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We study the multiplicity of positive solutions for the following semilinear elliptic
equation:

−∆u + u = fλ(x)uq−1 + gµ(x)up−1 in A,

u � 0 in A,

u ∈ H1
0 (A),

where 1 < q < 2 < p < 2∗ (2∗ = 2N/(N − 2) if N � 3, 2∗ = ∞ if N = 2), the
parameters λ, µ � 0, A = Θ × R is an infinite strip in R

N and Θ is a bounded domain
in R

N−1. We assume that fλ(x) = λf+(x) + f−(x) and gµ(x) = a(x) + µb(x), where
the functions f±, a and b satisfy suitable conditions.

1. Introduction

We consider the multiplicity results of positive solutions of the following semilinear
elliptic problem:

−∆u + u = fλ(x)uq−1 + gµ(x)up−1 in A,

u � 0 in A,

u ∈ H1
0 (A),

⎫⎪⎬
⎪⎭ (Efλ,gµ)

where

1 < q < 2 < p < 2∗ and 2∗ =

⎧⎪⎨
⎪⎩

2N

N − 2
if N � 3,

∞ if N = 2,

the parameters λ, µ � 0, A = Θ × R is an infinite strip in R
N and Θ is a bounded

domain in R
N−1. Let x = (x′, xN ) ∈ R

N−1 × R. We assume that fλ(x) = λf+(x) +
f−(x), gµ(x) = a(x) + µb(x), where the functions f±, a and b satisfy the following
conditions:

(D1) f±(x) = ± max{±f, 0}, f+ �≡ 0 and f ∈ Lq∗
(A), where q∗ = 2/(2 − q);

(D2) a(x) ∈ C(Ā) and there exist δ > θ1 and 0 < C0 < 1 such that

1 � a(x) � 1 − C0 exp(−2
√

1 + δ|xN |) for all x = (x′, xN ) ∈ A,
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where θ1 is the first eigenvalue of the Dirichlet problem −∆φ = θφ in Θ,
φ = 0 on ∂Θ;

(D3) b ∈ C(Ā) with b(x) � 0 for all x ∈ A and b(x) → 0 as |xN | → ∞;

(D4) there exists d0 > 0 such that b(x) � d0 exp(−r|xN |) for some 0 < r < q.

Under the assumption that fλ(x) �≡ 0, equation (Efλ,gµ) can be regarded as a
perturbation problem of the following semilinear elliptic equation:

−∆u + u = gµ(x)up−1 in A,

u > 0 in A,

u ∈ H1
0 (A).

⎫⎪⎬
⎪⎭ (E0,gµ)

When µ � 0 and a(x) ≡ 1, it is known that equation (E0,gµ) has a ground-state
positive solution wµ [26]. When µ < 0, the function b(x) satisfies the condition
(D3) and b(x) � 0 on A with a strict inequality on a set of positive measure. Then,
for equation (E0,gµ

), we can see that the mountain-pass value is equal to the first
level of breakdown of the Palais–Smale condition [15, p. 38] and we cannot get a
positive solution through the mountain-pass theorem (i.e. equation (E0,gµ) does not
admit any ground-state solution for all µ < 0). See also the existence of ground-
state solutions of equation (E0,gµ

) under A replaced by R
N and various conditions

(cf. [6–8,13,25,27,28], etc.).
For the above situation, several authors have made some progress on the mul-

tiplicity of positive solutions for the following non-homogeneous semilinear elliptic
equation:

−∆u + u = g̃(x)up−1 + h(x) in R
N ,

u > 0 in R
N ,

u ∈ H1(RN ),

⎫⎪⎬
⎪⎭ (Ẽh)

where h(x) ∈ H−1(RN ) \ {0} is non-negative and g̃ ∈ C(RN ). When the homo-
geneous equation (Ẽ0) has a ground-state solution, Cao and Zhou [14], Hirano
[23], Jeanjean [24] and Zhu [38] proved that equation (Ẽh) has at least two pos-
itive solutions under the assumption that ‖h‖H−1 is sufficiently small. When the
homogeneous equation (Ẽ0) does not admit any ground-state solution, Adachi and
Tanaka [1,2] proved that equation (Ẽh) has at least four positive solutions under the
assumptions g̃(x) � 1 = lim|x|→∞ g̃(x), g̃(x) � 1 − C(−(2 + δ)|x|) for all x ∈ R

N ,
for some δ > 0, C > 0 and ‖h‖H−1 is sufficiently small.

Similar problems have been the focus of a great deal of research in recent years.
Chabrowski and Bezzera do Ó [16] and Goncalves and Miyagaki [22] have investi-
gated the following equation:

−∆u + V (x)u = λh(x)uq−1 + ḡ(x)up−1 in R
N ,

u > 0 in R
N ,

u ∈ H1(RN ),

⎫⎪⎬
⎪⎭ (Ēλ)

where 1 < q < 2 < p < 2∗ and ḡ ∈ C(RN ). They found some existence and
multiplicity results, which can be summarized as follows. In [22], the following
conditions were assumed:
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(a0) V (x) � a0 > 0, x ∈ R
N ;

(a∞) V (x) → ∞ as |x| → ∞;

(f0) h � 0 and h ∈ L2∗/(2∗−q)(RN ) ∩ L∞(RN ).

