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We study the multiplicity of positive solutions for the following semilinear elliptic
equation:

—Au+u= fr(z)ul™ ! + g (x)uP™1 in A,
u >0 in A
u € Hy(h),

where 1 < ¢ <2<p<2* (2*=2N/(N —-2)if N > 3, 2* =00 if N = 2), the
parameters \, ¢t > 0, A = © x R is an infinite strip in RY and © is a bounded domain
in RV—1. We assume that f)(z) = Af+(2) + f—(x) and g.(z) = a(zx) + ub(x), where
the functions f4, a and b satisfy suitable conditions.

1. Introduction

We consider the multiplicity results of positive solutions of the following semilinear
elliptic problem:

~Au+u= fr(z)ul™' + g, (x)uP"! in A,

u>=>0 in A (Efyg,)
u € Hy(A),
where
2N if N >3,
l1<g<2<p<?2 and 2*={ N-2
o0 if N =2,

the parameters A, > 0, A = © x R is an infinite strip in R and © is a bounded
domain in RVt Let z = (2/,xy) € RV~ x R. We assume that fi(z) = Afy(z) +
f-(z),gu(x) = a(x) + pb(z), where the functions fi, a and b satisfy the following
conditions:

(D1) fi(z) = £ max{+f,0}, fy #0and f € L7 (A), where ¢* = 2/(2 — q);
(D2) a(z) € C(A) and there exist § > 6; and 0 < Cp < 1 such that
1>a(z) 21— Coexp(—2V1+dlzy|) for all z = (2, zn) € A,
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where 0y is the first eigenvalue of the Dirichlet problem —A¢ = 6¢ in O,
¢ =0 on 06;

(D3) b e C(A) with b(z) > 0 for all z € A and b(x) — 0 as |zx| — oo;
(D4) there exists dy > 0 such that b(z) > dg exp(—r|zn]|) for some 0 < r < g.

Under the assumption that f(z) # 0, equation (Ey, 4, ) can be regarded as a
perturbation problem of the following semilinear elliptic equation:

~Au+u=g,(r)uP"! in A,
u > O in A; (E07g#~)
u € Hy(A).

When p > 0 and a(z) = 1, it is known that equation (Ep4,) has a ground-state
positive solution w,, [26]. When p < 0, the function b(z) satisfies the condition
(D3) and b(x) > 0 on A with a strict inequality on a set of positive measure. Then,
for equation (Ep,g, ), we can see that the mountain-pass value is equal to the first
level of breakdown of the Palais—Smale condition [15, p. 38] and we cannot get a
positive solution through the mountain-pass theorem (i.e. equation (Ep,g, ) does not
admit any ground-state solution for all p < 0). See also the existence of ground-
state solutions of equation (Ep,g,) under A replaced by RY and various conditions
(cf. [6-8,13,25,27,28], etc.).

For the above situation, several authors have made some progress on the mul-
tiplicity of positive solutions for the following non-homogeneous semilinear elliptic

equation:
—Au+u=glx)u?~' +h(z) inRY,
u>0 in RY, (En)
u e H'Y(RY),

where h(z) € H-1(RY)\ {0} is non-negative and § € C(R"™). When the homo-
geneous equation (EO) has a ground-state solution, Cao and Zhou [14], Hirano
(23], Jeanjean [24] and Zhu [38] proved that equation (Ej) has at least two pos-
itive solutions under the assumption that ||| z-: is sufficiently small. When the
homogeneous equation (Ey) does not admit any ground-state solution, Adachi and
Tanaka [1,2] proved that equation (Eh) has at least four positive solutions under the
assumptions §(z) < 1 = limy| 00 §(2), §(x) = 1 — C(—(2 + §)|z]) for all z € RY,
for some 6 > 0, C' > 0 and ||h|| -1 is sufficiently small.

Similar problems have been the focus of a great deal of research in recent years.
Chabrowski and Bezzera do O [16] and Goncalves and Miyagaki [22] have investi-
gated the following equation:

—Au+ V(z)u = Mu(x)u?t +g(z)uP~! in RY,
u>0 in RY, (Ey)
uec H'(RY),
where 1 < ¢ < 2 < p < 2* and g € C(RY). They found some existence and

multiplicity results, which can be summarized as follows. In [22], the following
conditions were assumed:
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(ag) V(x) > ag >0, z € RY;
(as0) V(
(fo) h

Then it was proved that there exists A > 0 such that equation (E)) has at least
two positive solutions for all A € (0, \).
In [16], the following conditions were assumed:

x) — 00 as |z| = oo;

>0and h € L2/ =0(RN) 0 L®°(RN).

(a1) V(z) is positive, locally Holder continuous and bounded in RY;
(fe) his a positive constant.

Then it was proved that there exists A > 0 such that equation (E)) has at least
one positive solution for all A € (0, \).
Furthermore, Wu [35] has investigated the following equation:

—Au+u = h(z)u? 4 §(z)uP~t  in A,
u>0 in A, (Ehng)
u € Hy(A),
where 1 < ¢ < 2 < p < 2N/(N —2), h(z) € L% (A)\ {0} is non-negative,
g(x) <1 =limy 00 §(x) on A with a strict inequality on a set of positive mea-
sure and there exist § > 61 and 0 < Cy < 1 such that
g(x) — 1> —Coexp(—2V1+d|zn]) forall z = (2/,zn) € A,

and 6 is the first eigenvalue of the Dirichlet problem —A¢ = 0¢ in O, ¢ = 0 on
00. It was proved that equation (th) has at least three positive solutions under
the assumption that ||h||;q+ is sufficiently small.

From the above results, we know that the existence of a ground-state solution
of the homogeneous equation affects the number of positive solutions of the per-
turbation problem. Actually, if the homogeneous equation has a ground-state solu-
tion, then the perturbation problem is presently only able to prove the existence
of at least two positive solutions. The main purpose of this paper is to consider
the possible existence of more than two positive solutions of (Ey, 4,), even if the
homogeneous equation (Ep g, ) has a ground-state positive solution. Let

_9 p—2 S Y
e (g S
°=2-9) Il f+ 1l Lo p—q

where S, is a best Sobolev constant for the embedding of H{(A) in LP(A). Then
our main result is the following.

THEOREM 1.1. If, in addition to the conditions (D1)-(D4), we have
(D5) f- #0,
then

(i) for each X > 0 and p > 0 with N?~2(1 4 p[|bl|oc)*~? < Ao, equation (Ey, 4, )
has at least two positive solutions,
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(ii) there exist positive numbers X, o with X0~ (1 + po]|b]loc)?79 < 3qAo such
that, for each A € (0, o) and p € (0, o), equation (Ey, .) has at least three
positive solutions.

