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Abstract

Representing defeasibility is an important issue in common sense reasoning. In reasoning

about action and change, this issue becomes more difficult because domain and action related

defeasible information may conflict with general inertia rules. Furthermore, different types of

defeasible information may also interfere with each other during the reasoning. In this paper,

we develop a prioritized logic programming approach to handle defeasibilities in reasoning

about action. In particular, we propose three action languages AT0,AT1 and AT2 which

handle three types of defeasibilities in action domains named defeasible constraints, defeasible

observations and actions with defeasible and abnormal effects respectively. Each language

with a higher superscript can be viewed as an extension of the language with a lower

superscript. These action languages inherit the simple syntax of A language but their

semantics is developed in terms of transition systems where transition functions are defined

based on prioritized logic programs. By illustrating various examples, we show that our

approach eventually provides a powerful mechanism to handle various defeasibilities in

temporal prediction and postdiction. We also investigate semantic properties of these three

action languages and characterize classes of action domains that present more desirable

solutions in reasoning about action within the underlying action languages.

KEYWORDS: reasoning about action, temporal reasoning, logic programming, common sense

reasoning, priority, defeasibility

1 Introduction

Representing defeasibility is an important issue in common sense reasoning. In

reasoning about action, this issue becomes more difficult because domain and action

related defeasible information may conflict with general inertia rules – that are

necessary to specify things that persist with respect to actions and usually defeasible

as well. Furthermore, different types of defeasible information may also interfere with

each other during the reasoning. Therefore, most previous action theories usually

ignored such defeasible information in problem domains. However, recent work on

causality reveals that in many situations defeasibility plays an important role in

temporal prediction and postdiction and ignoring this issue may cause difficulties in

deriving correct solutions in reasoning about action.

Let us consider the Switch-Power domain that was first addressed in Zhang (1999),

where two domain constraints were taken into account:

if the switch is on, then the light is usually on; (1)
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if there is no power, then the light is not on. (2)

Intuitively, the first constraint is defeasible from our common sense. For instance,

even if the switch is on, the light might not be on if there is no power, or there is a

problem in the circuit, and so on. But if this constraint is not expressed as a defeasible

rule, we may have a difficulty in our reasoning. Suppose we simply represent the

above two constraints as logical implications Switch ⊃ On and ¬Power ⊃ ¬On

respectively. If the initial state is {On ,Power , Switch} and the robot is asked to

perform an action Cut-Power with effect ¬Power (e.g. a fire alarm leads the robot

to perform this action). Clearly, Cut-Power will cause a direct effect ¬Power, and

then from constraint Switch ⊃ On and ¬Power ⊃ ¬On , an indirect effect ¬Switch is

derived. Obviously, this effect is not quite reasonable from our intuition as cutting

off the power should be irrelevant to the switch’s position.

People may argue that the above problem is due to the duality of logical

implication (i.e. A⊃B≡¬B⊃¬A). Now suppose we adopt McCain and Turn’s

causal theory (McCain and Turner, 1995), where constraints (1) and (2) are

represented as inference rules Switch ⇒ On and ¬Power ⇒ ¬On respectively1.

Then under the same initial state as above, it turns out that action Cut-Power

becomes unexecutable because the effect ¬Power together with rule ¬Power ⇒ ¬On

contradicts fact On which is derivable from fact Switch and rule Switch ⇒ On . This

is not a desirable solution either.

The above example just illustrates one type of defeasibility – defeasible constraints,

which causes difficulties in reasoning about action. In fact, there are other types of

defeasible information, such as defeasible observations and actions with defeasible

and abnormal effects, that also significantly influence temporal prediction and

postdiction. Although the problem of defeasibilities has been investigated by some

researchers recently (Baral and Lobo, 1997; Geffner, 1997; Jab�lonowski et al., 1996;

Zhang, 1999), none of the previous proposals is completely satisfactory in terms of

representing and handling different types of defeasibilities in temporal reasoning (we

will discuss this issue in section 7).

In this paper, we address three basic types of defeasible information related to

temporal prediction and postdiction where incomplete information is allowable:

defeasible constraints, defeasible observations and actions with defeasible and

abnormal effects. Our goal is to handle these three types of defeasibilities in reasoning

about action under a unified framework of logic programming.

The issue of representing action in logic programming languages is not new. It

was explored by some researchers previously (Eshghi and Kowalski, 1989). However,

probably Gelfond and Lifschitz’s work (Gelfond and Lifschitz, 1993) was the first

time to make a major progress in this direction. By introducing a simple action

language A, Gelfond and Lifschitz’s action formulation was able to deal with both

temporal prediction and postdiction, while properties of actions were characterized

by translating action language A into the language of extended logic programs

1 Informally, A⇒ B represents a semantics like “if A then B”, from which we cannot derive ¬B ⇒ ¬A.
See McCain and Turner (1995) for detail.
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(Gelfond and Lifschitz, 1991). In other words, in Gelfond and Lifschitz’s formulation,

extended logic program was used as an implementation of the high level action

language A.

It has been recognized that logic programming can not only be used as the

implementation of a high level action language, but also can be used as a basis for

providing a formal semantics of the high level language (Baral and Lobo, 1997).

In this paper, we further demonstrate that prioritized logic programming has a

great flexibility to serve as a semantic basis to develop high level action languages

that handle various information conflicts in reasoning about action. The paper

is organized as follows. Section 2 briefly reviews the concept of prioritized logic

programs. Section 3 proposes a simple action language AT0 which can represent

actions in domains with defeasible constraints. The syntax of AT0 is similar to

that of A style action languages. A transition system is proposed to provide a

formal semantics of AT0, where a corresponding prioritized logic program is

employed as a basis for defining such a transition system. Section 4 then extends

action language AT0 to AT1 so that it can represent defeasible observations and

shows how it handles the problem of temporal postdiction under the occurrence of

defeasible observations. Section 5 further generalizesAT1 to action languageAT2

to represent actions with defeasible and abnormal effects. Section 6 then investigates

various properties of action languages AT0,AT1 and AT2 and characterize

specific classes of action domains that may present desirable solutions in reasoning

about action. Section 7 discusses related work, and finally, section 8 concludes the

paper with some remarks.

2 Prioritized Logic Programs (PLPs): an overview

We first introduce the extended logic program and its answer set semantics developed

by Gelfond and Lifschitz (1991). A language L of extended logic programs is

determined by its object constants, function constants and predicate constants.

Terms are built as in the corresponding first order language; atoms have the form

P (t1, . . . , tn), where ti (1 � i � n) is a term and P is a predicate constant of arity n;

a literal is either an atom P (t1, . . . , tn) or a negative atom ¬P (t1, . . . , tn). A rule is an

expression of the form:

L0 ← L1, . . . , Lm, notLm+1, . . . , notLn, (3)

where each Li (0 � i � n) is a literal. L0 is called the head of the rule, while

{L1, . . . , Lm, notLm+1, . . . , notLn} is called the body of the rule. Obviously, the body

of a rule could be empty. We also allow the head of a rule to be empty. In this

case, the rule with an empty head is called constraint. A term, atom, literal, or rule

is ground if no variable occurs in it. An extended logic program Π is a collection of

rules. Π is ground if each rule in Π is ground.

To evaluate an extended logic program, Gelfond and Lifschitz proposed an

answer set semantics for extended logic programs. Let Π be a ground extended logic

program not containing not and Lit the set of all ground literals in the language

of Π. An answer set of Π is the smallest subset S of Lit such that (i) for any rule
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L0 ← L1, . . . , Lm from Π, if L1, . . . , Lm ∈ S , then L0 ∈ S; and (ii) if S contains a pair

of complementary literals, then S = Lit. Now let Π be a ground arbitrary extended

logic program. For any subset S of Lit, let ΠS be the logic program obtained from

Π by deleting (i) each rule that has a formula not L in its body with L∈ S , and

(ii) all formulas of the form not L in the bodies of the remaining rules2. We define

that S is an answer set of Π iff S is an answer set of ΠS .

For a non-ground extended logic program Π, we usually view a rule in Π

containing variables to be the set of all ground instances of this rule formed from

the set of ground literals in the language. The collection of all these ground rules

forms the ground instantiation Π′ of Π. Then a set of ground literals is an answer

set of Π if and only if it is an answer set of Π′. It is easy to see that an extended

logic program may have one, more than one, or no answer set at all.

A Prioritized Logic Program (PLP) P is a triple (Π,N, <), where Π is an extended

logic program, N is a naming function mapping each rule in Π to a name, and <

is a strict partial ordering on names. The partial ordering < in P plays an essential

role in the evaluation of P. We also use P(<) to denote the set of <-relations of

P. Intuitively < represents a preference of applying rules during the evaluation of

the program. In particular, if N(r) <N(r′) holds in P, rule r would be preferred

to apply over rule r′ during the evaluation of P (i.e. rule r is more preferred than

rule r′). Consider the following classical example represented in our formalism:

P1 = (Π,N, <):

N1 : Fly(x)← Bird (x), not ¬Fly(x),

N2 : ¬Fly(x)← Penguin(x), not Fly(x),

N3 : Bird(Tweety)←,
N4 : Penguin(Tweety)←,
N2 < N1.

Obviously, rules N1 and N2 conflict with each other as their heads are complementary

literals, and applying N1 will defeat N2, and vice versa. However, as N2 < N1, we

would expect that rule N2 is preferred to apply first and then defeat rule N1 so that

the desired solution ¬Fly(Tweety) can be derived.

Definition 1

Let Π be a ground extended logic program and r a ground rule of the form (3) (r

does not necessarily belong to Π). Rule r is defeated by Π iff Π has an answer set

and for any answer set S of Π, there exists some Li ∈ S , where m+ 1 � i � n.

Now our idea of evaluating a PLP is as follows. Let P = (Π,N, <). If there are

two rules r and r′ in Π and N(r) <N(r′), r′ will be ignored in the evaluation of

P, only if keeping r in Π and deleting r′ from Π will result in a defeat of r′. By

eliminating all such potential rules from Π, P is eventually reduced to an extended

logic program in which the partial ordering < has been removed. Our evaluation

for P is then based on this reduced extended logic program.

2 We also call ΠS the Gelfond–Lifschitz transformation of Π in terms of S .
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Similarly to the case of extended logic programs, the evaluation of a PLP will

be based on its ground form. We say that a PLP P′ = (Π′,N′, <′) is the ground

instantiation of P = (Π,N, <) if (1) Π′ is the ground instantiation of Π; and

(2)N′(r′1) <′ N′(r′2)∈P′(<′) if and only if there exist rules r1 and r2 in Π such that

r′1 and r′2 are ground instances of r1 and r2 respectively and N(r1) <N(r2)∈P(<).

Under this definition, however, we require a restriction on a PLP, since not every

PLP’s ground instantiation presents a consistent information with respect to the

original PLP. Consider a PLP as follows:

N1 : P (f(x))← notP (x),

N2 : P (f(f(x)))← notP (f(x)),

N2 < N1.

If the only constant in the language is 0, then the set of ground instances of N1 and

N2 includes rules like:

N ′1 : P (f(0))← notP (0),

N ′2 : P (f(f(0)))← notP (f(0)),

N ′3 : P (f(f(f(0))))← notP (f(f(0))),

. . . ,

It is easy to see that N ′2 can be viewed as an instance for both N1 and N2. Therefore,

the ordering <′ among rules N ′1, N
′
2, N

′
3, . . . is no longer a strict partial ordering

because of N ′2 <
′ N ′2. Obviously, we need to exclude this kind of programs in our

context. On the other hand, we also want to avoid a situation like · · · <′ N ′3 <′
N ′2 <

′ N ′1 in the ground prioritized logic program because this <′ indicates that

there is no most preferred rule in the program.

Given a PLP P = (Π,N, <). We say that P is well formed if there is no rule r′

that is an instance of two different rules r1 and r2 in Π and N(r1) <N(r2)∈P(<).

Then it is not difficult to observe that the following fact holds.

Fact: If a PLP P = (Π,N, <) is well formed, then in its ground instantiation P′ =

(Π′,N′, <′), <′ is a partial ordering and every non-empty subset of Π′ has a least

element with respect to <′.

Due to the above fact, in the rest of this paper, we will only consider well formed

PLP programs in our discussions, and consequently, the evaluation for an arbitrary

PLP P = (Π,N, <) will be based on its ground instantiation P′ = (Π′,N′, <′).

Therefore, in our context a ground prioritized (or extended) logic program may con-

tain infinite number of rules. In this case, we will assume that this ground program

is the ground instantiation of some program that only contains finite number of

rules. In the rest of the paper, whenever there is no confusion, we will only consider

ground prioritized (extended) logic programs without explicit declaration.

Definition 2

(Zhang and Foo, 1997a) Let P = (Π,N, <) be a prioritized logic program. P< is

a reduct of P with respect to < if and only if there exists a sequence of sets Πi

(i = 0, 1, . . .) such that:

1. Π0 = Π;
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2. Πi = Πi−1 − {r1, r2, . . . | (a) there exists r∈Πi−1 such that

for every j (j = 1, 2, . . .), N(r) <N(rj)∈P(<) and

r1, r2, . . . are defeated by Πi−1 − {r1, r2, . . .}, and (b) there

are no rules r′, r′′, . . . ∈Πi−1 such that N(rj) < N(r′),

N(rj) < N(r′′), . . . for some j (j = 1, 2, . . .) and r′, r′′, . . .

are defeated by Πi−1 − {r′, r′′, . . .}};
3. P< =

⋂∞
i=0 Πi.

In Definition 2, P< is an extended logic program obtained from Π by eliminating

some rules from Π. In particular, if N (r) <N(r1), N(r) <N(r2), . . . , and Πi−1 −
{r1, r2, . . .} defeats {r1, r2, . . .}, then rules r1, r2, . . . will be eliminated from Πi−1 if no

less preferred rule can be eliminated (i.e. conditions (a) and (b)). This procedure is

continued until a fixed point is reached. It should be noted that condition (b) in

the above definition is necessary because without it some unintuitive results may be

derived. For instance, consider P1 again, if we add additional preference N3 < N2

in P1, then using a modified version of Definition 2 without condition (b),

{Fly(Tweety)← Bird(Tweety), not¬Fly(Tweety),

Bird(Tweety)←,
Penguin(Tweety)←}

is a reduct of P1, from which we will conclude that Tweety can fly.

