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The interaction of oblique monochromatic incident waves with horizontal/inclined/
dual porous plates is investigated in the context of two-dimensional linear potential
theory and Darcy’s law (the normal velocity of fluid passing through a thin porous
plate is linearly proportional to the pressure difference across it). The developed
theory is verified by both small-scale and full-scale experiments. First, matched
eigenfunction expansion (MEE) solutions for a horizontal porous plate are obtained.
The relationship between the plate porosity and the porous parameter is obtained
from systematic model tests by using six porous plates with different sizes and spacing
of circular holes. Secondly, a multi-domain boundary-element method (BEM) using
simple-sources (second-kind modified Bessel function) is developed to confirm the
MEE solutions and to apply to more general cases including inclined or multiple
porous plates. The BEM-based inner solutions are matched to the eigenfunction-
based outer solutions to satisfy the outgoing radiation condition in the far field.
Both analytical and BEM solutions with the developed empirical porous parameter
agree with each other and correlate well with both small-scale data from a two-
dimensional wave-tank test and full-scale measurement in a large wave basin. Using
the developed predictive tools, wave-absorption efficiency is assessed for various
combinations of porosity, water depth, submergence depth, wave heading, and
plate/wave characteristics. In particular, it is found that the performance can be
improved by imposing the proper inclination angle near the free surface. The optimal
porosity is near porosity P = 0.1 and the optimal inclination angle is around 10◦ as
long as the plate length is greater than 20 % of the wavelength. Based on the selected
optimal parameters (porosity = 0.1 and inclination angle = 11.3◦), the effective wave-
absorption system for MOERI’s square basin is designed.

1. Introduction
Wave absorbers are installed in wave tanks and harbour walls to minimize wave

reflection. For a wave tank experiment, wave reflection must be minimized from the
endwall to simulate the open-sea condition and avoid wave distortion at the measuring
section. Effective wave absorbers are also important in suppressing remnant waves
inside wave basins after the wave generators are stopped.

A variety of structures, shapes, and materials are used for wave absorption in wave
tanks. Ouellet & Datta (1986) conducted a review study for various wave absorbers
installed at 48 worldwide wave basins. Most of the passive wave absorbers are
classified into vertical and inclined types. The vertical wave absorber is commonly
constructed of multiple rows of porous vertical metal sheets with the porosity
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2 I. H. Cho and M. H. Kim

progressively decreased toward the end. This kind of wave absorber is widely
operated in deep-water wave basins. On the other hand, the inclined wave absorber
is made up of beach with constant or varying slopes, for which various materials,
such as gravel/stone, transversal bars, wire screen and horse hair, are used. Its slope
has to be mild, usually less than 1:10, to obtain a good dissipation of wave energy,
which requires a long distance for wave absorption. Particularly in deep-water tanks,
it will use up a large portion of the valuable tank space. In order to minimize
the absorption space, different ideas and arrangements including the addition of
roughness or porosity on their surfaces have been experimented with.

Vertical porous plates are widely used for wave absorption in deep-water tanks.
To achieve desirable efficiency, they typically use properly spaced multiple porous
sheets with a progressive decrease in porosity toward the end. The incident wave is
partly transmitted and partly trapped/reflected across the porous plates generating
partial standing waves between respective plates and the rear wall. The number and
the spacing of the plates as well as the porosity of each plate are important design
parameters for maximizing wave absorber efficiency.

During the past few decades, there have been many theoretical and experimental
studies regarding the wave-absorption performance by vertical porous plates. For
example, the wave transmission of a thin vertical porous plate placed in deep water
was investigated by Tuck (1975). He discussed the application of Darcy’s law for
flows across porous plates and suggested that in the case of sinusoidal oscillations the
velocity across the material with fine pores can be related to the pressure drop by a
complex-valued frequency-dependent parameter, which accounts for both viscous and
inertial effects. Along the same lines, Chwang (1983) developed a porous wavemaker
theory and found that the porous effect reduces the wave amplitude as well as the
hydrodynamic force on the wavemaker. Evans (1990) analysed the wave reflection
by a number of thin porous plates fixed in a narrow wave tanks and showed that
the reflected wave energy is largely reduced if the front porosity is greater than the
rear porosity. Twu & Lin (1991) developed a highly effective wave-absorption system
consisting of a finite number of thin porous plates based on Darcy’s law, in which
experimental tests were carried out and the results agreed well with the theoretical
solutions.

One of the major problems associated with using multiple vertical porous plates is
that it also demands a large space to achieve desirable efficiency. Another problem
is large force by trapped waves and possible wave generation by the thin plates
undergoing hydroelastic motions. In view of this, horizontal porous plates may be
an alternative candidate for wave absorption. The formulation of the interaction
of submerged horizontal porous plates with waves is in general more complicated
than that of vertical porous plates. Siew & Hurley (1977) and McIver (1985), for
instance, studied the diffraction of linear waves by a submerged rigid flat plate.
They showed that it can reflect a significant amount of incident wave energy
in a certain wave-frequency region. Possible applications of submerged horizontal
plates for offshore wave control have been reviewed by Yu & Chwang (2002) and
Cho & Kim (1999). Cho & Kim (1998) studied the performance of a tensioned
horizontal flexible membrane as a wave barrier and their experimental results agreed
reasonably with their numerical predictions. Chwang & Wu (1994) showed that
submerged horizontal plates with moderate geometric porosity can dissipate wave
energy effectively. Wu, Wan & Fang (1998) investigated wave reflection from a
vertical wall with a submerged horizontal porous plate attached to it and found that
the plate with proper porosity can significantly reduce not only the wave run-up
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Wave absorbing system using inclined perforated plates 3

but also the reflection coefficient. The efficiency of horizontal porous plates as wave
absorber is strongly dependent on the plate length, the submergence depth, and the
porous parameter. Yip & Chwang (2000) investigated the hydrodynamic performance
of a perforated vertical wall breakwater with an internal horizontal plate and found
that the horizontally submerged porous plate inside the chamber can enhance the
performance and structural stability.