Our analysis also makes use of the following result.
THEOREM 1.2. If in addition to the conditions (D1)-(D4), we have
(D6) 1<g<2<p<2t,
(D7) f- =0 anda(z) <1 on A with a strict inequality on a set of positive measure,
then

(i) for each X > 0 and p > 0 with N?~2(1 4 p[|b]|oc)*~? < Ao, equation (Ey, 4. )
has at least two positive solutions,

(i) there exist positive numbers Xo, fio with My~(1 + fio|[bllsc)?~7 < 3qAg such
that, for each X € (0, o) and p € (0, fig), equation (Ey, 4. ) has at least three
positive solutions.

Proof. The proofs of the multiplicity results are similar to those of theorem 1.1 (see
§6), so we leave the details to the reader. O

Among other interesting results, Ambrosetti et al. [4] investigated the following

equation:
—Au ="t +uP7t in 2,
u>0 in £2, (Ey)
u € Hy(£2),

where 1 < ¢ <2 <p<2* (2*=2N/(N—-2)if N >3;2* = if N=1,2),
A > 0 and 2 is a bounded domain in RY. They found that there exists Ao > 0
such that equation (E)) admits at least two positive solutions for A € (0, ), a
positive solution for A = Ay and no positive solution exists for A > A\g. Actually,
Adimurthy et al. [3], Damascelli et al. [18], Ouyang and Shi [29] and Tang [31]
proved that there exists A\g > 0 such that there are exactly two positive solutions of
equation (E)) in the unit ball BY(0;1) for A € (0, \g), exactly one positive solution
for A = A\g and no positive solution exists for A > A\g. Generalizations of the result
of equation (E)) were given in [5,10,11,19,37].

In the following sections, we proceed to prove theorem 1.1. We use variational
methods to find positive solutions of equation (Ey, g,). Associated with equa-
tion (EY, 4, ), we consider the energy functional Jy, 4, in H}(A) for given A, p > 0,
f(x), a(z) and b(z):

1 1
T ) = Slully = ¢ [ @l o~ [ gu(@ul? .
q Ja P Ja

1/2
llullz: = (/ |Vaul? + u? dx)
A

where
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is the standard norm in H}(A). Tt is well known that the solutions of equation
(Ey,.g,) are the critical points of the energy functional Jy, 4. in Hj(A) [30].

This paper is organized as follows. In § 2, we give some notation and preliminaries.
In §3, we establish the existence of a local minimum for Jy, 4,. In §4, we give an
estimate of energy. In § 5, we discussion some concentration behaviour in the Nehari
manifold. In §6, we prove theorem 1.1.

2. Notation and preliminaries

Throughout this section, we denote by S, the best Sobolev constant for the embed-
ding of H(A) in LP(A). In particular,

lulle < S’p_l/Q||u||H1 for all u € H&(A) \ {0}. (2.1)

First, we define the Palais-Smale (PS) sequences, and (PS)-values and (PS)-
conditions in Hj(A) for Jy, 4, as follows.

DEFINITION 2.1.

(i) For 3 € R, a sequence {u,} is a (PS)g-sequence in HG(A) for Jy, 4 if
Jfrg.(Un) =B+ 0(1) and J§ . (un) = o(1) strongly in H71(A) as n — oc.

(ii) B € Ris a (PS)-value in Hj(A) for Jy, g, if there exists a (PS)g-sequence in
HE(A) for Jy, g,

(iii) Jf, g, satisfies the (PS)g-condition in Hj(A) if every (PS)g-sequence in Hj (A)
for Jy, 4, contains a convergent subsequence.

As the energy functional Jy, 4, is not bounded below on Hg(A), it is useful to
consider the functional on the Nehari manifold

Ny, g, = {u € Hy(A)\ {0} | (5, 4, (), u) = 0}
Thus, u € Ny, 4, if and only if

[l —/Af,\(x)lulqu—/Agu(x)|u|pdx:0.

Note that Ny, 4, contains every non-zero solution of equation (Ey, g, ). Further-
more, we have the following results.

LEMMA 2.2. The energy functional Jy, 4, is coercive and bounded below on Ny, 4. .

Proof. If u € Ny, 4., then, by the Hélder and Sobolev inequalities,

I = (5= 2l = (3= 2) [ Oat) + 1 @lulras

p
11 11
> (= =2 )||ul? —(—)/)\f z)|u|? dz
(53 )1l = (5 - 5) [ Aret@ta
L1 P—q -
> J— 2 -\ a* /2 q.. 2.2
(3 Mol = A (DNl 52l (22)
Thus, Jy, 4, is coercive and bounded below on Ny, 4. O
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The Nehari manifold Ny, 4 is closely linked to the behaviour of the function of
the form hy, : t — Jy, 4, (tu) for t > 0. Such maps are known as fibering maps and
were introduced by Dradek and Pohozaev [20] (they are also discussed in [10-12]).
If u € HE(A), we have

) = Sl =& [ platrar =2 [ gl a,
(1) = tful| % — 10! / Sa(@)|uf dz — 71 / gu(@)ul? de,
A A
BI(E) = JlulZn — (g — 1)t~ / fa@)ul? de — (p— 1)~ / gy (@)l da.
A A

It is easy to see that
0 (8) = || tul 21 — / f(@)fult dz — / gu(@)|tul? dz
A A

and so, for u € Hg(A)\ {0} and ¢ > 0, hl(¢t) = 0 if and only if tu € Ny, g,
i.e. positive critical points of h, correspond to points on the Nehari manifold. In
particular, b, (1) = O if and only if u € Ny, , . Thus, it is natural to split Ny, , into
three parts corresponding to local minima, local maxima and points of inflection.
Accordingly, we define

Nf; g = {0 € Ny g, | Hg(1) > 0},

f)\agu = {u € megu | h;:( )= 0};
Nf_x,g“ = {u € kavgu | h’/l:(l) < 0}
We now derive some basic properties of N;;,gu, N})M ” and N, Frgn

LEMMA 2.3. Suppose that ug is a local minimizer for Jg, 4, on Ny, 4. and that
uo & N§, . Then Jy o (uo) =0 in H™'(A).

Proof. Our proof is almost the same as that in [12, theorem 2.3] (or see [9]). O

For each u € Ny, 4, we have

B = ul2s — (g —1) / falul? dz — (p— 1) / g (@)l dz

— =Pl — (@ =) [ A@d7ds (2.30)
= =l ~ 0= [ @ de (2.30)
Then we have the following result.
LEMMA 2.4.
(i) For any u € th o NJQA g, we have
/AfA(x)|u|qu > 0.
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(i) For any u € N, we have

fkﬂ#’
/ gu(z)|ulP dz > 0.
A
Proof. The results now follow immediately from (2.3a) and (2.3b). O

p—2 p—q
A= (22 P=2 ) (SP ) .
0=2-9) tha p

Then we have the following results.

