a uniform mesh four times denser than the
original can immediately result, by adding nodes at all edge midpoints and appropriately
connecting them (see appendix B). Connectivity around the perimeter of this region can
also be determined simply, e.g. in the manner of Cristini et al. (2001) (§ A.1.2. therein).
Occasional node addition on regions of contiguous triangles had two benefits. First, a
much cleaner mesh immediately resulted, such that further relaxation tangential to the
drop surface was unneeded. Second, updating the mesh topology was required much less
often, resulting in a more efficient algorithm. For example, in the case of a single drop
approaching a single fibre, passive mesh stabilization alone (in the form of Zinchenko &
Davis 2006) was found to be inadequate due to the large drop deformation. This simulation
was greatly extended by defining an upper limit on triangle area, and whenever this limit
was reached, executing node addition on all triangles within a cutoff distance of the
triangle with maximal area. In this case, similar simulation times were reached by actively
redistributing nodes using an advanced potential energy function (Zinchenko & Davis
2013). A fourth-order variation of the best-paraboloid method (Zinchenko & Davis 2006)
was used to used to choose coordinates for the inserted nodes. Including the second- and
third-level neighbours in the fit improved the local curvatures at inserted nodes, in areas
of both low and high curvature, and allowed the simulation to continue stably without the
intermediate step of relaxing inserted nodes. Note that a four-times-denser triangle mesh
corresponds to mesh edges one half their original length; the tighter Courant stability
limitation on the time step was not prohibitive for any systems presented herein. To
maintain mesh quality on the whole drop, passive mesh stabilization (Zinchenko & Davis
2006) is also enforced for all nodes at every time step.

The above ‘coordinated adaptive remeshing’ scheme was extended to allow added nodes
to be subsequently removed. In the case of a drop squeezing between thin plates, especially
at low capillary numbers, it was necessary to include a spatially dependent remeshing
scheme for the drop surface, with criteria defined to increase mesh resolution within
near-contact regions of the drop (figure 4a,b). In this case, the drop does not experience
particularly high deformation or curvatures, yet mesh stability greatly benefits from
increased resolution in specific regions. This criteria-based local remeshing is achieved
by remembering the original mesh connectivity, restoring it and re-evaluating the given
criteria for refinement (every so many time steps). Therefore, the region of higher mesh
resolution shown in figure 4 remains constant as the drop moves through the constriction.
This technique was also necessary for certain half-capsule configurations at low capillary
number.

To prevent symmetry breaking during drop flow, it was necessary that individual
solid-particle meshes were made symmetric with respect to all three orthogonal planes
that pass through the constriction centre. Also, for the flat-plate system, a fixed adaptive
mesh was used for solid particles to increase node density in near-contact regions.
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FIGURE 4. Adaptive mesh schemes for droplet squeezing between plates. (a) Coordinated
adaptive meshing of drop surface based on spatial criteria. By storing the original mesh
connectivity and re-evaluating the criteria before every remeshing, the region of denser
triangulation remains constant as the drop moves through the constriction. (b) Orthogonal view
of the same drop, with solid particles hidden.

Mesh density within two unit lengths of the constriction centre was increased between
four and sixteen times, depending on proximity to the constriction centre. This base mesh
was refined to create the higher-resolution desingularization meshes. In order to maintain
the aforementioned symmetry, while also storing only one copy of the higher-resolution
meshes in memory, a value is associated with each particle to indicate whether or not to use
the mirror image of a given mesh. Inverting a coordinate is not computationally intensive,
allowing for symmetric systems with non-uniform meshes to be efficiently treated within
the framework of the multimesh desingularization method.

5. Numerical results

All values from the numerical simulations of drop tight squeezing are reported in
non-dimensional form. The characteristic length scale L is taken as the solid-particle
radius â for capsules and derivative particles; for plates, L is the gap between two particles.
The velocity and times scales are |u∞| and L/|u∞|, respectively. The Hebeker parameter
η in the boundary-integral formulation (3.2) and (3.1) is set to unity. The initial drop
shape is spherical and far upstream from the constriction. The definitions of Ca and λ
are provided in § 2. Hereafter, N̂ and Ñ will refer to the number of triangles in each
solid-particle and drop mesh, respectively. For brevity, the abbreviations 5, 8.6 and 11.5 K
will be used for N̂ = 5120, 8640, 11 520. Higher solid-particle resolutions, whose nodes
are typically not uniformly distributed, with be similarly rounded. Unless noted otherwise,
the droplet resolution is 11 520 (Ñ = 11.5 K).Three meshes are used for each solid
particle in the multimesh desingularization method. Their triangle counts are reported
as a multiple of the basic mesh resolution. For example, if the high-resolution mesh is four
times denser than the basic mesh, and the ultra-high-resolution is 16 times denser than the
high-resolution mesh, all three triangles counts are reported as N̂ = 8.6 K × 4 × 16. Note
that, due to the quasi-steady character of the Stokes equations, a drop initially placed at a
large, but finite distance upstream, immediately feels the constriction presence, resulting in
some deviation of the initial drop velocity from the far-field velocity. It is also worth noting
that the disturbance of the far-field velocity field due to the constriction decays slowly, like
the inverse distance from the constriction. Still, our initial vertical drop separation from
the constriction was large enough, so that increasing the initial vertical drop offset, even
twofold from 10L to 20L for figure 5(b) below, had no perceptible effect on the whole drop
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FIGURE 5. Convergence testing for the two-capsule constriction (ã = 0.5, ε = 0.5, L = 6).
(a) Drop velocity when squeezing between two capsules, with respect to solid-particle mesh
resolution N̂ and number of characteristic disks

◦
N used for semi-analytical desingularization

(Ca = 0.9, λ = 4). (b) Convergence testing at lower viscosity ratio (Ca = 1.5, λ = 0.25). At
N̂ = 20.2K the curve for

◦
N = 750 (not shown) is indistinguishable from that for

◦
N = 1500.

trajectory U(t). Of course, such a comparison necessarily required a time shift to match
the drop position at the 10L initial offset between the two simulations.