In § 2, the matched eigenfunction expansion (MEE) solutions of wave reflection
from a vertical wall with a horizontal submerged porous plate attached to it are
investigated by using the eigenfunction expansion method. The fluid domain is divided
into upper and lower regions divided by the horizontal porous plate, and the analytic
velocity potentials are obtained in the respective regions after applying Darcy’s law at
the porous plate. The porous parameter plays an important role in wave-absorption
efficiency and the wave load on the plate. The porous parameter is empirically
determined from a least-squares fitting with the experimentally measured data. In § 3,
a multi-domain boundary-element method (BEM) is independently developed first
to confirm the MEE solutions and secondly to apply to the cases of inclined/dual
porous plates. The present analytic and BEM solutions can be used for any incident
angles and are extensively verified by a series of small-scale and full-scale experimental
results, as summarized in §§ 4 and 5.

The small-scale experiments were conducted with various types of submerged
porous plates (horizontal, inclined, dual) in a two-dimensional wave tank at the
Maritime and Ocean Engineering Research Institute (MOERI). From the experiments,
the porous-parameter formula (relationship between plate porosity P and porous
parameter b) was obtained. Using the empirical formula, the small-scale experimental
results for various wave conditions and plate porosities correlated well with the
analytical and BEM solutions developed here. Encouraged by the agreement between
the numerical prediction and the small-scale-test data, the performance of a prototype
inclined wave absorber in front of MOERI’s square-basin wall is subsequently tested
for various wave conditions, wave headings, and plate inclination angles. The full-scale
data also correlate well with the numerical predictions. Based on the results from
both theoretical and experimental investigations, the final design of the new, efficient
MOERI wave absorber, which consists of multiple inclined horizontal porous plates
in front of several vertical porous plates, was completed.

2. Matched-eigenfunction-expansion analytic method
We consider the interaction of a horizontal porous plate with monochromatic

oblique incident waves. Cartesian axes are chosen with the x-axis along the mean
free surface and the y-axis pointing vertically upwards. The water depth is denoted
by h, and the length and the submergence depth of the porous plate by a and d ,
respectively. The porous plate is installed horizontally in front of a vertical wall. It is
also assumed that the fluid is incompressible and inviscid. The viscous effects are to
be included through Darcy’s law, i.e. the perforated plate is thin and made of arrays
of fine holes so that the normal velocity of the fluid passing through the porous plate
is linearly proportional to the pressure difference between the two sides of the plate
(Chwang 1983; Chwang & Wu 1994). With the above assumptions, linear potential
theory can be applied. The fluid particle velocity can then be described by the
gradient of a velocity potential Φ(x, y, z, t). Assuming harmonic motion of frequency
ω, the velocity potential can be written as Φ(x, y, z, t) = Re[φ(x, y)eikzz−iωt ], where
kz = k1 sin θ is the z-component wavenumber and θ is the heading of incident waves
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Figure 1. (a) Definition sketch of a submerged horizontal porous plate with a vertical wall.
(b) Integration domains for a numerical solutions.

with respect to the x-axis. The velocity potential φ satisfies the modified Helmholz
equation

∂2φ

∂x2
+

∂2φ

∂y2
− k2

1 sin2 θφ = 0 in the fluid, (2.1)

with the following boundary conditions

∂φ

∂y
− νφ = 0 on y = 0

(
ν =

ω2

g

)
, (2.2)

∂φ

∂y
= 0 on y = −h, (2.3)

∂φ+

∂y
=

∂φ−

∂y
= iσ (φ− − φ+) on y = −d, −a < x < 0, (2.4)

∂φ

∂x
= 0 on x = 0, (2.5)

lim
x→−∞

[
∂(φ − φI )

∂x
+ ik1 cos θ(φ − φI )

]
= 0, (2.6)

where g is the acceleration due to gravity and k1 is the wavenumber. The radiation
condition (2.6) is applied to diffraction potential (φ − φI ), where φI is the incident
wave potential. Superscript ±(equation (2.4)) means −d ±0. According to Mei (1974),
the imaginary part of σ is related to the inertia effect and it can be neglected when
the plate is thin and the holes are not large. The imaginary part of σ is proportional
to flow accelerations, and thus has nothing to do with energy dissipation. The positive
real value of σ represents viscous effects and can be obtained directly from experiment.
The positive real value of σ is called the porous-effect parameter ( = ρboω/μ) with bo

and μ being the porosity coefficient and dynamic viscosity. The limiting case bo → 0
corresponds to the impermeable plate and bo → ∞ means that the plate is infinitely
porous so that there is no obstruction in the fluid domain. The new dimensionless
porosity parameter b used in the present numerical examples is defined as:

b =
2πσ

k1

=
2πρωbo

k1μ
. (2.7)

By means of the eigenfunction expansion method, the fluid domain is divided into
two regions, as shown in figure 1(a). Region (I) is defined by x � − a, −h<y < 0,
and region (II) by −a < x � 0, −h<y < 0. The velocity potential in each fluid region
satisfying the modified Helmholtz equation and boundary conditions (2.2)–(2.6), can
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Wave absorbing system using inclined perforated plates 5

be written as follows:

φ(1) = − igA

ω

{
e−α10(x+a)f10(y), +

∞∑
n=0

ane
α1n(x+a)f1n(y)

}
, (2.8)

φ(2) = − igA

ω

∞∑
n=0

bn cosα2nx f2n(y), (2.9)

where A is the wave amplitude and

α1n =

⎧⎨
⎩

−ik1 cos θ (n = 0)√
k2

1 sin2 θ + k2
1n (n � 1),

(2.10)

α2n =
√

k2
2n − k2

1 sin2 θ (n � 0), (2.11)

The eigenfunctions f1n(y) are given by

f1n(y) =

⎧⎪⎪⎨
⎪⎪⎩

cosh k1(y + h)

cosh k1h
(n = 0),

cos k1n(y + h)

cos k1nh
(n � 1).

