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Abstract. A new approach to actions of countable amenable groups with completely
positive entropy (cpe), allowing one to answer some basic questions in this field, was
recently developed. The question of the existence of cpe actions which are not Bernoulli
was raised. In this paper, we prove that every countable amenable group G, which contains
an element of infinite order, has non-Bernoulli cpe actions. In fact we can produce, for
any h ∈ (0, ∞], an uncountable family of cpe actions of entropy h, which are pairwise
automorphically non-isomorphic. These actions are given by a construction which we call
co-induction. This construction is related to, but different from the standard induced action.
We study the entropic properties of co-induction, proving that if αG is co-induced from an
action α0 of a subgroup 0, then h(αG) = h(α0). We also prove that if α0 is a non-Bernoulli
cpe action of 0, then αG is also non-Bernoulli and cpe. Hence the problem of finding an
uncountable family of pairwise non-isomorphic cpe actions of the same entropy is reduced
to one of finding an uncountable family of non-Bernoulli cpe actions of Z, which pairwise
satisfy a property we call ‘uniform somewhat disjointness’. We construct such a family
using refinements of the classical cutting and stacking methods.

1. Introduction
A classical result of Ornstein [24] is that there exist non-Bernoulli K -automorphisms
of any given entropy. This result was later improved by Ornstein and Shields [26] who
produced an uncountable family of pairwise non-isomorphic K -automorphisms which are
non-Bernoulli, but have the same positive entropy.
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Another approach to constructing non-Bernoulli K -automorphisms was due to
Feldman [7], who introduced the concept of a loosely Bernoulli system. A loosely
Bernoulli action of positive entropy is one that is Kakutani equivalent to a Bernoulli shift.
Feldman demonstrated the existence of K -automorphisms which are not loosely Bernoulli.
This area was further investigated by Ornstein et al [25] who, in particular, produced an
uncountable family of K -automorphisms which pairwise are not Kakutani equivalent. We
mention also contributions of Katok to this program [19, 20]. Perhaps the simplest example
of a K -automorphism S, which is not loosely Bernoulli, was given by Kalikow [16] in his
famous study of T, T −1 actions. Kalikow’s example has the property that S is isomorphic
to S−1.

Recently, Hoffman [15] developed a new and systematic approach to the problem of
producing non-Bernoulli K -automorphisms, and many further properties of non-Bernoulli
automorphisms have been demonstrated in the literature [15, 35, 36].

As we shall outline below, the theory of entropy and of cpe actions of amenable groups is
now rather well developed. It is thus natural to ask whether an infinite amenable group must
have non-Bernoulli cpe actions. In this article, we shall extend the theorems of Ornstein
and Shields [26] to actions of amenable groups which have an element of infinite order.
The question remains open for infinite amenable groups, all of whose elements are of finite
order.

A constructive approach to the entropy of actions of locally-compact amenable groups
is due to Ornstein and Weiss [27], Weiss [40, 41] and Lindenstrauss and Weiss [21]. They
developed the theory of tiles and quasi-tiles in amenable groups, which allowed them to
generalize some key results of Feldman, Ornstein, Rudolph, Sinai and others [7, 25, 32,
34, 38] for actions of classical groups R and Z, to a broad class of amenable groups. We
shall use their theories, particularly in §2 below, where we use generalized versions of
Ornstein’s and Sinai’s theorems for countable amenable groups to study the entropy of an
action as defined by Ollagnier [23].

The natural extension of K -automorphisms to this setting is the study of actions of
amenable groups with completely positive entropy (cpe). For actions of Z on a Lebesgue
space, this notion was introduced by Rokhlin and Sinai [29], who demonstrated that it
is equivalent to the existence of perfect partitions with Kolmogorov’s property K . They
also proved, using perfect partitions, that cpe actions of Z have strong mixing properties
(K -mixing) and a countable Lebesgue spectrum. Indeed, it was shown by Cornfeld et al [3]
that K -mixing is equivalent to cpe for Z-actions.

Kamiński [17] extended Rokhlin and Sinai’s approach to actions of Zd , d < ∞, and
Golodets and Sinel’shchikov [12] proved the existence of perfect partitions for actions
of the group of upper triangular matrices over Z and its subgroups. However, it was
demonstrated that the existence of such partitions for actions of the group Z ⊕ Z ⊕ Z ⊕

· · · is a more difficult problem which remains unresolved [18]. In fact, the Rokhlin–
Sinai approach cannot be applied to countable discrete amenable groups without past
[23]. It seems that the notion of cpe actions is more appropriate for general amenable
groups.

A new approach to the study of cpe actions, which may be applied to any free action of
a countable amenable group, was introduced by Rudolph and Weiss [37]. In a well-known
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paper, Connes et al [2] proved that every free action of a countable amenable group G on
a Lebesgue space is orbit equivalent to an action of Z. It was shown [37] that the actions
of G and Z have the same conditional mean entropy under certain additional assumptions.
This allowed Rudolph and Weiss to prove that any cpe free action of a countable discrete
amenable group is uniform mixing in the sense of Weiss [40], and indeed, that uniform
mixing is equivalent to cpe [13, 40]. We will discuss the relationship between K -mixing
and cpe in §4 and apply it in §5.

The results of Rudolph and Weiss [37] have caused heightened interest in cpe actions,
and new results in this area have been obtained by Glasner et al [11], Golodets and
Sinel’shchikov [13], Danilenko [4] and Dooley and Golodets [6]. Dooley and Golodets [6]
proved that a cpe action of a countable amenable group has a countable Lebesgue spectrum,
generalizing the result of Rokhlin and Sinai [29] for Z. Avni [1] has recently announced
new results on mixing and spectral properties of cpe actions of locally compact amenable
groups with a good entropy theory, where he extended previously obtained methods and
results [6, 27, 37].

We shall prove our version of the theorem of Ornstein and Weiss by constructing a
non-Bernoulli cpe action of G starting from a non-Bernoulli cpe action of a subgroup
isomorphic to Z. To achieve this we present a construction which we call co-induction,
which allows us to define an action αG of G from a given action α0 of a subgroup 0 of
G (see Definition 3.1 below). Co-induction is similar to, but differs from, induction in the
sense of Mackey [22] and Zimmer [42].

We make a systematic study of the entropic properties of co-induced actions, in
particular, establishing that h(αG) = h(α0) (Proposition 3.4). Moreover, we show that
if α0 is a cpe, non-Bernoulli action of 0, then αG is a cpe, non-Bernoulli action of G
(Theorem 5.2). To prove this we need to establish some new estimates for the entropy
of finite partitions (see Lemmas 5.1, 5.4 and 5.5), in order to show that the co-induced
action αG is uniform mixing. This guarantees that αG has cpe in view of Theorem 4.2.
Now as Z has non-Bernoulli cpe actions, the same is true for any countable amenable
group containing Z as a subgroup (Corollaries 5.6 and 5.7). Conjecturally, this is the
simplest class of non-Bernoulli cpe actions, and other interesting classes will be found. In
Corollary 5.8 we considered the properties of cpe actions of an abelian group, co-induced
from Kalikow’s K -action of Z.

The next problem we attack is to produce an uncountable family of cpe actions with the
same positive entropy, as was done for automorphisms [15, 26].

Theorem 5.2 reduces this problem to the question of the existence of an uncountable
family of K -automorphisms with a given entropy, which when co-induced create non-
isomorphic actions of G. This level of rigidity is implied by a special property, uniform
somewhat disjointness (Definition 6.3) which motivates the construction. Since we work
with positive entropy, standard notions of disjointness, such as minimal self-joinings, are
not available; however, this rather soft notion is, and is sufficient for our task. The main
result of §6 is given in Corollary 6.33. We expect that the family of K -automorphisms
we construct and the notion of uniform somewhat disjointness introduced will be of
independent interest and application. The ideas of Hoffman [15] have been influential here,
but his approach does not completely suffice for our purposes.
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In §7, we use these results to construct, for any countable amenable group G containing
Z as a subgroup, and for any t ∈ (0, ∞], an uncountable family At of cpe actions satisfying:
• if α ∈ At , then h(α) = t ;
• if α1, α2 ∈ At , α1 6= α2, then α1 and α2 are not isomorphic; moreover
• α1 and α2 are not even automorphically isomorphic† (Theorem 7.5).

To illustrate our theorem, recall Grigorchuk’s example [14] of a countable amenable
finitely generated group, which is not elementary amenable. Since Grigorchuk’s group
contains elements of infinite order, our result implies that it has infinitely many non-
automorphically isomorphic cpe actions of any given entropy (see Example 7.3.6).

2. Entropy of an action of a countable discrete amenable group
In this section, we introduce some basic notions on entropy of actions of a countable
amenable group. In particular, we describe the relationship between the approach of
Ornstein and Weiss [27] and that of Ollagnier [23], using the approach and methods of
[27].

Let (X, B, µ) be a standard Lebesgue space and T ∈ Aut(X, B, µ), with µ ◦ T = µ.
A partition P is a finite disjoint collection of sets from B(X) whose union is X . If P and Q
are partitions then their join is

P ∨ Q = {P ∩ Q | P ∈ P, Q ∈ Q}.

Similarly, we denote the multiple joining of {P−m, . . . , Pn} by

n∨
−m

Pi = P−m ∨ P−m+1 ∨ · · · ∨ Pn .

The smallest complete σ -subalgebra of B(X) containing the sets of all the partitions T i P,
i ∈ Z, will be denoted by σ(T, P). If σ(T, P) is dense in B(X) with respect to the distance
d(A, B) = µ(A1B) then P is called a generator for T , or a generating partition. If P is a
partition, we define the entropy H(P) of P as

H(P) = −

∑
P∈P

µ(P) log µ(P).

The entropy of the partition P with respect to T is defined by

h(P, T ) = lim
n→∞

1
n

H

(n−1∨
0

T i P
)

, h(P, T ) ≤ H(P).

(e.g. Glasner [10]). Then h(P, T ) is sometimes called the mean entropy of the process
(P, T ).

An automorphism T is said to have cpe if

h(P, T ) > 0

for any finite partition P. Such an automorphism is called also a K -automorphism.

† I.e. not isomorphic by a group automorphism (Definition 7.4).
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The entropy of the automorphism h(T ) is defined by

h(P) = sup
P

h(P, T )

where sup is taken over all finite partition P of X .
Ornstein and Weiss [27] and Weiss [40] extended the above notions to the setting of a

free action of a countable amenable group G on a Lebesgue space (X, B, µ). Here, one
defines the mean entropy of a finite partition P of X , relative to F , a finite subset of G, by
taking PF

=
∨

g∈F gP, and defining

h(P, F) =
1

|F |
H(PF ).

Recall that a subset T of G tiles G if there is a set C ⊂ G such that CT is a partition of
G, i.e. G =

⋃
c∈C cT, c1T ∩ c2T = ∅ for c1 6= c2.

Further, a sequence of finite subsets {Fn}n∈N of G is called a Følner sequence in G if
lim |gFn1Fn|/|Fn| = 0, for all g ∈ G. It is well known that a countable amenable group
G has a Følner sequence†.

Ornstein and Weiss [27] showed that if {Fn}n∈N is a Følner sequence in G and each Fn

tiles G then for any finite P partition of X , the limit h(P, G) = lim |Fn|
(−1) H(PFn ) exists

and is independent of the particular Følner sequence; it is said to define the mean entropy
of (P, G). Given that entropy decreases as one refines the partition, one has

h(P, G) = lim
n→∞

1
|Fn|

H(PFn ) = inf
n

1
|Fn|

H(PFn ).

Weiss [41] proved that any solvable countable group has a Følner sequence with some
additional properties. In the general case, one needs to use the machinery of quasi-tiles to
define the mean entropy h(P, G) of the process (P, G) [21, 27].

We say that the action of a countable amenable group G has cpe if

h(P, G) > 0

for any finite partition P. The entropy of the G-action is defined by h(G) = supP h(P, G)

where the supremum is taken over all finite partitions P.
If G acts freely and ergodically, we call a generating partition P = (Pi ) a Bernoulli

partition for the action of G if the partitions gP are independent for g ∈ G, g 6= e, i.e.

µ(g Pi Pj ) = µ(Pi )µ(Pj ).

We say that the action is Bernoulli if there exists a Bernoulli partition.
It is easy to construct Bernoulli actions of countable amenable groups G. For each

g ∈ G, let Xg = {0, 1, . . . , n − 1}, and define µg(i) = pi , such that
∑n−1

i=0 pi = 1. We
define

Y =

⊗
g∈G

Xg, µ =

⊗
g

µg.

† Indeed, this is often taken as the definition of amenability.
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Then we can define an action of G on (Y, µ) by (g · y)h = ygh . It is well known that this
is a Bernoulli action and that

h(G) = −

∑
i

pi log pi = H(P).