5.1. Convergence with mesh resolution and desingularization methods
Convergence of results for the default capsule length (L = 6) with respect to solid-particle
mesh resolution is shown in figure 5. The N̂ = 35.6 K mesh utilized adaptive resolution
such that the mesh was four times denser within a distance of ≈1.4 from the constriction
centre, compared to the N̂ = 20.2 K mesh. Although

◦
N = 1500 was set throughout this

work for the number of characteristic disks used in the semi-analytical method (increased
for longer capsules to provide an equivalent linear density), figure 5 also shows that
half that number produces reasonable results (resulting in an eight-times speedup for
desingularization as compared to the multimesh method). Indeed, halving the number of
characteristic disks (

◦
N = 750) results in agreement near the solution tolerance (1 × 10−5)

for the majority of the squeezing process.
The multimesh implementation was validated against previous results that used

analytical desingularization (Zinchenko & Davis 2006), and the multimesh and
semi-analytical methods were compared against each other. As shown in figure 6,
good agreement is seen for drops squeezing between spheres and spheroidal particles.
These two-particle constrictions are prone to symmetry breaking and sensitive to mesh
resolutions, so reproducing these tight-squeezing results efficiently and without analytical
expressions was unexpected. In particular, the spheroidal system in figure 6(b) is
metastable and undergoes symmetry breaking shortly after the minimum drop velocity,
with one side of the drop advancing slightly farther downstream than the other, even for
the analytical system. For these tests, each higher-resolution mesh was 16 times denser
than the previous mesh in the hierarchy. Further increasing these desingularization-mesh
densities negatively impacted performance while negligibly affecting droplet dynamics.
As shown in figure 9, close agreement was also observed between the multimesh and
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FIGURE 6. Comparison between two types of desingularization methods (Ñ = 8.6 K, N̂ =
5 K × 16 × 16). Insets shows snapshot of simulation at Umin . (a) Multimesh and analytical
desingularization methods agree well for drop squeezing between two spheres (ε = 0.5, ã =
0.9,Ca = 0.63, λ = 4.0). (b) Drop squeezing between two parallel oblate spheroids with major
and minor axes of 1 and 0.4, respectively (ε = 0.5, ã = 0.75,Ca = 0.4, λ = 1.0). (c) Absolute
error for various methods of calculating the desingularization tensor Ψ , as compared to the
analytical values for the oblate spheroid shown in (b). The semi-analytical method uses 3000
characteristic disks with adaptive resolution for the disk spacing.

semi-analytical desingularization techniques for drop squeezing between axisymmetric
particles, even for tight squeezing.

The absolute error of the semi-analytical and multimesh methods for Ψ ( y)-calculation
is shown in figure 6(c) for an oblate spheroid (one of those in the insert of figure 6b), with
the error of the basic mesh (without desingularization) shown for comparison. This error is
quantified through root-mean-square deviation of the components Ψijk from the analytical
values available for this shape (Zinchenko & Davis 2006). Unlike with the cylindrical
particles discussed below, Ψ is calculated for observation points y near characteristic disks
with radii approaching zero, where the characteristic disk radius is indicated by the vertical
height of the spheroid in figure 6(c). It was found that a higher density of characteristic
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disks is required when the radius is near zero. For example, when using 10 000 equally
spaced disks for the oblate spheroid (disk width of 8 × 10−5), the semi-analytical method
was conspicuously less accurate than the multimesh method, especially near the horizontal
axis of figure 6(c). It was necessary to use an adaptive density of disks in this case, whose
positions were defined by starting with 1500 points equally spaced on the vertical axis,
and determining their (horizontal) location on the spheroid surface using the equation
for the spheroid itself. This discretization resulted in 3000 total disks with a minimum
width of 1.8 × 10−7 and a maximum width of 7.3 × 10−3 (near the top of the spheroid).
The values for the arc lengths ds in (4.7) were tabulated beforehand using incomplete
elliptic integrals of the second kind. In short, the semi-analytical implementation herein
is most efficient, and straightforward, when desingularization accuracy is not critical near
the high-curvature solid-particle tips.

5.2. Single capsule
Capsules are presented as a prototype for fibrous material. First, consider a drop
approaching a single capsule (L = 6). Patel et al. (2003) introduced this configuration
experimentally, defining the capillary number the same way as herein, and provided
boundary-integral results for a drop approaching an infinitely long cylinder. Patel et al.
avoided the Stokes paradox (due to an infinite cylinder extent in the third dimension) by
using the flow field around the cylinder, which would exist in the absence of the drop,
based on the Brinkman equation for an isotropic porous medium, to approximately model
the far-field effect of the surrounding fibres in the dilute limit. The boundary-integral
problem for the drop was then solved assuming that the drop is immersed into this field,
without actual interaction with the cylinder. In the present case, we consider a capsule of
finite length only, but solve the problem with full hydrodynamical interaction between the
drop and the capsule. The effect of particle length is discussed in more detail in the context
of the two-capsule constriction.