(2.12)

The eigenvalues k1n are the solutions of the following equations⎧⎪⎪⎨
⎪⎪⎩

k1 tanh k1h =
ω2

g
(n = 0),

k1n tan k1nh = −ω2

g
(n � 1).

(2.13)

The eigenfunctions f2n(y) and eigenvalues k2n in region (II) are the actual solutions
of the following boundary-value problem of a function f̃ with parameter κ:

d2f̃

dy2
− κ2f̃ = 0,

df̃

dy
− νf̃ = 0 on y = 0,

df̃

dy

∣∣∣∣
y=−d+0

=
df̃

dy

∣∣∣∣
y=−d−0

= iσ (f̃ |y=−d−0 − f̃ |y=−d+0),

df̃

dy
= 0 on y = −h,

(2.14)

for the upper complex plane of κ and 0 <σ < ∞. Then, the following complex
dispersion relation should be satisfied:

κ sinh κ(h − d)(ν cosh κ d − κ sinh κ d) = iσ (ν cosh κ h − κ sinh κ h). (2.15)

The real and imaginary parts of (2.15) have to be respectively zero. With initial
guesses of all the roots, the ordinary nonlinear equation can be solved easily by using
the Newton–Raphson iteration method. The infinite number of discrete solutions
satisfying (2.15) are eigenvalues k2n. The resulting eigenfunctions f2n(y) are

f2n(y) =

{
sinh k2n(h − d)(k2n cosh k2ny + ν sinh k2ny) (−d � y � 0),

(ν cosh k2n d − k2n sinh k2n d) cosh k2n(y + h) (−h � y � −d).
(2.16)
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6 I. H. Cho and M. H. Kim

By straightforward integration using (2.16), it can be shown that the eigenfunctions

satisfy
∫ 0

−h
f2n(y)f2m(y) dy = 0, m �= n.

The unknown coefficients an, bn(n= 0, 1, 2, . . .) can then be determined by invoking
the continuity of potential and horizontal velocity at x = −a. The continuity of φ at
x = −a requires that

f10(y) +

∞∑
n=0

anf1n(y) =

∞∑
n=0

bn cos α2na f2n(y) (−h � y � 0). (2.17)

Multiplying (2.17) by f2m(y) and integrating with respect to y over [−h, 0], we obtain

bm cos α2ma N (2)
m = Cm0 +

∞∑
n=0

anCmn, (2.18)

where

Cmn =

∫ 0

−h

f1n(y)f2m(y) dy∫ 0

−h

f2n(y)f2m(y) dy =

{
N (2)

m (m = n)

0 (m �= n).

(2.19)

On the other hand, the continuity of ∂φ/∂x at x = −a gives

−α10f10(y) +

∞∑
n=0

α1nanf1n(y) =

∞∑
n=0

α2nbn sin α2na f2n(y) (−h � y � 0). (2.20)

Multiplying both sides of (2.20) by f1m(y) and integrating with respect to y from −h

to 0, we obtain

−α10N
(1)
0 + α10a0N

(1)
0 =

∞∑
n=0

α2nbn sin α2naCn0 (m = 0), (2.21a)

α1mamN (1)
m =

∞∑
n=0

α2nbn sin α2na Cnm (m �= 0), (2.21b)

where ∫ 0

−h

f1n(y)f1m(y) dy =

{
N (1)

m (m = n),

0 (m �= n).

The final matrix equation for am can then be obtained by substituting (2.18) into
(2.21) after truncating m and n to N:

a0 +

N∑
k=0

F0k

α10N
(1)
0

ak =

(
1 − F00

α10N
(1)
0

)
(m = 0),

am +

N∑
k=0

Fmk

α1mN
(1)
m

ak = − Fm0

α1mN
(1)
m

(m = 1, 2, 3, . . . , N),

(2.22)

where

Fmk = −
N∑

n=0

α2n tan α2na Cnm Cnk

N
(2)
n

. (2.23)
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Wave absorbing system using inclined perforated plates 7

By solving the above simultaneous algebraic equations, the unknown constants an can
be determined. Subsequently, another unknown constants bn can be obtained from
(2.18).

Finally, the reflection coefficients and the dimensionless free surface profile above
a porous plate can be determined from

Rf = |a0|, η/A =

N∑
n=0

bn cos α2nx f2n(0). (2.24)

The vertical hydrodynamic force on the horizontal porous plate can be calculated
from

F = −iρω

∫ 0

−a

[
φ(2)(x, −d−) − φ(2)(x, −d+)

]
dx. (2.25)