Then it was proved that there exists λ′ > 0 such that equation (Ēλ) has at least
two positive solutions for all λ ∈ (0, λ′).

In [16], the following conditions were assumed:

(a1) V (x) is positive, locally Hölder continuous and bounded in R
N ;

(fc) h is a positive constant.

Then it was proved that there exists λ̄ > 0 such that equation (Ēλ) has at least
one positive solution for all λ ∈ (0, λ̄).

Furthermore, Wu [35] has investigated the following equation:

−∆u + u = h(x)uq−1 + ĝ(x)up−1 in A,

u > 0 in A,

u ∈ H1
0 (A),

⎫⎪⎬
⎪⎭ (Ēh,g)

where 1 � q < 2 < p < 2N/(N − 2), h(x) ∈ Lq∗
(A) \ {0} is non-negative,

ĝ(x) � 1 = lim|x|→∞ ĝ(x) on A with a strict inequality on a set of positive mea-
sure and there exist δ > θ1 and 0 < C0 < 1 such that

ĝ(x) − 1 � −C0 exp(−2
√

1 + δ|xN |) for all x = (x′, xN ) ∈ A,

and θ1 is the first eigenvalue of the Dirichlet problem −∆φ = θφ in Θ, φ = 0 on
∂Θ. It was proved that equation (Ēh,g) has at least three positive solutions under
the assumption that ‖h‖Lq∗ is sufficiently small.

From the above results, we know that the existence of a ground-state solution
of the homogeneous equation affects the number of positive solutions of the per-
turbation problem. Actually, if the homogeneous equation has a ground-state solu-
tion, then the perturbation problem is presently only able to prove the existence
of at least two positive solutions. The main purpose of this paper is to consider
the possible existence of more than two positive solutions of (Efλ,gµ

), even if the
homogeneous equation (E0,gµ

) has a ground-state positive solution. Let

Λ0 = (2 − q)2−q

(
p − 2

‖f+‖Lq∗

)p−2(
Sp

p − q

)p−q

,

where Sp is a best Sobolev constant for the embedding of H1
0 (A) in Lp(A). Then

our main result is the following.

Theorem 1.1. If, in addition to the conditions (D1)–(D4), we have

(D5) f− �≡ 0,

then

(i) for each λ > 0 and µ > 0 with λp−2(1 + µ‖b‖∞)2−q < Λ0, equation (Efλ,gµ)
has at least two positive solutions,
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(ii) there exist positive numbers λ0, µ0 with λp−2
0 (1 + µ0‖b‖∞)2−q < 1

2qΛ0 such
that, for each λ ∈ (0, λ0) and µ ∈ (0, µ0), equation (Efλ,gµ) has at least three
positive solutions.

Our analysis also makes use of the following result.

Theorem 1.2. If in addition to the conditions (D1)–(D4), we have

(D6) 1 � q < 2 < p < 2∗,

(D7) f− ≡ 0 and a(x) � 1 on A with a strict inequality on a set of positive measure,

then

(i) for each λ > 0 and µ > 0 with λp−2(1 + µ‖b‖∞)2−q < Λ0, equation (Efλ,gµ
)

has at least two positive solutions,

(ii) there exist positive numbers λ̃0, µ̃0 with λ̃p−2
0 (1 + µ̃0‖b‖∞)2−q < 1

2qΛ0 such
that, for each λ ∈ (0, λ̃0) and µ ∈ (0, µ̃0), equation (Efλ,gµ) has at least three
positive solutions.

Proof. The proofs of the multiplicity results are similar to those of theorem 1.1 (see
§ 6), so we leave the details to the reader.

Among other interesting results, Ambrosetti et al . [4] investigated the following
equation:

−∆u = λuq−1 + up−1 in Ω,

u > 0 in Ω,

u ∈ H1
0 (Ω),

⎫⎪⎬
⎪⎭ (Eλ)

where 1 < q < 2 < p � 2∗ (2∗ = 2N/(N − 2) if N � 3; 2∗ = ∞ if N = 1, 2),
λ > 0 and Ω is a bounded domain in R

N . They found that there exists λ0 > 0
such that equation (Eλ) admits at least two positive solutions for λ ∈ (0, λ0), a
positive solution for λ = λ0 and no positive solution exists for λ > λ0. Actually,
Adimurthy et al . [3], Damascelli et al . [18], Ouyang and Shi [29] and Tang [31]
proved that there exists λ0 > 0 such that there are exactly two positive solutions of
equation (Eλ) in the unit ball BN (0; 1) for λ ∈ (0, λ0), exactly one positive solution
for λ = λ0 and no positive solution exists for λ > λ0. Generalizations of the result
of equation (Eλ) were given in [5, 10,11,19,37].