Patel et al. (2003) identified two modes of drop breakup: a grazing mechanism in
which drop breakup occurs downstream from the fibre, and hairpin formation when the
drop passes around either side, resulting in two bulbous ends, or lobes, connected by
a thin filament. The mode of breakup primarily depends on the initial horizontal offset
Δyo of the drop centre from the centreline of the capsule. In all cases for the present
single-capsule study, system parameters are Ca = 3.0, λ = 1.0 and ã = 1.5, which are
typical values used by Patel et al. (2003), and the drop is initially placed 10L upstream
from the capsule. Hairpin formation was observed for Δyo ≤ 0.6, the grazing breakup
mechanism was observed for Δyo = 0.7 and the drop remains stable (separation without
breakup) for Δyo ≥ 0.75. The drop velocity U corresponding to various mechanisms
is shown vs. time in figure 7(a). Despite the apparent similarity between Δyo = 0 and
Δyo = 0.1, overall drop behaviour is highly sensitive to the initial offset. For example,
for an offset of Δyo = 0.1, 59 % of the drop (by volume) passes around one side of the
capsule. Typical configurations during hairpin formation are shown in figure 7(b). As
discussed further below, a large gap (≈0.2) persists between the filament and the solid
particle, even after the majority of drop has passed downstream. It is most noticeable for
Δyo = 0 in figure 7(c), that the gap does not go to zero while the drop is able to stay
wrapped around the capsule for a long time. The drop diameter, defined as the maximum
distance between any points on the drop and normalized by drop radius, is shown in
figure 7(d), highlighting the system’s sensitivity to initial drop offset.

The lubrication layer between the filament and the fibre influences the drop–particle gap,
and this layer is affected by the shape of the filament. This effect is demonstrated using a
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FIGURE 7. Droplet flow around a single capsule (Ca = 3.0, λ = 1.0, ã = 1.5,L = 6.0).
(a) Volume-averaged drop velocity vs. time as a function of drop offset. The drop remains
stable for Δyo ≥ 0.75. (b) Typical configurations during the hairpin breakup mechanism.
(c) Drop–particle gap as a function of time and drop offset. (d) Drop diameter is sensitive to
offset. Length is the maximum distance between any two points on the drop normalized by the
undeformed drop radius (curves for Δyo = 0.6 and 0.7 are very similar to Δyo = 0.5).

drop offset of Δyo = 0.3 as shown in figure 8(a), which results in a drop shape resembling
those observed experimentally by Patel et al. (2003) (see figure 4 therein). As the filament
initially nears the particle face, it spreads axially and an elongated dimple forms along
the transverse direction. During this phase, the gap plateaus with respect to time, before
decreasing abruptly as the filament thins. This decrease in separation corresponds to the
flattening of the dimple into a convex filament. Cross sections of the filament directly
above the capsule centre are shown as insets in figure 8(b). The dimple formation shown at
t = 30 is dependent on the capsule length; for example, using a capsule of length L = 10,
the filament remains less concave at it approaches the cylindrical surface.

Our simulations have also revealed the importance of full hydrodynamical interactions
for accurate prediction of the drop trajectories around the capsule. When λ = 1, neglecting
the capillary contribution to (3.4) when y is on the solid surface, simply makes (3.2) and
(3.1) the boundary-integral formulation for the solitary drop immersed in the flow field,
which would exist around the solitary capsule. Such an approximation, though, is no longer
accurate when the drop comes near a solid surface. For Δyo = 0.3, large deviations in the
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FIGURE 8. Droplet undergoing large deformation around a capsule (Ca = 3.0, λ = 1.0,
ã = 1.5, L = 6.0). (a) Droplet approaching breakup via the hairpin mechanism. (b) Rate
of lubrication layer thinning correlates with the cross-sectional shape of the filament
(cross-sectional plane indicated by grey line in (a)).

drop shape, position, and velocity between the rigorous and approximate solutions were
observed even at t = 19, when the drop is just beginning to wrap around the capsule and
the gap is still O(1).

5.3. Two-capsule constriction
Consider a drop approaching two parallel capsules separated by a gap ε = 0.5, where
the non-deformed drop diameter is twice the gap and half the solid-particle diameter.
In contrast to drop interactions with a single capsule in unconfined flow, the drop tends
to remain compact throughout the squeezing process. An important binary property of
this system is whether or not the drop will pass through the constriction; as shown in
figure 9(a), the drop is trapped below a critical capillary number. There is excellent
agreement between the multimesh (N̂ = 20.2 K × 4 × 16) and semi-analytical (

◦
N =

1500) methods, while the semi-analytical calculations were four to eight times faster. As
observed for drops squeezing between spheres, the minimum drop–particle gap is almost
insensitive to Ca (figure 9b), although this separation remains slightly larger compared
to drop squeezing through a three-sphere constriction (Zinchenko & Davis 2006). The
tendency of the trailing end of the drop to approach the solid surface more closely
as it is exiting, as compared to the majority of the squeezing process (gap decrease
≈30 %), is more pronounced for capsules than, e.g. drop squeezing between three spheres.
Presumably, the differing nature of the lubrication layers is responsible for this effect;
as discussed in § 5.5, the effect is even more pronounced for drops squeezing between
flat plates. A snapshot of a supercritical drop when it is approximately centred in the
constriction is shown in figure 9(c). The drop profile at the centre of the constriction
is outlined by the dashed line in the inset. This dimple in the drop surface is less
pronounced during the early and late stages of squeezing. A steady-state trapped drop is
also shown from axial and transverse perspectives (figure 9d). The transverse drop profile
is approximately circular, as is the case for supercritical drops at a similar position.
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FIGURE 9. Droplet squeezing between two capsules (λ = 4.0, ã = 0.5, ε = 0.5, L = 6.0).
(a) Droplet becomes trapped below a critical capillary number. An agreement is observed
between semi-analytical and multimesh methods (N̂ = 20.2 K × 4 × 16). (b) The minimum
drop–particle gap is very small for tight-squeezing simulations, and not sensitive to Ca.
(c) Snapshot as drop passes through a two-capsule constriction above Cacrit. Dashed line in
inset outlines drop profile at constriction centre. Two orthogonal views shown. (d) Steady-state
drop trapped between two capsules.