3. Boundary-element numerical method
In this section, a numerical method based on a boundary integral equation (e.g.

Brebbia & Dominguez 1992) is developed to confirm the MEE solutions derived in
the preceding section. It can also be straightforwardly generalized to the problem of
multiple inclined porous plates. The fluid domain is decomposed into two regions,
inner and outer regions, as shown in figure 1(b). The outer solution is expressed
by the expansion of eigenfunctions satisfying the modified Helmholz equation as
well as free-surface, bottom and radiation boundary conditions. The inner domain is
divided into two sub-regions (figure 1b). For the case of dual porous plates, the inner
domain is divided into three sub-regions. The inner solution in region I satisfies the
boundary-value problem given by (2.2)–(2.4); on the other hand, the inner solution
in region II satisfies the bottom condition (2.3), the body boundary condition (2.4),
and wall condition (2.5). In addition, the inner solutions are to be matched to outer
solutions at the respective matching boundaries. The velocity potential in the inner
region can be obtained by applying Green’s theorem with a Green function G. The
resulting integral equation is given by

−
(

φ(x, y)
1
2
φ(x, y)

)
=

∫
Γ

(
φ

∂G

∂n
− G

∂φ

∂n

)
dS

(
if (x, y) ∈ Ωbut not on Γ

if (x, y) on Γ

)
(3.1)

where the Green function G is the fundamental solution satisfying ∇2G−k2
1 sin2 θG =

−δ (x − xo)δ(y − yo), and given by

G(x, y; xo, yo) =
1

2π
K0(k1 sin θ r), r =

√
(x − xo)2 + (y − yo)2, (3.2)

where r is the distance between source point (x, y) and field point (x0, y0) and K0

is the second-kind modified Bessel function of zeroth order. The normal derivative
of G can also be obtained analytically in terms of K1. In the two-dimensional case
of normal incidence θ → 0, K0(k1 sin θr) approaches − ln r , in which the logarithmic
function can be used as a simple source. To convert the above integral equation to
a matrix equation, the entire boundary of the inner region has to be discretized by
NT elements, and the values of φ and ∂φ/∂n are assumed to be constant over each
element. Using the simple source, the bottom topography of the inner region can be
arbitrary. Substituting the boundary conditions of region I into (3.1), the following
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8 I. H. Cho and M. H. Kim

equation is obtained∑ (
Hij − ω2

g
Gij

)
φ

(1)
j

∣∣
ΓF

+
∑

Hijφ
(1)
j

∣∣
Γ−

+
∑

Hijφ
(1)
j

∣∣
Γb1

+
∑

Hijφ
(1)
j

∣∣
ΓM

+
∑

(Hij − iσGij )φ(1)
j

∣∣
ΓS

+
∑

iσGijφ
(2)
j |ΓS

+
∑

Hijφ
(1)
j

∣∣
ΓW

=
∑

Gij
∂φ

(1)
j

∂n

∣∣∣∣∣
Γ−

+
∑

Gij
∂φ

(1)
j

∂n

∣∣∣∣∣
ΓM

, (3.3)

where ΓF , Γ−, Γb1, ΓM, ΓS , ΓW are the free surface, matching boundary I (with outer
region), bottom surface, matching boundary II (with region II), porous plate surface,
and vertical wall, respectively. The influence coefficients H and G are defined by

Hij =

∫
Γj

∂G

∂n
dS, Gij =

∫
Γj

G dS. (3.4)

Similarly, substituting the boundary conditions of region II into (3.1), we obtain∑
iσGijφ

(1)
j

∣∣
ΓS

+
∑

(Hij − iσGij )φ(2)
j

∣∣
ΓS

+
∑

Hijφ
(2)
j

∣∣
ΓM

+
∑

Hijφ
(2)
j

∣∣
Γb2

+
∑

Hijφ
(2)
j

∣∣∣∣∣
ΓW

=
∑

Gij
∂φ

(2)
j

∂n

∣∣∣∣∣
ΓM

. (3.5)

At the matching boundary ΓM , the pressure and normal velocity must be continuous

∂φ̄

∂n
=

∂φ(1)

∂n
= −∂φ(2)

∂n
, φ̄ = φ(1) = φ(2) at ΓM, (3.6)

where the upper bar means the value newly defined at the matching boundary ΓM .
Substituting (3.6) into (3.3) and (3.5), we obtain the following matrix equations.(

[H ] − ω2

g
[G]

)
[φ(1)]|ΓF

+ [H ][φ(1)]|Γ− + [H ][φ(1)]|Γb1
+ [H ][φ̄]|ΓM

+ ([H ] − iσ [G])[φ(1)]|ΓS
+ iσ [G][φ(2)]|ΓS

+ [H ][φ(1)]|ΓW
− [G]

[
∂φ̄

∂n

] ∣∣∣∣
ΓM

− [G]

[
∂φ(1)

∂n

] ∣∣∣∣
Γ−

= 0, (3.7)

iσ [G][φ(1)]|ΓS
+ [H ][φ̄]|ΓM

+ ([H ] − iσ [G])[φ(2)]|ΓS
+ [H ][φ(2)]|Γb2

+ [H ][φ(2)]|ΓW

+ [G]

[
∂φ̄

∂n

] ∣∣∣∣∣
ΓM

= 0. (3.8)

By applying another matching condition (continuity of pressure and normal velocity)
between the outer solution (eigenfunction-expansion solution satisfying the radiation
condition as described in § 2) and the inner solution in region I at Γ−, a final matrix
equation can be derived and the unknown coefficients of the outer solution can be
determined.