Theorem 1

Every PLP has a reduct.

Definition 3

(Zhang and Foo, 1997a) Let P = (Π,N, <) be a PLP and Lit the set of all ground

literals in the language of P. For any subset S of Lit, S is an answer set of P iff S

is an answer set for some reduct P< of P.

Example 1

Using Definitions 2 and 3, it is easy to conclude that P1 has a unique reduct as

follows:

P<1 = {¬Fly(Tweety)← Penguin(Tweety), not Fly(Tweety),

Bird(Tweety)←,
Penguin(Tweety)←},

from which we obtain the following answer set of P1:

S = {Bird(Tweety), Penguin(Tweety), ¬Fly(Tweety)}.
Now we consider another program P2:

N1 : A←,
N2 : B ← not C,

N3 : D ←,
N4 : C ← not B,

N1 < N2, N3 < N4.
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According to Definition 2, it is easy to see that P2 has two reducts:

{A←, D ←, C ← not B}, and

{A←, B ← not C, D ←}.

From Definition 3, it follows that P2 has two answer sets: {A,C,D} and {A,B,D}.

3 AT0: representing actions in domains with defeasible constraints

In this section, we develop an action languageAT0 which is able to handle domains

with defeasible constraints. The syntax of language AT0 is inspired by A family

languages, and a transition system will be developed to provide the semantics of

AT0 where a corresponding prioritized logic program is employed to define the

transition function.

3.1 Syntax of AT0

The languageAT0 has two disjoint sets of names called actions and fluents. We will

use A, A1, A2, . . . to denote action names, and F, F1, F2, . . . to denote fluent names.

We define a fluent expression to be a fluent name possibly preceded by a negation

sign ¬.

A value proposition is an expression of the form:

L after A1, . . . , Al , (4)

where L is a fluent expression and A1, . . . , Al are action names. A value proposition

is also called an initial proposition if no action name occurs in it:

initially L. (5)

A causal proposition is an expression of the form:

L is caused if L1, . . . , Lm with absence Lm+1, . . . , Ln, (6)

where L, L1, . . . , Ln are fluent expressions. This is so-called defeasible constraint

whose intuitive meaning is that L is caused to be true if L1, . . . , Lm are true and

Lm+1, . . . , Ln are not present. As a special case, (6) is reduced to a non-defeasible

causal rule if no absent fluent expression is mentioned:

L is caused if L1, . . . , Lm (7)

An action effect proposition is an expression of the form:

A causes L if L1, . . . , Lk, (8)

where A is an action name and L1, . . . , Lk are fluent expressions. (8) means that if

preconditions L1, . . . , Lk of A are true, then action A causes L to be true. Note the

difference between (7) and (8) while no action is involved in the former.

Now we define a domain description D of AT0 to be a finite set of initial

propositions, causal propositions and action effect propositions. It should be noted

that here we do not include value propositions of the form (4) into a domain

description since at the moment we restrict our formulation only to deal with
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prediction reasoning while a value proposition (4) is only used as a query statement

in the language3. The following example shows how language AT0 is used to

describe an action domain.

Example 2

Let us consider the Switch-Power domain mentioned in section 1 again. The domain

includes two constraints: (a) if the switch is on, then the light is usually on;

(b) if there is no power, then the light is not on. We treat the first constraint as a

defeasible causal rule. We also suppose that initially the light is on, there is power

and the switch is on. An action Cut-Power is then performed. It has been shown

that the previous approaches have difficulties to deal with this example due to a lack

of expressibility of defeasible constraints (Zhang, 1999). This action scenario can be

described by specifying a domain description D(Switch-Power) of AT0 as follows.

Firstly, D(Switch-Power) contains the following three initial propositions:

initially On,

initially Power,

initially Switch.

D(Switch-Power) also includes the following two causal propositions to capture the

domain constraints presented above:

On is caused if Switch with absence ¬On,
¬On is caused if ¬Power.
Finally, D(Switch-Power) has one action effect proposition:

Cut-Power causes ¬Power.

3.2 Semantics of AT0

Similarly to the idea presented in Gelfond and Lifschitz (1993), we define a transition

system to provide a formal semantics for AT0. However, instead of developing an

independent transition system for the language, our transition function is defined

based on the PLP. This is because the PLP has a powerful mechanism of solving

conflicts between defeasible information, which, from our observation, is difficult to

handle in the traditional transition system approach.

3.2.1 Translating AT0 into PLP

We first propose a translation from a domain description D ofAT0 into a PLP, and

our transition function will be defined based on this translated PLP. To implement

this translation, we consider a language LP
AT0 of PLPs including the following

vocabulary:

— Situation sort: one situation constant S0, and situation variables s, s1, s2, . . . .

— Action sort: action constants A,A1, A2, . . . , and action variables a, a1, a2, . . . .

— Propositional fluent sort: fluent constants F, F1, F2, . . . , and fluent variables

f, f1, f2, . . . .

3 This restriction will be released in language AT1.
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— Function symbol: a binary function symbol Result which takes arguments of

action and situation, respectively, and returns a situation.

— Predicate symbols: five binary predicate symbols Holds, Caused+,Caused−,

effect+ and Effect−, all of which take arguments of fluent and situation,

respectively.

InLP
AT0 situation term Result(a, s) indicates the resulting situation after perform-

ing action a in s. Atom Holds(f, s) (or literal ¬Holds(f, s)) indicates the fact that

fluent f is true (or false, resp.) in situation s. Atom Caused+(f, s) (or Caused−(f, s)

resp.) indicates that fluent f is caused to be true (or false, resp.) in situation s. Causal

rules in LP
AT0 have the following forms4:

Caused+(F, s) ← [¬]Holds(F1, s), . . . , [¬]Holds(Fm, s),

not [¬]Holds(Fm+1, s), . . . , not [¬]Holds(Fn, s), (9)

Caused−(F, s) ← [¬]Holds(F1, s), . . . , [¬]Holds(Fm, s),

not [¬]Holds(Fm+1, s), . . . , not [¬]Holds(Fn, s), (10)

Holds(f, s) ← Caused+(f, s), (11)

¬Holds(f, s) ← Caused−(f, s). (12)

Basically, rule (9) together with rule (11) (or (10) together with (12) resp.) says

that if literals [¬]Holds(F1, s), . . . , [¬]Holds(Fm, s) are true, and there is no explicit

statement saying that [¬]Holds(Fm+1, s), . . . , [¬]Holds(Fn, s) are true, then fluent F is

caused to be true (or false resp.) in situation s. As will be seen, in our following

translation, rules (9) and (10) are actually related to the domain description D, and

hence are domain specific, while rules (11) and (12) act as generic rule schemas that

are irrelevant to D and hence are domain independent. For simplicity, we denote

Πc
ind = {(11), (12)}.

Atoms Effect+(f, s) and Effect−(f, s) are used to represent direct effects of actions.

Generally, action effect rules have the following forms:

Effect+(F,Result(A, s)) ← [¬]Holds(F1, s), . . . , [¬]Holds(Fk, s), (13)

Effect−(F,Result(A, s)) ← [¬]Holds(F1, s), . . . , [¬]Holds(Fk, s), (14)

Holds(f, s) ← Effect+(f, s), . (15)

¬Holds(f, s) ← Effect−(f, s). (16)

Intuitively, rule (13) together with rule (15) (or (14) together with (16) resp.) says

that if action A’s preconditions [¬]Holds(F1, s), . . . , [¬]Holds(Fk, s) are true, then

fluent F becomes true (or false resp.) after performing action A. Again, rules (13)

and (14) are domain specific, while rules (15) and (16) represent domain independent

schemas. Similarly, we denote

Πeff
ind = {(15), (16)}.

4 Notation [¬] means that the negation sign ¬ may or may not occur.
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Definition 4

A PLP is called a translation of domain description D of AT0, denoted by

PAT0

(D) = (Π,N, <), if it is obtained as follows:

1. Π consists of the following rules:

Initial fact rules: For each initial proposition (5) in D, there is a rule of the

form [¬]Holds(F, S0)←5.

Causal rules: for each causal proposition (6) in D, there is a causal rule of the

form (9) or (10). Two domain independent causal rules (11) and (12) are also

included in this set.

Action effect rules: for each action effect proposition (8), there is an action

effect rule of the form (13) or (14). Two domain independent action effect rules

(15) and (16) are also included in this set.

Inertia rules6:

Holds(f,Result(a, s)) ← Holds(f, s), not ¬Holds(f,Result(a, s)), (17)

¬Holds(f,Result(a, s)) ← ¬Holds(f, s), not Holds(f,Result(a, s)). (18)

2. Naming function N assigns a unique name to each rule in Π.

3. For each causal rule Nc and each inertia rule Ni, <-relation Nc < Ni holds.

In PAT0

(D) specified above, Π represents initial facts, domain constraints (causal

rules) and action effects corresponding to D, and inertia rules are used to capture

things that do not change with respect to actions. As we are allowed to represent

defeasible causal rules while inertia rules are also defeasible, possible conflicts may

occur between these two types of rules. To solve such conflicts, we specify that

a causal rule is more preferred than an inertia rule. The intuition behind this

is clear: generally causal rules are used to derive indirect effects of actions, and

whenever there is no explicit condition to block a defeasible causal rule, this rule

should be triggered to derive necessary indirect effects. This point is illustrated in

Example 3.

It is also obvious that to translate a specific domain description D into PAT0

(D),

we only need to translate domain specific information such as initial propositions,

causal and action effect propositions into logic program rules, while other domain

independent schema rules such as Πc
ind, Π

eff
ind and rules (17) and (18) are automatically

embedded in every translated PLP. Formally, in a given PAT0

(D), we denote a set

of domain specific rules as Π0
spec, and specify the set of domain independent rules as

Π0
ind = Πc

ind ∪Πeff
ind ∪Πi

ind, (19)

where Πi
ind = {(17), (18)}.

5 Here Holds(F, S0) or ¬Holds(F, S0) is corresponding to whether L occurring in initially L is F or ¬F
respectively. This assumption is also adopted in the rest of this paper.

6 Note that these two inertia rules actually represent a set of inertia rules by substituting fluent
and action variables f and a with every fluent and action constants occurring in the domain,
respectively.
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Example 3

(Example 2 continued.) According to Definition 4, the domain description

D(Switch-Power) presented in Example 2 can be translated into a PLP, denoted

by PAT0

(Switch-Power) = (Π0
spec∪Π0

ind,N, <), where Π0
spec consists of the following

rules:

Initial fact rules:

N1 : Holds(On, S0)←,
N2 : Holds(Power, S0)←,
N3 : Holds(Switch, S0)←,
Causal rules:

N4 : Caused+(On, s)← Holds(Switch, s), not ¬Holds(On, s),

N5 : Caused−(On, s)← ¬Holds(Power, s),

Action effect rule:

N6 : Effect−(Power,Result(Cut-Power, s))←.

Naming rules in Π0
ind:

Assigning a unique name to each rule in Π0
ind. That is, we assign names N7, N8,

N9, N10, N11 and N12 to rules (11), (12), (15), (16), (17) and (18), respectively.

<-relations:

Nc < Ni, while Nc and Ni are names of any causal rule and inertia rule in Π,

respectively. That is, we have {N4, N5, N7, N8} < {N11, N12}7.

3.2.2 Transition function, models and entailment

To define the transition function, we first introduce the concept of state. A state is a

collection of fluent expressions. A state is consistent if it does not contain a fluent F

and its negative correspondent ¬F . We use symbols Ŝ0, Ŝ1, Ŝ2, . . . to denote states.

Then transition function R maps a state to a power set of states by some action.

Definition 5

Given a domain description D and its translation PAT0

(D), let � be the set of all

answer sets of PAT0

(D). The transition function R(A, Ŝ ) of D with respect to action

A and state Ŝ is defined as follows:

1. If � is empty or includes an inconsistent answer set of PAT0

(D), then R(A, Ŝ)

is undefined;

2. Ŝ0 = {[¬]F | [¬]Holds(F, S0)∈Ans}, where Ans∈�;

3. R(A, Ŝ ) = {{[¬]F | [¬]Holds(F,Result(A, S ′))∈Ans, and for any F ′

[¬]F ′ ∈ Ŝ iff [¬]Holds(F ′, S ′)∈Ans} |Ans∈�}.

It should be noted that we define a state to be a collection of fluent expressions,

that is very different from the state defined in standard A-style action languages

where states correspond to possible physical worlds and every fluent is either true or

false in a state (Gelfond and Lifschitz, 1993). In our context, a state may not present

a complete information for fluents. If a fluent is not present in a state, then this

7 This is an abbreviation of a set of <-relations of the form Ni < Nj , where i = 4, 5, 7, 8 and j = 11, 12.
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A1
A2

F1

A1

�F1
�F2

A1, A2

A2

A1

�F1
F2

Fig. 1. State transitions.

fluent’s truth value is viewed as unknown. Defining states in this way will bring us

a flexibility to develop a formal semantics for our action theories where incomplete

information related to defeasibility is admitted.

In Definition 5, Ŝ0 is called the initial state of D, and R(A, Ŝ) represents the set

of all possible states resulting from the execution of A on state Ŝ . From the feature

of PAT0

(D), it is quite obvious that the initial state Ŝ0 is always unique. On

the other hand, R(A, Ŝ) may include more than one state. To see how transition

function R works, we consider a domain D consisting of the following

propositions:

initially F1,

F2 is caused if ¬F1 with absence ¬F2,

¬F2 is caused if ¬F1 with absence F2,

A1 causes ¬F1,

A2 causes ¬F2 if ¬F1, F2.