In the following sections, we proceed to prove theorem 1.1. We use variational
methods to find positive solutions of equation (Efλ,gµ). Associated with equa-
tion (Efλ,gµ), we consider the energy functional Jfλ,gµ in H1

0 (A) for given λ, µ � 0,
f(x), a(x) and b(x):

Jfλ,gµ(u) = 1
2‖u‖2

H1 − 1
q

∫
A

fλ(x)|u|q dx − 1
p

∫
A

gµ(x)|u|p dx,

where

‖u‖H1 =
( ∫

A

|∇u|2 + u2 dx

)1/2
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is the standard norm in H1
0 (A). It is well known that the solutions of equation

(Efλ,gµ) are the critical points of the energy functional Jfλ,gµ in H1
0 (A) [30].

This paper is organized as follows. In § 2, we give some notation and preliminaries.
In § 3, we establish the existence of a local minimum for Jfλ,gµ

. In § 4, we give an
estimate of energy. In § 5, we discussion some concentration behaviour in the Nehari
manifold. In § 6, we prove theorem 1.1.

2. Notation and preliminaries

Throughout this section, we denote by Sp the best Sobolev constant for the embed-
ding of H1

0 (A) in Lp(A). In particular,

‖u‖Lp � S−1/2
p ‖u‖H1 for all u ∈ H1

0 (A) \ {0}. (2.1)

First, we define the Palais–Smale (PS) sequences, and (PS)-values and (PS)-
conditions in H1

0 (A) for Jfλ,gµ as follows.

Definition 2.1.

(i) For β ∈ R, a sequence {un} is a (PS)β-sequence in H1
0 (A) for Jfλ,gµ if

Jfλ,gµ(un) = β + o(1) and J ′
fλ,gµ

(un) = o(1) strongly in H−1(A) as n → ∞.

(ii) β ∈ R is a (PS)-value in H1
0 (A) for Jfλ,gµ if there exists a (PS)β-sequence in

H1
0 (A) for Jfλ,gµ

.

(iii) Jfλ,gµ satisfies the (PS)β-condition in H1
0 (A) if every (PS)β-sequence in H1

0 (A)
for Jfλ,gµ contains a convergent subsequence.

As the energy functional Jfλ,gµ is not bounded below on H1
0 (A), it is useful to

consider the functional on the Nehari manifold

Nfλ,gµ
= {u ∈ H1

0 (A) \ {0} | 〈J ′
fλ,gµ

(u), u〉 = 0}.

Thus, u ∈ Nfλ,gµ
if and only if

‖u‖2
H1 −

∫
A

fλ(x)|u|q dx −
∫

A

gµ(x)|u|p dx = 0.

Note that Nfλ,gµ contains every non-zero solution of equation (Efλ,gµ). Further-
more, we have the following results.

Lemma 2.2. The energy functional Jfλ,gµ is coercive and bounded below on Nfλ,gµ .

Proof. If u ∈ Nfλ,gµ , then, by the Hölder and Sobolev inequalities,

Jfλ,gµ
(u) =

(
1
2

− 1
p

)
‖u‖2

H1 −
(

1
q

− 1
p

) ∫
A

(λf+(x) + f−(x))|u|q dx

�
(

1
2

− 1
p

)
‖u‖2

H1 −
(

1
q

− 1
p

) ∫
A

λf+(x)|u|q dx

�
(

1
2

− 1
p

)
‖u‖2

H1 − λ

(
p − q

pq

)
‖f+‖Lq∗ S−q/2‖u‖q

H1 . (2.2)

Thus, Jfλ,gµ
is coercive and bounded below on Nfλ,gµ

.

https://doi.org/10.1017/S0308210508000942 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210508000942


1302 T.-F. Wu

The Nehari manifold Nfλ,gµ is closely linked to the behaviour of the function of
the form hu : t → Jfλ,gµ(tu) for t > 0. Such maps are known as fibering maps and
were introduced by Dradek and Pohozaev [20] (they are also discussed in [10–12]).
If u ∈ H1

0 (A), we have

hu(t) =
t2

2
‖u‖2

H1 − tq

q

∫
A

fλ(x)|u|q dx − tp

p

∫
A

gµ(x)|u|p dx,

h′
u(t) = t‖u‖2

H1 − tq−1
∫

A

fλ(x)|u|q dx − tp−1
∫

A

gµ(x)|u|p dx,

h′′
u(t) = ‖u‖2

H1 − (q − 1)tq−2
∫

A

fλ(x)|u|q dx − (p − 1)tp−2
∫

A

gµ(x)|u|p dx.