4. Small- and full-scale experiments
In order to validate the theory and numerical procedure developed in the preceding

sections, we conducted a series of experiments in a two-dimensional wave tank (20 m
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Wave absorbing system using inclined perforated plates 9

long, 0.6 m wide, and 1.0 m deep) located at MOERI. The glass-walled wave tank is
equipped with a dry-back, piston type wavemaker capable of producing regular and
irregular waves. The wave elevation was measured with resistance-type wave gauges
having an accuracy of ±0.1 cm. Four probes for decomposing incident and reflected
waves are installed at positions of 4.0 m, 4.4 m, 4.67 m, and 4.864 m from the front of
the porous plates, respectively. The estimation of the reflection coefficient was based on
a least-squares technique applied to the measurements from four probes (Mansard &
Funke 1980). Regular waves were generated by user-defined time-voltage inputs to
the wavemaker. The wave frequency range used in our experiments was from 0.5 to
1.4 Hz. The porous plate model was made of a punched steel plate with six different
porosities (P =0.0567, 0.0740, 0.1008, 0.2267, 0.3, 0.4031). The length, width, and
thickness of the porous plates were 60 cm, 60 cm and 1.6 mm. The thickness was
determined in order to maintain rigidity while resisting the hydrodynamic force of
(2.25). The porous plates were attached with the desired angle to four vertical steel
frames clamped to the tank bottom. Table 1 summarizes the principal specifications
of the models and wave characteristics used in our experiments. The details of the
perforated plates are given in table 2.

Prior to the final design and fabrication of MOERI’s wave absorber, a series of
full-scale tests were also conducted in the square basin with prototype (length =3 m,
width = 8 m, thickness = 2.5 mm) horizontal and inclined porous plates in front of a
rigid wall. Similar to the two-dimensional experiment, four probes (capacitance-type
with accuracy ±0.3 cm and sampling rate = 20 Hz) at 3 m, 3.65 m, 4.24 m and 4.92 m
from the plate front were used to decompose the incident and reflected waves. Regular
waves of steepness 0.02–0.04 and frequency range 0.28 to 2.0 Hz were generated by
the 88-segment piston-type multi-directional wavemaker whose vertical position can
be adjusted. The inclined plates were attached to vertical frames positioned with 2 m
spacing. The test was conducted at the water depth 1.5 m with submergence depth
d = 15 cm, inclination angle β = 5◦, 10◦, and plate porosity P = 0.1. Small- and large-
scale tests were continuously observed to make sure that the wave absorption was
not due to wave breaking.

5. Numerical/experimental results and discussions
The MEE solutions and the independently developed BEM results are compared

for cross-checking. First, the convergence of the MEE solutions with the number
of eigenfunctions N is shown in table 3 for the case a/h = 1.0, b = 5.0, d/h = 0.2,
θ =0◦. It is seen that the convergence is rapid for various values of non-dimensional
wavelength and N = 20 is selected for the ensuing calculations.

Next, the MEE solutions are compared in figure 2 with the BEM-based numerical
results. For the BEM result, 350 total elements with 100 elements on the free surface
were used. The two solutions are in good agreement. As the plate-submergence
depth decreases, reflection coefficients are reduced significantly for a wide range of
wavelengths, which means that shallower porous plates more effectively interact with
surface waves to lessen wave reflection.

In figure 3, the MEE solutions are compared with the two-dimensional tank
experimental results. The x-axis is the non-dimensional wavelength and y-axis is the
reflection coefficients for two different porous parameters. For comparison, the porous
parameter was empirically determined from the experiments with various types of
porous plates. The porous parameter b may depend on the porosity and shape/size
of holes. We found from our experiments that if the circular holes are sufficiently
small and arrayed uniformly, the porous parameter depends mainly on the porosity
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10 I. H. Cho and M. H. Kim

(a) Exp. 1 (horizontal) Exp. 2 (inclined) Exp. 3 (dual)

Number of plates 1 1 2
Water depth (cm) 60 60 60
Length of porous plate (cm) 60 60 60
Width of porous plate (cm) 60 60 60

Submergence depth (cm) 1.5 Front Rear Upper Lower
5 1.5 11.5
8 0 22.0

17

0.0567
0.0740

Porosity 0.1008 0.1008 0.1008
0.2267
0.3000
0.4031

Inclined angle (deg.) 0 4.7 0
7.6

16.5

Wave frequency range (Hz) 0.5–1.4 0.5–1.4 0.5–1.4
Wave steepness (H/λ) 0.0051–0.0133 0.0051–0.0133 0.0051–0.0133

(b) Exp. 4 (prototype) Exp. 5 (MOERI)

Number of plates Inclined (1) Inclined (5)
Vertical (6)

Length of porous plate (m) 3 3 (inclined)
3 (vertical)

Submergence depth (cm) Front Rear Front Rear
15 15 59 0
26 0
52 0

Water depth (m) 1.5 1.21
1.29
1.36
1.40

Porosity 0.1 0.1

Inclined angle (deg.) 0 11.3
5
10

Wave frequency range (Hz) 0.28–2.0 0.28–2.0
Wave steepness (H/λ) 0.02–0.04 0.02–0.04

Table 1. (a) Experimental conditions in a two-dimensional wave tank.
(b) Experimental conditions in a square basin.

rather than on the size of holes. Then, the empirical relationship between the porous
parameter b and the plate porosity P was determined from the least-squares fitting
technique as follows:

S =

M∑
i=1

[Rf (fi, P ) − R̄f (fi, b)]2,
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Wave absorbing system using inclined perforated plates 11

P Diameter of hole (mm) Spacing of adjacent holes (mm)

0.0567 2 8
0.0740 2 7

2 6
4 120.1008
8 24

12 36

0.2267 2 4
5 10

0.3000 4 7
0.4031 4 6

Table 2. Specification of porous plates used in a two-dimensional wave tank.

Reflection coefficient Rf

Truncated
Numbers N a/λ= 0.2 a/λ=0.4 a/λ=0.6 a/λ= 0.8

5 0.2490 0.2153 0.2289 0.3893
10 0.2481 0.2157 0.2259 0.3903
15 0.2482 0.2177 0.2245 0.3917
20 0.2480 0.2170 0.2240 0.3918
25 0.2480 0.2171 0.2238 0.3918

Table 3. Convergence of Rf for different values of N.