Let

LEMMA 2.5. For each X\ > 0 and p > 0 with N72(1 + p||b|ls0)?™7 < Ao, we have

0 _
Nf)\:gu - @

Proof. Suppose the contrary. Then there exist A > 0 and u > 0 with AP72(1 +
pllbljoc)? 7 < Ag such that NP 7 0. Then, for u € N, . by (2.3a) and the
Holder and Sobolev inequalities we have

iy = 2= [ fr@lultde < Ay 22 el

and so

p—gq 2/(2-q)

R
p—2

Similarly, using (2.3b) and the Sobolev inequality we have

2—q

— |Jullin = /A[a(x) + pb()][ul? dz < (1+ pl[b]l o) S, P2 ey
which implies

2—gq
(1 + plblloo) (P — q)

2/(p—2)
} for all 4 > 0.

Jullys > 5307

Hence, we must have

_9 p—2 S pP—q
>\”21+uboo2q>2q2q<p > ( p> o
( [[b]] o) (2—4q) AP p— 0

which is a contradiction. This completes the proof. O

In order to get a better understanding of the Nehari manifold and fibering maps,
we consider the function m, : R™ — R defined by

M (t) = 279 |ul| 3 — tp_q/ gu(x)|ulP dz  for t > 0. (2.4)
A
Clearly, tu € Ny, 4, if and only if

mu(t):AfA(x)|u|qdz.
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Moreover,

my () = 2 =t " ullfn - (0 - gt? 77! /AQM(JJ)IUI” dz (2.5)

and so it is easy to see that if tu € Ny, 4 , then ¢t~ m/ (t) = hJ/(t). Hence, tu €
fogy (or Ny, ) if and only if m;, ()>0(0rm ()<0)
Suppose that u € H}(A)\ {0}. Then, by (2.5), m, has a unique critical point at

t = tmax,u(u), where

. (u) _ (2 — q)”u”2 1/(p—2) ~o (2 6)
max, [ —q fA gu |u|p dz .

and clearly m,, is strictly increasing on (0,%max,.(¢)) and strictly decreasing on
(tmax,u (1), 00) with limg e My, (£) = —o0. Moreover, if AP~2(1 + pul|b||o)?~% < Ao,
then

My (tmae,pu (1))

_[(2-4 (2—9)/(p—2) (24 (r—a)/(p—2) ||u||2(P—¢1)/(P—2)
p—4q pP—q ([, 9u(@)|ulp dz)2-0)/(p=2)
~ (p 2) (2 q)(2q)/(p2) (M>(2q)/(p2)
4/ \P—4 Ju 9u(@) P da

2-q 2(H>2<Sp) ‘g

>(1+u|b||oo) Nl ) \p—q /Af“i”)'“' v
9dx.

>/Af>\(x)|u| T

Thus, we have the following lemma.

LEMMA 2.6. For each u € H}(A)\ {0} we have the following.

(i) 1f
[ fauiras <o,
A
then there is a unique t~ =t~ (u) > tmax,u(u) such thatt~u € Nf_A 9 and h,
is increasing on (0,t7) and decreasing on (t~,00). Moreover,
Jf)xvgu (tiu) = St,li%) JfA rem (tu)' (27)

(i) If
[ pauiraz o,
A
then there is a unique 0 < t+ = t1(u) < tmax,pu(u) < t= such that ttu €

N+7 L Tuw € NG o my is decreasing on (0,tT), increasing on (tT,¢t7) and
decreasing on (t~,00). Moreover,

J ttu) = inf J t d J tTu) = J tu).
f)xagp( U) Ogtgtli}ax,u(u) fxyg,‘,( U) an f)ngu( 'LL) ts;ta f)\ag;b( U)
(2.8)
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(iii) ¢ (u) is a continuous function for u € H}(A);

1 U
iv) Ny = ueHlA‘ t( >1}
() Np, { o Tl Tl

Proof. The proofs are almost the same as in [36, lemma 2.5] and are left to the
reader. O

REMARK 2.7.

(i) If X = 0, then by lemma 2.6(i) N

Fgn =0, and so Ny, g, = Ny
u=0.

Forg for all

(i) If AP72(1 + p||b]|)?™9 < Apg, then, by (2.3 a), for each u € th,g# we have
2 p - q qd
Julfp < 2=4 [ paiuftas
p—q
< )\7/]‘*’ ) |u|? dx
Pt [ @

1/(p—2) g—q/2P — 4
<A0/(p )Spq/zmeJrHLq*

u||%{17

and so

. 1/(2—q)
lolln < (4" 5,220 e ) forallue NG, (29)

fgu”

3. Existence of the first solution

First, we remark that it follows from lemma 2.5 that
_ Nt -
fo,g“ - megu U meyu

for all A > 0 and p > 0 with AP~2(1 + p|b]|so)?79 < Ag. Furthermore, by lemma 2.6

it follows that N ;: » and N N g, Are non-empty and, by lemma 2.2, we may define

+ _ . - _ .
O g0 = 1n+f Jirg.(w) and o = inf  Jp g (u).
ueN; ueN
NI fx9u

Then we have the following result.
THEOREM 3.1. We have the following:

(1) a?mm <0 for all A >0 and p = 0 with \P72(1 + p||b|s)?79 < Ao;

(i) if AP72(1 4 pl|blls)?~ 7 < 2qAg, then oy g, > co for some co > 0.

In particular, for each X > 0 and p > 0 with \’=2(1 + p||bl|oc)?>~7 < £qAo, we have
O‘}i,g# = infUENfA,g# Jfr\9u (u).
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Proof. (i) Let u € N}t,gu’ Then, by (2.3a),

2 p - q qd
iy < 2=4 [ B@huas
and so

p—2 P—q
Tinanl) = P2l =Pt [ fu@lulda

(r—9)2-9q) q
<—T/Af,\(x)|u| dz < 0.

+
Thus, py g, < 0.
(ii) Let u € Ny, 4, Since

2 .
2l < / gu(@ul dz i / Sa(@)lul? dz < 0
p A A

and
2-4 2 P ; q
lullzr < [ gu(@)ulPdz if [ fa(z)lul?dz >0,
p—q A A
we have
2—q 2 p _
— [[ullzn < [ gu(@)|uPdz for all u € Ny g
pP—q A
Then, by (2.1),
2—q _
— Jlulff < /Agu(l‘)IUIp dz < (14 pllblloo) S, P2 |ul s,
which implies
1/(p—2)
l|lw|l >Sp/2(p2)< 24 > for all u € Ny, .
(L + plblloc)(p — ) »dn

By (2.2), we have
pP—2, o _ P—q
J > [|ull§ -\ ST —=
fmgu(u) ||u||H1< % HuHHl Ifll g

-2
> §pa/2(p=2) ( 2-4q )q/(p :
(1+ pl|blloc)(p — q)

o« (P=2 gp2-a)/20-2)
2p

(2—9)/(p—2)
2—gq ) —q2(P—4
X —A S WQ()).
(e Fele P

Thus, if AP~2(1 + p[|bl|ls)?~7 < 3qAo, then

g, > €O for some cg > 0.