It is easy to see that

th′
u(t) = ‖tu‖2

H1 −
∫

A

fλ(x)|tu|q dx −
∫

A

gµ(x)|tu|p dx

and so, for u ∈ H1
0 (A) \ {0} and t > 0, h′

u(t) = 0 if and only if tu ∈ Nfλ,gµ
,

i.e. positive critical points of hu correspond to points on the Nehari manifold. In
particular, h′

u(1) = 0 if and only if u ∈ Nfλ,gµ
. Thus, it is natural to split Nfλ,gµ

into
three parts corresponding to local minima, local maxima and points of inflection.
Accordingly, we define

N+
fλ,gµ

= {u ∈ Nfλ,gµ | h′′
u(1) > 0},

N0
fλ,gµ

= {u ∈ Nfλ,gµ
| h′′

u(1) = 0},

N−
fλ,gµ

= {u ∈ Nfλ,gµ | h′′
u(1) < 0}.

We now derive some basic properties of N+
fλ,gµ

, N0
fλ,gµ

and N−
fλ,gµ

.

Lemma 2.3. Suppose that u0 is a local minimizer for Jfλ,gµ on Nfλ,gµ and that
u0 /∈ N0

fλ,gµ
. Then J ′

fλ,gµ
(u0) = 0 in H−1(A).

Proof. Our proof is almost the same as that in [12, theorem 2.3] (or see [9]).

For each u ∈ Nfλ,gµ
we have

h′′
u(1) = ‖u‖2

H1 − (q − 1)
∫

A

fλ|u|q dx − (p − 1)
∫

A

gµ(x)|u|p dx

= (2 − p)‖u‖2
H1 − (q − p)

∫
A

fλ(x)|u|q dx (2.3 a)

= (2 − q)‖u‖2
H1 − (p − q)

∫
A

gµ(x)|u|p dx. (2.3 b)

Then we have the following result.

Lemma 2.4.

(i) For any u ∈ N+
fλ,gµ

∪ N0
fλ,gµ

, we have∫
A

fλ(x)|u|q dx > 0.
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(ii) For any u ∈ N−
fλ,gµ

, we have∫
A

gµ(x)|u|p dx > 0.

Proof. The results now follow immediately from (2.3 a) and (2.3 b).

Let

Λ0 = (2 − q)2−q

(
p − 2

‖f+‖Lq∗

)p−2(
Sp

p − q

)p−q

.

Then we have the following results.

Lemma 2.5. For each λ > 0 and µ � 0 with λp−2(1 + µ‖b‖∞)2−q < Λ0, we have
N0

fλ,gµ
= ∅.

Proof. Suppose the contrary. Then there exist λ > 0 and µ � 0 with λp−2(1 +
µ‖b‖∞)2−q < Λ0 such that N0

fλ,gµ
�= ∅. Then, for u ∈ N0

fλ,gµ
, by (2.3 a) and the

Hölder and Sobolev inequalities we have

‖u‖2
H1 =

p − q

p − 2

∫
A

fλ(x)|u|q dx � λS−q/2
p

p − q

p − 2
‖f+‖Lq∗ ‖u‖q

H1

and so

‖u‖2
H1 � Sq/(q−2)

p

[
λ‖f+‖Lq∗

p − q

p − 2

]2/(2−q)

.

Similarly, using (2.3 b) and the Sobolev inequality we have

2 − q

p − q
‖u‖2

H1 =
∫

A

[a(x) + µb(x)]|u|p dx � (1 + µ‖b‖∞)S−p/2
p ‖u‖p

H1 ,

which implies

‖u‖2
H1 � Sp/(p−2)

p

[
2 − q

(1 + µ‖b‖∞)(p − q)

]2/(p−2)

for all µ � 0.

Hence, we must have

λp−2(1 + µ‖b‖∞)2−q � (2 − q)2−q

(
p − 2

‖f+‖Lq∗

)p−2(
Sp

p − q

)p−q

= Λ0,

which is a contradiction. This completes the proof.

In order to get a better understanding of the Nehari manifold and fibering maps,
we consider the function mu : R

+ → R defined by

mu(t) = t2−q‖u‖2
H1 − tp−q

∫
A

gµ(x)|u|p dx for t > 0. (2.4)

Clearly, tu ∈ Nfλ,gµ if and only if

mu(t) =
∫

A

fλ(x)|u|q dx.
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Moreover,

m′
u(t) = (2 − q)t1−q‖u‖2

H1 − (p − q)tp−q−1
∫

A

gµ(x)|u|p dx (2.5)

and so it is easy to see that if tu ∈ Nfλ,gµ
, then tq−1m′

u(t) = h′′
u(t). Hence, tu ∈

N+
fλ,gµ

(or N−
fλ,gµ

) if and only if m′
u(t) > 0 (or m′

u(t) < 0).
Suppose that u ∈ H1

0 (A) \ {0}. Then, by (2.5), mu has a unique critical point at
t = tmax,µ(u), where

tmax,µ(u) =
(

(2 − q)‖u‖2
H1

(p − q)
∫

A
gµ(x)|u|p dx

)1/(p−2)

> 0 (2.6)

and clearly mu is strictly increasing on (0, tmax,µ(u)) and strictly decreasing on
(tmax,µ(u),∞) with limt→∞ mu(t) = −∞. Moreover, if λp−2(1 + µ‖b‖∞)2−q < Λ0,
then

mu(tmax,µ(u))

=
[(

2 − q

p − q

)(2−q)/(p−2)

−
(

2 − q

p − q

)(p−q)/(p−2)] ‖u‖2(p−q)/(p−2)
H1

(
∫

A
gµ(x)|u|p dx)(2−q)/(p−2)

= ‖u‖q
H1

(
p − 2
p − q

)(
2 − q

p − q

)(2−q)/(p−2)( ‖u‖p
H1∫

A
gµ(x)|u|p dx

)(2−q)/(p−2)

�
(

2 − q

1 + µ‖b‖∞

)2−q(
p − 2

λ‖f+‖Lq∗

)p−2(
Sp

p − q

)p−q ∫
A

fλ(x)|u|q dx

>

∫
A

fλ(x)|u|q dx.