0 0.2 0.4 0.6 0.8 1.0

Rf

0.2

0.4

0.6

0.8

1.0
d/h = 0.1

0.2
0.3
0.4

Figure 2. Reflection coefficient of an horizontal porous plate as a function of non-dimensional
wavelength a/λ and submergence depth for a/h = 1.0, b = 5.0, θ = 0◦ (lines are for MEE
solutions and symbol are for BEM solutions).

where fi are wave frequencies and M is the number of wave frequencies. Rf (fi, P )
are the measured reflection coefficients for a given porosity P and R̄f (fi, b) are the
calculated reflection coefficients. The porosity parameter corresponding to the given
porosity is then determined by minimizing the squared error S. The fitted curve
(see figure 4) is the linear function that can be expressed by b = 57.63P − 0.9717.
The developed empirical formula is valid for thin punched plates with circular holes
arrayed uniformly.

All the lines in figure 3 are the MEE solutions (reflection coefficient against plate-
length to wavelength ratio for submergence depth = 2.5 % of water depth) produced
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12 I. H. Cho and M. H. Kim

a/λ a/λ
0 0.2 0.4 0.6 0 0.2 0.4 0.6

Rf

0.2

0.4

0.6

0.8

1.0(a) (b)

(c)

0.2

0.4

0.6

0.8

1.0

b = 2.8
b = 11.0
exp(P = 0.0567)
exp(P = 0.2267)

b = 3.3
b = 16.0
exp(P = 0.074)
exp(P = 0.300)

a/λ

Rf

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6

b = 5.0
b = 23.0
exp(P = 0.1008)
exp(P = 0.4031)

Figure 3. Comparison of theoretical reflection coefficients with experimental results as a
function of a/λ for d/h =0.025, a/h = 1.0, θ = 0◦.

b = 57.63P – 0.9717

Porosity, P

0 0.1 0.2 0.3 0.4 0.5

b

5

10

15

20

25

Figure 4. Regression line between the porous parameter and the porosity.

with the empirically determined porous parameter. The six curves cover a wide range
of six different porosities b =2.8–23 (table 4). In general, the cases of relatively smaller
porosity (b = 2.8–5.0 or P = 0.057–0.1) perform better than those of larger porosity
(b = 11–23 or P =0.23–0.40) as wave absorber. When b = 5, reflection coefficients
become less than 10 % when the wave length is 3–5 times the plate length. The
theoretically predicted curves correlate well with the experimental results for such a
wide range of plate porosities.

All the curves of figure 3 were obtained for a given plate submergence depth. To
further validate the developed theory and assess the effects of plate submergence
depth d , additional experiments for d = 2, 5, and 10 cm were also conducted. For

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

18
45

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008001845


Wave absorbing system using inclined perforated plates 13

Porosity (P ) Porous parameter (b)

0.0567 2.8
0.0740 3.3
0.1008 5.0
0.2267 11.0
0.3000 16.0
0.4031 23.0

Table 4. Porous parameter corresponding to given porosities.

0 0.2 0.4 0.6 0.8

Rf

0.2

0.4

0.6

0.8

1.0
d/h = 0.033

0.083
0.167
0.033
0.083
0.167

Figure 5. Comparison of analytic and experimental results for a horizontal punched plate
with a vertical wall as a function of a/λ and submergence depth (P = 0.28, a/h = 1.0, θ = 0◦).

this experiment, P = 0.28 (b = 15.16) was selected for plate porosity. Both theoretical
predictions and experimental results are plotted in figure 5 and they are generally in
good agreement. It is seen both in theory and experiment that reflection coefficients
increase with plate submergence depth (see also figure 2). Therefore, to be an effective
wave absorber, the porous horizontal plate should be placed closed to the free surface.

So far, the porous parameter b has been a function of the porosity P only. Then,
what will happen if the porosity remains the same, while the hole size changes?
To answer this question, a series of experiments have been conducted with four
different hole diameters (2, 4, 8 and 12 mm) and spacing (6, 12, 24 and 36 mm) while
keeping the same porosity P = 0.1008 (b = 5.0). The experimental results are plotted
in figure 6 along with a theoretical prediction with b =5. The figure shows how wave
reflection varies with hole size under the same porosity. If the resulting wave reflection
coefficients change much for different hole sizes, then the hole diameter should also
be an additional independent parameter in the numerical modelling. It is found that
the wave reflection coefficients are not sensitive to the change of hole diameter and
show a consistent trend with narrow spread. They all agree well with the theoretical
prediction with the single parameter b = 5.

To find the best design of a horizontal-plate-based wave absorber with the optimal
values of porosity and submergence depth, extensive calculations have been conducted
and two contour plots are produced in figure 7. Through the two contour plots, we
can easily find the smallest wave reflection for a particular combination of plate
length, submergence depth and porosity. It is seen that the reflection coefficient is
maintained below 10 % in a wide range of 0.07 <P < 0.12, d/h < 0.15 and a/λ> 0.2.