Drop squeezing is significantly affected by capsule length, even for long capsules
with ends far from the drop. For example, repeating the two-sphere simulation above
(ε = 0.5, ã = 0.9, Ca = 0.63, λ = 4.0), but replacing the spheres with capsules of length
L = 4, results in vastly different behaviour. As shown in figure 10(a), the minimum drop
velocity Umin is 5 % of far-field velocity for the two-sphere constriction, whereas the
drop becomes trapped in the two-capsule constriction. A parametric study of the effect
of cylinder length on droplet trapping was completed at Ca = 1.5, λ = 4.0, ã = 0.5 and
ε = 0.5. One might expect drop velocities to converge relatively quickly after the capsules
reach a certain length, due the diminishing end effects. However, a notable difference in
drop velocities and squeezing times was observed between L values of 4, 6, 8 and 10,
as seen in figure 10(b). This disparity was not significantly alleviated by rescaling the
capillary number individually for each system, based on the flow velocity at the centre
of the constriction (in an attempt to minimize the effect of the far-field flow u∞). The
lack of convergence is attributed to variations in the undisturbed (single-phase) flow
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FIGURE 10. Effect of capsule aspect ratio on drop squeezing. (a) Cylindrical particles, even at
small aspect ratios (L = 4), significantly enhance drop trapping (Ca = 0.63, λ = 4.0, ã = 0.9,
ε = 0.5). (b) Drop trajectories do not converge with respect to capsule length, L = 4 to 10 (Ca =
1.5, λ = 4.0, ã = 0.5).

and can be directly related to the size-effect problems that plague both experimental
and numerical studies of the Stokes paradox for flow past long cylinders. For example,
Khalili & Liu (2017) demonstrate that, for 3-D cylinders, large aspect ratios are required
for convergence of results as Reynolds number goes to zero. Furthermore, velocity fields
do not converge with decreasing Reynolds number (although unintuitive, this lack of
convergence is less surprising given there is no solution for unbounded Stokes flow around
an infinite cylinder). Indeed, the aspect ratios of cylinders tractable for this study are orders
of magnitude smaller than Khalili & Liu’s recommendations for converging velocity
and pressure fields. A related work is that of Smith (1990) on the Jeffery paradox (an
unintuitive result that involves two cylinders in two dimensions, at least one of which
is rotating). Smith came to a similar conclusion that, when attempting to approach this
2-D result using finite 3-D cylinders, cylinder aspect ratios must be many orders of
magnitude before end effects become negligible. However, it is not the objective of this
work to approximate drop squeezing between infinite cylinders, but rather to model a
local environment within fibrous material. Furthermore, a model of porous media that
consists of particles in a periodic simulation box, where the flow is either pressure-driven
or constant flow rate, is no longer subject to the Stokes paradox, even for effectively infinite
cylinders that connect across periodic boundaries. Such a simulation would allow for a
more direct comparison to models of flow through porous media, such as the Brinkman
equations. The default L = 6 herein was chosen as a compromise between capsule length
and simulation speed.

Drop behaviour is also dependent on viscosity ratio λ and non-deformed droplet radius
ã. A parametric study of λ at Ca = 1.5 is shown in figure 11(a). At low λ and high
Ca, the drop undergoes greater variation in velocity during the squeezing process, and
the overall trajectory is more symmetric with respect to time (including the appearance
of two global minima for U). Although squeezing times increase with λ, there is no
indication of switching from droplet pass through to trapping within reasonable λ values.
As observed for the three-sphere constriction (Zinchenko & Davis 2006), the drop–particle
gap is sensitive to λ, decreasing from about 0.021 for λ = 10, to 0.015 for λ = 0.25.
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ã/ε = 1.0

Ca = 1.5, λ = 4.0

1.0 4 10 Ca = 1.5
1.3
1.1

0.9

0.7

1.5
2.0

D
ro

p
 v

el
o
ci

ty
, 
U

D
ro

p
 v

el
o
ci

ty
, 
U

Time, t

Time, t

Time, t

(a)

(c) (d )

(b)

FIGURE 11. Drop squeezing behaviour with respect to various system parameters (L = 6).
(a) Drop velocity is more symmetric with respect to time at lower viscosity ratio λ and high
Ca (Ca = 1.5, ã/ε = 1.0). (b) Effect of Ca at low λ = 0.25; Cacrit is not sensitive to λ, e.g.
compared to λ = 4.0 (figure 9a). (c) Tendency for drop trapping increases with droplet radius
(Ca = 1.5, λ = 4.0). (d) Typical trapped state for a droplet radius of twice the gap diameter
(Ca = 2.0, U = 1×10−4).

Drop velocity as a function of Ca at low viscosity ratio (λ = 0.25) is shown in figure 11(b)
(for comparison at λ = 4.0, see figure 9a). Parametric studies for Ca also were completed
at λ = 1.0 and 10; in all cases, the viscosity ratio was not observed to alter pass through
vs. trapping, as has been noted for drop squeezing between spheres (Zinchenko & Davis
2006). Drop size, in contrast, notably affects Cacrit. Increasing the drop radius by 50 %
results in Ca = 1.5 being subcritical (figure 11c). For ã/ε = 2.0, where the drop diameter
is four times the gap diameter, the drop must undergo large deformation to pass through.
A steady-state trapped drop is shown in figure 11(d). For this drop size, our simulations
indicated pass-through at Ca = 3. At Ca = 4, the drop flows around the capsules rather
than through the constriction (similar to the head on approach of a drop toward a single
capsule, discussed above).