Since two causal propositions conflict with each other and action A1 is executable

in the initial situation, it is not difficult to see that D’s PLP translation PAT0

(D)

has two different answer sets such that Holds(F2,Result(A1, S0)) is in one and

¬Holds(F2,Result(A1, S0)) is in the other. Then from Definition 5, state transitions

of D specified by transition function R can be described by Figure 1, where {F1} is

the initial state.

Let Ā denote an action string A1 . . . Al (as a special case, an empty action string

is denoted as ε). A structure Ψ is a partial function from strings of actions to states

whose domain is prefix closed. We refer Ψ(ε) = Ŝ0, i.e. the initial state of D. The

following definition describes possible trajectories of the dynamic system (domain

description) defined in AT0 under structure Ψ.
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Definition 6

Given a structure Ψ.

1. An initial proposition of the form (5) is satisfied in Ψ if L∈Ψ(ε);

2. A causal proposition of the form (6) or an action effect proposition of the

form (8) is satisfied in Ψ if the following conditions hold:

– for any action string Ā and action constant A, if Ψ(Ā) and R(A,Ψ(Ā)) are

defined, then Ψ(Ā · A)∈R(A,Ψ(Ā));

– otherwise Ψ(Ā · A) is undefined.

A fluent expression L is true in a state Ψ(Ā) if L∈Ψ(Ā).

Definition 7

Given a domain description D, a structure Ψ is a model of D if all initial, causal

and action effect propositions in D are satisfied in Ψ, and for any action string Ā

and fluent F, F and ¬F are not both true in Ψ(Ā). We say a value proposition of

the form (4): L after A1, . . . , Al is satisfied in Ψ if L∈Ψ(Ā), where Ā = A1 . . . Al . We

say D entails value proposition (4), denoted as D |=AT0 L after A1, . . . , Al , if (4) is

satisfied in all models of D.

Example 4

Example 3 continued. From D(Switch-Power′)’s PLP translation PAT0

(Switch-

Power) as shown in Example 3, it can be verified that PAT0

(Switch-Power) has a

unique answer set that includes the following ground literals8:

Holds(On, S0),

Holds(Power, S0),

Holds(Switch, S0),

¬Holds(Power,Result(Cut-Power, S0)),

¬Holds(On,Result(Cut-Power, S0)) and

Holds(Switch,Result(Cut-Power, S0)).

Since Ŝ0 = {On, Power, Switch}, we have R(Cut-Power, Ŝ0) = {Ŝ1}, where Ŝ1 =

{¬On,¬Power, Switch}. Now it is easy to see that structure Ψ is a model of

D(Switch-Power), where Ψ(ε) = Ŝ0 and Ψ(Cut-Power) = Ŝ1. Furthermore, according

to Definition 7, we have

D(Switch-Power) |=AT0 ¬Power after Cut-Power,

D(Switch-Power) |=AT0 ¬On after Cut-Power,

D(Switch-Power) |=AT0 Switch after Cut-Power.

Now we slightly modify the domain of Switch-Power as stated in Example 2.

Suppose initially the light is not on and the switch is off, and another action

Turn-On is also available. Then the modified domain description D(Switch-Power′)

includes the following initial propositions:

8 Obviously, the answer set also includes many other ground literals that we are not interested in listing
here.
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initially ¬On,
initially ¬Switch,

and the action effect proposition

Turn-On causes Switch,

together with the effect proposition of action Cut-Power and two causal propositions

as given in Example 2. Ignoring the detail, we can derive the following results:

D(Switch-Power′) |=AT0 On after Turn-On,

D(Switch-Power′) |=AT0 ¬On after Turn-On, Cut-Power,

D(Switch-Power′) |=AT0 Switch after Turn-On, Cut-Power.

4 AT1: combining defeasible observations into action domains

We have shown that language AT0 handles temporal prediction where defeasible

constraints are admitted. It, however, cannot deal with temporal postdiction, e.g.

within the framework of AT0 we cannot reason from the current state to the past

under some observations. It has been realized that observations on any intermediate

states (including the final state) play an important role in temporal postdiction

(Jab�lonowski et al., 1996). Here, an observation is viewed as an agent’s beliefs about

the domain that is either obtained from the outside world or from the agent’s own

assumption. In the case that an agent makes an observation under some assumption,

such observation becomes defeasible because once the assumption is proved not to

be true, the agent’s observation should be defeated.

In this section, we extend AT0 to AT1 such that the extended language can

handle temporal prediction and postdiction where both defeasible constraints and

observations are admitted.

4.1 Syntax of AT1

The syntax of AT1 is the same as AT0’s except that AT1 also has an observation

proposition of the form:

L is observed if L1, . . . , Lm with absence Lm+1, . . . , Ln after A1, . . . , Al , (20)

where L,L1, . . . , Ln are fluent expressions, and A1, . . . , Al are actions. Intuitively, (20)

says after actions A1, . . . , Al are performed sequentially, L is observed to be true if

L1, . . . , Lm are true while Lm+1, . . . , Ln are absent. Obviously, (20) represents a kind of

defeasible information. In the case that no action occurs in (20), (20) can be written

as the following form:

initially L is observed if L1, . . . , Lm with absence Lm+1, . . . , Ln. (21)

Under the language AT1, we define a domain description D to be a finite set of

observation propositions, causal propositions and action effect propositions. AT1

will still have the value proposition (4) and its special case the initial proposition

(5), but are only used as query statements in AT1.
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Example 5

Let us consider a modified shooting action scenario which we name Shooting-1.

Suppose the turkey is observed alive in the initial situation, and as there is no

explicit information about whether the gun is loaded in the initial situation, the

agent would assume that the gun is initially not loaded by default. After actions

Shoot and Wait are successively performed, it is observed that the turkey is dead (not

alive). This scenario can be naturally described by language AT1. In particular,

we specify a domain description D(Shooting-1) which has the following observation

propositions:

initially Alive is observed,

initially ¬Loaded is observed with absence Loaded,

¬Alive is observed after Shoot,Wait,

and an action effect proposition:

Shoot causes ¬Alive if Loaded.

4.2 Semantics of AT1

We will use a similar way as described in section 3.2 to develop a formal semantics

of AT1 based on a transition system that is defined on the basis of the translation

from a AT1 domain description into a PLP.

4.2.1 Translating AT1 into PLP

As we have mentioned earlier, the major improvement from AT0 to AT1 is that

we allow defeasible observations to be presented in a domain description so that

temporal postdiction becomes possible. It is quite straightforward to translate an

observation proposition of the form (20) into the following logic rule:

[¬]Holds(F, S) ← [¬]Holds(F1, S), . . . , [¬]Holds(Fm, S),

not [¬]Holds(Fm+1, S), . . . , not [¬]Holds(Fn, S), (22)

where S = Result(Al,Result(. . . ,Result(A1, S0) . . .)).

To do postdiction reasoning, for each action effect proposition in D, we need to

have some action explanation rules which will be used to derive action preconditions

based on proper observations. First, if there is an action effect rule (13), the following

rule explains that the fact Holds(F,Result(A, s)) is caused by performing action A:

Effect+(F,Result(A, s)) ← Holds(F,Result(A, s)), not Holds(F, s),

not Caused+(F,Result(A, s)), (23)

Clearly, the function of rule (23) is to identify action A’s actual execution. The in-

tuition is that if fluent F is true (or false, resp.) in situation Result(A, s), and there is

no explicit information saying that F is true in the previous situation s or F is caused

to be true by some causal rule, then it derives that F ’s truth value in Result(A, s) is

a direct effect of action A.

If a fluent F is a direct effect of some action A, i.e. Effect+(F,Result(A, s)) holds,

then each precondition of A must also hold in the previous situation. That is, we
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should have rules like:

[¬]Holds(Fi, s) ← Effect+(F,Result(A, s)), (24)

where i = 1, . . . , k and A causes F if [¬]F1, . . . , [¬]Fk is an action effect proposition

in domain D. However, it should be noted that sometimes one action may cause the

same effect under different preconditions. In this case, deriving all possible action

preconditions may cause contradictions. For instance, consider the following domain

description D(Door):

initially ¬ HasKey,

DoorOpened is observed after OpenDoor,

OpenDoor causes DoorOpened if HasCard,

OpenDoor causes DoorOpened if HasKey.

In this domain, action OpenDoor has two independent preconditions HasCard and

HasKey. If we translate this domain according to our proposal above, we will have

the following logic rules:

Holds(DoorOpened ,Result(OpenDoor , S0))←,

Effect+(DoorOpened ,Result(OpenDoor , s))←
Holds(DoorOpened ,Result(OpenDoor , s)),

not Holds(DoorOpened , s),

not Caused+(DoorOpened ,Result(OpenDoor , s)),

Holds(HasCard , s)← Effect+(DoorOpened ,Result(OpenDoor , s)), and

Holds(HasKey , s)← Effect+(DoorOpened ,Result(OpenDoor , s)).

From the above logic rules, we will deduce both Holds(HasCard , S0) and Holds

(HasKey , S0). But from D(Door), we know that ¬HasKey initially holds. To avoid

this kind of contradiction, instead of using rule (24), we should have a weaker rule to

derive action preconditions: whenever there is no conflict, we only deduce a minimal

number of preconditions to explain an action. Under this principle, we will change

rule (24) to the following form:

[¬]Holds(Fi, s) ← Effect+(F,Result(A, s)),

not[¬]Holds(Fi, s),

not[¬]Holds(F ′1, s), . . . , not[¬]Holds(F ′l , s), (25)

where i = 1, . . . , k, and fluents [¬]F ′1, . . . [¬]F ′l occur as preconditions in all other

action effect propositions of A that have the same effect9.

The following rules represent the dual case of rules (23) and (25) corresponding

to action effect rule (14):

Effect−(F,Result(A, s)) ← Holds(F,Result(A, s)), not Holds(F, s),

not Caused+(F,Result(A, s)), (26)

9 [¬]Holds(Fi, s) denotes the complementary literal of [¬]Holds(Fi, s).
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[¬]Holds(Fi, s) ← Effect−(F,Result(A, s)),

not[¬]Holds(Fi, s),

not[¬]Holds(F ′1, s), . . . , not[¬]Holds(F ′l , s). (27)

Now the following definition describes the formal translation from a domain

description D of AT1 into a PLP.

Definition 8

A PLP is called a translation of domain description D of AT1, denoted by

PAT1

(D) = (Π,N, <), if it is obtained as follows:

1. Π consists of the following rules:

Observation rules: for each observation proposition of (20), there is a rule of

the form (22).

Causal rules: the same as in Definition 4.

Action effect rules: the same as in Definition 4.

Action explanation rules: for each action effect rule (13), there are rules (23)

and (25), and for each action effect rule (14), there are rules (26) and (27).

Inertia rules: (17), (18) and:

Holds(f, s) ← Holds(f,Result(a, s)), not ¬Holds(f, s),

not Caused+(f,Result(a, s)),

not Effect+(f,Result(a, s)), (28)

¬Holds(f, s) ← ¬Holds(f,Result(a, s)), not Holds(f, s),

not Caused−(f,Result(a, s)),

not Effect−(f,Result(a, s)). (29)

2. Naming function N assigns a unique name to each rule in Π.

3. For each observation rule No, causal rule Nc, action explanation rule Nex and

inertia rule Ni, the following <-relations hold:

Nex < Nc < Ni < No. (30)

Compared with Definition 4, the PLP translation specified in Definition 8 presents

several new features. First, PAT1

(D) allows to represent defeasible observations not

only at the initial situation but also at any other situations. Second, PAT1

(D)

includes action explanation rules (23), (25), (26), and (27). Finally, the extra inertia

rules (28) and (29) allow us to reason about fluents’ truth values from the current

situation to the past. That is, if a fluent f is true (or false, resp.) currently, and

there is no explicit information saying that f is not true (or not false, resp.) in the

previous situation, or f is caused to be true by some causal rule, or f is true (or

false, resp.) as a direct effect of some action, then it derives that f is true (or false,

resp.) in the previous situation.

Since both observation and action explanation rules may be defeasible, more

possible conflicts may occur in PAT1

(D). For instance, conflicts may not only occur

between causal rules and inertia rules, but also between action explanation rules

and inertia rules, observation rules and causal rules, etc.. To solve these possible
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conflicts, the underlying <-relation is specified as (30). (30) presents that action

explanation rules are most preferred because the execution of an action usually

override defeasible causal and inertia rules, while observation rules are less preferred

than inertia rules due to the intuition that a fluent’s truth value normally persists if

there is no explicit action or causal rule to change it.

Note that in PAT1

(D), action explanation rules (23), (25), (26) and (27) are

domain specific because they are specified based on action effect rules (13) and (14).

On the other hand, the new inertia rules (28) and (29) are domain independent.

Therefore, we can denote domain independent rules in PAT1

(D) as follows:

Π1
ind = Πc

ind ∪Πeff
ind ∪Πi′

ind, (31)

where Πi′

ind = Πi
ind ∪ {(28), (29)}. We also denote the set of domain specific rules of

PAT1

(D) as Π1
spec.

Example 6

Example 5 continued. According to Definition 8, it is not difficult to obtain the

translation of domain description D(Shooting-1), PAT1

(Shooting-1) = (Π1
spec ∪

Π1
ind,N, <), where Π1

spec consists of the following rules:

Observation rules:

N1 : Holds(Alive, S0)←.

N2 : ¬Holds(Loaded , S0)← not Holds(Loaded , S0).

N3 : ¬Holds(Alive,Result(Wait ,Result(Shoot , S0)))←.

Action effect rules:

N4 : Effect−(Alive,Result(Shoot , s))← Holds(Loaded , s).

Action explanation rules:

N5 : Effect−(Alive,Result(Shoot , s)) ← ¬Holds(Alive,Result(Shoot , s)),

not ¬Holds(Alive, s),

not Caused−(Alive,Result(Shoot , s)).

N6 : Holds(Loaded , s)← Effect−(Alive,Result(Shoot , s)), not¬Holds(Loaded , s).