A celebrated result of Ornstein and Weiss [27] is that entropy is a full invariant of the
Bernoulli action of G. More exactly, two Bernoulli actions of G with the same entropy are
metrically isomorphic.

Another result which we will use below is Sinai’s factor theorem (see Glasner [10]).

THEOREM 2.1. If a countable discrete amenable group G acts freely and ergodically on
(X, B, µ) with positive entropy h(G), then for any real number 0 < h ≤ h(G) there exists
a G-invariant factor-space Xh of X such that the restriction of the action of G on Xh is a
Bernoulli action of G with h(G|Xh ) = h.

A different approach to the entropy of actions of countable amenable groups is due to
Ollagnier [23]. We explain the relationship between the two approaches.

Definition 2.2. Let G be as above, acting freely and ergodically on (X, B, µ). Suppose
that P is a finite partition of X .

The Ollagnier mean entropy ho(P, G) of the process (P, G) is defined as

ho(P, G) = inf
F

1
|F |

H(PF )

where the infimum is taken over all finite subsets F of G, see Ollagnier [23, Definition
4.3.1].

The Ollagnier entropy ho(G) of the action of G on (X, B, µ) is defined by

ho(G) = sup
P

ho(P, G)

where the supremum is taken over all finite subsets of G, see Ollagnier [23, Definition
4.3.2].

Ollagnier [23, Theorem 4.3.14] proved that if P is a generating partition for an action of
G then ho(G) = ho(P, G).

The following theorem is surely known to the experts in the field, but we have not been
able to find a suitable reference, so we give a proof.

THEOREM 2.3. Let G be a countable amenable group acting freely and ergodically on
(X, B, µ). Then

h(G) = ho(G),

where h(G) is the entropy of the G-action in the sense of Ollagnier [27], and ho(G) is the
Ollagnier entropy of the G-action.

Proof. It follows from the definition of h(P, G) above and the definition in Lindenstrauss
and Weiss [21] that

h0(P, G) ≤ h(P, G)

for any finite partition P of X . Hence ho(G) ≤ h(G).
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Assume now that G has a Bernoulli action on (X, B, µ) of finite entropy h(G). Then
there is a finite Bernoulli partition P = {Pi } and an easy calculation shows that

h(P, G) = ho(P, G) = −

∑
i

µ(Pi ) log µ(Pi ).

Hence h(G) = ho(G) in this case. A similar argument shows that the equality also holds
for the case of a Bernoulli action of infinite entropy.

Now suppose that G has action which is not necessarily Bernoulli on (X, B, µ) with
0 < h(G) < ∞. By Theorem 2.1, this action of G has a Bernoulli factor action on a
G-invariant subspace Xh with entropy h(G|Xh ) = h for 0 < h ≤ h(G). Let Q be a
Bernoulli partition of Xh with H(Q) = −

∑
i µ(Qi ) log µ(Qi ) = h. As above, we have

ho(Q, G) = h, and hence h ≤ ho(G) ≤ h(G). Since h ∈ (0, h(G)], it follows from
Definition 2.2 that ho(G) = h(G) if 0 < h(G) < ∞.

The same argument can be applied for h(G) = ∞. Finally we consider ho(G) = 0. In
this situation, it follows immediately from Theorem 2.1 that h(G) = 0. 2

We will use the following consequences in §3.

COROLLARY 2.4. Let G, (X, B, µ) be as in the statement of Theorem 2.3, and P a finite
partition of X. Then

ho(P, G) = h(P, G).

Proof. Consider first the special case where P is a generator for the action of G on
(X, B, µ). It follows from the remark after Definition 2.2 that ho(P, G) = ho(G), and
one can see from the proof of Theorem 2.3 that ho(G) = h(G) and ho(P, G) ≤ h(P, G).
Hence

ho(P, G) ≤ h(P, G) ≤ h(G) = ho(P, G),

and ho(P, G) = h(P, G).

In general, there exists a G-invariant factor space Y of (X, B, µ) such that P is a
generating partition for action of G on Y. 2

3. Co-induction and its properties
In this section we introduce a construction which will allow us to obtain a non-Bernoulli
cpe action of a countable amenable group G from a non-Bernoulli cpe action of a
subgroup 0.

Definition 3.1. Let G be a countable amenable group and 0 a subgroup of G. Let (X, B, µ)

be a (left) 0-space.
Fix a section s : 0\G → G of the homogeneous space 0\G with s([e]) = e. Consider

the product space Y =
∏

0\G(X, B, µ), and equip Y with the associated product measure
ν = ⊗0\Gµ. We write the elements of Y as (yθ )θ∈0\G .

Define an action of G on Y by

(gy)θ = (s(θ)gs(θg)−1)yθg, y = (yθ ) ∈ Y, yθ ∈ X, θ ∈ 0\G, g ∈ G, (3.1)

where 0 acts in each coordinate of Y by its action on X . We shall say that this G action is
co-induced from the action of 0. An easy calculation shows that this action is well defined;
in particular, s(θ)gs(θg)−1

∈ 0. It is also clear that the action preserves ν.
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As is the case with the standard inducing procedure, the above action may be defined
independently of the particular choice of section. In order to see this, let

Ỹ = { f : G → (X, B, µ) : ∀ γ ∈ 0, g ∈ G f (γ g) = γ ( f (g))}

and define an action of G on Ỹ by

(g0 · f )(g) = f (gg0).

Notice that the values of f ∈ Ỹ depend only on its values on a section. We can thus identify
Ỹ with

Y0 = {h : 0\G → (X, B, µ)}

where, to a given f ∈ Ỹ , we may associate h ∈ Y0 defined by h(0g) = f (s(0g)). Now
we can identify Y0 with the space Y =

∏
0\G(X, B, µ) of Definition 3.1, and an easy

calculation shows that the action on Y is given by (3.1).
Our definition is related to, but different from the well-known Mackey–Zimmer

definition of an induced action (e.g. [42], [43, p. 75]). In particular, let G, 0 and X be as in
Definition 3.1. The standard induced action of G may be realized on the space 0\G × X ,
equipped with the product Borel σ -algebra and the product measure λ, by

g ·M Z (θ, x) = (θg, s(θg)−1g−1(s(θ))x).

By contrast, the co-induced action acts on the space of measurable functions h : 0\G
→ X .

Danilenko [5] used this construction in an investigation of spectral properties of ergodic
actions of discrete groups. Gaboriau [9] used it in orbit equivalence theory.

It is not difficult to check that the action of G is non-Bernoulli, provided that the
0-action is non-Bernoulli. To see this, we need the following simple proposition.

PROPOSITION 3.2. The restriction of a Bernoulli action of a countable discrete amenable
group G to an infinite subgroup 0 is also Bernoulli.

Proof. Consider a Bernoulli action of G on (X, B, µ). Then there exists a measurable
generating partition ζ of (X, B, µ) such that the family of partitions {gζ, g ∈ G} is
independent and generates B. Let A ⊂ G be a set which meets each left 0-coset 0g in
exactly one point. Form the measurable partition η =

⋃
g∈A gζ. It is easy to check that η

is a generating partition for the action 0, and its shifts by elements of 0 are independent.
This proves the statement. 2

COROLLARY 3.3. Let G and 0 be as in Proposition 3.2. Suppose that the G-action on Y
is co-induced from the 0-action on X. Then the action of G will be Bernoulli on (Y, ν) if
and only if the action of 0 is a Bernoulli on (X, µ).

Proof. Consider the restriction of the co-induced action of G to the subgroup 0. This
restriction has the original 0-action as a factor action given by the 0-equivariant projection
Y → X : y 7→ y[e]. As this factor action of 0 is non-Bernoulli, the 0-action on Y is
non-Bernoulli [27, III, §6, Theorem 4] and the entire G-action is also non-Bernoulli by
Proposition 3.2. 2
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We demonstrate now that co-induction behaves well with respect to entropy, and prove
some results which we will apply later.

PROPOSITION 3.4. Let G and 0 be as above, and suppose we are given an action of 0

on X. Consider the G-action on Y given by equation (3.1). Then hY (G) = h X (0) where
h X (0) is the entropy of the 0-action on X.

Proof. Let s : 0\G → G be a section of the quotient map π : G → 0\G with s([e]) = e,
where e is the identity element of G. Let ξ ′ be a finite partition of X, and ξ be its lift to
a partition ξ of Y by identifying X as a factor space of Y , Y → X via the map y 7→ y[e].
Clearly ξ is generating partition for the G-action on Y if ξ ′ is a generator for the action 0

on X. One has, applying Definition 2.2,

ho(ξ, G) = inf
F

1
|F |

H

(∨
g∈F

gξ

)
= inf

F

1
|F |

H

( ∨
θ∈π(F)

∨
g∈F∩π−1(θ)

gξ

)

= inf
F

1
|F |

∑
θ∈π(F)

H

( ∨
g∈F∩π−1(θ)

gξ

)

= inf
F

1
|F |

∑
θ∈π(F)

∣∣∣∣F ∩ π−1(θ)

∣∣∣∣ 1

|Fn ∩ π−1(θ)|
H

( ∨
g∈F∩π−1(θ)

s(θ)−1gξ

)

≥ inf
F

1
|F |

∑
θ∈π(F)

∣∣∣∣F ∩ π−1(θ)

∣∣∣∣ho(ξ
′, 0) = ho(ξ

′, 0),

where F is a finite subset of G and we have taken into account the choice of ξ , the fact that
s(θ)−1g ∈ 0 if π(g) = θ and Definition 2.2.

Thus ho(ξ, G) ≥ ho(ξ
′, 0). On the other hand, the properties of ξ imply

(cf. Definition 2.2)

ho(ξ, G) = inf
F⊂G

1
|F |

H

(∨
g∈F

gξ

)
≤ inf

F⊂0

1
|F |

H

(∨
g∈F

gξ

)

= inf
F⊂0

1
|F |

H

(∨
g∈F

gξ ′

)
= ho(ξ

′, 0),

where the infimum is over all finite subsets F . Thus ho(ξ, G) ≤ ho(ξ
′, 0), and hence

ho(ξ, G) = ho(ξ
′, 0). As h(ξ, G) = ho(ξ, G) and h(ξ ′, 0) = ho(ξ

′, 0) by Corollary 2.4
then we have h(ξ, G) = h(ξ ′, 0) for any finite partition ξ ′ of X .

Now let h X (0) < ∞. Then there exists a finite generating partition ξ ′ of X for the action
0 on X such that h X (0) = h(ξ ′, 0) according to Rosenthal [30]. However, ξ is a generating
partition for the co-induced action of G on Y, by the construction, hence h(ξ, G) = hY (G)

and h X (0) = hY (G) in this case.
If h X (0) = ∞ then h X (0) = supξ ′ h(ξ ′, 0) = supξ h(ξ, G) ≤ hY (G), and hence

hY (G) = ∞. 2

We now present a simple consequence of Proposition 3.4. Suppose that a countable
amenable group 0 acts freely on (X, B, µ). Recall that the σ -subalgebra 5(0) of B is
called the Pinsker subalgebra of the 0-action on (X, µ), [6, 11]. If 5(0) is a maximal
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0-invariant subalgebra of B such that for any finite partition P of X from 5(0) one has
h(P, G) = 0. The algebra 5(0) is called trivial if it contains only X and the empty set. It
is clear if 5(0) is trivial then 0 has cpe action on (X, B, µ).

COROLLARY 3.5. Let G, 0, (X, µ) and (Y, ν) be as in Proposition 3.4. Let 5(0) be the
Pinsker algebra of 0-action on (X, µ), and 5(G) be the Pinsker algebra of G-action
on (Y, ν). If 5(0) is non-trivial then 5(G) is also non-trivial. In other words, if the co-
induced action of G on (Y, ν) has cpe then the action of 0 on (X, µ) must have cpe too.

Proof. This follows directly from the Proof of Proposition 3.4. 2

The above results reduce the problem of co-inducing non-Bernoulli cpe actions of G
from those of 0 to the problem of showing that the co-induced action has cpe. We will
return to this problem in §5.

We shall also use the following properties of co-induction.

PROPOSITION 3.6. Let G, 0, (X, µ) and (Y, ν) be as in Definition 3.1. If [G : 0] = ∞

then the co-induced action of G on Y is ergodic. If [G : 0] < ∞ then the co-induced action
of G on Y is ergodic if and only if the action of 0 on X is ergodic.

Proof. We will not use this assertion below, and give only some remarks about its proof.
If G is abelian then to prove the ergodicity of the co-induced action of G, one can use the
same standard argument as in the case when G has a Bernoulli action. In the general case,
it is not too hard to extend this approach. 2

A free action of a countable amenable group 0 on (X, B, µ) satisfies the weak Pinsker
property if for every δ > 0 there is 0-invariant Bernoulli factor Z1 of X and independent
0-invariant factor Z2 of X with h(0|Z2) < δ such that X = Z1 ⊗ Z2 [8, 39].