This completes the proof. O
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Now, we consider the following elliptic problem:
—Autu=|ulP2uin 2, uec HHN), (Eo)

where (2 is a domain in RY. Associated with equation (Ep), we consider the energy

functional Jy in H{(£2),
1
= 1/ |Vul? +u? — f/ |u|? de.
2Ja pJo

Consider a minimizing problem

inf  Jo(u) = ap(£2),
uell\?o(ﬂ) O(U) Oto( )

where
No(£2) = {u € Hy(2)\ {0} | {J5(u),u) = 0}

is the Nehari manifold. It is known that if {2 = A, equation (Fy) has a positive
solution wg(x) such that Jy(wg) = ap(A). The following proposition then provides
a precise description for the (PS)-sequence of Jy, 4.

PROPOSITION 3.2. Each sequence {u,} C HZ(A) satisfying the following has a
convergent subsequence:

Jfy.g, (un) = B+ o(1) with 3 < O‘—fi;,gu +ag(A);
Tfasg, (un) = o(1) in H™1(A).
Proof. The proof is almost the same as [35, proposition 2.9]. O

THEOREM 3.3. For each A > 0 and p = 0 with N72(1+ plbllec)?™ % < Ao, the
functional Jy, 4, has a minimizer uA in N+ g, and it satisfies

. + oy F

(1) Jf/\’gu <u>\,,u) - Olf)\’g“;

(ii) u;# is a positive solution of equation (Ey, 4. ),
(iii) fluf [l — 0 as A = 0.

Proof. By the Ekeland variational principle [21] (or [36, proposition 1), there is
{u,} C N+ g, Such that it is a (PS),+ -sequence for J¢, g, Then, by propo-

sition 3.2, there is a subsequence {un} “ad # € N; + g, 18 a solution of equa-

tSlon (Efy,g,) such that u, — u/\u strongly in H} (A) and ENTD (uj\ru) = a}l)g“.
ince

u;\"u|) and |uj\"u|€N+

']fx,gu (u;\i_,p,) = fo,g“( Faogu’

by lemma 2.3 we may assume that uy , is a positive solution of equation (Ej, g,)-
Finally, by (2.3 a),

[ [ <)‘7||f+HLq s, ? 3.1

and so ||uj\'u||H1 —0as A—0. O
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4. The estimate of energy

First, we let wo(x) be a x y-symmetric positive solution of equation (Fp) in 2 = A
such that Jo(wg) = ap(A). Then, by the result in [17], for any 0 < &€ < 1464, there
exist A > 0 and B, > 0 such that

Acgpr(2))exp{—/1+ 01 +elzn|}

S wo(z',zN)
< Bepy(@)exp{—/1+01 —clay|}  (41)

for all (z/,2n) € A, where 6; is the first eigenvalue and ¢; is the corresponding
first positive eigenfunction of the Dirichlet problem —A¢ = 6¢ in @, ¢ = 0 on 06.
Let

wi(z) =wo(z',zny +1), [ER. (4.2)
Clearly,

/f)\(x)|wl|qu:0 as |I| — oo.
A

Then we have the following results.

PROPOSITION 4.1. For each A > 0 and p > 0 with \’P72(1 + p||b||l«)?79 < Ag we
have

- +
af/\vgu < af)xggu + OZO(A)
Proof. Let uA be a positive solution of equation (Ef, 4,) as in theorem 3.3. Then
Jf)\ Bm (ui_,u + twl)
1 1
= %Huj\“u + twy |3 — p / fA\u;\”“ + tw|9dx — 5/ gM|uj\r’u + tw;|P dx
A A

< gy 0. () + Jo(two)

1 twl
+ - /(1fa)tpwl dx — /btp de+/ fﬂ{/ 77Q1d77} dx
pJa p A 0

Qmi -
a r;m /A[(u;u + twy)p - (U;u)p - tpwf - p(u;\r,,u)p ltwl] dx

= Jiy.9. (U ) + Jo(two)

1
—l—f/(l—a)tpwfdx—ﬁ/ gtPwy dx+—/|f>\|wlqu
D Ja D Ja

Gmin —
-, /[(u;u + twy)? — (u;#)p — tPwy —p(ui#)p Y de,  (4.3)
A

where ap;, = inf{a(z) | x € A} > 0. By [12,34], we know that

Jo(two) < O[Q(A) for all [l € R.
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Thus, by (4.3) and AP~2(1 + u||b]|o)?~% < Ag there exists cg > 0 such that

Jf)\ygu (u;ty, + tU}l)
< Jy,, 9u (u}f“) + ap(A)

tP A
e ALl dx——/b P dx +CO /\f|w§dx
p
amln
- /A[(uA L twy)? — (u} )7 — Puf — p(ul, )P ] da.
(4.4)
Since
Jtvgn (uju + twi) = Jf, ., (u;\ru) = a};g“ <0 ast—0
and
thgﬂ(uj’ﬂ +twy) = —o0  ast — oo,
we can easily find 0 < t; < t9 such that
N (uj\ru + twy) < a}g’gu + ap(A) for all t € [0, 1] U [te, 00). (4.5)
Thus, we only need to show that there exists Iy > 0 such that, for || > I,
sup  Jy, g, (uy L tw) < ozfA o T ap(A). (4.6)

t1<t<ts
By (4.1), there exists By > 0 such that
wo(x',zn) < Bog1(2') exp{—|zn|} for all (z/,zn) € A.

We also remark that

(i) (u+v)P —uP —vP —puP~tv > 0 for all (u,v) € [0,00) x [0, 00),

(ii) for any r > 0 we can find a constant C(r) > 0 such that

(u+ )P —uP — P — puP~ v > C(r)v?
for all (u,v) € [r,00) x [0, c0).