Naming rules in Π1
ind:

Assigning a unique name to each rule in Π1
ind. Therefore, we have names N7, N8, N9,

N10, N11, N12, N13, and N14 for rules (11), (12), (15), (16), (17), (18), (28) and (29),

respectively.

<-relations:

Nex < Ni < No. That is, we have:

{N5, N6} < {N11, N12, N13, N14} < {N1, N2, N3}.

4.2.2 Transition function, models and entailment

Transition function R, structures and models Ψ are defined in the same way as

in AT0 (see section 3.2.2). We denote the entailment relation under Ψ in AT1

as |=AT1 . The only thing we should emphasize is that since we allow a domain

description to include defeasible initial observation propositions, it is possible that
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one initial observation proposition conflicts with the other. Therefore, different initial

states Ŝ0 may be deduced from different answer sets of the corresponding translated

PLP PAT1

(D) of D.

Example 7

Example 5 continued. In the shooting action scenario as described in Example 5,

the question we are interested in is when the turkey died and whether the gun was

actually loaded initially. This is a question about postdiction that we need to reason

from the current situation to the past. After translating the domain description

D(Shooting-1) into PAT1

(Shooting-1) as illustrated in Example 6, we obtain the

following results:

D(Shooting-1) |=AT1 ¬Alive after Shoot,

D(Shooting-1) |=AT1 initially Loaded,

where the first solution says that the turkey was dead after the execution of action

Shoot, and the second indicates that initially the gun was actually loaded, which

defeats the original observation.

5 AT2: representing actions with defeasible and abnormal effects

It is common that in temporal reasoning under some circumstances, an action

might be abnormally executed and the original expected action effect is defeated.

Sometimes, an abnormal effect associated with this action may be also produced.

Consider the classic shooting scenario (Sandewall, 1994) in which it is usually

assumed that if the gun is loaded, then the shoot action causes a direct effect that

the turkey is not alive. However, it is probably more natural to treat shoot as a

defeasible action. For instance, if the bullet is dumb, the turkey would be still alive

after executing action shoot, or it could be an abnormal effect of shoot if after

shooting the turkey is still alive but the pigeon is dead. In this section, we try to

further generalize our action language AT1 to AT2 in order to capture actions

with defeasible and/or abnormal effects as described above.

5.1 Syntax of AT2

AT2 includes the same forms of observation propositions, causal propositions, and

value propositions of AT1, but has different forms of action effect propositions.

First, an action effect proposition of AT2 is of the following form:

A normally causes L if L1, . . . , Lk, (32)

where A is an action and L,L1, . . . , Lk are fluent expressions. Intuitively, this action

effect proposition is defeasible since we consider that if an action is abnormally

executed, its normal effect then cannot be produced.

Therefore, the following action abnormal effect proposition represents the abnormal

effect of an action:

A abnormally causes L if L1, . . . , Lk. (33)

https://doi.org/10.1017/S1471068402001606 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001606


348 Y. Zhang

Finally, an abnormal condition proposition represents the condition under which

an action can be considered to be abnormal:

A is abnormal if before L1, . . . , Lh after Lh+1, . . . , Lp. (34)

Usually, the abnormality of an action can be identified from observations on the

changes of some particular fluents’ truth values before and after the action execution.

Hence, (34) says that if L1, . . . , Lh are true before action A is executed, and Lh+1, . . . , Lp
are true after action A is executed, then A is identified to be abnormal.

A domain description D of AT2 is a finite set of observation propositions, causal

propositions, action effect propositions, abnormal action effect propositions, and

abnormal condition propositions. The following example shows how we can use

AT2 to represent domains where actions may have abnormal or/and defeasible

effects.

Example 8

Let us consider a different shooting scenario named Shooting-2 in which action

Shoot has a defeasible effect and it is abnormally executed if initially the gun is

loaded and after performing the action, the turkey is observed still alive. Initially the

gun is loaded and turkey is alive. This scenario is easy to formalize by using AT2.

We specify a domain description D(Shooting-2) that has the following observation

propositions:

initially Loaded is observed,

initially Alive is observed,

a defeasible action effect proposition:

Shoot normally causes ¬ Alive if Loaded,

and an abnormal condition proposition:

Shoot is abnormal if before Loaded after Alive.

5.2 Semantics of AT2

Similarly to previous languagesAT0 andAT1, we will propose a transition system

to provide a formal semantics ofAT2. Again, this transition system is defined based

on a translation from a domain description of AT2 into a PLP.

5.2.1 Translating AT2 into PLP

To translate an action domain of AT2, we need to extend the language LP
AT0

of PLPs introduced in section 3.2 to a new language LP
AT2 of PLPs by adding

following symbols:

– Ab: a binary predicate symbol taking arguments action and situation, re-

spectively.

– AbEffect+ and AbEffect−: binary predicate symbols taking arguments fluent

and situation, respectively.
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Intuitively, atom Ab(a, s) expresses that action a is abnormally executed at situation

s, while atoms AbEffect+(f, s) and AbEffect−(f, s) are used to represent abnormal

effects of actions (see the following for detail).

Considering the defeasibility of action executions, we need to modify our original

action effect rules (13) and (14) presented in section 3.2 to the following forms,

respectively:

Effect+(F,Result(A, s)) ← [¬]Holds(F1, s), . . . , [¬]Holds(Fk, s),

not Ab(A, s), (35)

Effect−(F,Result(A, s)) ← [¬]Holds(F1, s), . . . , [¬]Holds(Fk, s),

not Ab(A, s). (36)

Rule (35) (resp. (36)) says if A’s preconditions [¬]Holds(F1, s), . . . , [¬Holds(Fk, s)

hold, and there is no explicit information stating that A is abnormally executed at

situation s, then fluent F will be true (or false, resp.) in situation Result(A, s) as a

direct effect of A. Additionally we also need a generic schema for any action a:

¬Ab(a, s)← not Ab(a, s), (37)

which simply expresses that if there is no explicit information saying that action A

is abnormally executed at situation s, then it is assume that A is not abnormally

executed at situation s. To simplify our following presentation, we denote

Πeff′

ind = Πeff
ind ∪ {(37)}10.

Consequently, action explanation rules (23) and (26) in AT1 are also modified

as follows respectively:

Effect+(F,Result(A, s)) ← Holds(F,Result(A, s)), not Holds(F, s),

not Caused+(F,Result(A, s)),

not Ab(A, s). (38)

Effect−(F,Result(A, s)) ← ¬Holds(F,Result(A, s)), not ¬Holds(F, s),

not Caused−(F,Result(A, s)),

not Ab(A, s). (39)

(38) states that if fluent F is true in situation Result(A, s), and there is no evidence

to show that (a) F is true in the previous situation s; (b) F is caused to be true in

situation Result(A, s); and (c) action A is abnormal at situation s, then it is derived

that F must be a direct effect of action A in situation Result(A, s). (39) has a similar

interpretation.

As we mentioned earlier, some actions with defeasible effects may also produce

abnormal effects. Hence, we also specify action abnormal effect rules of the following

10 Note that Π
eff
ind = {(15), (16)} (see section 3.2).
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forms:

AbEffect+(F,Result(A, s)) ← [¬]Holds(F1, s), . . . , [¬]Holds(Fl, s),

Ab(A, s). (40)

AbEffect−(F,Result(A, s)) ← [¬]Holds(F1, s), . . . , [¬]Holds(Fl, s),

Ab(A, s). (41)

Holds(f, s) ← AbEffect+(f, s). (42)

¬Holds(f, s) ← AbEffect−(f, s). (43)

Ab(A, s) ← [¬]Holds(F1, s), . . . , [¬]Holds(Fh, s),

[¬]Holds(Fh+1,Result(A, s)), . . . ,

[¬]Holds(Fp,Result(A, s)). (44)

Basically, rule (40) (resp. (41)) says if conditions [¬]Holds(F1, s), . . . , [¬]Holds(Fl, s)

hold and A is abnormally executed, then fluent F will be true (or false resp.) as

an abnormal effect of A in situation Result(A, s). Rule (44), on the other hand, is

a direct translation of abnormal condition proposition (34). Clearly, rules (42) and

(43) are domain independent while rules (40), (41) and (44) are domain specific.

Again for simplicity, we denote

Πab
ind = {(42), (43)}.

Now we are able to describe our translation from a domain description of AT2

into a PLP as follows.

Definition 9

A PLP is called a translation of domain description D of AT2, denoted by

PAT2

(D) = (Π,N, <), if it obtained as follows:

1. Π consists of following rules:

Observation rules: the same as in Definition 8.

Causal rules: the same as in Definition 8.

Action effect rules: for each action effect proposition (32), there is a rule of the

form (35) or (36). Three domain independent action effect rules (15), (16) and

(37) are also included in this set.

Action explanation rules: for each action effect rule of the form (35), there are

rules (38) and (25), and for each action effect rule of the form (36), there

are rules (39) and (27),

Action abnormal effect rules: for each action abnormal effect proposition (33),

there are rules (40)–(43), and for each abnormal condition proposition (34),

there is a rule (44).

Inertia rules: (17), (18) and:

Holds(f, s) ← Holds(f,Result(a, s)), not ¬Holds(f, s),

not Caused+(f,Result(a, s)),

not Effect+(f,Result(a, s)),

not AbEffect+(f,Result(a, s)). (45)
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¬Holds(f, s) ← ¬Holds(f,Result(a, s)), not Holds(f, s),

not Caused−(f,Result(a, s)),

not Effect−(f,Result(a, s)),

not AbEffect−(f,Result(a, s)). (46)

2. Naming function N assigns a unique name to each rule in Π.

3. For each observation rule No, causal rule Nc, action effect rule Neff , action

explanation rule Nex, and inertia rule Ni, there are <-relations (30):

Nex < Nc < Ni < No

and

Neff < Nc < Ni < No. (47)

Note that inertia rules (45) and (46) are a natural extension of inertia rules (28)

and (29) in PAT1

(D) respectively. The <-relations inAT2 are specified in a similar

way as in PAT1

(D) except one more schema (47) is added. This is because in

PAT2

(D) action effect rules (35) and (36) are defeasible, possible conflicts between

these rules and other defeasible rules (e.g. causal rules, inertia rules and observation

rules) may occur indirectly through the action abnormal effect rule (44). Therefore,

<-relations (30) (see section 4.2) and (47) are needed, as we always assume that an

action’s successful execution should have the highest priority.

We denote domain independent rules in PAT2

(D) as follows:

Π2
ind = Πc

ind ∪Πeff′

ind ∪Πab
ind ∪Πi′′

ind, (48)

where Πi′′

ind = Πi
ind∪{(45), (46)}, and denote the set of domain specific rules by Π2

spec.

5.2.2 Transition function, models and entailment

Transition function R, structures and models Ψ of AT2 are defined exactly the

same as in section 3.2.2. The entailment relation under Ψ in AT2 is denoted as

|=AT2 . Again, it is observed that the initial state of a domain description D ofAT2

may not be unique due to a possible conflict occurring between two defeasible initial

observation propositions in D.

Example 9

(Example 8 continued.) Given the domain description D(Shooting-2) as presented in

Example 8, the translated PLP PAT2

(Shooting-2) is easy to be obtained according

to Definition 9. Let PAT2

(Shooting-2) = (Π2
spec ∪ Π2

ind,N, <), where Π2
spec consists

of the following rules:

Observation rules:

N1 : Holds(Loaded, S0)←.

N2 : Holds(Alive, S0)←.

Action effect rule:

N3 : Effect−(Alive,Result(Shoot, s)) ← Holds(Loaded, s), not Ab(Shoot, s).
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Action explanation rule:

N4 : Effect−(Alive,Result(Shoot, s)) ← ¬Holds(Alive,Result(Shoot , s)).

not ¬Holds(Alive, s).

not Caused−(Alive,Result(Shoot , s)).

not Ab(Shoot , s).

Action abnormal effect rule:

N5 : Ab(Shoot, s) ← Holds(Loaded , s),Holds(Alive,Result(Shoot , s)).

Naming rules in Π2
ind: Assigning a unique name to each rule in Π2

ind.

<-relations: (30) and (47).

Since the action effect rule N3 is defeasible, it is not difficult to see that a conflict

on the truth value of Holds(Alive,Result(Shoot, S0)) occurs between rule N3 and an

inertia rule

N ′ : Holds(Alive,Result(Shoot, s))← Holds(Alive, s),

not ¬Holds(Alive,Result(Shoot, s))

which is an instance of the generic inertia rule (17) included in Π2
ind

11. However, this

conflict is solved by N3 < N ′. Therefore, we have the final Result:

D(Shooting-2) |=AT2 ¬Alive after Shoot,

from which it is concluded that action Shoot is not abnormally executed.

6 Characterizations of action domains

Among all action domains specified by languages AT0, AT1 and AT2, there

are some classes of action domains that may have more desirable properties than

other classes of domains. In this section, we investigate these desirable properties

and characterize different action domains within languages AT0, AT1 and AT2,

respectively.

In particular, we will explore the following questions that are important for

evaluating an action formulation: (a) How can we decide whether an action domain

description is consistent (has a model)? (b) Given an action domain description,

how is a fluent’s truth value affected by executing some action(s)? (c) Under what

conditions does the reasoning within an action domain become monotonic? and

(d) Is it possible to characterize a set of fluents that are temporally definite with

respect to the underlying action domain description? For instance, if fluent F ’s truth

value is known currently, will its truth value be also known after some action or

action sequence is executed? Furthermore, we will also discuss how to improve our

action formulation to handle domain dependent preferences so that they can be

suited for more general cases in reasoning about action.

11 Note that the conflict is introduced through rule N5.
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6.1 Consistency of action domains

In this section, we consider the problem of how we can decide if a domain description

is consistent (has a model). In our semantics development, the transition function

R is defined based on a translation from the underlying domain description D to a

PLP. Hence, it is not difficult obtain a general PLP characterization for consistent

domain descriptions.