A well-known open problem in ergodic theory is the following [10]. Does every positive
entropy ergodic free action of a countable amenable group 0 have the weak Pinsker
property?

PROPOSITION 3.7. Let G, 0, (X, B, µ) and (Y, ν) be as in Definition 3.1. If an action of
0 on (X, B, µ) has the weak Pinsker property then the co-induced action of G on (Y, ν)

also has this property.

Proof. The proposition follows directly from Corollary 3.3 and Proposition 3.4. 2

Notice also that examples of K -automorphisms constructed in §6 below have the weak
Pinsker property. Hence, the co-induced actions of countable amenable groups defined in
§7 also have this property.

We believe that the converse of Proposition 3.7 also holds.

4. The Rudolph–Weiss mixing property and cpe
Rudolph and Weiss [37] proved that a cpe action of a countable amenable group is
uniform mixing: see Definition 4.1 below. The converse statement also holds [13, 40]. In
this section we present a simple proof of the converse (Theorem 4.2) which, unlike the
proof by Golodets and Sinel’shchikov [13], avoids the use of technical results on quasi-
tiles [37]. We then apply this theorem to prove that the direct product of cpe actions of a
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countable amenable group G is again a cpe action of G (Theorem 4.4). The most important
applications of Theorem 4.2 are given in the next section.

Let K be a finite subset of G. A finite set S ⊂ G is said to be K -spread if for all s1 6= s2

from S the element s−1
1 s2 /∈ K . The following definition was introduced by Weiss [40].

Definition 4.1. A free action of amenable countable group G on a Lebesgue space (X, µ)

is called uniform mixing if, for any finite partition ξ of X and any ε > 0, there exists a finite
subset K ∈ G such that for any finite subset S of G, which is K -spread, we have

H(ξ) −
1

|S|
H

(∨
g∈S

gξ

)
< ε.

Notice that for the group Z, uniform mixing in this sense is equivalent to the notion of
uniform mixing in the terminology of Glasner [10], and to K -mixing in the terminology of
Cornfeld et al [3].

We present a simple proof of the following theorem.

THEOREM 4.2. Let G be a countable amenable group and (X, µ) a Lebesgue free
G-space. Suppose that the action of G is uniform mixing. Then this action has cpe.

Proof. Let G, (X, µ), ξ, K and ε be as in Definition 4.1, and suppose that 0 < ε <

H(ξ)/2. Fix a finite subset F ⊂ G and consider a finite subset S ⊂ F which is K -spread.
If there is no f ∈ F such that f does not belong to S but S ∪ { f } is again K -spread then
we call S a maximal K -spread subset of F. It is clear that any K -spread subset S′

⊂ F is
contained in a maximal K -spread subset S ⊂ F. Moreover, it is obvious that a K -spread
subset S is maximal if and only if any f ∈ F is either contained in S or has the form f = ks
where s ∈ S and k ∈ K . This gives the following estimates for |S|:

|S| ≤ |F |,

|F | ≤ |S| · (|K | + 1).

Hence

1
|F |

H

(∨
f ∈F

f ξ

)
≥

1
|S| · (|K | + 1)

H

(∨
f ∈S

f ξ

)
≥

1
(|K | + 1)

(H(ξ) − ε) ≥
H(ξ)

2(|K | + 1)
.

It follows immediately from Definition 2.2 that

ho(ξ, G) = inf
F

1
|F |

H

(∨
f ∈F

gξ

)
≥

H(ξ)

2(|K | + 1)
> 0,

where the infimum is taken over all finite subsets F of G. As h(ξ, G) = ho(ξ, G) by
Corollary 2.4, we have

h(ξ, G) >
H(ξ)

2(|K | + 1)
> 0.

The following statement now follows easily. 2
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COROLLARY 4.3. A free action of a countable amenable group G on a Lebesgue space
(X, µ) has cpe if and only if for any finite partition ξ and any ε > 0 there exists a finite
subset K ⊂ G such that for any set S which is K -spread,∣∣∣∣ 1

|S|
H

(∨
g∈S

gξ

)
− H(ξ)

∣∣∣∣< ε.

Theorem 4.2 allows us to strengthen Theorem 4 from Glasner et al [11], where it was
proved for I finite.

THEOREM 4.4. Let 0 be an infinite countable discrete amenable group.
Let I be a finite or countable set and for each i ∈ I, let (X i , Bi , µi ) be a measure space

on which 0 has a cpe action αi .
Let (Y, ν) =

∏
i∈I (X i , Bi , µi ) and let α be the product actions of 0 on (Y, ν), given by

α(γ )y = ((αi (γ )xi ))i∈I , γ ∈ 0,

where y = (xi ) ∈ Y, xi ∈ X i , i ∈ I. Then α is a cpe action of 0 on (Y, ν).

Proof. The fact that the theorem holds for I finite [11], means that any partition measurable
with respect to only finitely-many terms in the product space satisfies the mixing property
in Theorem 4.2. Such partitions form a dense class in the full product algebra and hence
the countable product action is also cpe. 2

COROLLARY 4.5. Let G, 0, (X, µ) and (Y, ν) be as in Definition 3.1. Suppose that G is
abelian and 0 is infinite. If 0 has a cpe action on (X, µ) then 0 acts ergodically on (Y, ν).

Proof. Note that if G is abelian then s(θ) = s(θγ ) for any γ ∈ G and s(θ)γ s(θγ ) = γ.

Hence

(γ y)θ = γ yθ .

Corollary 4.5 is now immediate from Theorem 4.4. 2

5. The existence of non-Bernoulli cpe actions
In this section, we will show that a co-induced action of a non-Bernoulli cpe action is also
cpe and non-Bernoulli. We can then use results of Ornstein and Shields [26], Feldman [7]
and others to see that if G contains a subgroup isomorphic to Z (i.e. an element of
infinite order), then G has a non-Bernoulli cpe action. As noted in §3, Proposition 3.4
and Corollary 3.3 reduce the problem to showing that the co-induced action has cpe.

LEMMA 5.1. Let ξ and η be finite partition of X, η < ξ, and S ⊂ G a finite subset. Then

H(η) −
1

|S|
H

(∨
g∈S

gη

)
≤ H(ξ) −

1
|S|

H

(∨
g∈S

gξ

)
.

Proof. Suppose S = {g1, g2, . . . , gn}. A multiple application of the relation
H(Q ∨ P|Z) = H(Q|Z) + H(P|Q ∨ Z) yields
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|S| · H(ξ) − H

(∨
g∈S

gξ

)
= |S| · H(ξ ∨ η) −

n∑
i=1

H

(
ξ ∨ η

∣∣∣∣∣i−1∨
j=1

g−1
i g j ξ

)

=

(
|S| · H(η) −

n∑
i=1

H

(
η

∣∣∣∣∣i−1∨
j=1

g−1
i g j ξ

))
+

(
|S| · H(ξ |η) −

n∑
i=1

H

(
ξ

∣∣∣∣∣η ∨

i−1∨
j=1

g−1
i g j ξ

))

≥

(
|S| · H(η) −

n∑
i=1

H

(
η

∣∣∣∣∣i−1∨
j=1

g−1
i g jη

))
+

(
|S| · H(ξ |η) −

n∑
i=1

H

(
ξ

∣∣∣∣∣η ∨

i−1∨
j=1

g−1
i g j ξ

))
.

Since |S| · H(ξ |η) −
∑n

i=1 H
(
ξ |η ∨

∨i−1
j=1 g−1

i g jξ
)
≥ 0, we deduce that

|S| · H(ξ) − H

(∨
g∈S

gξ

)
≥ |S| · H(η) −

n∑
i=1

H

(
η

∣∣∣∣∣i−1∨
j=1

g−1
i g jη

)

= |S| · H(η) − H

(∨
g∈S

gη

)
,

which is clearly equivalent to our statement. 2

We now come to the main theorem of this section. We use the same notation as in
Definition 3.1.

THEOREM 5.2. Let G be a countable amenable group and 0 an infinite subgroup of G.
Suppose that 0 has a free action on the Lebesgue space (X, µ). Then the co-induced action
of G on (Y, ν) has cpe if and only if the action of 0 on (X, µ) has cpe. This action of G on
(Y, ν) is Bernoulli if and only if the action of 0 on (X, µ) is Bernoulli.

The proof of this theorem will be preceded by a definition and two lemmas.

Definition 5.3. Let P ⊂ 0\G. Then X P
=
∏

P (X, B, µ) may be considered as a quotient
space of Y =

∏
0\G(X, B, µ) with quotient map τ : Y → X P given by

τ(x)γ = xγ for x ∈ Y, γ ∈ P.

We shall say that a partition η of Y is subjugated to P if η reduces to a partition of the
quotient space X P in the sense that there exists a partition η′ of X P such that η = τ−1(η′).

Suppose we are given a finite partition ξ of Y . Choose a section s and a finite subset
K ⊂ G so that K −1

⊂ s(0\G) (and hence K −1 meets each right coset at most once).
Further, let d be the Rokhlin metric for partitions with a finite entropy [28, §6].

(It is denoted by dent by Glasner [10].) Then we may choose, for any ε > 0, a finite subset
K as above and a finite partition η̃ of Y such that η̃ is subjugated to s−1(K −1) and also
d(ξ, η̃) < ε/6.

Next, let η0 be a finite partition of Y subjugated to {s−1(e)} and chosen so that for some
partition η � η =

∨
k∈K kη0 one has d (̃η, η) < ε/6. Hence

d(ξ, η) < ε/3. (5.1)

Since the 0-action on X has cpe, we can find a finite subset J ⊂ 0 such that e ∈ J and
for any finite J -spread subset S ⊂ 0.

H(η0) −
1

|S|
H

(∨
g∈S

gη0

)
<

ε

3|K |
. (5.2)
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This follows immediately from Corollary 4.3; see also Rudolph and Weiss [37,
Theorem 2.3].

We will need the following simple result.

LEMMA 5.4. Let Q be a finite K J K −1-spread subset of G. Then |QK | = |Q| · |K | and
QK is J -spread.

Proof. It is obvious that QK is J -spread. Let qi ∈ Q and ki ∈ K , i = 1, 2, then q1k1 =

q2k2 if and only if q1 = q2 and k1 = k2 because e ∈ J. But this implies |QK | = |Q| · |K |.
2

LEMMA 5.5. Let J be as above. Then for any finite K J K −1-spread subset Q ⊂ G one
has

H(η) −
1

|Q|
H

(∨
g∈Q

gη

)
<

ε

3
. (5.3)

Proof. By Lemma 5.1, it suffices to verify equation (5.3) with η replaced by η.
Let π : G → G/0 be the natural projection. It follows from our choice of K that it

meets each left coset at most once, so we can choose a section s′
: G/0 → G for π in

such a way that s′(k0) = k for all k ∈ K . Now, with Q ⊂ G finite and K J K −1-spread
we can use equation (5.2) and independence of the components corresponding to different
elements of G/0 to obtain

|Q| · H(η) − H

(∨
g∈Q

gη

)
= |Q| · |K | · H(η0) − H

(∨
g∈Q

∨
k∈K

gkη0

)

= |QK | · H(η0) − H

 ∨
θ∈G/0

∨
(g,k)∈Q×K

π(gk)=θ

gkη0



= |QK | · H(η0) −

∑
θ∈G/0

H

 ∨
(g,k)∈Q×K

π(gk)=θ

s′(θ)−1gkη0


< |QK | · H(η0) −

∑
θ∈G/0

|QK ∩ π−1(θ)|H(η0) −
ε

3|K |

= |QK |
ε

3|K |
= |Q| · |K | ·

ε

3|K |
=

|Q| · ε

3
.

Hence, we have

H(η) −
1

|Q|
H

(∨
g∈Q

gη

)
<

ε

3
, (5.4)

and hence equation (5.3) follows from Lemma 5.1. 2

Proof of Theorem 5.2. It follows from Proposition 3.2 and Corollary 3.3 that the
co-induced action of G is Bernoulli if and only if the action of 0 is Bernoulli.
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Suppose that the co-induced action of G has cpe on (Y, ν); then the action of 0 on
(X, µ) also has cpe by Corollary 3.5.

Suppose now that the action of 0 has cpe on (X, µ). We will prove that the action of G
on (Y, ν) has cpe. By Theorem 4.2 it is enough to show that the co-induced action of G on
Y is uniform mixing (see Definition 4.1).