5.4. Half-capsule constriction
To demonstrate the ability of the multimesh desingularization method to handle more
complex geometries and new related physical phenomena, consider a capsule that is cut in
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FIGURE 12. Drop squeezing between two half-capsules (λ = 4.0, ã = 0.6, ε = 0.5, L = 6,
N̂ = 32.8 K × 4 × 16). (a) Drop velocity is sensitive to particle orientation (or equivalently,
direction of droplet approach). The disparity between minimum velocity Umin and squeezing
times (Ca = 1.5) indicates weak flow rectifying behaviour. (b) Minimum drop–particle gap as
a function of time and particle orientation. (c) Snapshots of each drop at their respective global
minimum velocities with respect to particle orientation. (d) The interfacial velocity fields of the
drops pictured in (c), from a transverse view.

half lengthwise with rounded edges (as described in § 2). Now, the upstream single-phase
flow field depends on the particle orientation, as the particles are no longer symmetric
with respect to the constriction’s basal plane. Therefore, droplet shape and velocity also
depend on the particle orientation (or equivalently, the direction from which the drop
approaches the constriction). This dependence is shown in figure 12(a), where ‘upper
half-capsule’ refers to a capsule whose volume in the upper half-space has been retained.
For the supercritical case Ca = 1.5, a slight but notable difference in Umin and squeezing
times is observed (≈33 % decrease in Umin). For the subcritical Ca = 0.9, particle
orientation manifests as a disparity in droplet deceleration as it approaches the constriction
(figure 12a). The drops have very different shapes at analogous stages of the squeezing
process. For example, the drops are compared in figure 12(c) for each orientation at
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FIGURE 13. Drop squeezing between two rounded plates (λ = 4.0, ã = 0.75, ε = 1.0, N̂ =
45.7 K × 4 × 16). (a) Supercritical drop velocity vs. time for squeezing between flat plates is
notably different than those for more rounded shapes. (b) Drops closely approach rounded flat
plates, especially while the drop is exiting the constriction, or for subcritical Ca. (c) Evolution
of drop shape during the tight-squeezing process (Ca = 0.9).

their respective Umin . These configurations correspond to different lubrication behaviour.
At their respective Umin , the drop–particle gap for the lower half-capsule is ≈40 %
lower than the upper half-capsule (similar to the subcritical Ca = 0.9 case), and the
trajectory-minimum gap disparity is ≈20 % (figure 12b). While there still occurs the
characteristic dimple formation near the high-curvature edges of the lower half-capsule,
the surface area of this region is smaller than for the upper half-capsule case. This finding
affects the interfacial velocity field, as shown in figure 12(d). As compared to a drop in
near contact with a sphere, the surface-divergent flow near the centre of the near-contact
region is elongated in the axial direction.

5.5. Two-plate constriction
Multiphase flow past fixed surfaces with high curvature presents particular numerical
challenges for boundary-integral methods. In this case, the undeformed drop has radius
ã = 0.75 and the rounded edge of the plate has a radius of 0.2, representing a curvature
ratio of 3.75 (where the characteristic length L is the gap ε = 1 between plates). Note
that our algorithm requires smooth versus sharp edges, and that a sharp edge would
lead to physical contact due to reduced lubrication. We did not explore the effect of
the rounding radius. As described is § 2, the major plate dimensions are 4×8, and the
constriction is formed by placing two plates on a plane with the gap ε defined as the
minimum distance between their longest sides. This configuration has a lower Cacrit than
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FIGURE 14. Drop squeezing between two plates angled at 45◦ with respect to the far-field flow
(Ca = 3.0, λ = 4.0, ã = 0.75, ε = 1.0, N̂ = 45.7 K × 4 × 16). (a) Drop flows stably between
downward-angled plates. The X mark indicates simulation exit before imminent drop breakup in
the case of plates angled upward. (b) Snapshot of supercritical drop when approximately centred
in the downward-angled plate constriction. (c) Mechanism of drop breakup in the case of a drop
squeezing between upward-angled plates (Ca = 3.0).

the systems above, despite the lower drop-radius-to-gap ratio. As shown in figure 13(a),
Ca = 0.9 is supercritical and has a similar Umin and squeezing time as Ca = 1.5. The drop
also passed through the constriction with capillary numbers of 0.7 and 0.5, but reached
subcritical behaviour with Ca = 0.3. The features described in § 4.4 are collectively able
to demonstrate drop trapping in this constriction to sufficiently low velocities, though the
simulation was not stable indefinitely; eventually the drop mesh started to overlap with
the solid particle. The ability of the multimesh method to model this challenging system
efficiently, without code parallelization, is promising, especially considering the extreme
approach of the drop interface to the solid particle surfaces. As shown in figure 13(b),
the trailing end of the drop approaches the particle to within ≈0.006 when exiting the
constriction, similar to the steady-state separation of the trapped drop. This contrasts
with the two-capsule system above, where the minimum gap is ≈0.02, i.e. a decrease
of ≈70 %. Snapshots during the squeezing process are shown in figure 13(c), including
the close approach at points of high drop curvature while exiting the constriction. Close
inspection of the drop at t = 150 also shows a profile with sharp angles in the near-contact
region. This profile is not a mesh effect (the coordinated adaptive meshing scheme ensures
high drop mesh resolution in this region at all times), but rather is due to the elongated
dimple in the drop interface, which approaches the solid particle most closely along
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its perimeter. The evolution of these drops, suspended in far-field flow and squeezing
between rectangular plates, is visually similar from this axial perspective to those of
buoyant drops squeezing through circular orifices, see, e.g. Bordoloi & Longmire (2014)
(figure 13a therein) and Ratcliffe, Zinchenko & Davis (2012).