Proposition 1

Let D be a domain description of ATi and PATi

(D) (i = 0, 1, 2) the corresponding

PLP translation of D specified previously. D is consistent if and only if PATi

(D)

has a consistent answer set.

Proposition 1, however, cannot always be used as a feasible way to decide the

consistency of a domain description because in general deciding whether a PLP

has an answer set is NP-complete (Zhang, 2001)12. So it is important to study

syntactic characterizations on different cases. Our investigation on this issue starts

from language AT0.

6.1.1 Characterizing consistent action domains of AT0

Given a domain description D of AT0, we first introduce the following notions:

F+
Initial = {F | initiallyF ∈D},
F−Initial = {F | initially¬F ∈D},
F+

Effect = {F | A causes F if L1, . . . , Lm ∈D},
F−Effect = {F | A causes¬F if L1, . . . , Lm ∈D},
F+

Caused = {F | F is caused if . . . ∈D},
F−Caused = {F | ¬F is caused if . . .∈D}.

For convenience, we use F−Initial to denote the set containing those complementary

elements of F−Initial . That is,

F−Initial = {¬F | F ∈F−Initial}.

Similar notations may be used for other sets, e.g. F−Effect, F−Caused, etc..

Definition 10

Given a domain description D ofAT0, two fluent expressions L and L′ are mutually

exclusive in D if:

L∈ (F+
Initial ∪F−Initial ∪F

+
Effect ∪F−Effect ∪F

+
Caused ∪F−Caused) implies

L′ 
∈ (F+
Initial ∪F−Initial ∪F

+
Effect ∪F−Effect ∪F

+
Caused ∪F−Caused).

Intuitively, if two fluent expressions are mutually exclusive, it means that these

two fluent expressions cannot be both true in any state. Based on the concept of

mutual exclusion, we will provide a sufficient condition to decide the consistency of

12 Note that deciding whether an extended logic program has an answer set is also NP-complete (Marek
and Truszczyński, 1993).
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a domain description. Before we present the result, we need to introduce further

notions. For a domain description D, we assign a unique label l to each proposition

in D so that we can use l to refer a proposition in D. Let l be a causal or action

effect proposition in D. That is, l has one of the following forms:

L is caused if L1, . . . , Lm with absence Lm+1, . . . , Ln, or

A causes L if L1, . . . , Lm.

We use pre(l), default(l) and eff(l) to denote the set {L1, . . . , Lm}, {Lm+1, . . . , Ln} and

{L} respectively. Clearly, default(l) = ∅ if l is an action effect proposition or the

causal proposition does not include absent fluent expressions. For the case that l is

an initial proposition initially L, pre(l) = default(l) = ∅ and eff(l) = {L}.

Definition 11

Given a domain description D of AT0. Two propositions l and l′ in D are

complementary if one of the following conditions holds:

(i) both l and l′ are causal propositions, and eff(l) is a complement of eff(l′);

(ii) l is a causal proposition, l′ is an action effect proposition, and eff(l) is a

complement of eff(l′), i.e.

l: F is caused if L1, . . . , Lm with absence Lm+1, . . . , Ln,

l′: A causes ¬F if L′1, . . . , L
′
k;

(iii) both l and l′ are action effect propositions of the same action, and eff(l) is a

complement of eff(l′), i.e.

l: A causes F if L1, . . . , Lh,

l′: A causes ¬F if L′1, . . . , L
′
k .

Definition 12

Given a domain description D ofAT0. D is normal if D satisfies all of the following

conditions.

(i) F+
Initial ∩F−Initial = ∅;

(ii) For any two causal propositions l1 and l2 in D,

eff(li) ∩ pre(li) = ∅ and

default(li) ∩ eff(lj) = ∅ (i, j = 1, 2)13;

(iii) For any pair (l, l′) of complementary propositions in D, there is a pair of

fluent expressions (L,L′) in D such that L and L′ are mutually exclusive,

where L∈ pre(l) and L′ ∈ pre(l′).

Let us explain the intuition behind a normal domain description in some details.

Condition (i) ensures a consistent initial state deduced from the domain description

D. Condition (ii), on the other hand, says that for each causal proposition in D,

the complement of its effect should not occur in its preconditions, and furthermore,

the effect of this causal proposition does not occur in the absence component

(i.e. the default part) of all other (including itself) causal propositions in D. Finally,

13 Note that this condition includes default(li) ∩ eff(li) = ∅ (i = 1, 2).
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Condition (iii) represents a non-trivial restriction for complementary propositions

in D. Since two complementary propositions may cause two complementary fluents

to be true in some state, this condition actually indicates that if there are two

complementary propositions in the domain description, then the effects of these

two propositions cannot be both true in any state. The following theorem gives a

sufficient condition to guarantee a domain description to be consistent.

Theorem 2

Every normal domain description of AT0 is consistent.

6.1.2 Characterizing consistent action domains of AT1 and AT2

Now we try to investigate an analogue of Theorem 2 for AT1 and AT2. As

AT2 is viewed as an extension of AT1, here we only need to consider domain

descriptions of AT2. To achieve our purpose, we must modify the concept of

mutual exclusion of fluent expressions in order to cover observation and abnormal

action effect propositions in a domain description that are not allowed in AT0. In

particular, we define

F+
Ā

= {F | L is observed if . . . after Ā},
F−

Ā
= {¬F | L is observed if . . . after Ā}.

As a special case, F+
ε is formed based on initial observation propositions of D. Let

F+
Observe =

⋃
F+

Ā
, and

F−Observe =
⋃
F−

Ā
,

where each action string Ā occurs in some observation proposition of D. Under the

context of AT2, we also redefine the following notions:

F+
Effect = {F | A normally causes F if . . .} ∪

{F | A abnormally causes F if . . .},
F−Effect = {F | A normally causes ¬F if . . .} ∪

{F | A abnormally causes ¬F if . . .}.

Given domain description D, we use label l to (uniquely) refer to an observation

proposition, causal proposition, action effect proposition, or action abnormal effect

proposition. Then notions pre(l), default(l) and eff(l) are defined in an obvious way.

Two fluent expressions L and L′ are mutually exclusive in D if

L∈ (F+
Observe ∪F−Observe ∪F

+
Effect ∪F−Effect ∪F

+
Caused ∪F−Caused) implies

L′ 
∈ (F+
Observe ∪F−Observe ∪F

+
Effect ∪F−Effect ∪F

+
Caused ∪F−Caused).

Finally, we should also modify the definition of complementary propositions as

follows.

Definition 13

Given a domain description D of AT1 or AT2. Two propositions l and l′ in D
are complementary if one of the following conditions holds:

(i) both l and l′ are causal propositions and eff(l) is a complement of eff(l′);
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(ii) l is a causal proposition and l′ is an action effect or abnormal effect proposition

and eff(l) is a complement of eff(l′);

(iii) both l and l′ are action effect propositions of the same action where eff(l) is

a complement of eff(l′), i.e.

l: A normally causes F if L1, . . . , Lh,

l′: A normally causes ¬F if L′1, . . . , L
′
k;

(iv) both l and l′ are action abnormal effect propositions of the same action and

eff(l) is a complementary of eff(l′), i.e.

l: A abnormally causes F if L1, . . . , Lh,

l′: A abnormally causes ¬F if L′1, . . . , L
′
k .

The following definition then extends the concept of normal domain description

to AT1 and AT2.

Definition 14

Given a domain description D of AT1 or AT2. D is normal if D satisfies all of

the following conditions.

(i) For any action string Ā occurring in observation propositions of D, F+
Ā
∩

F−
Ā

= ∅;
(ii) For any two observation or causal propositions l1 and l2 in D, eff(li)∩

pre(li) = ∅ and default(li) ∩ eff(lj) = ∅ (i, j = 1, 2);

(iii) For any pair (l, l′) of complementary propositions in D, there is a pair of

fluent expressions (L,L′) in D such that L and L′ are mutually exclusive,

where L∈ pre(l) and L′ ∈ pre(l′).

Theorem 3

Every normal domain description of AT1 or AT2 is consistent.

6.2 Cause of change on fluents’ truth values

In the rest of the paper, our discussion will focus on consistent action domains.

First, the following theorem illustrates a basic property of any (consistent) action

domain of AT0 showing that a fluent’s truth value can only be affected by some

action effect proposition or causal proposition.

Theorem 4

Let D be a consistent domain description and PAT0

(D) the corresponding PLP

translation of D. Then the following results hold:

(i) If D |=AT0 F after Ā · A and D 
|=AT0 F after Ā, then

PAT0

(D) |= Effect+(F,Result(A, S)) orPAT0

(D) |= Caused+(F,Result(A, S)),

where

S = Result(Al, . . . ,Result(A1, S0) . . .) and Ā = A1 . . . Al
14;

14 Without further explanation, this notion is also used in our other statements presented in this section.
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(ii) If D |=AT0 ¬F after Ā · A and D 
|=AT0 ¬F after Ā, then

PAT0

(D) |= Effect−(F,Result(A, S)) or PAT0

(D) |= Caused−(F,Result(A, S)).

While the intuition of Theorem 4 is quite clear, it does not hold for action domains

of AT1 and AT2 since observation propositions of the form (20) is allowed in

a domain description of AT1 or AT2 that may override an inertia rule in the

corresponding PLP translation and present a change of a fluent’s truth value even

if there is no action or causal rule to cause such a change. In this case, we may

think that either the fluent’s truth value is changed by some external event that is

not described in the domain description or the domain description is not properly

specified. Weaker results may be obtained for domains of AT1 and AT2 under

some restrictions.

Theorem 5

Let D be a consistent domain description of AT1 and PAT1

(D) the corresponding

PLP translation of D. Suppose each observation proposition in D has the form

L is observed if L1, . . . , Lm with absence L̄, Lm+1, . . . , Ln after Ā,

where Ā is not an empty string of actions. Then the following results hold:

(i) If D |=AT1 ¬F after Ā, and D |=AT1 F after Ā · A, then

PAT1

(D) |= Effect+(F,Result(A, S)) or PAT1

(D) |= Caused+(F,Result(A, S));

(ii) If D |=AT1 F after Ā and D |=AT1 ¬F after Ā · A, then

PAT1

(D) |= Effect−(F,Result(A, S)) or PAT1

(D) |= Caused−(F,Result(A, S)).

Theorem 6

Let D be a consistent domain description of AT2 and PAT2

(D) the corresponding

PLP translation of D. Suppose each observation proposition in D has the form

L is observed if L1, . . . , Lm with absence L̄, Lm+1, . . . , Ln after Ā,

where Ā is not an empty string of actions. Then the following results hold:

(i) If D |=AT2 ¬F after Ā, and D |=AT2 F after Ā · A, then one of the following:

results holds:

PAT2

(D) |= Effect+(F,Result(A, S));

PAT2

(D) |= AbEffect+(F,Result(A, S)); or

PAT2

(D) |= Caused+(F,Result(A, S));

(ii) If D |=AT2 F after Ā, and D |=AT2 ¬F after Ā · A, then one of following

Results holds:

PAT2

(D) |= Effect−(F,Result(A, S));

PAT2

(D) |= AbEffect−(F,Result(A, S)); or

PAT2

(D) |= Caused−(F,Result(A, S)).

6.3 Restricted monotonicity

Monotonicity is a desirable property for reasoning about action in the sense that

whenever new domain specific information is added to a domain description, no

previous conclusion will be retracted. However, it is well known that most current
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action formulations are nonmonotonic in general. In this section, we investigate

some restricted monotonicity for action domains. Formally, let D be a domain

description of AT0, AT1, or AT2. A domain description D′ is called an augment

of D if D ⊆ D′ and the only extra propositions in D′ are observation propositions

(or initial propositions in the case that D and D′ are domain descriptions of

AT0).

Definition 15

A domain description D ofATi (i = 0, 1, 2) is monotonic with respect to observations

(we also simply call O-monotonic) if for each augment D′ of D, D |=ATi L after Ā

implies D′ |=ATi L after Ā (i = 0, 1, 2).

It is clear that in general O-monotonicity does not hold for any domain description

D due to a possibility that in the PLP translation ofD′, some new added observations

may defeat previous conclusions derived through defeasible causal rules, inertial

rules, action effect rules or action explanation rules. As an alternative, we can

investigate proper restricted conditions under which O-monotonicity holds.

Theorem 7

Let D be a domain description AT0. D is O-monotonic if

(i) each causal proposition in D is of the form

L is caused if L1, . . . , Lm, and

(ii) F+
Initial ∩ (F−Effect∪F−Caused) = ∅,
F−Initial ∩ (F+

Effect ∪F
+
Caused) = ∅, and

(F+
Effect ∪F

+
Caused) ∩ (F−Effect ∪F−Caused) = ∅.

Intuitively, Theorem 7 says that to guarantee a domain description D of AT0

to be O-monotonic, (i) all causal propositions in D should be non-defeasible,

and (ii) all fluents involved in initial propositions, action effect propositions and

causal propositions should be irrelevant in such a way: fluents involved in positive

(or negative, resp.) initial propositions should be disjoint with fluents involved

in negative (or positive, resp.) action effect and causal propositions, and fluents

involved in positive action effect and causal propositions should be disjoint with

fluents involved in negative action effect and causal propositions. Let PAT0

(D)

be the PLP translation of D. Condition (i) is necessary since this follows that

adding any new initial fact rules in PAT0

(D) will not defeat any fact Holds(F, S)

or ¬Holds(F, S) that is derived through some causal rules at the initial situation S0.

Condition (ii), on the other hand, guarantees that initiating any action effect rules

or causal rules by adding new initial fact rules into PAT0

(D) will not affect any

previous facts derived through old initial fact rules, action effect rules, or causal

rules.