Recall that for any finite partition ξ of Y and any ε > 0 there is a finite partition η

of Y with d(ξ, η) < ε/3. Hence, the standard properties of the Rokhlin metric yield the
following estimates:

|H(ξ) − H(η)| < d(ξ, η) <
ε

3
,∣∣∣∣ 1

|Q|
H

(∨
g∈Q

gξ

)
−

1
|Q|

H

(∨
g∈Q

gη

)∣∣∣∣< d(ξ, η) <
ε

3
.

Here Q is a finite K J K −1-spread subset of G as in the statement of Lemma 5.5. It follows
from equation (5.3) and from these two estimates that∣∣∣∣H(ξ) −

1
|Q|

H

(∨
g∈Q

gξ

)∣∣∣∣< ε. (5.5)

Thus we have proved that for any finite partition ξ of Y and any ε > 0 there exists a finite
subset K J K −1 of G such that for any finite K J K −1-spread subset Q the inequality (5.5)
holds. This means that the co-induced action of G on Y is uniform mixing. 2

COROLLARY 5.6. Suppose that a countable amenable group G contains an element of
infinite order. Then G has a non-Bernoulli action with cpe.

Proof. This follows from Theorem 5.2 and the fact [7, 15, 16, 24–26] that Z has a non-
Bernoulli action with cpe. 2

COROLLARY 5.7. Suppose that G is as in the statement of Corollary 5.6. Given
t ∈ (0, ∞], there is a non-Bernoulli cpe action αt of G such that h(αt ) = t .

Proof. Indeed, for each t , there is a non-Bernoulli K -automorphism St of Z such that
h(St ) = t . This follows from Corollary 3 of Feldman [7]. Let αt be the action of G
co-induced from St . Then αt is a cpe action of G by Theorem 5.2 and h(αt ) = h(St ) = t
(see Proposition 3.4).

Another way to see this assertion is to use the weak Pinsker property (see the remarks
before Proposition 3.7 above). If T is a K -automorphism with the weak Pinsker property
then one can easily construct a family {St }t∈(0,∞] of K -automorphisms with this property
and such that h(St ) = t. Examples of these automorphisms will be demonstrated in §7. 2

Kalikow proved [17] that there exist non-Bernoulli K -automorphisms S such that S and
S−1 are isomorphic. We can use co-induction and its properties to generalize this result to
any abelian group containing Z as a subgroup.

COROLLARY 5.8. Let G be a countable abelian group containing Z as a subgroup. Then
there is a non-Bernoulli cpe action U of G such that the actions h 7→ Uh and h 7→ Uh−1

are isomorphic.
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Proof. Suppose that S acts on a Lebesgue space (X, µ). It is not difficult to verify that
there exists V ∈ Aut(X, µ) such that V SV −1

= S−1. We shall give a sketch of the proof
of this proposition for the case G = Z2. The general case can be treated similarly. By
Definition 3.1, the Lebesgue space (Y, ν) has the form (Y, ν) =

∏
Z(X, µ), and if y ∈ Y

then y = (yi ), i ∈ Z, yi ∈ X . We have

(T1 y)i = yi+1

(T2 y)i = Syi , i ∈ Z.

Setting (W y)i = V yi , i ∈ Z, we have W T2W −1
= T −1

2 and W T1W −1
= T1. Now it is easy

to see that there is a transformation J of (Y, ν) such that J T1 J = T −1
1 , J 2

= I , J W = W J
and J T2 = T2 J . 2

Thus we have shown that any countable amenable group G, containing Z as a subgroup,
has non-Bernoulli cpe actions (see Corollary 5.6).

In the case of integer actions, Ornstein and Shields [26] showed that there exists
an uncountable family of cpe actions of G with the same entropy which are pairwise
non-isomorphic. We will generalize their result below. However, we need to overcome
some complications.

The obvious first approach is to apply Corollary 5.6 to the uncountable family of
non-Bernoulli pairwise non-isomorphic K -automorphisms with the same entropy defined
by Ornstein and Shields [26]. We obtain a family of cpe co-induced actions of G with the
same entropy and if G is abelian we can relatively easily show, using Corollary 4.5 and
methods of Ornstein and Shields [26], that the corresponding co-induced actions of G are
pairwise non-isomorphic.

However, in Example 7.3.4 below, we show that there is a countable solvable group
with a subgroup 0 isomorphic to Z, for which one cannot apply the methods of Ornstein
and Shields [26] to distinguish the co-induced actions of G. Thus we need a more subtle
approach.

Probably the most general approach to the Ornstein–Shields problem for integer actions
is that of Hoffman [15]. Unfortunately, direct application of the methods of Hoffman [15]
do not allow us to construct non-isomorphic co-induced actions.

Nevertheless, the restriction of the co-induced action of G on a subgroup 0 ' Z yields
an action of Z which is of the general form studied by Rudolph [33] and Hoffman [15].
We develop this observation in the next section, in combination with methods of Ornstein
and Shields [26], to prove the existence of a uncountable family of K -automorphisms of
Z with some extra properties. This will allow us to solve the problem for any countable
amenable group G containing Z as a subgroup.

6. An uncountable family of K -systems
6.1. Uniform somewhat disjointness. We construct here a family of K -automorphisms
Tα where α is any infinite string of 0’s and 1’s, α ∈ {0, 1}

N. Such families have been
constructed elsewhere but none have quite the properties we seek. This collection mirrors
much of the examples of Ornstein and Shields [26] and Hoffman’s K -counterexample
machine [15]. In particular, Tα ' Tβ if and only if α and β are asymptotically equal. More
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precisely, our construction is of the same form and in many ways simpler than that of
Hoffman.

Definition 6.1. Suppose that (X, F, µ) is a standard probability space. We say a finite

partition P is ε-contained in a sub-σ -algebra H (written P
ε
⊆H) if there is a P ′

⊆H and

µ({x : P(x) 6= P ′(x)}) ≤ ε.

The maps Tα are constructed as transformations on a common sequence space
{0, e, f, s}Z and hence possess a canonical generating partition Pα given by the time-
zero value of these sequences. We will now state the central result we expect this family
to possess and deduce some of its properties. Then we will describe the construction. We
will always assume the maps T and S discussed below are of finite entropy. The following
somewhat complex definition is the central idea of our work.

Definition 6.2. Suppose that (T, X, F, µ) and (S, Y, G, ν) are two measure-preserving
and ergodic dynamical systems and P is a partition of X . We say (T, P) is somewhat
disjoint from S if there is a value a > 0 for any joining µ̂ of T and S and for any partition
P ′

∈ G we have
µ̂(P4P ′) ≥ a.

That is to say, if P
ε
⊆ G then ε ≥ a. We say T is somewhat disjoint from S if for some

partition P , (T, P) is somewhat disjoint from S.

As usual, by P4P ′ we mean {z : P(z) 6= P ′(z)}. Notice that if for some P we know
that (T, P) is somewhat disjoint from S then the same will be true for any partition Q
which generates P under the action of T . In particular, this will be true for any generating
partition.

Definition 6.3. We say that T is uniformly somewhat disjoint (which we abbreviate u.s.d.)
from S if for some partition P of X there is a value a > 0 so that for any m ∈ N and values
j0, j1, . . . , jm ∈ Z\0 and any ergodic joining µ̂ of T j0 and S j1 × S j2 × · · · × S jm , (that
is to say, a T j0 × (S j1 × · · · × S jm ) invariant measure with marginals µ and νm) which for

all 0 ≤ j < j0 satisfies T j (P)
εi
⊆ (G)m , then (1/j0)

∑ j0−1
j=0 ε j ≥ a.

As before, it is not difficult to see that if a partition is u.s.d. from one partition P it is also
u.s.d. from any other partition Q that generates P under the action of T . It is also clear that
to be uniformly somewhat disjoint implies that no power of T is a factor of some product
of powers of S. The converse is probably not true as we require the value a to be uniform
over all joinings. Our goal is to construct an uncountable family of K -systems of the same
entropy, any pair of which is u.s.d. Notice that somewhat disjointness is not a symmetric
property. We begin with an easy consequence of somewhat disjointness.

COROLLARY 6.4. If (T, X, F, µ) and (S, Y, G, ν) are u.s.d. K -systems, then for any
j0 6= 0, T j0 cannot arise as a factor of any action of the form B ×

⊗
∞

k=1 S jk where all
jk 6= 0 and B is a Bernoulli shift of finite or infinite entropy.

Proof. Without loss of generality we can assume B is of infinite entropy. As S is of
positive entropy, by Sinai’s theorem B arises as a factor of

⊗
∞

k=1 S. Hence, without loss
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of generality, we need only show that T j0 cannot arise as a factor of
⊗

∞

k=1 S jk . We argue
by contradiction. If it is a factor, then for any partition P ⊆ F and ε > 0 there is a value of
K and an ergodic joining of T j0 and

⊗K
k=1 S jk with

| j0|−1∨
j=0

T j (P)
ε
⊆ GK .

This contradicts the hypothesis of u.s.d. 2

Definition 6.5. For a K -system (S, Y, G, ν), by a permuted power of S we mean any map
Ŝ of the following form. Ŝ acts on a finite or countably infinite product of copies of Y
written ⊗k∈KY and has the form

Ŝ{xk}k∈K = {S jk (xπ−1(k))}k∈K (6.1)

where π :K→K is a bijection and if L ⊆K is any finite cycle of π , then
∑

k∈L jk 6= 0.

Special cases of permuted powers have been considered [15, 28]. The last condition on
sums over finite cycles guarantees that a permuted power is always ergodic. Also note
that if you construct two permuted powers by using a common π , using perhaps different
choices for the jk but with the sums over finite cycles agreeing, then the two permuted
powers will be isomorphic. We now prove the result which gives us what we need.

PROPOSITION 6.6. Suppose (T, X, F, µ) and (S, Y, G, µ) are two K -systems. If T is
uniformly somewhat disjoint from S, then T cannot arise as a factor of a permuted power
of S.

Proof. We argue by contradiction. Therefore, suppose that T does arise as a factor of some
permuted power of S. Break K into cycles of π and let P be a generator for T . For all
ε > 0 we can select a subset K′

⊆K consisting of finitely many cycles of π so that relative
to the joining µ̂ given by the factor map,

P
ε
⊆

⊗
k∈K′

G.

Since this algebra is invariant under the permuted power, we see that for all t ∈ Z we have

T t (P)
ε
⊆

⊗
k∈K′

G.

Let Ŝ′ be the restriction of Ŝ to this invariant sub-σ -algebra. The cycles of π inK′ are either
finite or infinite and we write K′

=K′

1 ∪K′

2 where K′

1 is a finite set consisting of the finite
cycles of π and K′

2 is a collection of infinite cycles. If K′

2 is not empty, then Ŝ′ acting on
these coordinates is an infinite entropy Bernoulli shift. For some sufficiently high power
t0 of Ŝ′, it follows that Ŝ′t0 is of the form

⊗
k∈K′

1
Stk × B where B is a possibly trivial

Bernoulli shift. Hence µ̂ is a joining of this action and T t0 . As in the previous corollary, we
can replace the Bernoulli action B with a product of powers of S. Hence for all ε > 0 we
have an ergodic joining of some T t0 and some

⊗
k∈K′′ Stk with T t (P) being ε-contained

in
⊗

k∈K′′ G. This contradicts somewhat disjointness. 2
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6.2. Building windows, wiggles and block names. We have now explained the
implications of u.s.d. which we will use, and we begin our construction. We borrow
many ideas from the history of such counterexamples. In particular, we use what Hoffman
refers to as pseudorandom sequences, chosen generically from independent identically
distributed (i.i.d.) processes. As is usual, we will be constructing a series of collections
of names inductively,

Bα
n ⊆ {0, e, f, s}h(n).

Here h(n) is the common length of all the names. This set will actually depend only on
the first n terms of α, with the next term determining how the construction continues to the
next value n + 1. Names will be built by concatenation, which we will write as a product.
In this context,

∏K
i=1 ak will represent the name a1a2 . . . ak , i.e. the ‘product’ is from left

to right. We set
Bα

0 = 0N (0)

and so h(0) = N (0).
It will then be convenient to have Bα

−1 = 0 and h(−1) = 1. We will use the parameter
N (0) to push down the entropy of the maps T α .

The construction is governed by a set of inductively defined parameters.
(1) N (n) is the number of (n − 1)-block names that occur across an n-block name.
(2) c(n) is the smallest value > n such that h(n − 1) + c(n) is divisible by n!. This is

the independent ‘wiggle’, which we will allow each (n − 1)-block in the n-block.
(3) A0(n) = {a0

1(n), . . . , a0
N (n)(n)} and A1(n) = {a1

1(n), . . . , a1
N (n)(n)} are two ‘pseu-

dorandom’ sequences of values in {1, . . . , 2n
}.

(4) Each (n − 1)-block sits inside a window in the n-block of length w(n) where
w(0) = 1.