Thus, we have the following lemma.

Lemma 2.6. For each u ∈ H1
0 (A) \ {0} we have the following.

(i) If ∫
A

fλ(x)|u|q dx � 0,

then there is a unique t− = t−(u) > tmax,µ(u) such that t−u ∈ N−
fλ,gµ

and hu

is increasing on (0, t−) and decreasing on (t−,∞). Moreover,

Jfλ,gµ
(t−u) = sup

t�0
Jfλ,gµ

(tu). (2.7)

(ii) If ∫
A

fλ(x)|u|q dx > 0,

then there is a unique 0 < t+ = t+(u) < tmax,µ(u) < t− such that t+u ∈
N+

fλ,gµ
, t−u ∈ N−

fλ,gµ
, mu is decreasing on (0, t+), increasing on (t+, t−) and

decreasing on (t−,∞). Moreover,

Jfλ,gµ(t+u) = inf
0�t�tmax,µ(u)

Jfλ,gµ(tu) and Jfλ,gµ(t−u) = sup
t�t+

Jfλ,gµ(tu).

(2.8)
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(iii) t−(u) is a continuous function for u ∈ H1
0 (A);

(iv) N−
fλ,gµ

=
{

u ∈ H1
0 (A)

∣∣∣∣ 1
‖u‖H1

t−
(

u

‖u‖H1

)
= 1

}
.

Proof. The proofs are almost the same as in [36, lemma 2.5] and are left to the
reader.

Remark 2.7.

(i) If λ = 0, then by lemma 2.6(i) N+
f0,gµ

= ∅, and so Nf0,gµ = N−
f0,gµ

for all
µ � 0.

(ii) If λp−2(1 + µ‖b‖∞)2−q < Λ0, then, by (2.3 a), for each u ∈ N+
fλ,gµ

we have

‖u‖2
H1 <

p − q

p − 2

∫
A

fλ(x)|u|q dx

� λ
p − q

p − 2

∫
A

f+(x)|u|q dx

� Λ
1/(p−2)
0 S−q/2

p

p − q

p − 2
‖f+‖Lq∗ ‖u‖q

H1 ,

and so

‖u‖H1 �
(

Λ
1/(p−2)
0 S−q/2

p

p − q

p − 2
‖f+‖Lq∗

)1/(2−q)

for all u ∈ N+
fλ,gµ

. (2.9)

3. Existence of the first solution

First, we remark that it follows from lemma 2.5 that

Nfλ,gµ = N+
fλ,gµ

∪ N−
fλ,gµ

for all λ > 0 and µ � 0 with λp−2(1 + µ‖b‖∞)2−q < Λ0. Furthermore, by lemma 2.6
it follows that N+

fλ,gµ
and N−

fλ,gµ
are non-empty and, by lemma 2.2, we may define

α+
fλ,gµ

= inf
u∈N+

fλ,gµ

Jfλ,gµ(u) and α−
fλ,gµ

= inf
u∈N−

fλ,gµ

Jfλ,gµ(u).

Then we have the following result.

Theorem 3.1. We have the following:

(i) α+
fλ,gµ

< 0 for all λ > 0 and µ � 0 with λp−2(1 + µ‖b‖∞)2−q < Λ0;

(ii) if λp−2(1 + µ‖b‖∞)2−q < 1
2qΛ0, then α−

fλ,gµ
> c0 for some c0 > 0.

In particular, for each λ > 0 and µ � 0 with λp−2(1 + µ‖b‖∞)2−q < 1
2qΛ0, we have

α+
fλ,gµ

= infu∈Nfλ,gµ
Jfλ,gµ(u).
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Proof. (i) Let u ∈ N+
fλ,gµ

, Then, by (2.3 a),

‖u‖2
H1 <

p − q

p − 2

∫
A

fλ(x)|u|q dx

and so

Jfλ,gµ(u) =
p − 2
2p

‖u‖2
H1 − p − q

pq

∫
A

fλ(x)|u|q dx

< − (p − q)(2 − q)
2pq

∫
A

fλ(x)|u|q dx < 0.

Thus, α+
fλ,gµ

< 0.