An analogous result of Theorem 7, however, does not hold for domain descriptions

of AT1 and AT2. In fact, since both AT1 and AT2 allow domain de-

scriptions to have observations not only at the initial state but also at any other

intermediate states, the property of O-monotonicity is hard to be achieved. For
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instance, consider the PLP translation PAT1

(D) of a domain description D of

AT1, if PAT1

(D) |= Holds(F, S) and Holds(F, S) is derived through instances of

action explanation rules (23) and (25) in PAT1

(D):

Effect+(F ′,Result(A, S)) ← Holds(F ′,Result(A, S)), not Holds(F ′, S),

not Caused+(F ′,Result(A, S)), (49)

Holds(F, S) ← Effect+(F ′,Result(A, S)), not¬Holds(F, S), (50)

Adding a new observation rule Holds(F ′, S) ← into PAT1

(D), rule Holds(F ′, S) ←
will always override rule (49) and the fact Holds(F, S) cannot be derived from the

new PLP obtained by adding rule Holds(F ′, S)← into PAT1

(D). A similar example

can be given for a domain description of AT2 as well. Therefore, in general,

domain descriptions of AT1 and AT2 are not O-monotonic under the condition

of Theorem 7.

6.4 Temporal definiteness

Besides O-monotonicity, there is also a class of action domains that satisfies a

so-called temporal definiteness property in temporal reasoning. Consider a domain

description D. We say that D is temporally definite if for any value proposition of

the form (4), D |=ATi L after Ā implies D |=ATi L after Ā′ or D |=ATi L̄ after Ā′

(i = 0, 1, 2), where Ā is a substring of Ā′, i.e. Ā′ = Ā ·A1 . . . Ak . Intuitively, temporal

definiteness expresses a kind of definite information on fluents’ truth values with

respect to actions. For instance, if the switch is on initially, then we would expect

that no matter what actions are executed afterward, the switch should be either on

or off. It would be undesirable if after executing some actions, the status of switch

becomes unknown.

As only deterministic actions are considered in our context, the temporal de-

finiteness seems a reasonable requirement for our temporal reasoning. It is easy to

verify that domain descriptions D(Switch-Power) and D(Switch-Power′) described

in section 3 are temporally definite. However, as defeasible information is allowed in

domain descriptions, this property does not always hold.

Example 10

Consider a scenario where there are constraints: (1) birds normally can fly; (2) a

wounded bird normally cannot fly. Suppose we initially know that a specific bird

Tweety is not wounded. Then after being shot, Tweety is wounded. What we are

interested in is whether Tweety can fly after she is shot. We name this scenario

Shooting-3 which can be described by our action language AT0. Let D(Shooting-3)

be a domain description of AT0 including the following propositions:

initially ¬ Wounded,

Fly is caused if with absence ¬Fly,

¬ Fly is caused if Wounded with absence Fly,

Shoot causes Wounded.
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Now we translate D(Shooting-3) into the corresponding PLP PAT0

(Shooting-3) =

(Π0
spec ∪Π0

ind,N, <), where Π0
spec consists of the following rules15:

Initial fact rule:

N1 : ¬Holds(Wounded , S0)←.

Causal rules:

N2 : Caused+(Fly , s)← not ¬Holds(Fly , s).

N3 : Caused−(Fly , s)← Holds(Wounded , s), not Holds(Fly , s).

Action effect rule:

N4 : Effect+(Wounded ,Result(Shoot , s))←.

Then it is easy to seePAT0

(Shoot-3) |= Holds(Fly , S0) (e.g. Tweety can fly initially).

Furthermore, it is also not difficult to conclude that there exist two answer sets for

PAT0

(Shoot-3) such that Holds(Fly ,Result(Shoot , S0)) is in one answer set and

¬Holds(Fly ,Result(Shoot , S0)) is in another. So we have

D(Shooting-3) |=AT0 initially Fly,

D(Shooting-3) 
|=AT0 Fly after Shoot,

D(Shooting-3) 
|=AT0 ¬Fly after Shoot.

So D(Shooting-3) is not temporally definite. But intuitively, we would prefer that

Tweety cannot fly after being shot because causal rule N3 seems to be more specific

than N2. Solving this problem involves the issue of representing domain-dependent

preference which will be discussed in section 6.5.

Lemma 1

A domain description D of ATi (i = 0, 1, 2) is temporally definite if its PLP

translation PATi

(D) has a unique answer set.

The converse of Lemma 1, however, does not hold. That is, for a temporally

definite domain description, its PLP translation may have more than one answer set.

For instance, in domain description D(Shooting-3) described above, if we initially

know that Tweety is already wounded, then the modified domain description becomes

temporally definite but its PLP translation will still have more than one answer sets,

i.e. one answer set includes Holds(Fly, S0) while the other includes ¬Holds(Fly, S0).

Lemma 1 actually presents a sufficient condition to ensure a domain description

to be temporally definite. Observing Example 10, we can see that PAT0

(Shooting-3)

has more than one answer set because two causal rules N2 and N3 conflict with

each other on fluent Fly’s truth value in situation Result(Shoot, S0), while Fly’s

truth value is initially true, i.e. PAT0

(Shooting-3) |= Holds(Fly, S0). This observation

motivates our examination on the structure of an action domain.

Consider an extended logic program Π. Using a procedure proposed by Gelfond

and Lifschitz (see Appendix A), we can actually transform Π into a general logic

program16, denoted by Trans(Π). It has been showed that a sufficient condition to

15 For simplicity, here we omit the explicit description of naming function N and <-relations.
16 A general logic program is a set of rules of the form A ← B1, . . . , Bm, not Bm+1, . . . , not Bn, where
A,B1, . . . , Bn are atoms. Also see Appendix A.
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ensure that Trans(Π) has a unique stable model (or answer set under the context

of extended logic program) is that Trans(Π) is locally stratified. That means, there

does not exist any potential conflict among any rules in Trans(Π) (see Appendix A

for a technical description on local stratification). Therefore, we have the following

result.

Theorem 8

A domain description D of ATi (i= 0, 1, 2) is temporally definite if its PLP

translation PATi

(D) has a unique reduct ∆i and Trans(∆i) is locally stratified.

Theorem 8 implies that to guarantee a domain description D to be temporally

definite, no conflict should occur among the same type of defeasible rules after

reducing PATi

(D) to its reduct ∆i. In Example 10, since two causal rules N2 and

N3 contain a potential conflict with each other, it causes D(Shooting-3) to be not

temporally definite. However, conflicts between different types of defeasible rules will

not affect the temporal definiteness for a domain description because such a conflict

can be resolved during the process of generating a reduct of the PLP translation of

the domain description.

6.5 Indefiniteness and domain-dependent preferences

As we mentioned before, temporal definiteness is a desirable property in temporal

reasoning. However, it is also the fact that sometimes a domain description which

is not temporally definite may still present right results from our intuition. For

instance, in the domain of Switch-Power presented in section 3, if we add one more

causal proposition into D(Switch-Power):

¬On is caused if with absence Power.

which says that if there is no explicit information stating that there is power, then

it is assumed that the light is not on, the circumstance will then change. Suppose

that initially we know that the light is not on, the switch is off, and there is no any

information about if there is power. Then after turning on the switch, we would like

to know whether the light is on. It is not difficult to show that the modified domain

description, say D(Switch-Power′′), is not temporally definite. Specifically, we have

D(Switch-Power′′) |=AT0 initially ¬On,
D(Switch-Power′′) 
|=AT0 On after Turn-On,

D(Switch-Power′′) 
|=AT0 ¬On after Turn-On.

Although action Turn-On is deterministic (see its effect proposition in Example

4 in section 3.2.2), the above indefinite result seems reasonable from our intuition

because without having definite information about power, it is impossible to decide

whether the light is on after performing action Turn-On due to a conflict between

two causal propositions in D(Switch-Power′′).

This example reveals that although temporal definiteness sometimes indeed

describes a desired property, it should not become a particular restriction on

action domains. So far, in our domain descriptions, preferences are used as built-in
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mechanisms of their PLP translations to handle conflicts among different types of

propositions. It is observed that domain-dependent preferences also play important

roles in temporal reasoning. For instance, in some domains, it is the case that within

the same type of defeasible propositions, one proposition is more preferred than the

other. Consider Example 10 presented in section 6.4 once again. We have mentioned

that two causal propositions

Fly is caused if with absence ¬Fly,
¬Fly is caused if Wounded with absence Fly,

contain a conflict under the circumstance by knowing that Tweety is wounded. This

conflict leads D(Shooting-3) to be temporally indefinite. But from our intuition, the

second causal proposition seems to represent more specific information than the first

causal proposition. Therefore, during the temporal reasoning, once conflict occurs

between these two causal rules, we would prefer the second causal proposition to

defeat the first one (e.g. the wounded bird Tweety normally cannot fly if we do not

know she can fly).

This problem may be handled by including domain-dependent preferences on

causal and observation propositions into the corresponding PLP translations of

domain descriptions. For instance, in Example 10, we may add preference N3 < N2

into PAT0

(Shooting-3), and then PAT0

(Shooting-3) becomes temporally definite

and the fact ¬Fly after Shoot is entailed from the modified domain description.

In general, to represent domain-dependent preferences in a domain description,

we need to extend the language so that preference between two propositions can be

explicitly expressed. One way of doing this is to introduce labels in the language and

each proposition in the domain description is assigned a unique label. A preference

proposition can be proposed as follows:

l1 is more preferred than l2, (51)

where l1 and l2 are labels for causal or observation propositions in the domain

description. Then we define the PLP translation of the extended domain description

as (Π,N, < ∪ <C ∪ <O) (i = 0, 1, 2), where Π, N and < are the same as before,

and <C and <O are the preference orderings on causal and observation rules

respectively that correspond to the specified preference propositions of the form (51)

in the domain description.

7 Related work

In this section, we discuss some related work. In the research of reasoning about

action, it is difficult to evaluate various action theories from a systematic standard

though some studies on this topic have been developed (Sandewall, 1994). To

compare with competing approaches, people usually have to demonstrate their

methods with a small number of typical examples. It is still not clear yet what

should be the unified standard for an action theory to satisfy. We feel that it would

be rather weak to compare our approach with other action theories just through a

small number of examples. As defeasibility handling is the central issue in our action
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formulation proposed in this paper, we focus on this point as a major criterion to

compare our approach with other methods.

An early effort on handling defeasible causal rules in reasoning about action was

due to the author’s previous work (Zhang, 1999), in which the author identified

the restriction of McCain and Turner’s causal theory of actions (McCain and

Turner, 1995) and claimed that, in general, a causal rule should be treated as

a defeasible rule in order to solve the ramification problem properly. In Zhang

(1999), constraints (1) and (2) simply correspond to defaults Switch:On/On and

¬Power: /¬On, respectively. By combining Reiter’s default theory (Reiter, 1980) and

Winslett’s PMA (Winslett, 1988), the author developed a causality-based minimal

change principle for reasoning about action and change which subsumes McCain

and Turner’s causal theory.

Although the work presented in Zhang (1999) provided a natural way to represent

causality in reasoning about action, there were several restrictions in this action

theory. First, due to technical restrictions, only normal defaults or defaults without

justifications are the suitable forms to represent causal rules in problem domains.

Secondly, this action theory did not handle the other two major defeasibilities –

defeasible observations and actions with defeasible and abnormal effects.

Probably Jab�lonowski, �Lukaszewicz and Madalińska-Bugaj’s work (Jab�lonowski

et al., 1996) was one of the early efforts on handling the problem of defeasible

observations and actions with abnormal effects. Following Dijkstra’s semantics

on programming languages (W. �Lukaszewcz and Madalińsks-Bugaj, 1995), they

proposed an action theory in which both defeasible observations and actions with

abnormal effects were expressible. Their work actually presented a few new features.

For instance, by employing Dijkstra’s semantics in action theory, their method

reduced the computational cost in action reasoning; it also dealt with both temporal

prediction and postdiction reasoning while incomplete information is allowable in

problem domains.

However, the major limitation of this approach is that it did not solve the

ramification problem properly. To deal with domain constraints in action scenarios,

the action theory has to be extended by adding statements like

A; release(F1); . . .; release(Fn),

which means that fluents F1, . . . , Fn involved in domain constraints may not obey

the inertia rule with respect to the performance of action A (W. �Lukaszewcz and

Madalińsks-Bugaj, 1995). For example, if we combine a constraint like “the fact

that the turkey is not alive implies that the turkey is not walking” into the previous

shooting scenario, in order to derive an indirect effect ¬Walk of action Shoot, a

statement like Shoot; release(Walk) has to be added into the action theory. But to

specify such statements, we have to know how each action exactly affects fluents

involved in the domain constraint. Obviously for a complex problem domain this

usually is not practicable without taking causality into account. Not surprisingly,

due to such restriction, this approach is also hard to be extended to handle defeasible

constraints in reasoning about action.
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Baral and Lobo recently also proposed an action formulation to address the issue

of defeasible constraints and actions with defeasible effects (Baral and Lobo, 1997).

Following a similar spirit of Gelfond and Lifschitz’s action language A (Gelfond

and Lifschitz, 1993), Baral and Lobo proposed an action language named ADC
to describe action domains in which both defeasible constraints and actions with

defeasible effects are admitted. In their language ADC a defeasible constraint like

(1) is represented as

Switch normally suffices for On

and the defeasible Shoot action illustrated in Example 5 is represented as

Shoot normally causes ¬Alive if Loaded.

As shown in Baral and Lobo (1997), ADC has a simple syntax. Based on an

extended logic program translation, a transition system is defined to provide a

formal semantics of ADC.

It is worth mentioning that our idea of defining semantics for AT0, AT1

and AT2 is similar to Baral and Lobo’s proposal for ADC. Both of these two

approaches directly use logic programs to define a transition system for the action

language, instead of developing a separate semantics like A language. Also, both

approaches define states in a different way from the standard A language, that

is, instead of defining a state to be a truth value assignment on fluents, these two

approaches define a state to be a collection of fluent expressions so that incomplete

information about fluents becomes allowable.

Nevertheless, some restrictions exist in action language ADC: it can only reason

about forward, i.e. temporal prediction, and observations on intermediate situations

and final situation are not expressible. Therefore, their approach cannot deal with

temporal postdiction. On the other hand, although actions with defeasible effects are

allowed in the domain description, it seems that the issue of solving conflicts between

defeasible action effect propositions and defeasible constraints was not addressed in

detail.