Thus, if A_1 1 ={(2',zn) € A| =1 < zy < 1} is a finite strip, setting

Crp= C( min uir#(ac)) >0 and Cjy= C( min  wh(x )) >0,

TEA 11 TEA_11

we have
J 0, = (07 =l = plaf ) o
> /A 1yl[(u;# + tw, )P — (u;u)p — tPwy —p(ui#)p_ltwl] dx
> CA,,L/A wy (2, xy +1) dz
11

> O,y Acexp(—2y/ 14601 +€|l]) (4.7)
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and, by condition (D4),

/ bw) doz = / b(z',zn — Dwh(z) da
A A
> C’o/ b(z',zn — 1) da
A_11

> Codg exp(—r|l)). (4.8)

From conditions (D1) and (D2), we also have

[1futas < ¢ [ Blot() expl—afon +1) do
A A

< Cexp(~dlll) (49)
and
/(1 —a)w! dz < / Coexp(—2v1+6]l|) BE 1 (2) exp(—plan + 1)
A A
< C exp(—min{p, 2v/1 + d}|1]). (4.10)
Since (4.7) holds for any 0 < € < 1+ 61, choosing € < § — 61, we can find {; > 0
such that
P Gmin —
> A(1 —a)w) dz < ) /AKUI“ + twy)? — (u;#)p — tPwy —p(u;\r’#)p Y] da

(4.11)
for all |I] > ;. Moreover, since r < g and t; < t < ta, by (4.8) and (4.9), we can
find I5 > 0 such that

ot
q
Thus, by (4.4), (4.5), (4.11) and (4.12), we obtain

P
/ | flw] do < %/gwf dz for all |I| > . (4.12)
A A

it;}g I 00 (u;,gM +twy) < a;,gu + ap(A) for all |I| > 1y = max{ly,l2}.

To complete the proof of proposition 4.1, it remains to show that there exists a

positive number ¢, such that u}rw“ + t.w; € Nf;g“. Let

IIuiHl t_(uﬁh”) > 1} U {0}

1 u
= HY(A t 1%,
U2 {“E ol >‘||qu <u||H1>< }

Then N g, Separates H}(A) into two connected components U and Us, and

Hi(A)\N; . =U UU,.

f)ugu

Uy = {u € Hi(A)

For each u € N

Frugn We have
»Iu

1 < tmax,p(u) <t ().
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() = t( - )
lullgs ™ \lwlle )7

then N]"c'; . C U;. In particular, u}; 9. € U;. We claim that there exists tg > 0 such
that u'f'; " + tow; € Us. First, we find a constant ¢ > 0 such that

Since

+

o<t (MmN et s

T c¢ foreacht>0.
1ty g, + twill

Otherwise, there exists a sequence {t¢,} such that ¢, — co and

_ < u?}nﬂu + tnwl
I, g+t

>*>OO as n — o0.

Let

+
Uty g, + tnwi

Hu;w + tpwy|| g1

Up =

Since t~ (v, )v, € N P an and, by the Lebesgue dominated convergence theorem,

1
/Agu(x)vﬁ dr = M/Agu(x)(uj{# + tpw)? da
o T Wiy
+ D
1 / (uAM )
= gu T 2wy | da
17 + il o 2O\,
x)Pw? dz
L adortas
le||H1
we have
foygu, (ti ('Un)vn)
[t~ (va)]

/ gu(z)vh do
A

TRV N G 2ol di —
= Lt (u,)] : /AfA()nd .

— —00 as n — o0.

This contradicts the statement that Jy, 4, is bounded below on Ny, 4 . Let

p—2 1/2
th= [ 2——2 2 + 12 1.
o= (o1~ It} +
Then
o+ ol = o s + s +0(1)

> Jux I+ 1e® = ug 17 | + o)

> 4o(1) > {t‘(

+ 2

uy .+ towy
N)} +o(l) asl— oo.
||u)\7u+t0wl||H1
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Thus, there exists I3 > ly such that for, || > I3,

1 - < ujﬂ + towy > 1
: <
lux, +towlla \uy , + tow|

or “;u + tow; € As. Define a path ~v;(s) = uj\"u + stow; for s € [0,1]. Then

~(0) :u;CH € Ay, (1) :u;\r’#—&—towl € As.

i (i)
t
[l \Tall

is a continuous function for non-zero u and 7;([0,1]) is connected, there exists
s; € (0,1) such that u'{u + sitow; € Nf_x,gu' This completes the proof. O

Since

THEOREM 4.2. For each A\ > 0 and p > 0 with \P~2(1 + p|b]|oo)?79 < Ao, equa-

tion (Ef, g,) has a positive solution uy , € Ny .~ such that Jg, g, (uy ) =aFf .

Proof. Analogously to the proof of [37, proposition 9], one can show that for the
Ekeland variational principle [21] there exist minimizing sequences {u,} C Nf;
such that

Jty.g, (un) = ap gt o(1) and J}A,gu (un) = o(1) in H™(A).

Iu

Since A g, < a}; g, (A) + g(A), by proposition 3.2 there exists a subsequence

{un}t and uy , € Ny, g, 1s anon-zero solution of equation (Ef,.g,) such that

un — uy ,  strongly in H(A).

Since
Jf/\,gu (u;,p,) = Jf);gu("u’;”u,') and |U)T7y,| € Nf;,g#’

by lemma 2.3, it may be assumed that u) ., 1s & positive solution of (Ey, 4,). O

5. Concentration behaviour
It is known that the equation (Ep 4,) does not admit any solution ug such that

J0790 (Uo) = ueilg(f)‘ J07.l]0 (u)
.90

and

uelll\}g,go To.go (w) = ue}{flgf(A) Jo(u) = ao(A)

(see [15, p. 38]). Furthermore, we have the following lemmas.
LEMMA 5.1. We have

inf  Jp go(w) = inf  Jy g () = ap(A).

U’ENfo’g() UENo,gO

Furthermore, equation (Ey, 4,) does not admit any solution ug such that

Jfoygo(uo) = ue]i\l}lf mego(u)'

fo-90
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Proof. For w; as in (4.2). By lemma 2.6, there is a unique ¢~ (w;) > 1 such that
t~ (w)w; € Ny, g, for all I > 0, that is

£ (wn)wn 71 :/Af—(x)lt’(wz)wlqdwr/Aalt’(wz)wzlpd%

Since

P _ao(A) foralll € R,

eorlr = / P do =
a A p—2

/ f—(z)|w|?dz = o(1) and / alw|P dz = / |wi|P dz + o(1) as || = oo,
A A A

we have ¢t~ (w;) — 1 as [I| = oo. Thus,

Hm Jp g0 @ (w)wy) = Um Jo g, (t (wi)wi) = ap(A) as |l = oo.
|l| =00 [l| =00

Then
ST Ta () <0 o () = 00(A).