(5) d(n) is the least multiple of n! larger than the value 2w(n − 1) + n!.
To begin the inductive description, we describe a general ‘window’ framing a word

b ∈ Bα
n−1. The window depends on parameters 1 ≤ a ≤ 2n and 0 ≤ j ≤ c(n) and is given

by
Wn(b, a, j) = ead(n)s j bsc(n)− j f (2n

+1−a)d(n).

The e, s and f strings form the ‘frame’ of the window. Notice that the number of s’s is
smaller than the value d(n). The e and f sections will be deterministic in that they will be
set by the pseudorandom sequences. The s sections will be random, in that all values j will
be allowed. All of this follows the general theme of such constructions.

To define the words allowed in Bα
n let b1, . . . , bN (n) be any sequence of values from

Bα
n−1 and j1, . . . , jN (n) be any sequence of values from {1, . . . , c(n)}. The names in Bα

n
will all be possible names of the form

N (n)∏
k=1

Wn(bk, aαn
k , jk).

That is to say, we concatenate N (n) windows with the e and f sections determined by
A0(n) or A1(n) depending on whether αn = 0 or 1. The Bα

n−1 names in the windows are
arbitrary as are the ‘wiggles’ produced by the s’s.
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We calculate that #(Bα
0 ) = 1, and letting η(n) be the number of n-block names, we have

inductively
#(Bα

n ) = η(n − 1) = #(Bα
n−1) · c(n)N (n).

Notice this value does not depend on α. We set w(n) to be the length of a window in the
n-block name and observe that

w(n) = h(n − 1) + (2n
+ 1)d(n) + c(n).

Notice this length is divisible by n!. Furthermore, we have

h(n) = N (n)w(n).

Notice that the frame of a window has two components, a ‘deterministic’ part consisting
of the e and f sections whose lengths are multiples of d(n) > 2w(n − 1) + n!, and a
‘random’ part consisting of the s’s. As n! ≥ c(n) > n and h(n) will grow extremely fast,
the random wiggle will be very small in relation to the deterministic part of the frame. This
is of course the standard trick for making non-Bernoulli K -systems, referring to Ornstein
and Shields [26].

Having set the value c(n), the value w(n) is determined. What remains so far unspecified
is the size of N (n) and the pseudorandom sequences A0(n) and A1(n).

One calculates that the fraction of each name in Bα
n occupied by frames around (n − 1)-

block names is

F(n) =
(2n

+ 1)d(n) + c(n)

h(n − 1) + (2n + 1)d(n) + c(n)
≤

2n+1n!

N (n − 1)
for n ≥ 1.

We will define the conditions on N (n) inductively. Our conditions will set lower limits
for how large N (n) must be, given the construction through stage n − 1. As a first condition
we ask that

N (n) > 10 · 2n
· (2n+2

+ 1) · 2 · n(n + 1)!.

This guarantees that F(n) < 1/(10n2n), a bound we will use later. It follows that∑
∞

n=k F(n) < 1(10 · 2k−1) and the fraction of names occupied by frames around windows
at level k or beyond decays exponentially in k. Hence the block names Bα

n can be used
to construct measure-preserving actions on probability spaces (Xα, Fα, µα). For our
purposes, the best way to think of this is to take for Xα all words in {0, e, f, s}Z for which
every finite substring appears as a string in some Bα

n . This is a closed and shift-invariant
set. As the e and f strings in any frame are non-empty, any word in Xα can be parsed
uniquely into copies of words in Bα

n and frames of stage n and higher. These topological
systems are not uniquely ergodic. In fact, we want a measure of maximal entropy and the
natural way to define it is to build an i.i.d. process on η(n) symbols, each equally likely.
Now build a tower over this system of height h(n) and paint over each symbol one of the
η(n) names occurring in Bα

n . This produces a shift-invariant measure µn
α on {0, e, f, s}Z.

One moves across the n-block names and, at the end of each one, decides independently
which name to move to next. It is not difficult to check that if you take µn+1

α and induce
on the occurrences of n-block names, i.e. erase the frames from the (n + 1)-blocks,
one obtains the measure µn

α . Since the density of the frames in the (n + 1)-block names
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is constant and decaying in n exponentially, these measures µn
α must converge to a shift-

invariant measure µα . More precisely, one can obtain µα by successively ramifying the
σ -algebra and exducing to move from µn

α to µn+1
α . This later description is tantamount to

cutting and stacking. For further details, see Ornstein and Shields [26].
Each of these actions has a canonical time-zero partition Pα whose sets we label 0, e, f,

and s. As stated earlier, a name in Xα parses uniquely into copies of names in Bα
n and

frames around them. This means that there are well-defined sets Bα
n of points whose names

from index 0 through index h(n) − 1 are in Bα
n . Thus, for any x ∈ Xα there are values

d1, d2, . . . ≥ 0 such that T −dn
α (x) ∈ Bα

n and dn is the minimal such value. If dn < h(n)

then we refer to dn as the index of x in its n-block. Otherwise, we say that x lies in a frame
of level n or higher. This is consistent with saying x belongs to some set of names if one
of these names is a subname of x containing the origin.

PROPOSITION 6.7. For any particular choice of parameters as described above, the
collection of maps (Tα, Xα, Fα, µα) are all K -systems of equal entropy and all have the
weak Pinsker property.

Proof. Consider the factor algebra obtained by replacing all symbols in an occurrence of a
block b ∈ Bα

n by the single symbol 1. Call this list of factor algebras Fn
α . As n grows, these

algebras decrease to the trivial algebra and in particular their entropies go to zero. The
names from Bα

n that occur in the intervals (now labelled with 1’s) become independent and
all equally likely. This implies three facts. First, one sees that all cylinder sets have constant
densities of occurrence µα almost surely on the orbits of points x ∈ Xα and hence this is an
ergodic measure. Second, the conditional entropy of Tα relative to the factor algebra Fn

α is
independent of α; hence all Tα have the same entropy. Third, the factor Fn

α splits off with
a Bernoulli complementary algebra, and hence all Tα have the weak Pinsker property. The
length of the block of s’s that precede the (n − 1)-block in each window are independent,
independent of all choices of (n − 1)-blocks in any window and have range growing in n.
This is sufficient, by standard arguments, to show that Tα is a K -system [15]. 2

6.3. Proper arrays and pseudorandom sequences. We now begin the most technical
part of our work, setting up the properties we require of N (n) and the pseudorandom
sequences A0(n) and A1(n). We need to consider the structure of overlaps of windows in
n-blocks amongst a finite collection of points xk , as each is moved by a perhaps distinct
power jk of Tα . Fix a list of m + 1 values j0, j1, . . . , jm with −n ≤ jk ≤ n and m ≤ n.
Let

j = lcm
(

w(n)

| jk |

)
=

w(n)

gcd(| jk |)
and so j ≤ w(n).

where, as usual, gcd denotes the greatest common divisor and lcm the least common
multiple. Fix choices 1 ≤ tk

0 ≤ N (n), k = 0, . . . , m and consider the array of values

tk
i = tk

0 +
i j jk
w(n)

where i ∈ Z.
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Hence we construct a series of m arithmetic progressions which begin at the values tk
0

and have transitions ( j jk)/w(n). We truncate this list to values i0 ≤ i < r0 so that all tk
i

satisfy 1 ≤ tk
i ≤ N (n).

Definition 6.8. For a choice of m ≤ n, values of j0, . . . , jm and t1
0 , . . . , tm

0 as above we
refer to the n × (r0 − i0) array of values {tk

i } as an n-array. Its dimensions are r0 − i0 × m.

What is the significance of n-arrays? Suppose x0 ∈ Xα and (x1, . . . , xm) are m points
in some Xβ with xk lying in the tk

0 th window in its n-block and in this window, at index
0 ≤ wn(x) < w(n) counting from the left end. Act on this m + 1-tuple of points by powers
of the map

T̂ = T j0
α ×

m⊗
k=1

T jk
β .

The points T̂ j i (x0, x1, . . . , xm) for i0 ≤ i < r0 all still lie in these same n-block names, but
in different windows. The kth term of the list of points lies in the tk

i th window and is again
at precisely index wn(xk) in that window. That is to say, the points recur at these times to
exactly the same indices in their windows where they began. Our coding argument to show
the examples are u.s.d. relies fundamentally on this recurrence of the local geometry of the
overlap of n-block windows.

Definition 6.9. An n-array as defined above is proper if it satisfies two properties.
(1) The length of the n-array satisfies r0 − i0 ≥ N (n)/(10 · 2n

· w(n)n).
(2) If for some k1 6= k2 both ≥ 1 we have jk1 = jk2 then tk1

0 6= tk2
0 . That is to say, no two

rows k ≥ 1 of a proper array are allowed to be identical. We need not be concerned
about row 0.

Definition 6.10. Fixing values −n ≤ j0, j1, . . . , jm ≤ n we define the associated n-array
of the list of points {x0, x1, . . . , xm} ∈ Xα

×
⊗m

k=1 Xβ to be the perhaps empty n-array of
indices

tk
i = tk

0 +
i j jk
w(n)

where for some choice i1, i0 ≤ i1 ≤ r0, all xk are in the tk
i1

th window of an n-block. This
n-array will be empty if and only if some xk is not in an n-block name.

PROPOSITION 6.11. For each m ≤ n and choice of values −n ≤ j0, j1, . . . , jm ≤ n and
µ̂ a joining of µα and µm

β , the µ̂ measure of those points {x0, x1, . . . , xm} whose n-array
is proper is at least 1 − 1/(2 · 2n).

Proof. Let 0 ≤ t (x) < N (n) be the index of the window containing x in its n-block. The
value t (x) is undefined if x is not in an n-block. If for all xk we have

N (n)

10 · 2n ≤ t (x) ≤ N (n)

(
1 −

1
10 · 2n

)
then the n-array of {x0, . . . , xm} will be proper. The µ̂ measure of this set is at least

1 −

( ∞∑
k=n+1

F(k) +
1

10 · 2n

)
≥ 1 −

(
4

10 · 2n

)
.
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The µm
β -measure of those points {x1, . . . , xm}, such that at least two elements have the

same value t (x), is at most
n2

N (n)
<

1
10 · 2n

and hence the µ̂ measure of those strings with proper n-arrays is at least 1 − 1/(2 · 2n). 2

Simple counting gives the following lemma.

LEMMA 6.12. The number of distinct proper n-arrays as m ≤ n and the values of
j0, . . . , jm are allowed to vary is bounded by

n[(2n + 1)N (n)]n+1.

Definition 6.13. We say a pair of pseudorandom sequences (A0, A1) ⊆

({1, . . . , 2n
}

N (n))2 has Property 1 if for all proper n-arrays {tk
i } and all lists

{a0, a1, . . . , am
} ∈ {1, 2, . . . , 2n

} we have∣∣∣∣#{i |a0
t0
i

= a0, a1
tk
i

= ak, for k ≥ 1}

(r0 − i0)
−

1

(2n)m+1

∣∣∣∣< 1

10 · 2n(2n)n+1 .

In other words, along any proper n-array, all strings {a0, . . . , a1
} occur approximately

equally often. Notice the error here from uniformity is small compared to the density of
occurrence.

PROPOSITION 6.14. For all ε > 0, if N (n) is sufficiently large, the fraction in
({1, . . . , 2n

}
N (n))2 of pairs of sequences (A0, A1) which have Property 1 will be at least

1 − ε.

Proof. It is convenient to argue this probabilistically. Take ({1, . . . , 2n
}
2)Z with uniform

Bernoulli measure as a sequence of random variables. Suppose {tk
i }i∈I is some subarray

of a proper n-array with the property that no two values tk
i , i ∈ I and k = 1, . . . , m agree.

Then {(a0
t0
i
, a1

t1
i
, . . . , a1

tm
i
)}i∈I will be an i.i.d. sequence of random variables. The central

limit theorem tells us that for some {a0, . . . , aM
}, the probability of∣∣∣∣∣∣

#{i ∈ I : a0
t0
i

= a0, a1
tk
i

= ak, k ≥ 1}

#I
−

1

(2n)m+1

∣∣∣∣∣∣≥ 1
20

1

2n(2n)n+1

decays exponentially in #I. That is, for some values C, h > 0 (depending on n but not
N (n)) this probability is at most C exp(−h#I).

In any proper array, two rows k 6= k′
≥ 1 can have tk

i = tk′

i for at most one value of i .
Hence, we can delete at most n(n − 1) values i and we know that on the remaining indices
I ⊆ {i0, . . . , r0 − 1}, for each i ∈ I the indices t1

i , . . . , tm
i are distinct. Any particular

index t can occur at most m times in the array on rows k ≥ 1. Hence each row t1
i , . . . , tm

i
can have a value in common with at most n2 other rows t1

i ′ , . . . , tn
i ′ . We claim that this

means I can be partitioned into sets I1, . . . , Im2+1 where for each Iu , all indices tk
i ,

i ∈ Iu and k = 1, . . . , m are distinct and moreover

#Iu ≥
#I

2(n2 + 1)3 .
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To see this, first note that one can recursively create a partition of I into at most m2
+ 1

sets where each contains distinct elements. A new column {t1
i , . . . , tm

i } can share terms
with at most m2 others and hence can be added to one of the partition elements, while still
maintaining distinctness.