Finally, we briefly mention Geffner’s recent work on causal theory of action

(Geffner, 1997) which is closely related to models of causal reasoning based on

Bayesian networks and structural equation models (Goldszmidt and Pearl, 1992).

To provide a well-founded solution to the ramification problem, Geffner claimed

that causal rules of the domain should be defeasible in general. Although with a

very different language and methodology, Geffner’s system actually addressed the

same problem discussed in Zhang (1999) and Baral and Lobo (1997). However, from

the viewpoint of defeasibility handling, this system is restricted because defeasible

observations and actions with defeasible and abnormal effects were not considered.

8 Conclusions

We have developed a unified action formulation to handle three types of de-

feasibilities in reasoning about action. Our formulation consists of three action

languages named AT0, AT1 and AT2 respectively. We have showed that our

action formulation is applicable to both temporal prediction and postdiction with
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incomplete information while defeasible constraints, defeasible observations and

actions with defeasible and abnormal effects are admitted. As discussed in the

previous section, although the issue of defeasibility in reasoning about action has

been addressed by some researchers recently, our work presented here is the first

effort to handle various defeasible information in temporal reasoning by using a

prioritized logic programming approach. It enhances the viewpoint that the logic

programming languages can be employed as efficient low level formal languages for

reasoning about action.

Besides the author’s work (Zhang and Foo, 1997a), different prioritized logic

programming formalisms have been proposed recently (Brewka, 1996; Brewka and

Eiter, 1999; Grosof, 1997). The reason why we choose our PLPs to develop our

action formulation is as follows. First, we think that the answer set semantics for

PLPs provides an intuitive and natural interpretation for conflict resolution in logic

programs, and hence it is easy to use not only in reasoning about action, but also

in other aspects of modeling system dynamics (Zhang and Foo, 1997b; Zhang and

Foo, 1998). Secondly, a propositional prioritized logic programming system (PLPS)

has been implemented recently by the author and his students (Zhang et al., 2001).

We believe that our PLPS can finally provide a practical programming language

prototype for representing actions with the capability of the defeasibility handling

within the framework we proposed in this paper.

The computational issue of prioritized logic programs has been addressed in

other work (Zhang, 2001). Briefly, the author has proved that for a propositional

prioritized logic program, deciding whether it has an answer set is NP-complete,

and deciding whether a given ground literal is entailed from this prioritized logic

program is ΠP
2 -complete.

It is also easy to observe that, since a rule containing variables in a PLP is viewed

as a set of ground instances of this rule by replacing variables with all possible

constants occurring in the PLP, under the case that a PLP does not have function

symbols, the number of defeated rules eliminated from this PLP as described in

Definition 2 is always finite. Hence, we can always compute a finite reduct of such

PLP17.

In the case that there are function symbols occurring in a PLP, the situation

is different. Basically, the set of ground instances of a rule, that includes variables

and function symbols, may be infinite and therefore it might be possible that there

are infinite number of defeated rules which should be eliminated from the original

PLP. Under this situation, a reduct containing infinite rules may be produced accord-

ing to Definition 2. From a practical viewpoint, we are only able to deal with finite

reducts. To overcome this problem, we can set a proper restriction on the variable

substitution. For instance, in the modified Switch-Power domain discussed in

Example 4 (see section 3.2.2), if all we are interested is to know what are the

effect after actions Cut-Power and Turn-On are executed, then in the computation

of the answer set of PAT0

(Switch-Power′), we only need to consider situations S0,

17 Note that Theorem 1 shows that every PLP has a reduct, but such a reduct may contain infinite rules.
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Result(Turn-On, S0), Result(Cut-Power, S0), and Result(Turn-On,Result(Cut-Power,

S0)). This implies that the ground form of PLP PAT0

(Switch-Power′) only has finite

rules, and hence it always has a finite reduct.

Finally, we should mention that currently our action formulation cannot represent

nondeterministic actions and disjunctive domain information. That is, we only

consider deterministic problem domains in this paper. This is due to the limit of

prioritized logic programs inherited from extended logic programs. But we would

argue that our prioritized logic programs are extendedable to represent disjunctive

information by using a similar method described in (Gelfond and Lifschitz, 1991)

for extended logic programs, and our action formulation can then be extended to

represent nondeterministic actions.
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Appendix A: General logic programs and stratification

A general logic program is a finite set of rules of the form

A← B1, . . . , Bm, not Bm+1, . . . , not Bn, (52)

where A,B1, . . . , Bm, . . . , Bn are atoms.

Gelfond and Lifschitz developed a transformation to reduce an extended logic

program to a general logic program (Gelfond and Lifschitz, 1991). Consider an

extended logic program Π. For any predicate P occurring in Π, let P ′ be a new

predicate of the same arity. The atom P ′(x) is called the positive form of the negative

literal ¬P (x). Every positive literal is, by definition, its own positive form. The

positive form of a literal L will be denoted by L+. Π+ stands for the general program

obtained from Π by replacing each rule L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln in Π

by rule

L+
0 ← L+

1 , . . . , L
+
m, not L+

m+1, . . . , not L+
n .

Proposition 2

(Gelfond and Lifschitz, 1991). A consistent set S ⊂ Lit is an answer set of Π iff S+

is an answer set of Π+.

Definition 16

(Local stratification (Apt and Bol, 1994)).

Let Π be a general logic program.

• A local stratification for Π is a function ψ from the Herbrand base of Π, BΠ,

to the countable ordinals.

• Given a local stratification ψ, we extend it to ground negative literals18 by

setting ψ(not A) = ψ(A) + 1.

18 Note that here we mean weak negation not.
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• A rule with form (52) of Π is called locally stratified with respect to a local

stratification ψ if for every ground instance of (52),

A′ ← B′1, . . . , B
′
m, not B

′
m+1, . . . , not B

′
n,

ψ(A′) � ψ(B′i), where 1 � i � m, and

ψ(A′) � ψ(not B′j), where m+ 1 � i � n.

• Π is called locally stratified with respect to a local stratification ψ if all its rules

are. Π is called locally stratified if it is locally stratified with respect to some

local stratification.

Proposition 3

(Gelfond and Lifschitz, 1988). If a general logic program Π is locally stratified,

then by treating Π as an extended logic program where each rule does not contain

classical negation, it has a unique answer set.

Appendix B: Proofs

Theorem 1

Every PLP has a reduct.

To prove Theorem 1, we need to introduce the concept of <-partition for a PLP.

Definition 17

Let P = (Π,N, <) be an arbitrary PLP. A <-partition of Π in P is a finite collection

{Π1, . . . ,Πk}, where Π = Π1∪ . . .∪Πk and Πi and Πj are disjoint for any i 
= j, such

that

1. N(r) < N(r′)∈P(<) implies that there exist some i and j (1 � i < j) such

that r′ ∈Πj and r∈Πi;

2. for each rule r′ ∈Πj (j > 1), there exists some rule r∈Πi (1 � i < j) such that

N(r) <N(r′)∈P(<).

Example 11

Consider a PLP P3 = (Π,N <):

P3 :N1 : A← not B, not C,

N2 : B ← not ¬C,
N3 : C ← not A, not ¬C,
N4 : ¬C ← not C,

N1 < N2, N2 < N4, N3 < N4.

It is easy to verify that a <-partition of Π in P3 is {Π1,Π2,Π3}, where

Π1 : N1 :A← not B, not C,

N3 :C ← not A, not ¬C,
Π2 : N2 :B ← not ¬C,
Π3 : N4 :¬C ← not C .

In fact, this program has a unique answer set {B,C}.
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Lemma 2

Every prioritized logic program has a <-partition.

Proof

For a given PLP P = (Π,N, <), we construct a series of subsets of Π as follows:

Π1 = {r | there does not exist a rule r′ ∈Π such that N(r′) <N(r)};
Πi = {r | for all rules such that N(r′) <N(r), r′ ∈

⋃i−1
j=1 Πj}.

We prove that {Π1,Π2, . . .} is a <-partition of P. First, it is easy to see that Πi

and Πj are disjoint. Now we show that this partition satisfies Conditions 1 and

2 described in Definition 17. Let N(r) < N(r′)∈P(<). If there does not exist

any rule r′′ ∈Π such that N(r′′) <N(r), then r∈Π1. Otherwise, there exists some

i (1 < i) such that r∈Πi and for all rules satisfyingN(r′′) <N(r) r′′ ∈Π1 ∪ · · · ∪Πi−1.

Let r′ ∈Πj . Since N(r) <N(r′), it follows that 1 < j. From the construction of Πj ,

we also conclude r∈Π1 ∪ · · · ∪Πj−1. Since r′ ∈Πi, it follows i � j− 1. That is, i < j.

Condition 2 directly follows from the construction of the partition described above.

Now we show that {Π1,Π2, . . .} must be a finite set. First, if Π is finite, it is clear

{Π1,Π2, . . .} must be a finite set. If Π contains infinite rules, then according to our

assumption presented in section 2, P must be the ground instantiation of some

program, say P∗ = (Π∗,N∗, <∗) where Π∗ is finite. Then we can use the same way

to define a <-partition for P∗. Since Π∗ is finite, the partition of P∗ must be also

finite: {Π∗1 ,Π∗2 , . . . ,Π∗k}. As P∗ is well formed, it implies that for each i (i = 1, 2, . . .),

Πi is the ground instantiation of Π∗i . So {Π1,Π2, . . .} = {Π1,Π2, . . . ,Πk} which is

finite. �

Proof of Theorem 1

Let P = (Π,N, <). From Lemma 2, we can assume Π has a partition Π =

Π1 ∪ · · · ∪ Πk . We will show that P has a fixpoint in the process of reduction

according to Definition 2. As Π1, . . . ,Πk are disjoint and for any N(r) <N(r′), it

implies r∈Πi and r′ ∈Πj where i < j, we can use notation

Π1 < Π2 < . . . < Πk

to illustrate this property. It is easy to see that for each rule in Πi (1 < i < k), there

must exist some j and h that j < i < h such thatN(r′) <N(r) <N(r′′) and r′ ∈Πj ,

r′′ ∈Πh. Now we construct a sequence of reductions that starts from those least

preferred rules in Πk , then from rules in Πk−1 ∪Πk , and so on as illustrated below:

Π(0) = Π = Π1 ∪ · · · ∪Πk;

Π(1) = Π(0) − {r1, r2, . . . | r1, r2, . . . ∈Πk and r1, r2, . . . satisfy the conditions

as stated in Definition 2};
Π(2) = Π(1) − {r1, r2, . . . | r1, r2, . . . ∈Πk−1 ∪Πk and r1, r2, . . . satisfy

the conditions as stated in Definition 2};
Π(3) = Π(2) − {r1, r2, . . . | r1, r2, . . . ∈Πk−2 ∪Πk−1 ∪Πk and r1, r2, . . . satisfy

the conditions as stated in Definition 2};
. . .

Π(k−1) = Π(k−2) − {r1, r2, . . . | r1, r2, . . . ∈Π2 ∪ . . . ∪Πk and r1, r2, . . . satisfy

the conditions as stated in Definition 2}.
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It is observed that in the above reduction process, after obtaining Π(k−1), no

more rules can be eliminated from Π(k−1) by applying the conditions of Definition

2 because after the ith reduction, all orderings inherited from Πk−i+1 < · · · < Πk

will no longer play any roles in the further (i+ 1)th, . . . , and (k− 1)th reductions. In

particular, in the ith reduction of obtaining Π(i), all rules eliminated from Π(i−1) (note

that there may be infinite number of rules to be eliminated in the ith reduction) are

due to some rules in Π1∪ · · · ∪Πk−i which are more preferred than those eliminated

rules in Πk−i+1 ∪ · · · ∪Πk . As k is a finite number, from Definition 2 Π(k−1) is also

a reduct of P. �

Proposition 1

Let D be a domain description of ATi and PATi

(D) (i = 0, 1, 2) the correspond-

ing PLP translation of D specified previously. D is consistent if and only if PATi

(D)

has a consistent answer set.

Proof

Here we only prove the result for AT0, proofs for other cases are similar.

Suppose D has a model Ψ. Then according to Definition 7, for any action string Ā

such that Ψ(Ā) is defined and any fluent F , F and ¬F cannot be both true in Ψ(Ā).

From the definition of Ψ(Ā), i.e. Definition 6, it follows that Ψ(Ā′ ·A)∈R(A,Ψ(Ā′)),

where Ā = Ā′ · A. Here we assume that Ā is not empty (otherwise, Ψ(ε) = Ŝ0 that

we will consider next). Also since Ψ’s domain is prefix closed, Ψ(Ā′) is also defined.

Then from Definition 5 of transition function R, it follows that R(A,Ψ(Ā′) contains

a consistent set of fluent expressions. As this set is directly deduced from some

answer set Ans of PAT0

(D), it concludes that the subset of Ans consisting of all

literals of the form Holds(F, S) or ¬Holds(F, S) is consistent (note S 
= S0). Now

we consider the case of empty action string. In this case Ψ(ε) = Ŝ0. As Ψ is a

model, Ŝ0 must be a consistent set. Again, as Ŝ0 is deduced from some answer set

Ans of PAT0

(D), it concludes that the subset of Ans consisting all literals of the

form Holds(F, S0) or ¬Holds(F, S0) is consistent. Therefore, the subset of Ans of the

following form is consistent:

{[¬]Holds(F, S0), . . .} ∪ · · · {[¬]Holds(F, S), . . .}.

Recall that Ans also contains a subset that consists of atoms of the forms Effect+

(F, S), Effect−(F, S), Caused+(F, S) and Caused−(F, S). Clearly, this subset of Ans is

also consistent. So Ans is consistent.

Now suppose Ans is a consistent answer set of PAT0

(D). Then from Definitions

5, 6, and 7, we can construct a model Ψ for D in an obvious way. �

Theorem 2

Every normal domain description of AT0 is consistent.