Let u € Ny, g,- Then, by lemma 2.6(i), Jy, 4,(u) = sup;sq Js,.g, (tu). Moreover,
there is a unique s, > 0 such that s,u € Ng g,. Thus,

I 0,90 (u) > I f0.90 (suu) > Jo,90 (suu) = ap(A)
and so infueny, . Jfo,90(4) = ao(A). Therefore,

inf  Jp go(uw) = inf  Jy g (u) = ap(A).

uENfO’QO ’UIENQ,QO

Next, we will show that equation (Ey, 4,) does not admit any solution ug such that

Jfo,go(uo) = uell\rflff Jfo,go(u)'
0,90

Suppose the contrary. Then we can assume that there exists ug € Ny, g, such that

Jf()vg()(uo) = uezi\%f ‘]fmgo(u)'
0:90

Then, by lemma 2.6(i), J, g,(t0) = Sup;>q J 4,4, (tui0). Moreover, there is a unique
Syo > 0 such that s,,ug € Ny g,. Thus,

aO(A) = ue]i\?ff Jfo,yo (u) = Jfo,go (UO) = Jfo,go (suouo)
0:90

> o (sug10) + 58, [ 1~ (@)l fuol" do > ao(a) + 1, [ 1) Juoft
A A
This implies
J 1 (@)l dz =0
A

and so ug € Nog, and ug = 0in {z € A | f_(z) # 0} form condition (D5).
Therefore,
Ozo(A) = inf JO,go (u) = J07go (UO)

ueNO«QO
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By the Lagrange multiplier and the maximum principle, we can assume that wug is
a positive solution of (Ey g,). This contradicts ug = 0 in {x € A | f_(z) # 0} and
completes the proof. O

LEMMA 5.2. Suppose that {u,} is a minimizing sequence for Jy, 4 in Ny, 4,. Then

[ 1@l dz = o).
A
Furthermore, {uy} is a (PS)aya)-sequence for Jo g, in Hj(A).

Proof. For each n, there is a unique ¢, > 0 such that t,u,, € Ng 4., that is

& lun e =2 [ ala)unl? do
A

Then, by lemma 2.6(i),

Jfo,go(un) 2 Jfo,go(tn“n) Jo go (tnun) /f )un|? dz

q
A +t£/f,(x)|un|de.
q Ja

Since Jy, g, (tn) = ao(A) + o(1) from lemma 5.1, we have

/f YJunl? dz = o(1).

We will show that there exists cg > 0 such that ¢ > ¢y for all n. Suppose the
contrary. Then we may assume ¢,, — 0 as n — o0o. Since Jy, g, (un) = o (A) + o(1),
by lemma 2.2 we have that ||u,]|| is uniformly bounded and so ||t un| g1 — 0 or
Jo,go (tnwn) — 0. This contradicts the statement that Jo 4, (tnun) = ao(A) > 0.
Thus,

[ 5@l = o),
A
which implies that
funlBr = [ o)z + o(1)
A

and
Jo,go (un) = ag(A) + o(1).

Moreover, by [33, lemma 7], we have that {u,} is a (PS)4,a)-sequence for Jo 4, in
H(A).

The following lemma is a key lemma for proving our main results. Define the
upper infinite strip A" and the lower infinite strip A, as follows:

A;r = {(Ilny) c A | TN > ’I"} and A; = {(I/,IN) €A | rn < T‘}.
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For a positive number §, we consider the filtration of the manifold Ny, 4, as follows:

mego(évA) = {u € Nfo;go | Jfo,go(u) < aO(A) + 6};

[ o< g P ao<A>};

0

N}jgago(é’A) = {u € Nfo:go(& A)

- pgq
Nin6.) = {ue N6 | [ e < 5 )}

Then we have the following results.

LEMMA 5.3. There exists 69 > 0 such that if u € Ny, 4,(0,A), then either

» pq » Pq A
/A;r [ul dx<2(p_q)ao(A) or /AO |l dx<2(p_q)ozo( ).

Proof. We divide the proof into two steps.

STEP 1 (existence). Suppose that there exists a sequence {u,} C Ny, 4, such that
Ifo.90 (Un) = a0 (A) + o(1),

pq pq
Uy, |P do > ag(A) and Uy, |P do > ag(A). 5.1
[tk 5ot [ ez oM sans). 6)

By lemmas 5.1 and 5.2, equation (Ey, 4,) does not admit any solution ug such that

mego (U’O) = uell\?ff mego (u)
0:90

and {un} is a (PS)a,(a)-sequence in Hg(A) for Jog,. Analogously to the proof
in [35, lemma 2.8], there exists a subsequence {u, } such that {{,u,} is a (PS)a,(a)-
sequence in H}(A) for J,

[tn = &nunllm = o(1) (5.2)

and

/Aa(x)\gnumdx:/A|gnun|de+o(1):/A|un|i>dx+o(1), (5.3)

where &, (z) = £(2|x|/n) and &€ € C*([0,00)) such that 0 < £ < 1 and

_J0 forte(0,1],
&) = {1 for ¢t € [2, 00).

Let v, = &, uy. Then, by (5.2), (5.3) and [33, lemma 7], we obtain
Jo(vn) = ap(A) 4 o(1) and Jj(v,) = o(1) in H™1(A) asn — oo (5.4)

and v, = 0in A_q for n > 2, where A_;; = {(z/,2n) € A | |zy| < 1}. Moreover,

v, = v + v, and .
n f Ay,

vk (2) = vp(z) for z € 0 (5.5)
0 for z ¢ A7 .
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Then, by (5.4) and (5.5), vf € H(AL) and {vF} are bounded sequences. This
implies that

o). o) = I s = [ 10 do = o(1),

0

Again using (5.4), we obtain
Jh(wE) =o0(1) strongly in H~1(AT)
and
Jo(vn) = Jo(vy) + Jo(vy,) = ao(A) + o(1).
Assume that Jo(v;F) = ¢ + o(1). Then
¢t e = ag(A). (5.6)

Since ¢t are (PS)-values in H}(AT) for Jy, by [32, lemma 2.38], they are non-
negative. Moreover, by [26, lemma 2.6], ag(A) = ag(AT) > 0. Thus, by (5.6)
and the definition of the Nehari minimization problem, we may assume that ¢t =
ao(A) = ap(A) and ¢~ = 0. Next, for n > 2,

/|un\”dzf/|fun|pdw+o 1) = / |v+\pdx+/ |v, [P da 4+ o(1)
-

0
:/+ |vg\de+/ lun|? dz + o(1).
A )

0 A0

/ \un\pdx:/|un|pdx—/ |U:|p dz = o(1),
Ay A A

0 0

which contradicts (5.1).

Thus,

STEP 2 (uniqueness). By lemma 5.2 and 1 < ¢ < 2 < p, we can find g > 0 such

that
inf{/a(m)|u|p dz
A

CrLAamM. If uw € Ny, 4,(d0,A), then either

P o(A).

CAS Nfo,go((SOvA)} >

bq pq
ulPde < ————ap(A) or / ulP dx < ag(A).
/M| Pe < g reol®) o [ Julae < g aota)

Suppose the contrary. Then there exists ug € Ny, g4,(d0, A) such that

pq Pq
uglP de < ————ap(A) and / up|P de < ————ag(A).
| ol de < 5ot e < el o(a)

Then

L aO(A)é/a(x)|u0|pdx</ \u0|pdx+/ luo|P dz < ap
A A o p—

p—9q Ag

This is a contradiction. We thus complete the proof of lemma 5.3. O
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By the consequence of lemma 5.3, it is easy to prove the following result.
LEMMA 5.4. There exists g > 0 such that
(i) NE ., (50,8) #0,
(i) Nfo,go (60, A) NN (d0,A) =0,
(1) Nyo,g0(J0, &) = Ny 5 (0, 8) U Ny g (30, A).