Next, we consider the performance of inclined porous plates as wave absorber. In
figure 8, the BEM-based reflection coefficients are plotted as a function of a/λ for
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14 I. H. Cho and M. H. Kim

a/λ

0 0.2 0.4 0.6 0.8

Rf

0.2

0.4

0.6

D = 2 mm
4 mm
8 mm
12 mm

Figure 6. Comparison of analytic and experimental results for a horizontal punched plate
with a vertical wall as a function of a/λ and hole size (P = 0.1008, a/h = 1.0, d/h =0.025,
θ = 0◦). −−−− calculation.
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P

0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1.0

0 .9

0 .9

0 .8

0 .7

0 .8

0 .6

0 .5

0 .5

0 .4
0 .3

0 .2

0 .2

0 .1

0 .1

0 .1

0 .1

0 .1

d/h

0.2 0.4 0.6 0.8
0

0.2

0.4
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0.8

1.0
(a) (b)

Figure 7. (a) Contour plots of reflection coefficients as a function of porosity (P ) and a/λ
for d/h = 0.1, a/h = 1.0, θ = 0◦. (b) Contour plots of reflection coefficients as a function
of submergence depth (d/h) and a/λ for P = 0.1, a/h = 1.0, θ = 0◦

a/λ
0 0.2 0.4 0.6 0.8

Rf

0.2

0.4

0.6

0.8

1.0

BEM (β = 4.7°)

BEM (β = 16.5°)

exp. (β = 4.7°)

exp. (β = 16.5°)

Figure 8. Comparison of numerical (BEM) and experimental results for an inclined porous
plate with a vertical wall as a function of a/λ and inclined angles (β) for P = 0.1008, a/h = 1.0.

two different plate angles. The porosity is fixed at 0.1008(b =5) and the plate-length
to water-depth ratio a/h= 1.0. The BEM solutions are compared with experimental
results. The rear of the plate is clamped to the vertical endwall at the mean water
level and the front part is submerged at 5 and 17 cm, respectively. As the inclination
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0.20
0.30

0.40
0.50
0.600.700.800.90

0.10

0.10

0.20

0.10

0.20

0.20
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β (deg.)
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Figure 9. Contour plots of reflection coefficients as a function of inclined angles (β) and a/λ
for P = 0.1, a/h = 1.0, θ = 0◦.

a/λ

0 0.1 0.2 0.3 0.4 0.5 0.6

Rf

0.2

0.4

0.6

0.8

1.0
BEM (d1/h = 0.025, d2/h = 0.192)

BEM (d1/h = 0.025, d2/h = 0.367)

exp (d1/h = 0.025, d2/h = 0.192)

exp (d1/h = 0.025, d2/h = 0.367)

Figure 10. Comparison of numerical (BEM) and experimental results for dual porous plates
with a vertical wall as a function of a/λ and submergence depth for P = 0.1008, a/h = 1.0,
θ = 0◦.

angle increases, wave reflection is reduced in high-frequency region but increases in
the range of a/λ< 0.4. Compared to the horizontal-plate case of the same porosity
(figure 6), the overall wave-absorption performance is improved by imposing small
inclination angles. The measured values generally follow the trend of the computed
curve, which again validates the present theoretical prediction with an empirically
determined porous parameter.

More extensive calculations are carried out in order to plot wave reflection
coefficients as functions of both non-dimensional wavelengths and inclination angles
(figure 9). It is seen that the optimal range of inclination angle is 10◦ <β < 20◦. If the
inclination angle is greater than 20◦, the performance of wave-absorption becomes
worse. It is also seen that wave reflection is not reduced much in the long- wave
regime a/λ< 0.2, regardless of inclination angles.

Figure 10 shows the BEM solutions together with the experimental results for the
dual horizontal porous plates (P = 0.1008). The upper plate is fixed at d = 1.5 cm,
while two different submergence depths, 11.5 cm and 22 cm, are used for the lower plate
to assess the effect of spacing. The figure shows no significant difference between the
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a/λ
0.5 1.0 1.5 2.0

Rf

0

0.1

0.2

0.3

0.4

0.5

BEM (d/h = 0.1)
BEM (β = 5°)
BEM (β = 10°)
BEM (β = 15°)
exp (d/h = 0.1)
exp (β = 5°)
exp (β = 10°)

Figure 11. Comparison of numerical (BEM) and experimental results in a square basin for a
submerged porous plate as a function of a/λ and inclined angle for P = 0.1, a/h = 2.0, θ = 0◦.

two. When compared with the upper-plate-only case (figure 6), there is no appreciable
improvement in the performance of the wave absorption by adding the lower plate.
The observation implies that the role of the lower plate in wave absorption is relatively
minor compared to that of the upper plate.

Based on the two-dimensional experimental results and numerical predictions, we
found that the optimal range of porosity and inclination angle are 0.07 <P < 0.12 and
10◦ < β < 20◦ when a/λ> 0.2. It was also found that the addition of a lower porous
plate does not appreciably improve the overall wave absorption efficiency. From this
finding, the prototype wave absorber using an inclined porous plate was designed and
installed at MOERI’s square basin. For final verification of the developed concept
and to assess possible scale effects, a full-scale test with an inclined porous plate
(P = 0.1) was conducted in the square basin. The plate length was 3 m and the width
was 8 m. The water depth was fixed at 1.5 m (a/h= 2). The plate length was chosen
in order to cover a wavelength of up to 15 m considering the optimal condition
a/λ> 0.2. The experimental condition is summarized in table 1(b) (Exp. 4). The
full-scale tests were carried out for three different inclination angles (horizontal at
d =15 cm and inclined with β = 5◦, 10◦) and the corresponding theoretical predictions
are also given (figure 11). The experimental results can be reproduced well by the
developed theory even for the present full-scale case. As was confirmed in our
previous study, the inclined porous plates show better efficiency than the horizontal
one and the performance of the 10◦ case is the best. For reference, another theoretical
curve for β = 15◦ is also plotted in figure 11 to show that the case β = 10◦ is
already very good and there is no appreciable improvement by further increasing the
inclination angle. The resultant wave forces (in normal direction) on each plate are
compared for different inclination angles (figure 12a). The wave loading monotonically
decreases as inclination angle increases in the range considered. It is also interesting to
compare wave-induced forces for different plate porosities. The results corresponding
to b =2.8, 5 and 16 are plotted in figure 12(b). As can be intuitively expected, the
wave loading monotonically decreases as plates become more porous.