Proof

Let D be a normal domain description of AT0. That is, D satisfies Conditions

(i), (ii) and (iii) in Definition 12. According to Proposition 1, we only need to

show that the PLP translation PAT0

(D) of D has a consistent answer set. Let

PAT0

(D) = (Π,N, <). First, from Condition (ii) and the construction of PAT0

(D),

it is observed that Π does not contain rules of the following forms:
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r1: L1 ← · · · , not L∗, . . . ,
r2: L2 ← · · · , L1, . . . ,

. . . ,

rk: Lk ← · · · , Lk−1, . . . ,

rk+1: L∗ ← · · · , Lk, . . . .

This actually ensures that Π has an answer set Ans. To show this, we assume that

Π does not have an answer set. Then there must exist some literal L∗ satisfying the

condition: for any set S of ground literals (S can be empty) (a) if L∗ 
∈ S , then L∗ is

in the answer set of program ΠS (ΠS is obtained from Π by doing Gelfond–Lifschitz

transformation on Π in terms of S); and (b) if L∗ ∈ S , then L∗ is not in the answer

set of program ΠS . It is worth to mention that since ΠS does not contain rules

including negation as failure sign, ΠS always has an answer set. From case (a), it is

implied that Π must contain a rule of the form:

r′k+1: L∗ ← · · ·.

On the other hand, from case (b), it is easy to observe that all rules of the form r′k+1

cannot be triggered in ΠS due to L∗ ∈ S . That is, some rule of the form

r1: L1 ← · · · , not L∗, . . .

must be contained in Π (we do not exclude the case that L1 = L∗). This follows

that rule r′k+1 actually has a form:

r′k+1 : L∗ ← · · · , L′, . . .

such that the deletion of r1 from Π will cause literal L′ not to be triggered and

hence L∗ can not be derived from ΠS . Without loss of generality, we can assume

that Π contains a sequence of rules r1, . . . , rk+1 as described above.

Now we consider Condition (i). From Condition (i), we know that Π does not

contain a pair of rules of the forms:

Holds(F, S0)←,
¬Holds(F, S0)←.

This follows that a subset of Ans in which each liteal is associated with initial

situation S0:

{[¬]Holds(F1, S0), . . . , [¬]Holds(Fk, S0)}

is consistent. Now we consider a pair of complementary propositions (l, l′) in D. To

simplify our presentation, for a rule of the form:

r: L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln

we denote pos(r) = {L1, . . . , Lm} and neg(r) = {Lm+1, . . . , Ln}. Then r can be simply

represented as L0 ← pos(r), neg(r). Under this notation, a pair of complementary

propositions l and l′ in D may have one of the following possible translations

in Π:

(a) r : Caused+(F, s)← pos(r), neg(r),

r′ : Caused−(F, s)← pos(r′), neg(r′),
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(b) r : Caused+(F, s)← pos(r), neg(r),

r′ : Effect−(F,Result(A, s))← pos(r′), neg(r′),

(c) r : Effect+(F,Result(A, s))← pos(r), neg(r),

r′ : Effect−(F,Result(A, s))← pos(r′), neg(r′).

From Condition (iii), we know that in each case of (a), (b) and (c), pos(r) and

pos(r′) cannot be both true in answer set Ans. Hence, for any situation term S ,

none of these three pairs of atoms Caused+(F, S) and Caused−(F, S), Caused+(F, S)

and Effect−(F, S), or Effect+(F, S) and Effect−(F, S) cannot both true in Ans. This

concludes that Ans does not contain any complementary literals Holds(F, S) and

¬Holds(F, S) for any F and S . So Ans is a consistent answer set of Π. Furthermore,

every answer set of Π is also consistent (Lifschitz and Turner, 1994). Finally, from

the property that a PLP (Π,N, <) has an answer set iff Π has an answer set

and every answer set of (Π,N, <) is also an answer set of Π (Zhang, 2001), it

concludes that PAT0

(D) has a consistent answer set (and its every answer set is also

consistent). �

Theorem 3

Every normal domain description of AT1 or AT2 is consistent.

Proof

The proof is similar to the proof of Theorem 2 but with additional considerations

on action explanation rules and action abnormal effect rules in PATi

(D). We omit

it here. �

Theorem 4

Given a domain description D of AT0 and its PLP translation PAT0

(D), the

following results hold:

(i) If PAT0

(D) |= Holds(F,Result(A, S)) and PAT0

(D) 
|= Holds(F, S), then

PAT0

(D) |= Effect+(F,Result(A, S)) or PAT0

(D) |= Caused+(F,Result(A, S));

(ii) If PAT0

(D) |= ¬Holds(F,Result(A, S)) and PAT0

(D) 
|= ¬Holds(F, S), then

PAT0

(D) |= Effect−(F,Result(A, S)) or PAT0

(D) |= Caused−(F,Result(A, S)).

Proof

It is sufficient to only prove (i). Since PAT0

(D) |= Holds(F,Result(A, S)) and

PAT0

(D) 
|= Holds(F, S), it follows that for each answer set Ans of PAT0

(D),

Holds(F,Result(A, S))∈Ans, and there is some answer set Ans′ such that Holds(F, S)

/∈ Ans′. Therefore, the fact that Holds(F,Result(S, A)) is true is not due to inertia

rules (17) and (18) in PAT0

(D), but due to action effect rules (13) and (14), or

causal rules (9) and (10). That is, PAT0 |= Effect+(F,Result(A, s)) or PAT0 |=
Caused+(F,Result(A, S)). �

Theorem 5

Let D be a domain description of AT1 and PAT1

(D) be its PLP translation.

Suppose each observation proposition in D has the form

L is observed if L1, . . . , Lm with absence L̄, Lm+1, . . . , Ln after Ā,
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where Ā is not an empty string of actions. Then the following results hold:

(i) If PAT1

(D) |= ¬Holds(F, S) and PAT1

(D) |= Holds(F,Result(A, S)), then

PAT1

(D) |= Effect+(F,Result(A, S)) or PAT1

(D) |= Caused+(F,Result(A, S));

(ii) If PAT1

(D) |= Holds(F, S) and PAT1

(D) |= ¬Holds(F,Result(A, S)), then

PAT1

(D) |= Effect−(F,Result(A, S)) or PAT1

(D) |= Caused−(F,Result(A, S)).

Proof

It is sufficient to only prove (i). As PAT1

(D) |= ¬Holds(F, S) and PAT1

(D) |=
Holds(F,Result(A, S)), it is clear that the fact that Holds(F,Result(A, S)) is true in

each answer set of PAT1

(D) is not due to inertia rules (17), (18), (28) and (29), but

due to

(1) some observation rules in PAT1

(D), or

(2) action effect rules (13) and (14), or

(3) causal rules (9) and (10).

Consider case (1). We suppose there exists some observation rule in PAT1

(D) of the

form

Holds(F,Result(A, S))← [¬]Holds(F1, S), . . . , [¬]Holds(Fm, S),

not [¬]Holds(Fm+1, S), . . . , not [¬]Holds(Fn, S),

But from the condition, we know that the above observation rule must be of the

form:

Holds(F,Result(A, S))← · · · , not¬Holds(F,Result(A, S)), . . . .

This results in a conflict with inertia rule (18):

Holds(f,Result(a, s))←Holds(f, s), not ¬Holds(f,Result(a, s))

in PAT1

(D). As we specify inertia rules have higher priorities than observation rules

in PAT1

(D), it turns out that ¬Holds(F,Result(A, S)) is derived. So case (1) is impos-

sible. Hence, only cases (2) or (3) is possible to derive Holds(F,Result(A, s)). That is,

PAT1

(D) |= Effect+(F,Result(A, S)) or PAT1

(D) |= Caused+(F,Result(A, S)). �

Theorem 6

Let D be a domain description of AT2 and PAT2

(D) be its PLP translation.

Suppose each observation proposition in D has the form

L is observed if L1, . . . , Lm with absence L̄, Lm+1, . . . , Ln after Ā,

where Ā is not an empty string of actions. Then the following results hold:

(i) If PAT2

(D) |= ¬Holds(F, S) and PAT2

(D) |= Holds(F,Result(A, S)), then one

of following results Holds:

PAT2

(D) |= Effect+(F,Result(A, S));

PAT2

(D) |= AbEffect+(F,Result(A, S)); or

PAT2

(D) |= Caused+(F,Result(A, S));
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(ii) If PAT2

(D) |= Holds(F, S) and PAT2

(D) |= ¬Holds(F,Result(A, S)), then one

of following results holds:

PAT2

(D) |= Effect−(F,Result(A, S));

PAT2

(D) |= AbEffect−(F,Result(A, S)); or

PAT2

(D) |= Caused−(F,Result(A, S)).

Proof

The proof of Theorem 6 is similar to that of Theorem 5, as described above. �

Theorem 7

Let D be a domain description AT0. D is O-monotonic if

(i) each causal proposition in D is of the form

L is caused if L1, . . . , Lm, and

(ii) F+
Initial ∩ (F−Effect ∪F−Caused) = ∅, F−Initial ∩ (F+

Effect ∪F
+
Caused) = ∅, and (F+

Effect ∪
F+

Caused) ∩ (F−Effect ∪F−Caused) = ∅.

Proof

Let D′ be an augment of D, PAT0

(D) and PAT0

(D′) be the PLP translations of

D and D′ respectively. To prove the result, it is sufficient to prove that PAT0

(D) |=
Holds(F, S) implies PAT0

(D′) |= Holds(F, S). From the construction of PAT0

(D), it

is clear that PAT0

(D) |= Holds(F, S) implies

(1) PAT0

(D) |= Effect+(F, S),

(2) PAT0

(D) |= Caused+(F, S), or

(3) PAT0

(D) |= Holds(F, S ′) due to inertia rules in PAT0

(D), where S =

Result(A, S ′).

Adding more observation propositions into D to form D′, the new program

PAT0

(D′) then may have the following effects:

(a) initiating some action effect rules in PAT0

(D);

(b) initiating some casual rules in PAT0

(D);

(c) defeating some casual rules in PAT0

(D);

(d) not initiating any action effect and causal rules in PAT0

(D).

First, since each causal proposition in D has the form

L is caused if L1, . . . , Lm,

this follows that each corresponding causal rule in PAT0

(D) is non-defeasible, i.e.

no negation as failure sign not is included in the body. Hence, the effect (c) will

not be presented. On the other hand, since both causal rules and action effect rules

are non-defeasible in PAT0

(D), it is clear that initiating more action effect rules

or causal rules in AT0 will not affect the truth values of literals Effect+(F, S)

and Caused+(F, S) if PAT0

(D) |= Effect+(F, S) and PAT0

(D) |= Caused+(F, S),

respectively.
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Now suppose PAT0

(D) |= Holds(F, S) is due to some inertia rule in PAT0

(D):

N : Holds(F, S)← Holds(F, S ′), not¬Holds(F, S),

where S = Result(A, S ′), and PAT0

(D) |= Holds(F, S ′). We prove PAT0

(D′) |=
Holds(F, S).

Case 1. Suppose S = S0 and PAT0

(D′) |= Holds(F, S0). Since no inertia rule is needed

to drive Holds(F, S0), the only possibility to have PAT0

(D′) |= Holds(F, S0) is either

Holds(F, S0) ← is in PAT0

(D′), or Caused+(F, s) ← · · · is in PAT0

(D′) (note that

such causal rule is non-defeasible). Obviously, in PAT0

(D′), the truth value of

Holds(F, S0) will not be affected. Hence the Result holds.

Case 2. Now consider the case that S is not the initial situation. Suppose PAT0

(D) |=
Holds(F, S). It implies that there exists some action constant A such that PAT0

(D) |=
Holds(F, S ′) due to the inertia rule in PAT0

(D), where S = Result(A, S ′).

Now suppose PAT0

(D′) 
|= Holds(F, S). So the inertia rule:

N ′ : Holds(F, S)← Holds(F, S ′), not¬Holds(F, S),

where S = Result(A, S ′), is defeated in PAT0

(D′). Hence it must be the case

that F ∈ (F−Effect ∪F−Caused). On the other hand, from the fact that that PAT0

(D) |=
Holds(F, S ′), it follows that F ∈F+

Initial or F ∈ (F+
Effect∪F

+
Caused). But this contradicts

conditions of Theorem 7. So it must have PAT0

(D′) |= Holds(F, S). �

Lemma 1

A domain description D of language ATi (i = 0, 1, 2) is temporally definite if its

PLP translation PATi

(D) has a unique answer set.

Proof

Let PATi

(D) be the PLP translation of D. From the definition of temporal

definiteness, it is sufficient to prove that PATi

(D) |= Holds(F, S) implies PATi

(D) |=
Holds(F,Result(A, S)) or PATi

(D) |= ¬Holds(F,Result(A, S)) for any action con-

stant A. Suppose PATi

(D) |= Holds(F, S) and PATi

(D) has a unique answer set

Ansi. So Holds(F, S)∈Ansi. Then, it is clear that if one of the following cases holds,

the result is true:

(1) Effect+(F,Result(A, S)) or Effect−(F,Result(A, S)) is in Ansi;

(2) AbEffect+(F,Result(A, S)) or AbEffect−(F,Result(A, S)) is in Ansi, here i = 2;

(3) Caused+(F,Result(A, S)) or Caused−(F,Result(A, S)) is in Ansi;

(4) ¬Holds(F,Result(A, S)) is in Ansi.

Now suppose none of the above cases is held. Then from the instance of inertia rule

in PATi

(D):

Holds(F,Result(A, S))← Holds(F, S), not¬Holds(F,Result(A, S)),

it follows that Holds(F,Result(A, S)) is in Ansi. So the result is still true. �
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Theorem 8

A domain description D of ATi (i = 0, 1, 2) is temporally definite if its PLP

translation PATi

(D) has a unique reduct ∆i and Trans(∆i) is locally stratified.

Proof

The proof is directly from Lemma 1 and Proposition 3 in Appendix A. �
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