(ii) Let u ∈ N−
fλ,gµ

. Since

2
p
‖u‖2

H1 <

∫
A

gµ(x)|u|p dx if
∫

A

fλ(x)|u|q dx � 0

and
2 − q

p − q
‖u‖2

H1 <

∫
A

gµ(x)|u|p dx if
∫

A

fλ(x)|u|q dx > 0,

we have
2 − q

p − q
‖u‖2

H1 <

∫
A

gµ(x)|u|p dx for all u ∈ N−
fλ,gµ

.

Then, by (2.1),

2 − q

p − q
‖u‖2

H1 <

∫
A

gµ(x)|u|p dx � (1 + µ‖b‖∞)S−p/2
p ‖u‖p

H1 ,

which implies

‖u‖H1 > Sp/2(p−2)
(

2 − q

(1 + µ‖b‖∞)(p − q)

)1/(p−2)

for all u ∈ N−
fλ,gµ

.

By (2.2), we have

Jfλ,gµ
(u) � ‖u‖q

H1

(
p − 2
2p

‖u‖2−q
H1 − λ‖f+‖Lq∗ S−q/2

(
p − q

pq

))

> Spq/2(p−2)
(

2 − q

(1 + µ‖b‖∞)(p − q)

)q/(p−2)

×
(

p − 2
2p

Sp(2−q)/2(p−2)

×
(

2 − q

(1 + µ‖b‖∞)(p − q)

)(2−q)/(p−2)

− λ‖f+‖Lq∗ S−q/2
(

p − q

pq

))
.

Thus, if λp−2(1 + µ‖b‖∞)2−q < 1
2qΛ0, then

α−
fλ,gµ

> c0 for some c0 > 0.

This completes the proof.
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Now, we consider the following elliptic problem:

−∆u + u = |u|p−2u in Ω, u ∈ H1
0 (Ω), (E0)

where Ω is a domain in R
N . Associated with equation (E0), we consider the energy

functional J0 in H1
0 (Ω),

J0(u) = 1
2

∫
Ω

|∇u|2 + u2 − 1
p

∫
Ω

|u|p dx.

Consider a minimizing problem

inf
u∈N0(Ω)

J0(u) = α0(Ω),

where
N0(Ω) = {u ∈ H1

0 (Ω) \ {0} | 〈J ′
0(u), u〉 = 0}

is the Nehari manifold. It is known that if Ω = A, equation (E0) has a positive
solution w0(x) such that J0(w0) = α0(A). The following proposition then provides
a precise description for the (PS)-sequence of Jfλ,gµ .

Proposition 3.2. Each sequence {un} ⊂ H1
0 (A) satisfying the following has a

convergent subsequence:

Jfλ,gµ
(un) = β + o(1) with β < α+

fλ,gµ
+ α0(A);

Jfλ,gµ
(un) = o(1) in H−1(A).

Proof. The proof is almost the same as [35, proposition 2.9].

Theorem 3.3. For each λ > 0 and µ � 0 with λp−2(1 + µ‖b‖∞)2−q < Λ0, the
functional Jfλ,gµ has a minimizer u+

λ,µ in N+
fλ,gµ

and it satisfies

(i) Jfλ,gµ
(u+

λ,µ) = α+
fλ,gµ

,

(ii) u+
λ,µ is a positive solution of equation (Efλ,gµ

),

(iii) ‖u+
λ,µ‖H1 → 0 as λ → 0.

Proof. By the Ekeland variational principle [21] (or [36, proposition 1]), there is
{un} ⊂ N+

fλ,gµ
such that it is a (PS)α+

fλ,gµ

-sequence for Jfλ,gµ . Then, by propo-
sition 3.2, there is a subsequence {un} and u+

λ,µ ∈ N+
fλ,gµ

is a solution of equa-
tion (Efλ,gµ

) such that un → u+
λ,µ strongly in H1

0 (A) and Jfλ,gµ(u+
λ,µ) = α+

fλ,gµ
.

Since
Jfλ,gµ(u+

λ,µ) = Jfλ,gµ(|u+
λ,µ|) and |u+

λ,µ| ∈ N+
fλ,gµ

,

by lemma 2.3 we may assume that u+
λ,µ is a positive solution of equation (Efλ,gµ).

Finally, by (2.3 a),

‖u+
λ,µ‖2−q

H1 < λ
p − q

p − 2
‖f+‖Lq∗ S−q/2

p (3.1)

and so ‖u+
λ,µ‖H1 → 0 as λ → 0.
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4. The estimate of energy

First, we let w0(x) be a xN -symmetric positive solution of equation (E0) in Ω = A

such that J0(w0) = α0(A). Then, by the result in [17], for any 0 < ε < 1+ θ1, there
exist Aε > 0 and Bε > 0 such that

Aεφ1(x′) exp{−
√

1 + θ1 + ε|xN |} � w0(x′, xN )

� Bεφ1(x′) exp{−
√

1 + θ1 − ε|xN |} (4.1)

for all (x′, xN ) ∈ A, where θ1 is the first eigenvalue and φ1 is the corresponding
first positive eigenfunction of the Dirichlet problem −∆φ = θφ in Θ, φ = 0 on ∂Θ.
Let

wl(x) = w0(x′, xN + l), l ∈ R. (4.2)

Clearly, ∫
A

fλ(x)|wl|q dx = 0 as |l| → ∞.