Now suppose that some Ik’s have cardinality less than #I/2(n2
+ 1)3. These are

referred to as the small terms. The union of all such small terms has cardinality less than
#I/2(n2

+ 1)2. Hence some other (large) I j has

#I j ≥ #I
(

1 −
1

1(n2 + 1)2

)
1

m2 >
#I
2n2 .

The small terms can share elements with at most (n2#I)/(2(n2
+ 1)3) < #I/(2(n2

+ 1)2)

of the columns of I j . Hence, some column in I j can be moved to a small term without
making I j small. This can be continued until no small terms remain and we have the
partition we seek.

Thus, for each Iu for some a0, . . . , am , the probability that∣∣∣∣∣∣
#{i ∈ Iu |a0

t0
i

= a0, a1
tk
i

= ak, k ≥ 1}

#Iu
−

1

(2n)m+1

∣∣∣∣∣∣≥ 1
20

(
1
2n

)n+2

is at most

C exp(−h#Iu) ≤ C exp
(

−#I
h

2(n2 + 1)3

)
and hence for some a0, . . . , am the probability that∣∣∣∣∣∣

#{i ∈ I|a0
t0
i

= a0, a1
tk
i

= ak, k ≥ 1}

#I
−

1

(2n)m+1

∣∣∣∣∣∣≥ 1
20

(
1
2n

)n+2

is at most

n2C exp
(

−#I
h

2(n2 + 1)3

)
.

Recalling that I omits at most n(n − 1) of the values i0, . . . , r , and a proper array has
length at least N (n)(10 · 2n

· w(n)n)−1 if we choose N (n) large enough, we conclude that
for each proper array for all a0, . . . , am , the probability that

V =

∣∣∣∣∣∣
#{i0 ≤ i < r0|a0

t0
i

− a0, a1
tk
i

= ak, k ≥ 1}

r0 − i0
−

1

(2n)m+1

∣∣∣∣∣∣< 1

10(2n)n+2

is at most

n2C exp
(

−(r0 − i0)h

4(n2 + 1)3

)
≤ n2C exp

(
−N (n)h

40 · 2n · w(n)n · (n2 + 1)3

)
.

Hence, the probability that Property 1 is not satisfied is at most

n[(2n + 1)N (n)]n+1n2C exp
(

−N (n)h

40 · 2n · w(n)n · (n2 + 1)3

)
.

This tends to zero as the choice for N (n) increases to infinity. 2
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6.4. Separating names in d. Property 1 is the only fact we need about the pseudorandom
sequences. Henceforth, we shall require that both (A0, A1) and (A1, A0) satisfy Property 1.
For convenience we also ask that N (n) = k · 10 · 2n

· w(n)n where k ≥ 10. We shall also
make one further requirement on the size of N (n); we establish some basic facts first. A
word, as is standard, will be a map from a finite or infinite subinterval i0 ≤ i < r0 to a
symbol set. As we will work with various powers of Tα , if we are considering T j

α then we
will consider words in the symbols {0, e, f, s} j . This is equivalent to taking a word in the
symbols {0, e, f, s} and walking across with steps of length j . Hence, we actually need
only consider words in the symbols {0, e, f, s}, but will need to specify the step size with
which we walk across the word. If B is a finite word of length t = jk we will write B( j)
for the word of length k in symbols {0, e, f, s} j obtained by walking across B in steps of
length j . This will only make sense when the size of the domain of a word B is divisible
by j . The domain of B( j) is not made explicit from the domain of B. In our usage these
names will always be parts of a doubly infinite sequence. The arithmetic progression we
walk on will start at 0 and then this will fix the domain of B( j).

We will consider two words as equivalent if they differ only by a translation of their
domains. When we say a word B sits at index i we are perhaps translating the domain
of the word B to begin at index i and extend to i + (the length of B) − 1. By the overlap
of two words we mean the interval that is the intersection of their domains. Here, the
stepsize with which we are walking across the two words is significant. Also, following
standard practice we will use B to represent the set of points x ∈ {0, e, f, s}Z for which
xi = B(i), i0 ≤ i < r0. Moreover, we will let xr0−1

i0
be the word obtained by restricting x

to this domain of indices. The words in Bα
n have not been given specific domains and in

this context, we regard them as sets of equivalence classes of names. When we speak of a
word b ∈ Bα

n we mean any word with a fixed domain in some equivalence class in Bα
n .

Definition 6.15. The mean Hamming or d-bar distance between two words B and B ′ with
the same domain i0 ≤ i < r0 is given by

d(B, B ′) =
#{i |B(i) 6= B ′(i)}

r0 − i0
.

If x, x ′
∈ {0, e, f, s}N it is standard to write

dn(x, x ′) = d(xn−1
0 , x ′n−1

0 ).

Definition 6.16. Two words b, b′
∈ Bα

n are said to have good overlap if their overlap has
length at least h(n)/[10 · 2n

· w(n)n
] and at most h(n) − w(n). That is to say, the overlap

is neither too long nor too short. For j ≤ n we say b( j) and b′( j) have good overlap if b
and b′ do.

We want to show that if an overlap of two n-block names is good, then they are some fixed
distance in d apart. This fact is a standard piece of all such constructions and comes from
Property 1. One need not work terribly carefully to get this fact and our estimates are very
sloppy.

LEMMA 6.17. If b, b′
∈ Bα

n , n ≥ 1 have good overlap then a fraction of at least 1 − 3/2n

of the overlap is occupied by good overlaps of pairs of names from Bα
n−1.
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Proof. A good overlap of words b, b′
∈ Bα

n must contain at least N (n)/(10 · 2n
· w(n)n)

windows: note this value is at least 10. It follows that a fraction of less than 3F(n) of
the overlap is occupied by frames in the windows, hence a fraction of at most 1 − 3F(n)

is occupied by overlaps of pairs of words from Bα
n−1. Among these overlaps, a fraction

of at most w(n − 1)/h(n − 1) = 1/N (n − 1) < 1/(10 · 2n) can be too short to be good
overlaps. We now want to estimate the fraction of overlaps that might be too long. Suppose
the (n − 1)-block names in windows at indices t1 in b and t2 in b′ overlap in too long
a segment to be good. This means these two windows themselves overlap in at least
h(n − 1) − w(n − 1) > w(n)[1 − 1/(5 · 2n)] places. It follows that the same holds true
for pairs of windows at indices t1 + k and t2 + k, provided that these values stay between
1 and N (n). In order for some other pair of windows t1 + k and t2 + k not to yield a good
overlap of (n − 1)-blocks, we must have

aαn
t1 − aαn

t2 = aαn
t1+k − aαn

t2+k .

Otherwise, the e sections in the windows will force the overlap at these new indices to
change by at least 2w(n − 2) from those at indices t1 and t2 and hence become good.
Property 1 tells us that the pairs aαn

t1+k, aαn
t2+k are essentially uniformly distributed over all

possible pairs. This means their difference can be a constant on a set of density at most
1/2n

+ 1/(10 · 22n) and hence that at most this fraction of the overlaps can possibly fail
to be good because they are too long. Not all these overlaps of (n − 1)-block names have
the same length but their lengths differ certainly by less than a factor of two. Hence, if any
overlap fails to be good because it is too long, then amongst all overlaps, the density of
those which fail to be good for this reason is at most 22/10 · 2n . Overall, the density of the
overlap of b and b′ which must be occupied by good overlaps of names from Bα

n is at least

1 − 3F(n) −
1

10 · 2n −
22

10 · 2n ≥ 1 −
26

10 · 2n . 2

LEMMA 6.18. For two names b, b′
∈ Bα

4 with good overlap and overlapping on indices
i0 ≤ i < r0,

d(br0
i0

, b′r0
i0

) ≥
3

4w(4)
.

Proof. This is a very sloppy estimate, although it is good enough for our purposes. Suppose
that the name br0

i0
is broken into windows of length w(4). Each such window provides one

index where bi 6= b′

i , unless the window overlaps a window in b′ whose e and s sequences
are identical to those in b. But this can only happen if one name is translated by precisely
a multiple of w(4) with respect to the other and then only in windows where the values
from Aα4(4) agree. As the pair have a good overlap, this occurs for less than a fraction
1/24

+ 1/(10 · 28) < 1/4 of the windows. 2

COROLLARY 6.19. For all n ≥ 4 and all pairs of words b, b′
∈ Bα

n with a good overlap,
if the overlap is i0 ≤ i < r0 then

d(br0
i0

, b′r0
i0

) >
3

4w(4)

n∏
k=5

(
1 −

3
2k

)
>

3
4w(4)

∏
∞

k=5

(
1 −

3
2k

)
def
= d > 0.
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Proof. One verifies the first inequality inductively using the previous two lemmas. The rest
follows easily. 2

COROLLARY 6.20. For all n ≥ 4 and all pairs of words b, b′
∈ Bα

n with a good overlap, if
the overlap is i0 ≤ i < r0 and i0 ≤ i1 < j1 ≤ r0 with r1 − i1 ≥ h(n)/[10 · 2n

· w(n)n
] then

d(br1
i1

, b′r1
i1

) > d > 0.

Proof. The interval [i1, j1) is large enough to contain enough (n − 1)-blocks. We apply
Lemma 6.17 to claim that at least 1 − 3/2n of it is occupied by good overlaps of names
from Bα

n−1. We can now apply the same inductive procedure of the previous corollary. 2

6.5. The nitty gritty. We are now almost prepared to show that any Tα and Tβ with αn 6=

βn infinitely often are somewhat disjoint with value a = d/5. Towards that end, our work
from now on will be premised on the existence of two such maps Tα and Tβ . Moreover,
we will assume that non-zero values j0, j1, . . . , jm have been fixed as well as an ergodic
joining µ̂ of T j0

α and
⊗m

i=1 T ji
β . We set X̂ = Xα ×

⊗m
i=1 Xβ and T̂ = T j0

α ×
⊗m

i=1 T ji
β .

Given these constructions, we will consider values n ≥ max{| j0|, . . . , | jm |, m} where
αn 6= βn . We will refer to this collection of choices as a set of basic material. Given this
basic material, by the n-block containing a point xi we will mean the name b( ji ) where
xi , under that action of Tα sits in the n-block name b. That is to say, we will walk across
the name in steps of size ji . By the n-block window containing xi we mean that window in
this n-block which contains the origin. Once more we walk across in step size ji . By the
index in the n-block or n-block window at which xi sits we mean the position in the block,
counting from the left end in units, not steps of size ji . Thus, if T ji

α (xi ) still lies in the same
n-block window as xi did, then its index in this window will be ji larger than that of xi .
Let Qα

n be the partition of Xα labelled by {1, e, f, s} and obtained by putting any point
that lies inside an n-block name b ∈ Bα

n into the single set 1 and leaving all the remaining
points, those in frames around n-blocks or higher, in the sets as originally labelled. Given
a set of basic material, set

Q̂n = Qα
n ( j0) ×

m⊗
i=1

Qβ
n ( ji ).

Note that the T̂ , Q̂n-name of a point determines whether or not it is in a good n-overlap
in the sense of Definition 6.27 below as it provides enough information to specify the
positions of the n-block windows in an n-block. This name also determines the size of the
deterministic e and f parts of the spacers in these windows, since these are defined by the
position of the n-block window in the n-block. The remaining part of the Pα( j0) name and
the Pβ( jk)-names are completely arbitrary. More precisely, having used the Qα

n name to fill
in the position of the n-block windows and then the e and f sections of the frame in each
window, we are left with an infinite sequence of gaps in name of width h(n − 1) + c(n).
The number of possible names that can be placed in each such window is c(n)η(n − 1)

(remember that η(n) is the number of n-block names). The conditional expectation of the
sequence of names we can see in these windows given the Qα

n name is i.i.d. and uniformly
distributed over this set of names.
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LEMMA 6.21. For any choice of ε > 0, if we fix the construction through that of (n − 1)-
blocks and then if N (n) is chosen sufficiently large, then for all α,

h(Tα, Qα
n ) < ε.

Proof. Simply note that the measure of the set labelled 1 increases to 1 as the size of N (n)

grows. 2

Our goal now is a ‘conditional d̄’ calculation and, to achieve that, we will need a
definition. d is defined in many different contexts. We will need most of them, and so
include here are the definitions for completeness.