Finally, consider a drop approaching two plates that are angled 45◦ with respect
to the far-field flow. The objective of this configuration was to emphasize the slight
drop rectifying flow displayed by the half-capsule system, perhaps to the extent of
demonstrating drop pass through when approaching from one direction, and trapping
or breakup from the other. However, for Ca = 0.9–1.5, stable supercritical behaviour is
observed with either plate orientation, and furthermore Umin is not sensitive to orientation.
At Ca = 2.0, the global velocity minimum is lower for upward-angled plates (each plate
rotated such that its edge near the constriction centre is moved upstream). A similar
disparity is observed at Ca = 3.0, as shown in figure 14(a). However, in this case, while
the drop passes stably through the downward-angled plates (figure 14b), it will break
when flowing through the upward plates. The mechanism for this breakup is shown in
figure 14(c), suggesting the majority of drop volume passes through the constriction, while
two significantly smaller drops will flow around the outer faces of each plate.

6. Concluding remarks

The multimesh method for simulating tight-squeezing deformable drops between
arbitrary Lyapunov surfaces and a semi-analytical formulation using elliptic integrals
for axisymmetric particles in a 3-D setting were introduced, for use by high-resolution
three-dimensional boundary-integral simulations. The semi-analytical formulation
was achieved by closed-form azimuthal integrations for single- and double-layer
desingularization tensors in terms of complete elliptic integrals of the first and second
kind. The total contribution of an axisymmetric particle to a desingularization tensor can
then be obtained by integrating the azimuthal contribution along the particle axis. This
method was used to simulate tight-squeezing drops between spherocylinders, or capsules,
and results agreed well with the multimesh desingularization method. The multimesh
method replaces analytical desingularization integrals with numerically calculated ones,
using a hierarchy of embedded meshes. Two meshes (in addition to the basic mesh)
with increasingly higher resolutions were used for desingularization calculations, with
the highest resolution typically containing in excess of one million triangles. Memory
requirements were kept low by using a template of each high-resolution mesh to represent
a given particle by a translation and/or mirror symmetry. These fully three-dimensional
simulations remain computationally feasible by using adaptive resolution and mesh
chaining techniques, and due to the limited need to recalculate desingularization integrals
(outside of GMRES iterations). For the particularly challenging case of drops interacting
with high-curvature surfaces, a coordinated adaptive remeshing scheme for the droplet
was introduced. Using these methods, the behaviour of drops interacting with a variety of
particle types representative of fibres as well as non-axisymmetric shapes was probed over
a range of fluid, droplet and particle parameters.

Droplet motion between and around high-aspect-ratio capsules is representative of the
commonly encountered class of multiphase flow through fibrous media. In accordance
with the known lack of convergence of Stokes flow with respect to increase of a cylindrical
object’s length, drop squeezing behaviour was shown to be highly dependent on capsule
lengths within the reach of feasible computing. Therefore, a length of L = 6 was chosen
as the default capsule, such that a wide range of parametric studies could be completed
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with either the semi-analytical or multimesh method (the axisymmetric method was
typically four to eight times faster for this system). The approach of a droplet toward a
single capsule was simulated while accounting for all hydrodynamic effects, including
lubrication. Several modes of drop breakup were demonstrated, as was the critical drop
offset from the capsule centre to incur breakup. During the hairpin mechanism of breakup,
a thin filament forms around the capsule after the majority of drop volume has been swept
downstream. This filament takes on a concave shape and lubrication forces maintain a large
gap between this filament and the solid-particle surface; after the filament thins to a convex
near-circular cross-section, a sharp decrease in the filament–surface separation occurs. For
drop squeezing between two particles, very different behaviour and a significant increase
in Cacrit are observed between spheres and capsules (even of low aspect ratio). Typical
squeezing behaviour and shapes for both super- and subcritical drops between capsules
were found, including the persistence of dimples in the near-contact region. Drops with
radii up to four times the inter-capsule gap were modelled, and stable simulations were
possible for both trapping and pass through at high capillary numbers.

Successful simulations of near-critical drop flow between substantially more arbitrary
shapes, including those with high curvature, was demonstrated with half-capsules
(capsules cut in half lengthwise) and thin plates with rounded edges. The challenging
case of drop flow between plates with a bevelled-edge radii 3.75 times smaller than the
undeformed drop radius was handled, including the subcritical Ca = 0.3. The minimum
drop–particle gap is notably smaller than for more rounded particles with similar system
parameters, indicating significantly different lubrication behaviour. The half-capsule is not
symmetric with respect to the basal plane of the constriction, and the behaviour of drops
depends on the particles’ orientation. A drop’s global minimum velocity Umin is lower
when it is approaching the flat face of the half-capsule, indicating a slight drop rectifying
flow, due to drop interaction with the differing upstream single-phase flow fields. An
asymmetric constriction can also be constructed by angling two plates with respect to the
far-field flow, creating a finite-size approximation of wedge flow. Despite the significantly
different upstream single-phase flow fields between plate orientations, drops do not exhibit
rectifying behaviour at moderately supercritical Ca (as determined by Umin). However, at
sufficiently high Ca, a drop will stably pass between two plates angled downward, but
experience breakup while squeezing between upward-angled plates.