Then we have the following results.

Proposition 4.1. For each λ > 0 and µ > 0 with λp−2(1 + µ‖b‖∞)2−q < Λ0 we
have

α−
fλ,gµ

< α+
fλ,gµ

+ α0(A).

Proof. Let u+
λ,µ be a positive solution of equation (Efλ,gµ

) as in theorem 3.3. Then

Jfλ,gµ(u+
λ,µ + twl)

= 1
2‖u+

λ,µ + twl‖2
H1 − 1

q

∫
A

fλ|u+
λ,µ + twl|q dx − 1

p

∫
A

gµ|u+
λ,µ + twl|p dx

� Jfλ,gµ
(u+

λ,µ) + J0(tw0)

+
1
p

∫
A

(1 − a)tpwp
l dx − µ

p

∫
A

btpwp
l dx +

∫
A

|fλ|
{ ∫ twl

0
ηq−1dη

}
dx

− amin

p

∫
A

[(u+
λ,µ + twy)p − (u+

λ,µ)p − tpwp
l − p(u+

λ,µ)p−1twl] dx

= Jfλ,gµ(u+
λ,µ) + J0(tw0)

+
1
p

∫
A

(1 − a)tpwp
l dx − µ

p

∫
A

gtpwp
l dx +

tq

q

∫
A

|fλ|wq
l dx

− amin

p

∫
A

[(u+
λ,µ + twy)p − (u+

λ,µ)p − tpwp
l − p(u+

λ,µ)p−1twl] dx, (4.3)

where amin = inf{a(x) | x ∈ A} > 0. By [12,34], we know that

J0(tw0) � α0(A) for all l ∈ R.
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Thus, by (4.3) and λp−2(1 + µ‖b‖∞)2−q < Λ0 there exists c0 > 0 such that

Jfλ,gµ(u+
λ,µ + twl)

� Jfλ,gµ(u+
λ,µ) + α0(A)

+
tp

p

∫
A

(1 − a)wp
l dx − µtp

p

∫
A

bwp
l dx +

c0t
q

q

∫
A

|f |wq
l dx

− amin

p

∫
A

[(u+
λ,µ + twy)p − (u+

λ,µ)p − tpwp
l − p(u+

λ,µ)p−1twl] dx.

(4.4)

Since
Jfλ,gµ

(u+
λ,µ + twl) → Jfλ,gµ(u+

λ,µ) = α+
fλ,gµ

< 0 as t → 0

and
Jfλ,gµ(u+

λ,µ + twl) → −∞ as t → ∞,

we can easily find 0 < t1 < t2 such that

Jfλ,gµ(u+
λ,µ + twl) < α+

fλ,gµ
+ α0(A) for all t ∈ [0, t1] ∪ [t2,∞). (4.5)

Thus, we only need to show that there exists l0 > 0 such that, for |l| > l0,

sup
t1�t�t2

Jfλ,gµ
(u+

λ,µ + twl) < α+
fλ,gµ

+ α0(A). (4.6)

By (4.1), there exists B0 > 0 such that

w0(x′, xN ) � B0φ1(x′) exp{−|xN |} for all (x′, xN ) ∈ A.

We also remark that

(i) (u + v)p − up − vp − pup−1v � 0 for all (u, v) ∈ [0,∞) × [0,∞),

(ii) for any r > 0 we can find a constant C(r) > 0 such that

(u + v)p − up − vp − pup−1v � C(r)v2

for all (u, v) ∈ [r, ∞) × [0,∞).

Thus, if A−1,1 = {(x′, xN ) ∈ A | −1 < xN < 1} is a finite strip, setting

Cλ,µ = C
(

min
x∈A−1,1

u+
λ,µ(x)

)
> 0 and C0 = C

(
min

x∈A−1,1
wp

0(x)
)

> 0,

we have∫
A

[(u+
λ,µ + twy)p − (u+

λ,µ)p − tpwp
l − p(u+

λ,µ)p−1twl] dx

�
∫

A−1,1

[(u+
λ,µ + twy)p − (u+

λ,µ)p − tpwp
l − p(u+

λ,µ)p−1twl] dx

� Cλ,µ

∫
A−1,1

w2
0(x

′, xN + l) dx

> Cλ,µAε exp(−2
√

1 + θ1 + ε|l|) (4.7)
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and, by condition (D4),∫
A

bwp
l dx =

∫
A

b(x′, xN − l)wp
0(x) dx

� C0

∫
A−1,1

b(x′, xN − l) dx

� C0d0 exp(−r|l|). (4.8)

From conditions (D1) and (D2), we also have∫
A

|f |wq
l dx � C̄

∫
A

Bq
0φq

1(x
′) exp(−q|xN + l|) dx

� C̄ exp(−q|l|) (4.9)

and ∫
A

(1 − a)wp
l dx �

∫
A

C0 exp(−2
√

1 + δ|l|)Bp
0φ1(x′) exp(−p|xN + l|)