By (2.3b), (2.6) and lemma 2.6(i), for each u € N, o
such that ¢y (u)u € Ny, 4, and

to (u) > tmax,0(uw) = (

there is a unique ¢y (u) > 0

2ol VT
(P — @) Jp [ul? dz

Then we have the following results.

LEMMA 5.5. There exist Ay, ji > 0 with AX07>(1 + fi]|b]|0o)?~7 < 1qAq such that for
every A € (0, A1) and p € (0, i) we have

Nt +
(i) Ofsgu < Qfsig07
(ii) /Af,\(z)|u|qd1: >0 for allue Ny - with Jfyg,(u) < a}i)g“ + ap(A).

Proof. () By lemma 2.6 and theorem 3.3, for each \P~2 < %q/lo there exists

uio € NfA g0 & Dositive solution of (Ey, 4,) such that Jy, g, (uio) = O‘}&,go’
i) = 2 — )l ol )W—” » -
’ ’ (r—a)/, |u;0|p dz
and

tmax,0(uf o) = 00 as A — 0. (5.8)

Moreover, by (2.9) there exists a positive constant ¢y independent of A such that

[ M@t de < o] (5.9)
Then, by (5.7)—(5.9), there exists Ay, i > 0 with

M1+ Albllee)? ™7 < 3940
such that, for every A € (0, A1) and p € (0, ),

(2= )l )1/@2) 1
> 1.
(p— ) [, gu(@)|uf o|P dz

tmax,()(u;\r’o) 2 tmax,/_t(uio) - (

Thus, by lemma 2.6,

+
mego(u) = foﬁgu( ) = 0<t<t1£fx ) JfA Iu (tu) O‘fk,gu

and so
+ < +
Oéfmgu S %90

for all A € (0,A1) and u € (0, ).
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(ii) First, we will show that there exists dy > 0 independent of p such that
Hzi||H1 < do for all A € (0, M), € (0,) and for all u € Ny g, With Ity g, (1) <
gt ap(A). By (2.2),
ag(A) > af, g, T a0(A) = Jy, g, (u)
_p—-2 P—q -
el I — p” AP\f*(ﬂﬁ) + 7 (@)][ul? de

L p-2 2 P—q _
Z o ——|lu ||H1—W)\||f+||m*5 92|y %,

> P2
/ 2p H1

i )
q Xoll £ 1 par S™V2 |,

Then there exists dy > 0 independent of X, p such that |Ju|lg: < dp for all A €
(0, A1), € (0, ) and for all u € N, N g, (1) < a}l,g“ + ag(A). Moreover,
there is a unique ¢~ (u) > 0 such that t~ (uw)u € Ny g4,, where

() — M 1/(p—2) (1+ p]lblloc) (@ — q) 1/(p—2)
ro-(piew) <Pt

Then, by lemma 2.6 and theorem 3.1,

Jf)\7g;t (u) = igg JfMQM (tu) = megu (t7 (u)u)

> ot~ U g \uﬁdx—% [ b da
_ [t~ (u)]? luld de — P AW )ul? da.
> ag(a) - RNm R I

This implies that

P2 [ (@) uf de
RN

q
- p
> _ajf — M/ b(x)|ul? dz
X9u p RN
/(p—2)
p [+ plbllo) (P —a)]” -
> fa};,gp ~ [ 2—q) 1] 00 S~2/Pdb.

Since a}’;’gu < a}i’go for all A € (0,\1) and p € (0, 1), we have

1 b o _ p/(p—2)

[t (w))? 14z > —af &
T/RN (@) |ul?de > .—Irmgo p{ (2-9q)

Thus, we can conclude that for every A € (0,A1) and p € (0, i) we have

/ f(@)|u|?dx >0
RN

for all w € N . with Jfyg,(u) < oz};yg“ + ap(A). O
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Let A1, 2 > 0, as in lemma 5.5, and let

[+ alb/all)(p —q)
o= { 2—gq

. (Lt illb/alloc)(p = a) = 72N ]P0
<\ P+l \ e '
Sp (2-4q)

Then we have the following results.

LEMMA 5.6. There exists a positive number Ao < A1 such that, for every A € (0, A2)
and p € (0, 1), we have

(i) 1< [ty (w)]” < 0o,
. qp — .
il wlPde > ————ag(A) for allu e N with
(@) [z > 5t sao(a) f o
Tpaa, (W) < af, o (A) +ao(A).
Proof. (i) For u € Ny~ with Jy, 4, (u) < a;&,gu (A) + ag(A), we have

ul2: — /A fr(@)lul? da — /A o)l dz = 0

and
@— ) luln < (- 0) / gu(@)lul? da.

By lemma 2.6(i) there is a unique t; (u) > 0 such that ¢t (v)u € Ny, 4, and so
5 ()2 |2 = [t (w)]? / f—(@)lul? dz + [t5 (w)]? / alul? dz
< [ty (W) / gu(@)|ul? da.

This implies

Ju Fr(@)]u|? da
fA gM(:(:)|u|p dz

el
fo ()] g Ju 9u(@)ulp dz b

and so, by lemma 5.5(ii), ¢y (u) > 1. Moreover,

5 [ alu? do = 5 @P Ll = (5 ) [ f- @)t ds

A
<l P (Jullys = [ - @lutrae)

thus, we have
[ullZ + [, f-()|ul? dz

ot <

(5.10)
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By ue N , and (2.3b),

pP—q pb—q
ull7 < P /9u($)|u|p de < 5—(1 +H||b/a||oo)/a(9f)\u|pdm
2—qJa 2—q A

—p/2D —4q
< (L4 pllb/all)S, pmm”“”?p (5.11)
and so - ) o
| 1>( ) §p/20=2), (5.12)
" (1 + pllb/alloo)(p — q) b

Thus, by (5.10)~(5.12),

5 P < (4 plbfal) (5=2) (

—q
1) (1e L i )
AN (1
< alp/al) (5=1)
(2-9)/(p—2)
(1o sgvon (LEbel=) ) Py
<+ palbfalle) (5=1)

2— -2
(HSq /- 2><1+u0|b/a||oo><p q>>< i >”f”L*>

< (Lt ullb/all0) (

m%

or [ty (w)]P < 6.