It would be tempting to complement the present BIM approach with lubrication analysis
for the thin films between a tightly squeezing drop and solid boundaries (in the spirit
of the asymptotic solution of Bretherton (1961) for a gravity-induced bubble squeezing
though a cylindrical tube). However, there are many fundamental differences between the
present case and that of Bretherton (1961), making such an analysis a formidable task not
attempted here. Just one of the difficulties is that, for a drop squeezing along curved solid
surfaces, the wetting points limiting the lubrication area become wetting lines in three
dimensions, and they move as the drop squeezes, thus creating a very complex solution
domain for a lubrication analysis. For this and several other reasons (detailed in Ratcliffe
et al. 2010) we currently have to rely on a heavily numerical approach in our squeezing
studies. It may be promising to explore improved surface integration schemes over solid
boundaries, that can potentially relax very high resolution requirements for tight-squeezing
simulations.

High-accuracy simulations of multiphase Stokes flow through arbitrary environments
have applications in many fields. The tools developed herein were designed to allow for
high-throughput testing of custom particle shapes. Perhaps the most conspicuous way to
extend these methods is to scale up to emulsions flowing through many close-packed
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complex particles, such as cylindrical pellets. Many of the challenges associated with
such a simulation have been addressed by Zinchenko & Davis (2013) for emulsion flow
through random arrays of spheres. The multimesh method is not anticipated to scale well
on a single processor to very large systems. However, poor single-processor scaling may
be offset by the fact that the required calculations are both ‘perfectly parallel’ and easily
programmable in parallel; initial tests indicate nearly linear scaling with the number of
processors. Other advanced techniques, such as multipole acceleration, can be applied
as well. The semi-analytical method for desingularization tensors is similarly conducive
to parallelization. Finally, the two techniques are not mutually exclusive; particles may
be defined in a piecewise fashion where tubular or otherwise axisymmetric sections
utilize the semi-analytical method, and the junctions of these sections are treated with
the multimesh method. For example, a rectangular grid can be constructed in this way,
as is commonly used for large-scale models of fibrous media or membranes. Work is
also currently underway to probe the influence of surfactant on drop squeezing between
particles of complex shapes.
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Appendix A. Axisymmetric desingularization

Closed-form expressions for the integrals of G2 and Ψ over a circular circumference are
provided, using the notation and geometry of figure 2. In what follows,Δ2 = 1 − k2 sin2 φ.

A.1. Closed-form azimuthal integration for G2

Azimuthal integrals for the single layer have been provided in different forms, e.g. by Lee
& Leal (1982), and are included here for completeness. All terms of the integrand of G2
integrated over a circle have the form

∫ π

−π

rirj

r3
dψ = 4c3

0

∫ π/2

0

rirj

Δ3
dφ, (A 1)

where c0 = ((ρ + ρ0)
2 + (z − z0)

2)−1/2 and φ = ψ/2. Terms that represent odd functions,
such as r1r2, are zero in the special basis. Non-zero terms are provided below:

r1r1 = 4ρ2 cos4 φ + 4ρ(ρ0 − ρ) cos2 φ + (ρ0 − ρ)2, (A 2)

r1r3 = (z − z0)(ρ(2 cos2 φ − 1)+ ρ0), (A 3)

r2r2 = 4ρ2 sin2 φ cos2 φ, (A 4)

r3r3 = (z − z0)
2. (A 5)

A.2. Closed-form azimuthal integration Ψ

All terms of the azimuthal integration for Ψ have the form
∫ π

−π

rnrirjrk

r5
dψ = 4c5

0

∫ π/2

0

rnrirjrk

Δ5
dφ, (A 6)
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where rn = r · n(x). The non-zero terms of this symmetric third-rank tensor are provided
below, where δz = z − z0:

rnr1r1r1 = 16ρ3ρ0nρ cos8(φ)

+ 8ρ2 cos6(φ)((ρ2 − 4ρ0ρ + 3ρ2
0)nρ + ρnzδz)

− 12ρ(ρ − ρ0) cos4(φ)((ρ − ρ0)
2nρ + ρnzδz)

+ 2(ρ − ρ0)
2 cos2(φ)((3ρ2 − 4ρ0ρ + ρ2

0)nρ + 3ρnzδz)

− (ρ − ρ0)
3((ρ − ρ0)nρ + nzδz), (A 7)

rnr1r1r3 = 8ρ2ρ0nρδz cos6(φ)

+ 4ρδz cos4(φ)((ρ2 − 3ρ0ρ + 2ρ2
0)nρ + ρnzδz)

− 2(ρ − ρ0)δz cos2(φ)((2ρ2 − 3ρ0ρ + ρ2
0)nρ + 2ρnzδz)

+ (ρ − ρ0)
2δz((ρ − ρ0)nρ + nzδz), (A 8)

rnr1r2r2 = 16ρ3ρ0nρ sin2(φ) cos6(φ)

+ 8ρ2 sin2(φ) cos4(φ)((ρ − ρ0)
2nρ + ρnzδz)

− 4ρ2(ρ − ρ0) sin2(φ) cos2(φ)((ρ − ρ0)nρ + nzδz), (A 9)

rnr1r3r3 = 4ρρ0nρδ
2
z cos4(φ)

+ 2δ2
z cos2(φ)((ρ − ρ0)

2nρ + ρnzδz)