Definition 6.22. The definition of d for finite names in symbols from a finite set 6 has
already been given. If µ1 and µ2 are two measures on the space 6n of names in 6 of
length n then we set

d(µ1, µ2) = inf
µ̂

(∫
d(s1, s2) dµ̂

)
where the infimum is over all couplings µ̂ of the two measures. For s1, s2

∈ 6Z we set

d(s1, s2) = lim sup
N→∞

d((s1)N
−N , (s2)N

−N ).

If µ1 and µ2 are two shift-invariant measures on 6Z we set

d(µ1, µ2) = inf
µ̂

(∫
d(s1, s2) dµ̂ = µ̂({(s1, s2) : s1

0 6= s2
0})

)
where the infimum is over all ergodic joinings µ̂ of µ1 and µ2. If (T1, P1) and (T2, P2)

are two ergodic processes with P and P ′ using the same label space 6, then the map to
T, P-names and T ′, P ′-names give two ergodic measures µ1 and µ2 on 6Z and one sets

d(T1, P1; T2, P2) = d(µ1, µ2).

As a last refinement, suppose (X1, F1, µ1, T1) and (X2, F2, µ2, T2) are ergodic systems
which possess a common invariant factor action H. In the space of joinings of these two
actions let JH be those joinings of µ1 and µ2 supported on the graph of the identity on
H×H [31, 6.2]. We now define

dH(T1, P1; T2, P2) = inf
µ̂∈JH

µ̂({(x1, x2)|P1(x1) 6= P2(x2)}).

Suppose we have a set of basic material. We now describe a modification of µ̂ which we
call µ = µn . This construction is an essential ingredient of our argument.

To do this, let Qα
n =

∨
∞

i=−∞
T −i

α (Qα
n ) and Pα

=
∨

∞

i=−∞
T i

α(Pα). To start, we define

the measure µ on the sub-σ -algebra Qα
n ∨

∨m
k=1 Pβ . Notice that

∨m
k=1 Q

β
n is a sub-σ -

algebra of both
∨m

k=1 Pβ and Qα
n ∨

∨m
k=1 Q

β
n . Define µ on Qα

n ∨
∨m

k=1 Pβ to be the
relatively independent joining of these two systems over this common factor [31, 6.2].
What this means is that in Qα

n ∨
∨m

k=1 Q
β
n , we fill in the names across the windows

of 1’s with spacers and n-block names not only independent of the Qβ
n -names but also

independent of the Qα
n name as well. Hence µ is a shift-invariant measure on doubly

infinite Qα
n ( j0) ×

⊗m
k=1 Pβ( jk) names. It is not difficult to see that as µ̂ is ergodic, so

is µ.
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PROPOSITION 6.23. Fixing the construction through stage n − 1, for any ε > 0 if N (n)

is chosen large enough, for any choice of a set of basic material, set H=Qα
n ∨

∨m
k=1 Q

β
n

and then as measures on doubly infinite Qα
n ( j0) ×

⊗m
k=1 Pβ( jk) names we will have

dH(µ̂, µ) < ε.

Proof. Fixing the construction up to stage n fixes the number of possible names to be
filled in across an n-block window at c(n) · #Bβ

n−1. We show the d̄-closeness for each
of the Pβ( jk) names separately. Fix the value k, and let A be the subset of points
which, in the kth copy of Xβ is the leftmost point in an n-block window. Partition the
set A into subsets according to the {0, e, f, s}-name across this window and call P̃k

this partition of A. Now induce on A, i.e. consider the action T̂A. The process (T̂A, P̃n)

is an i.i.d. process on c(n) · #Bβ

n−1 symbols, independent of the choice of N (n). This

process is extremal [27, III §4]. To see this, use the weak Pinsker property of T̂ . Set
Hk =Qα

n ∨
∨

k′<k Pβ
∨
∨

k′≥k Q
β
n . That is to say, we inductively add on the Pβ algebras

to H. Extremality tells us there is a δ so that if we knew

h(T̂A, P̃k |Hk) > h(T̂A, P̃k) − δ = log[c(n) · #Bβ

n−1] − δ

relative to both µ̂ and µ, then we could conclude

dHk ((T̂A, P̃k)µ̂, (T̂A, P̃k)µ) < ε′

and the proposition would follow by setting ε′
= ε/m and working through the m terms

inductively.
With respect to µ, (T̂A, P̃k) is independent of Hk so the entropy bound above follows

immediately. With respect to µ̂, (T̂A, P̃k) is independent of
∨

k′<k Pβ
∨
∨

k′≥k Q
β
n as the

m Xβ coordinates are independent and the windows are filled in independently. So, by the
Pinsker formula [10], the problem reduces to showing that once N (n) is large enough, we
have

h(T̂A, Qα
n ) < δ.

But by Kac’s formula [3, Kac’s Lemma] this is

h(T α, Qα
n )

µβ(A)
.

As N (n) ↗ ∞, µβ(A) → w(n)/jk ≥ w(n)/n > 0 and by Lemma 6.21 we can choose
N (n) large enough to give the entropy bound and apply extremality. 2

This last proposition gives our final requirement on the size of N (n). We ask that it be
sufficiently large that for any set of basic material from stage n we will have

dH(µ̂, µ) <
1

10 · 2n .

The conditions on our choices of parameters are now completely specified.
For a basic set of material, we now extend the construction of µ to all ofPα

∨
∨m

k=1 Pβ

as follows. Take an ergodic joining µ̃ in JH which achieves the dH distance between
µ̂ and µ. This is a measure on the direct product of two copies of Qα

n ∨
∨m

k=1 Pβ .
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The H factors of these two systems are identified relative to µ̃ and these contain Qα
n . Now

µ̂ extends to include the factor Pα . In this way, one can extend µ̃ to include Pα , taking
the relatively independent extension of µ̃ over this common H factor with respect to the
second copy (the µ̄ copy) of

∨m
k=1 Pβ . We then restrict µ̃ to span Pα and the second copy

of
∨m

k=1 Pβ . This extends µ to all of Pα
∨
∨m

k=1 Pβ . From its definition as the restriction
of an H-relative joining, we still have

dH(µ̂, µ) <
1

10 · 2n .

A set of basic material gives a lower bound for the value of n but does not specify the value.
The construction of µ depends on the set of basic material and on the value n. Hence
we will now write it as µn . Notice that the joining µ̃, which we now call µ̃n , possesses
one copy of the (T j0

α , Pα( j0)) process but two copies of the
(⊗m

k=1 T jk
β ,

∨m
k=1 Pβ( jk)

)
process which, as n grows, agree with higher and higher probability.

LEMMA 6.24. Given a set of basic material, the measure µn converges in d to µ̂.
Moreover, the measures µ̃n which join µn and µ̂, converge to the diagonal two-fold self-
joining of µ̂. In particular, for any sets A ∈ Pα and B ∈

∨m
k=1 Pβ , we have µn(A ∩ B)

converges in n to µ̂(A ∩ B).

Proof. We only need to check this property for a dense class of sets A and B.
Hence we can assume they are finitely coded from the processes (T j0

α , Pα( j0)) and(⊗m
k=1 T jk

β ,
∨m

k=1 Pβ( jk)
)
. One calculates

|µn(A ∩ B) − µ̂(A ∩ B)| ≤ µ̃n(B14B2),

where B1 and B2 are the two copies of B in the joining µ̃n . The latter tends to zero as µ̃n

achieves the d distance between µn and µ̂. 2

COROLLARY 6.25. Given a set of basic material, suppose that for 0 ≤ j < j0 we

have, relative to the joining µ̂, T j
α (Pα)

ε j

⊆
∨m

k=1 Pβ . It follows that there are partitions
P0, . . . , P j0−1

⊆
∨m

k=1 Pβ so that

lim
n→∞

µn(T j
α (Pα)4P j ) < ε j .

This corollary tells us that if Tα and Tβ fail to be u.s.d. the failure is already evident on
the joinings µ. We now formulate a result which will be our principal tool in proving that
Tα and Tβ are somewhat disjoint.

PROPOSITION 6.26. Suppose there is a value a > 0 so that for all choices of j0, . . . , jm
and partitions P0, . . . , P j0−1 that are finitely coded from

∨m
k=1 Pβ( jk) and all ergodic

joinings µ̂ of T j0
α and ⊗T jk

β there are arbitrarily large values of n so that if we construct
µn we find

1
j0

j0−1∑
i=0

µ(T i
α(Pα)4P i ) ≥ a.

Then Tα and Tβ are u.s.d.
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Proof. Under the hypotheses of the proposition, we may conclude that for all sets of basic
material and for all finitely coded sets P0, . . . , P j0 we have

1
j0

j0−1∑
i=0

µ̂(T i
α(Pα)4P i ) ≥ a.

This is a closed property on the choice of partitions P i and hence holds on all partitions.
This gives the result. 2

We now verify Proposition 6.26 for a = d/5.

Definition 6.27. Starting from a set of basic material as described above, we say the list of
points {x0, x1, . . . , xm} ∈ Xα ×

⊗m
i=1 Xβ has a good n-overlap if

(1) the associated n-array of this list of points is proper in the sense of Definition 6.9;
and

(2) the overlap of the n-block windows containing the list has length at least F(n) +

w(n)/(10n2n).
The set of such points in X̂ is measurable and we call it Gn .

Notice that having good n-overlap is determined completely by the relative overlaps of the
n-blocks and hence Gn is Hn =Qα

n ∨
∨m

k=1 Q
β
n measurable.

COROLLARY 6.28. For any set of basic material, we have

µ̂(Gn) ≥ 1 −
1

2 · 2n .

Proof. By Proposition 6.11, condition (1) excludes at most 1/(10 · 2n) of the measure
space and condition (2) excludes at most nF(n) + 1/(10 · 2n). 2

COROLLARY 6.29. Given a set of basic material, if x0, . . . , xm have good n-overlap then
so do all points T̂ j (x0, . . . , xm) for all j small enough to keep these points in the same
n-block windows as {x0, . . . , xm}. Moreover, if {t0

i , t1
i , . . . , tm

i } is the n-array of this list,

then {T
t0
i

α (x0), T
t1
i

β (x1), . . . , T
tm
i

β (xm)} all lie on this T̂ orbit and not only still sit inside
this n-block overlap, but sit at the same indices in their n-block windows as do x0, . . . , xm .
Hence they also have a good n-overlap.

Partition the set Gn according to the relative translates of the n-block windows which
contain the points, the relative positions of the n-block windows forming the proper n-
array and the indices modulo jk of the points in their n-blocks. This is a finite partition of
Gn which we call Hn . Now take a set h ∈ Hn and partition it according to the indices in
which the points lie in their n-blocks. This is a finite partition of h. If we order these sets
of indices according to the order in which T̂ hits them, by moving in jk-increments on the
kth there will be a least set in this partition, referred to as h0, and a set of powers of T̂ we
call I(h), so that

h =

⋃
i∈I(h)

T̂ i (h0)

and such that this is a disjoint union. That is, h0 forms the base of what is often called a
funny tower, as the levels do not come in arithmetic progression. Our final computations
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will be made on these funny towers. To help set the scene, notice that I(h) looks like
a block of consecutive integers, enough to get one across the first overlap of n-block
windows. Then we jump to the second term in the proper array to begin a similar walk
across this overlap of n-block windows etc. until the n-block overlap is exhausted. Notice
that I(h) breaks up into a sequence of translates of a common n-block window overlap.
Once again, this partition of the elements h is Hn measurable as it only depends on the
geometry of the n-block overlaps of the points.

Given a proper n-array {tk
i }

r0−1
i=i0

, we now construct an involution of the values i0 ≤ i
< r0. We want this involution to depend only on the geometry of the overlap.

Since the sequences Aαn , Aβn have Property 1, we know that for each particular choice
of values {a0, . . . , am

}, this vector appears as the deterministic part of the frame for almost
precisely the same number of values i . For an initial array, let us choose an involution
I = I

{tk
i }

acting on i0 ≤ i < r0 so that

#{i |aαn

tk
i

6= aαn

tk
π(i)

and aβn

tk
i

= aβn

tk
π(i)

}

r0 − i0
> 1 −

1
10 · 2n ,

where π : [i0, r0] → [i0, r0] is a bijection.

To do this, we first construct an involution ι of the names a0, . . . , am with the property
that it preserves the values of a1, . . . , am but changes that of a0. Now we attempt to
define I so that it takes indices where the string a0, . . . , am occurs, to indices where
ι(a0, . . . , am) occurs. Property 1 tells us that we can carry this out for all but a fraction
1/(10 · 2n) of the indices i . We use the identity on the remaining indices. We can consider I
to be determined by a list of points x0, . . . , xm with good n-overlap rather than the proper
n-array they determine.