(ii) By lemma 5.1 and t5 (w)u € Ny, 405

00(8) < Ty 15 (1))
(5 ¢ )t Pl + (G = 3 )i o [ P as
1
< (q - p) / |ul? dz.

s> e (32 )

By part (i), we can conclude that

bq
wlPdz > ————ap(A
o= g o

for all w € Ny~ with Jy, g, (u) < a}l’gu (A) 4+ ag(A). This completes the prooé

This implies
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Now, we consider the filtration of the submanifold N N follows:

Nau(A) ={u e Ng o [ 5 g, () < Otf”( )+ ao(A)};
N+

1) = {ue Muia) 1 /Ag P < g el

Vet = {we N | [ o < 5 on(a}

By the proof of proposition 4.1, for each [ € R with |I| > I; there exists a positive
number ¢, (l) such that uj\ryﬂ +t,w; € ka 9 and

Ifag W, + () < af, , (A) +ao(A).
This implies N /\i (A) # (). Then we have the following result.

LEMMA 5.7. There exist positive numbers Ay < A2 and pog < fi such that, for every
A€ (0,)) and p € (0, po), we have

(i) Nx.(8) #0,
(it) Ny, (A) NNy, (A) =0,
(i) Nxu(d) =Ny, (A) UNL,(4).

Proof. For u e Ny .~ with Jy, g, (1) < a}"hg“ (A) + ap(A), by lemma 2.6(i) there
exists ¢, (u) >0 such “that ty (u)u € Ny, g,- Moreover,

Jfkygu (u) = iglg‘]fhgu (tu) > fo,gu (tE (u)u)

_ Atg (u)]? to (u)]?
= Tpgantt () = g oy a - OB [ gy as,
q A p A
Thus, by lemma 5.6 and the Hélder and Sobolev inequalities
_ Atg (u)]9
Tt 65 @) < Ty, )+ 2 [ p o)t
— ()P
p RN

A q/p

< 0}, g (A) + a0(A) + 2| fill e S 2l

Bolblloo
n 1% 0” H Sp p/2||u||113{1.
p
Since Jy, g, (u) < ozf o (A) + ag(A) < apg(A). By (2 2), there exists a positive num-

ber ¢ such that ||u||H1 'Céforall A e (0,A2), p € [0, 1) and for all u € N, o (A)
with Jg, g, (u) < angH (A) + ag(A). Therefore

oq/p

_ A N 0o|0| o B
T 5 (0)u) < o, (A) + ao(a) + 20| |- 50/ 1 1 l oo g-p/20,
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Let §p > 0 as in lemma 5.3. Then there exist positive numbers A\g < A2 and g < [t
such that for A € (0, Ag) and p € [0, po),

I fo.90 (1 (w)u) < ag(A) + do. (5.13)

Since tg (u)u € Ny, g, by lemma 5.3 and (5.13) either

/ Ity (u)u‘p do < — 24 ap(A) or / |t0_(u)u’p de < — 24 ap(A).
Ag Ay p

Then, by lemma 5.6(i), either

Pq Pq
updx<7oz A or / ’U,pdl'<701 A
/Ag| | 200(p — q) o(A) Ag| | 200(p — q) o(A)

for all w € Ny with Jy, g, (u) < O‘fx g (A) + ao(A). To complete the proof of

lemma 5.7, it remams to show that
N;FN(A) N N):H(A) = 0.

Suppose the contrary. Then there exists ug € Ny ,(A) such that

bq pq
ulPde < —————ag(A) and / ulPdr < —————ag(A).
/Ag' P < St — g oW e < g g o)

By lemma 5.6(ii),

qp P / P / P qp
ug|? dx < ug|P dx + ug|P do < ag(A),
bo(p — q) al /| o A;r‘ o Ag| o bo(p — q) olA)

which is a contradiction. This completes the proof. O
Let Ny NE(A) . (A) denote the closure of N )\iH(A). Then we have the following result.
LEMMA 5.8. Ny, (A) = N5, (A).

Proof. The proofs of the ‘4’ and ‘—’ cases are similar. Therefore, we only need to
prove the ‘+’ case. Suppose that ug is a limit point of N;' (A). Then Jy, 4, (uo) <
cufA o (A) + ap(A) and

/ |uo|P dz < LaO(A).
+ 0 —

0

This implies ug € Ny ,(A). If

qp
up|? doe = ————ap(A),
/A;' o do = P —aq(a)

then by lemma 5.7 ug € Ny, (A). Thus, by lemma 5.6(ii),

qp qp
——ap(A) < updxg/ upd:v+/ ugP de < ————ap(A),
Tl ao®) < [ jul [ oo [ puopde < gt o)

0

which is a contradiction. Thus, ug € NIM(A) and so N, H(A) N;:M(A). O
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6. Proof of theorem 1.1

First, we establish the existence of local minima for Jy, 4, on Ni#(A). We need
the following result.

PROPOSITION 6.1. Let Ao, o > 0, as in lemma 5.7. Then, for each A € (0, \g) and
€ (0, o), there exist minimizing sequences {ut} C Niﬂ(A) such that

Tfs 90 (uril) = Jf\t,u +o(1) and J}A_’gu (u,il) =o(1) in H Y(A),
where Uiu =inf{Jy, g, (u) |u € NAi,u(A)},
Proof. Analogously to the proof of [37, proposition 9], one can show that by the

Ekeland variational principle [21] there exist minimizing sequences {u;} C Ni L(A)
such that

Ny (uf) = oiu +0o(1) and J}Mg“(uf) =o(1) in H (A).
We will omit a more detailed proof here. O

THEOREM 6.2. Let Ao, o > 0, as in lemma 5.7. Then for each, A € (0, \g) and
+

p € (0,u0), equation (Ef, 4.) has positive solutions uy € NfH(A) such that
L ,
Jfrg,(ug) = O\

Proof. By proposition 6.1, there exist sequences {u}} C N)\i# (A) such that

Jpygn () = oy, +o(1) and Jp . (ui) = o(1) in H™'(A).

n

Since % (§) < a}‘; " (A) + ag(A), by proposition 3.2 and lemma 5.8 there exist sub-
sequences {uF} and uT € N ;\—L ,.(A) which are non-zero solutions of equation (Ey, g, )
such that

ulf = ul  strongly in HE(A).

Since Jy, 4, (uf) = thg#(|u(jﬂ) and |uf| € NAi,u(A)’ by lemma 2.3, we may assume
that ug are positive solutions of equation (Ey, 4, ). O

Sketch of the proof of theorem 1.1.
(i) Combining the results of theorems 3.3 and 4.2, equation (Ey, 4, ) has two positive

; + - + + - — ;
solutions uy and Uy, such that uy , € thgﬂ, uy , € thgu. Since
+ - _
kavgu N Nf)xvgu, - 0’

this implies that ui u and u . are different.

(ii) Combining the results of theorems 3.3 and 6.2, equation (Ey, ,,) has three
positive solutions u;\r#, ug and ugy such that uiu eNS  and uy € N)\i#(A).

. fxsgu
Since
+ — _ —+ — .
Nf)u.‘]u N Nf)u!]p - @ and N)x,,u,(A) N NA,/L(A) - @7
this implies that u; o ug and ugy are different. O
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