− (ρ − ρ0)δ
2
z ((ρ − ρ0)nρ + nzδz), (A 10)

rnr2r2r3 = 8ρ2ρ0nρδz sin2(φ) cos4(φ)

+ 4ρ2δz sin2(φ) cos2(φ)((ρ − ρ0)nρ + nzδz), (A 11)

rnr3r3r3 = 2ρ0nρδ
3
z cos2(φ)+ δ3

z ((ρ − ρ0)nρ + nzδz). (A 12)

A.3. Integrals of Δ
Here is a list of required integrals involving Δ, reduced to elliptic integrals:

∫ π/2

0

dφ
Δ

= F,
∫ π/2

0
Δ dφ = E,

∫ π/2

0

dφ
Δ3

= E
1 − k2

, (A 13a–c)

∫ π/2

0
Δ3 dφ = 1

3 [(4 − 2k2)E − (1 − k2)F], (A 14)

∫ π/2

0

dφ
Δ5

= (4 − 2k2)E − (1 − k2)F
3(1 − k2)2

, (A 15)

where F and E are complete elliptic integrals of the first and second kind, respectively,
with modulus k.
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A.4. Fast-convergent calculation of elliptic integrals
The complete elliptic integrals F and E can be calculated very efficiently, and to machine
precision, by the fast-convergent relations (Davis 1962)

F = π

2
(1 + K1)(1 + K2)(1 + K3) . . . , E =

(
1 − k2

2
P
)

F, (A 16a,b)

where

K0 = k, Kp = 1 − C
1 + C

, C =
√

1 − K2
p−1 (A 17a–c)

and

P = 1 + K1

2

(
1 + K2

2

(
1 + K3

2
(· · · )

))
. (A 18)

Based on (A 13a–c)–(A 15), the necessary integrals involving powers of Δ and cosφ
can be calculated recursively (Gradshteyn & Ryzhik 2014). From the definition of Δ, first
note that

sin2 φ = 1 −Δ2

k2
, cos2 φ = 1 − 1 −Δ2

k2
= k2 − 1 +Δ2

k2
. (A 19a,b)

Letting

Jn
m =

∫ π/2

0
Δm cos2n φ dφ, (A 20)

then

Jn+1
m = (1 − 1/k2)Jn

m + Jn
m+2

k2
. (A 21)

So, only four integrals are required to recursively calculate the remaining terms
involving Δ and powers of cosine:

Δp cos2 φ =
(

1 − 1
k2

)
Δp + Δp+2

k2
, for p = {−1,−3,−5}, (A 22)

and
cos4 φ

Δ
= Δ3

k4
+ 2

(
k2 − 1

)
Δ

k4
+

(
k2 − 1

)2

k4Δ
. (A 23)

Appendix B. Coordinated triangle subdivision

A straightforward extension of a simple triangle subdivision scheme allows for
obtaining four-times-denser meshes within contiguous regions. As shown in figure 15,
all edges of triangles that meet a given criteria are subdivided at their midpoints.
If a neighbouring triangle is also being subdivided, connectivity between the added
nodes is updated accordingly. Otherwise, an edge is added between an added node and
an existing node (typically, only around the perimeter of a contiguous region). With
respect to programming, the method involves considerably more bookkeeping compared
to subdividing and relaxing individual triangles one at a time. However, this coordinated
triangle subdivision did not require relaxation of the resulting mesh, and was invaluable
when much higher mesh densities were required within certain spatial regions. Since the
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FIGURE 15. Coordinated adaptive resolution of a small mesh. The original mesh (black) is
subject to a user-provided criteria for subdivision, assumed to be satisfied by the triangles
highlighted in cyan. How new edges (in grey) are added depends on if a neighbouring triangle
will be subdivided.
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FIGURE 16. The average and maximum absolute errors in the normal vector and curvature
calculation by the high-order method, as calculated over a spool-like shape with analytically
known values. Results for the best-paraboloid method provided for comparison. (a) The
high-order method has superior convergence of the normal vector calculation for N > 1000.
(b) Absolute errors for the curvature calculation. The spool-like shape is pictured in the inset.

base mesh is unaffected, added nodes can subsequently be removed, and the result is again
a high-quality mesh. In this way, the region of high-density nodes can remain spatially
fixed as a mesh moves through it. Finally, by initializing added nodes with interpolated
values of all quantities used by the boundary-integral calculations, adding new nodes did
not appreciably slow down convergence during GMRES iterations.
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Appendix C. High-order method for normals and curvatures

Normal vectors and curvatures on the drop surface were calculated using the high-order
method introduced in Zinchenko & Davis (2006) (appendix B therein). Here, we provide
a validation of the high-order method in reference to a spool-like shape with known
analytical values, which is created by revolving the curve x2 = (0.2z2 + 0.05)2(1 − z2)
around the z-axis (shown in the inset of figure 16b). The mesh for the spool shape
was prepared with a two-step process. First, unit-sphere triangulations for N =
80, 320, 1280, 5120, 20 480, and 81 920 were created by refinements of an icosahedron
and subject to a random rotation (for generality). Then, the mapping (x, y, z) → ((0.2z2 +
0.05)x, (0.2z2 + 0.05)y, z) was used to obtain the spool shape triangulation from the
unit-sphere triangulation. Figure 16 shows the convergence of the high-order method to
analytical values, and its superiority to the best-paraboloid method (Zinchenko et al.
1997) for resolutions N > 1000, for both normal vectors (figure 16a) and curvatures
(figure 16b). It must be noted, however, that the high-order method uses an additional
layer of neighbours around a given node for normal and curvature calculations (which
may affect the code robustness in some most difficult cases); this was not an issue in the
present simulations.
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