Notice that the choice of I isHn measurable as this subalgebra determines the geometry
of the n-overlap and hence the choice of I . We now use I to define an involution f on each
of the sets h ∈ Hn . Begin by defining it only on the sub-σ -algebra Qα

n ∨
∨n

k=1 Pβ . To
do this, partition h into fibers η according to this partition, i.e. specify the Pβ( jk) names
across the windows. We first define f on h0. For each n-block window overlap in the index
set I(h), take that window overlap and the names across its overlapping n-block windows,
and permute them according to the involution I associated with the n-array of the point.
Fix the names across all the other n-block windows. Since we are working relative to µn ,
such a permutation of the Pβ( jk) names is measure preserving. This defines f on h0 but
not on the full σ -algebra. To extend to the full algebra, note that any measure-preserving
map defined on a subalgebra with non-atomic fibers can always be extended as a measure-
preserving map on the full algebra. Our sub-σ -algebra has non-atomic fibers, so we can fill
in the action on the Pα( j0)-names in some measure-preserving way to define f . Now, to
extend f to all of h. For i ∈ I(h), set f on T̂ i (h0) to be T̂ i f T̂ −i , extending the definition
of f to all of h (see Corollary 6.29). Notice that on the funny tower over h0 this amounts
to painting the Pα( j0) ∨

∨m
k=1 Pβ( jk) names constructed on the base h0 onto the tower.

To go along with this involution f , we define a second involution g which acts on the
funny tower by permuting the levels by powers of T̂ . We move those levels at indices from
a single n-block window overlap, by the translate taking them to the levels in I of this
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overlap. As the maps f and g are defined on disjoint sets of h, we can combine them into
a single map, taking it to be the identity not yet defined.

We now prepare the final steps towards showing that Tα and Tβ are u.s.d.

COROLLARY 6.30. For all h ∈ Hn and x0, . . . , xm ∈ h, the two points f (x0, . . . , xm)

and g(x0, . . . , xm) have identical
∨m

k=1 Pβ( jk) names across the overlaps of their n-block
windows. On the other hand, setting Pα,i

= T i
α(Pα) for i = 0, . . . , j0 − 1, we have

1
j0

j0−1∑
i=0

µn( f (Pα,i )4g(Pα,i )) > µn(h)

(
d

2
−

1
2 · 2n

)
.

Proof. The first part follows from the definitions of f and g. The second is a consequence
of Corollary 6.20 as follows. For each (x0, x1, . . . , xm) ∈ h0, if we calculate the d distance
between the partitions f (Pα,i ) and g(Pα,i ) over the indices in I(h) then average over
the values i , integrate over h0 and multiply by #I(h), we obtain the given integral.
Observe that if (x0, . . . , xn) ∈ h0, then the Pα( j0)-names of the points f (x0) and g(x0)

have good overlap in the index set I (h) in the sense of Definition 6.16. Furthermore,
#I (h) ≥ h(n − 1)/(10n2n). Hence, in the calculation of the first d distance, we can apply
Corollary 6.20 to conclude that for those n-window overlaps actually moved by the
involution, there is a d̄ error of d/2 and these are all but a fraction 12 · 2n of the indices. 2

LEMMA 6.31. Given a set of basic material, suppose that P0, P1, . . . , P j0−1 are finitely
coded from

∨m
k=1 Pβ( jk). Then for δ > 0, if n is large enough we have

1
j0

µn( f (P j )4g(P j )) < δ.

Proof. Consider the measure of f (P j )4g(P j ) on each set h separately. The names
across the n-block window overlaps of f (x0, . . . , xm) and g(x0, . . . , xm) have identical∨m

k=1 Pβ( jk) names across them and their length grows uniformly in n. Hence the finite
codes agree over an increasing fraction of the funny tower as n grows. 2

THEOREM 6.32. For Tα as constructed, if αn 6= βn infinitely often, then Tα and Tβ are
u.s.d.

Proof. Given a basic set of material and using Proposition 6.26 we assume P0, . . . , P j0−1

are finitely coded. We can calculate that

1
j0

j0−1∑
i=0

µn(T̂ i (Pα)4P i ) =
1
2

1
j0

j0−1∑
i=0

µ[ f (Pα,i )4 f (P i )] + µ[g(Pα,i )4g(P i )]

≥
1
2

1
j0

j0−1∑
i=0

µ[ f (Pα,i )4 f (P i ) ∪ g(Pα,i )4g(P i )]

≥
1
2

1
j0

j0−1∑
i=0

µ[ f (Pα,i )4g(Pα,i )] − µ[ f (P i )4g(P i )].

Choosing n large enough, the previous two lemmas now give the conclusion with a = d/5.
2

https://doi.org/10.1017/S014338570700034X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570700034X


120 A. H. Dooley et al

COROLLARY 6.33. All elements in the collection Tα satisfy the weak Pinsker property,
have the same entropy, and can be constructed with any entropy 0 < h ≤ ∞ so that they
still possess the u.s.d property between any pair Tα and Tβ for which α and β differ
infinitely often.

Proof. That all the Tα as constructed have the same entropy follows from the fact that the
number of n-block names is independent of α. To see how to obtain all entropies, first note
that to verify u.s.d. one needs only to check it on one partition. We can increase the entropy,
even to infinity, by taking the direct product with a Bernoulli action. The arguments in the
first section show why this still yields u.s.d. for pairs. Hence we only need to see how to
obtain small entropy. Notice we did not formally set the value of N (0), the length of a
0-block. The larger it is chosen, the smaller the entropy of the Tα will be. 2

7. An uncountable family of non-Bernoulli cpe actions
Let G be a countable discrete amenable group containing an element of infinite order
(i.e. containing Z as a subgroup), and let 0 < h ≤ ∞. In Theorems 7.2 and 7.5 below,
we construct an uncountable family of cpe actions of G all having entropy h.

Definition 7.1. For i = 1, 2, let U i be an action of a countable discrete group G on a
Lebesgue space (Yi , νi ). The actions U 1

h and U 2
h , h ∈ G, of the group G are isomorphic

if there is an isomorphism S : (Y1, ν1) → (Y2, ν2) such that U 2
h Sy = SU 1

h y, where h ∈ G,
y ∈ Y1.

Now assume that G is countable amenable, that γ is an element of infinite order in
G, and that 0 is the subgroup of G generated by γ . Let Tα be a K -automorphism of the
Lebesgue space (Xα, µα), where α = (αi ) ∈ {0, 1}

N and h(Tα) = h, as described in §6
above. Then we may consider (Xα, µα) as a 0-space and define the co-induced action
Uα of G on the space (Yα, να) (cf. Definition 3.1). As we saw in §3, the action Uα

has the same entropy as that of Tα , that is h(Uα) = h, for all α. Moreover, the Uα are
non-Bernoulli and have the cpe property, by Theorem 5.2. Thus we must show that α’s
which are not asymptotically equal give non-isomorphic Uα’s.

THEOREM 7.2. Let G be a countable discrete amenable group and 0 a subgroup of G
generated by an element γ of infinite order. Let U1 = Uα1 and U2 = Uα2 be cpe actions of
G co-induced from actions Tα1 and Tα2 respectively. If α1 and α2 are not asymptotically
equal, then Uα1 and Uα2 are not isomorphic.

Proof. It suffices to show that the transformations U1(γ ) and U2(γ ) are not isomorphic.
Recall that by equation (3.1), Ui (γ ) has the form

(Ui (γ )y)θ = T n(θ,γ )
αi

yθγ , (7.1)

where y = (yθ ) ∈ Y and s(θ)γ s(θγ )−1
= γ n(θ,γ ), for some n(θ, γ ) ∈ Z.

This equation is related to Definition 6.5 of permuted powers. To see the relationship, set
K = 0\G, and note that π : θ 7→ θγ is a bijection ofK. We further let jk = n(θ, γ ), where
θ corresponds to k. With this notation, equation (7.1) coincides with equation (6.1), which
defines the permuted powers Ŝ(Tαi ). Furthermore, a cycle of π on K is a 0 orbit in 0\G.
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We need to check the condition on sums over finite cycles L ⊆K in Definition 6.5, namely∑
k∈L jk 6= 0. Suppose that g ∈ G has the property that the cosets 0g, 0gγ, . . . , 0gγ t−1

are distinct, and 0gγ t
= 0g, so we have a cycle of order t ∈ N. It follows that there exists

p ∈ Z such that gγ t
= γ pg. Now p must be non-zero since γ has infinite order. Suppose

that θ = 0g with s(θ) = g. Then by definition, we have

γ n(θ,γ t )
= gγ t s(0gγ t )−1

= gγ t g−1

and thus n(θ, γ t ) = p. Since n is a cocycle, it follows that

t−1∑
i=0

n(θγ i , γ ) = n(θ, γ t ) = p 6= 0.

As Tα1 is uniformly somewhat disjoint from Tα2 (see Definition 6.3) it follows from
Proposition 6.6 that Tα1 cannot arise as a factor of U2(γ ). This immediately implies that
the transformations U1(γ ) and U2(γ ) cannot be isomorphic, and hence that U1 and U2 are
non-isomorphic cpe actions of G. 2

We give some examples of the use of the above theorem.

Examples 7.3.
(1) Suppose that γ belongs to the centre of G; this holds for all γ if G is abelian. In this

situation, (7.1) has the form

(Ui (γ )y)θ = Tαi yθ .

(2) Let G be the semidirect product of a direct sum of countably many copies Z2 with
Z, the action on the direct sum being permutation of the summands. In this example,
the 0 action on 0\G has a single one-point orbit (namely the coset [e]), and all the
other orbits are infinite.

(3) Consider the matrix group

G =

{(
q r
0 1

)
: q ∈ Q∗

+, r ∈ Q
}

,

and let γ =

(
q 0
0 1

)
for q ∈ Q+. Then the 0-orbits on 0\G are either single points

or are infinite.

(4) Let G be as above, but take γ =

(
1 1
0 1

)
. The 0-orbits on 0\G are all finite. This

is clear if g =

(
1 q
0 1

)
, q ∈ Q, then for 0gγ i

= 0g for all i ∈ Z. On the other hand,

let g =

(
1/t 0
0 1

)
, t ∈ N, then

gγ i g−1
= γ i/t

and in particular gγ t
= γ g. It follows that {0gγ i

} , 0 ≤ i ≤ t − 1, is a cycle,
and n(g, γ ) = n(gγ, γ ) = · · · = n(gγ t−2, γ ) = 0. But n([gγ t−1

], γ ) = 1, where
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we write 0gγ i
= [gγ i

], and hence n([g], γ t ) =
∑t−1

i=0 n([gγ i
], γ ) = 1. In general,

if ga =

(
a 0
0 1

)
, where a = s/t , s, t ∈ N, (s, t) = 1, then {0gaγ i

} 0 ≤ i ≤ t − 1 is

a cycle, and n([ga], γ t ) = s.
(5) Let γp be an automorphism of Zp, for each prime number p. It is known that γ

p−1
p =

id. Let H be the direct sum over all primes p of Zp and γ be an automorphism of
H such that the restriction of γ onto the summand Zp is just γp. Define G as the
semidirect product of H by 0, where 0 = {γ n, n ∈ Z}. It is not hard to check that all
the 0-orbits on 0\G are finite.

(6) Let G be the Grigorchuk finitely-generated non-elementary countable amenable
group [14]. Let G f be the subgroup of G containing all the elements of finite
order. Then G f is normal in G and G/G f ' Z. Let γ be an element of infinite
order in G, and consider the action of ad(γ ) on G f . This action has a finite
number of infinite orbits, together with the one-point orbit corresponding to the
identity.

We now pass to the main result of this section. First, we need a definition.

Definition 7.4. Two actions U1 and U2 of a discrete countable group G on Lebesgue
spaces (X1, µ1) and (X2, µ2), respectively, are called automorphically isomorphic if there
is an isomorphism V : (X1, µ1) → (X2, µ2) and an (outer) automorphism β of G such
that

U2(β(g))V x = V U1(g)x, x ∈ X1, g ∈ G. (7.2)

THEOREM 7.5. Let G be a countable discrete abelian group containing an element of
infinite order γ , which generates 0. Let U1 and U2 be as in the statement of Theorem 7.2.
Then the cpe action U1 and U2 are automorphically non-isomorphic if α1 and α2 are not
asymptotically equal.

Proof. Suppose that U1 and U2 are automorphically isomorphic. It follows from
equation (7.2) that U2(β(γ )) is not Bernoulli. By Definition 3.1, β(γ ) must have the form

β(γ ) = hgh−1

where h ∈ G and gm1 = γ m2 for some m1 ∈ N and m2 ∈ Z \ 0. It follows, again from
equation (7.2), that

V1U2(γ
m2)V −1

1 = U1(γ
m1),

where V1 = V −1U2(h). But this is impossible, because Tα1 is u.s.d. from Tα2 . Hence, U1

and U2 are not automorphically isomorphic. 2
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