Since the present theory and numerical method are developed to cover arbitrary
incident wave headings, the wave absorption efficiency for oblique incident waves is
also numerically tested. Figure 13 shows the predicted sensitivity of wave-absorption
efficiency against incident wave angles. This kind of result is important since the
designed inclined-plate wave absorber will be used for the multi-directional wave
basin. It is seen that the wave absorption efficiency for oblique waves (up to 45◦) is
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Figure 12. Hydrodynamic loading on (a) a submerged inclined porous plate as a function of
a/λ and inclined angle for P = 0.1, a/h = 2.0, θ = 0◦, and (b) a submerged horizontal porous
plate as a function of a/λ and porosity for d/h =0.1, a/h = 2.0, θ =0◦.

a cos θ/λ
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Rf
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30°
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60°

Figure 13. Reflection coefficient of a submerged porous plate as a function of a cos θ/λ and
incidence angle for P = 0.1, a/h = 2.0, β =10◦.

as good as that of a normal incidence angle. The performance in oblique waves can
even be improved in the long-wave regime owing to smaller effective wavelengths in
the direction of plate length.

Finally, figure 14 shows the design of the wave absorbing system for MOERI’s
square basin. To take advantage of the merits of both inclined and vertical types, the
wave absorber consists of both types of porous plates. The vertical type is arrayed
by six expanded metal sheets of three different porosities (P =0.6 (front), 0.4, 0.2
(rear)) with 0.5 m spacing. The primary wave-energy is absorbed by the inclined
porous plates with a length of 3 m, porosity 0.1 (diameter = 8mm, spacing =24 mm)
and inclined angle 11.3◦, which are attached to the first vertical plate. Five inclined
porous plates are installed along the entire water depth (h = 3.5m) to give a desirable
performance at various water depths. Figure 15(a) shows the refection coefficients of
MOERI’s wave absorber at water depth h = 1.36 m for 12 wave periods in the range
of 0.5–3.5 s. Two different wave slopes (H/λ) 0.02 and 0.04 are employed to assess the
sensitivity to steeper/higher waves. At the given water depth, two inclined plates are
involved and the rear part of the upper plate coincides with the free surface. Except
for the longest wave T =3.5 s, all the measured reflection coefficients are below 15 %.
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Punched plate (P = 0.1)
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Figure 14. Side view of MOERI’s inclined wave absorber.
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EXP(H/λ = 0.02)
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Figure 15. Reflection coefficient by MOERI’s wave absorbing system (a) as a function of
wave period and water steepness (h =1.36 m, θ = 0◦), and (b) as a function of wave period
and incidence angle (h =1.36 m, H/λ= 0.02).

There is no appreciable change in absorption efficiency when doubling the wave
height/slope, which implies that wave steepness (or nonlinearity) does not play an
important role for overall performance within the range considered. In figure 15(a),
the BEM solutions are also plotted for comparison. The BEM results are obtained
by employing two inclined plates and one front vertical plate with porosity P = 0.6
(with rigid wall 1m behind) at the same locations as in the MOERI design. For
simplicity, only the front vertical porous plate is modelled instead of six arrays. As
a result, four-domain solutions are matched at three porous plates. The numerical
result correlates reasonably with the experimental results except for T =2.75 s and 3 s,
where the six arrays of vertical porous plates further dissipate the transmitted wave
energy. Otherwise, the inclined plates play a major role in wave-energy absorption
especially when T < 2.5 s. In figure 15(b) the change of reflection coefficients against
incident wave headings is shown. As was already predicted by the developed theory
(figure 13), the wave absorption efficiency is not sensitive to the change of wave-
heading angle, thus is suitable for multi-directional wave basins.
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6. Summary and conclusions
The wave absorption efficiency by using submerged horizontal or inclined porous

plates was investigated in the context of two-dimensional linear potential theory, in
which the viscous effects for porous thin plates are taken into consideration through
Darcy’s law. In § 2, MEE solutions for a submerged horizontal porous plate attached
to a vertical wall were obtained by means of the eigenfunction expansion method.
The MEE solutions were confirmed by the independently developed simple-source-
based BEM solutions. Both MEE and BEM solutions included the case of oblique
incident angles. The relationship between plate porosity and the porous parameter
for numerical prediction was obtained from a curve-fitting technique using systematic
experimental results. The analytical and BEM solutions with the empirical porous
parameter are then compared with a series of experiments conducted in a two-
dimensional wave tank. The small-scale test results correlated well with the predicted
results.

Using the developed computer program, the wave absorption efficiency of a
submerged porous plate was assessed for various wave and plate conditions, such as
porosity, submergence depths, inclined angles, plate length and wavelengths. It was
seen that an optimal combination of these design parameters existed for given plate
length and water depth and it was not sensitive to the change of wave headings. As
a result of the parametric study, plate-length 3 m, porosity 0.1, and inclined angle
11.3◦ are selected as an optimal design. To further verify the optimal selection of
the design parameters, a series of full-scale experiments were also conducted in the
MOERI’s square wave basin. The full-scale experimental results were consistent with
the predicted results as well as the small-scale test data. Finally, the same optimally
selected inclined porous plate used for the full-scale testing was applied to the final
design of the wave absorption system in MOERI’s multi-directional wave basin. From
the present study, it can be concluded that a properly designed submerged/inclined
porous plate can be a very effective wave absorber and the optimal design parameters
can be found through a comprehensive parametric study by using the developed
numerical tool.

This work was supported by the research grant from the Chuongbong Academic
Research Fund of Cheju National University in 2005
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