� C̃ exp(− min{p, 2
√

1 + δ}|l|). (4.10)

Since (4.7) holds for any 0 < ε < 1 + θ1, choosing ε < δ − θ1, we can find l1 > 0
such that

tp

p

∫
A

(1 − a)wp
l dx <

amin

p

∫
A

[(u+
λ,µ + twy)p − (u+

λ,µ)p − tpwp
l − p(u+

λ,µ)p−1twl] dx

(4.11)
for all |l| � l1. Moreover, since r < q and t1 � t � t2, by (4.8) and (4.9), we can
find l2 > 0 such that

c0t
q

q

∫
A

|f |wq
l dx <

µtp

p

∫
A

gwp
l dx for all |l| � l2. (4.12)

Thus, by (4.4), (4.5), (4.11) and (4.12), we obtain

sup
t�0

Jfλ,gµ(u+
fλ,gµ

+ twl) < α+
fλ,gµ

+ α0(A) for all |l| � l0 = max{l1, l2}.

To complete the proof of proposition 4.1, it remains to show that there exists a
positive number t∗ such that u+

fλ,gµ
+ t∗wl ∈ N−

fλ,gµ
. Let

U1 =
{

u ∈ H1
0 (A)

∣∣∣∣ 1
‖u‖H1

t−
(

u

‖u‖H1

)
> 1

}
∪ {0};

U2 =
{

u ∈ H1
0 (A)

∣∣∣∣ 1
‖u‖H1

t−
(

u

‖u‖H1

)
< 1

}
.

Then N−
fλ,gµ

separates H1
0 (A) into two connected components U1 and U2, and

H1
0 (A) \ N−

fλ,gµ
= U1 ∪ U2.

For each u ∈ N+
fλ,gµ

, we have

1 < tmax,µ(u) < t−(u).
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Since

t−(u) =
1

‖u‖H1
t−

(
u

‖u‖H1

)
,

then N+
fλ,gµ

⊂ U1. In particular, u+
fλ,gµ

∈ U1. We claim that there exists t0 > 0 such
that u+

fλ,gµ
+ t0wl ∈ U2. First, we find a constant c > 0 such that

0 < t−
(

u+
fλ,gµ

+ twl

‖u+
fλ,gµ

+ twl‖H1

)
< c for each t � 0.

Otherwise, there exists a sequence {tn} such that tn → ∞ and

t−
(

u+
fλ,gµ

+ tnwl

‖u+
fλ,gµ

+ tnwl‖H1

)
→ ∞ as n → ∞.

Let

vn =
u+

fλ,gµ
+ tnwl

‖u+
fλ,gµ

+ tnwl‖H1
.

Since t−(vn)vn ∈ N−
fλ,gµ

and, by the Lebesgue dominated convergence theorem,∫
A

gµ(x)vp
n dx =

1
‖u+

λ,µ + tnwl‖p
H1

∫
A

gµ(x)(u+
λ,µ + tnwl)p dx

=
1

‖(u+
λ,µ/tn) + wl‖p

H1

∫
A

gµ(x)
(

u+
λ,µ

tn
+ wl

)p

dx

→
∫

A
gµ(x)pwp

l dx

‖wl‖p
H1

as n → ∞,

we have

Jfλ,gµ
(t−(vn)vn)

= 1
2 [t−(vn)]2 − [t−(vn)]q

q

∫
A

fλ(x)vq
n dx − [t−(vn)]p

p

∫
A

gµ(x)vp
n dx

→ −∞ as n → ∞.

This contradicts the statement that Jfλ,gµ is bounded below on Nfλ,gµ . Let

t0 =
(

p − 2
2pα0(A)

|c2 − ‖u+
λ,µ‖2

H1 |
)1/2

+ 1.

Then

‖u+
λ,µ + t0wl‖2

H1 = ‖u+
λ,µ‖2

H1 + t20‖wl‖2
H1 + o(1)

> ‖u+
λ,µ‖2

H1 + |c2 − ‖u+
λ,µ‖2

H1 | + o(1)

> c2 + o(1) >

[
t−

(
u+

λ,µ + t0wl

‖u+
λ,µ + t0wl‖H1

)]2

+ o(1) as l → ∞.
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Thus, there exists l3 � l0 such that for, |l| � l3,

1
‖u+

λ,µ + t0wl‖H1
t−

(
u+

λ,µ + t0wl

‖u+
λ,µ + t0wl‖H1

)
< 1

or u+
λ,µ + t0wl ∈ A2. Define a path γl(s) = u+

λ,µ + st0wl for s ∈ [0, 1]. Then

γl(0) = u+
λ,µ ∈ A1, γl(1) = u+

λ,µ + t0wl ∈ A2.

Since
1

‖u‖H1
t−

(
u

‖u‖H1

)
is a continuous function for non-zero u and γl([0, 1]) is connected, there exists
sl ∈ (0, 1) such that u+

λ,µ + slt0wl ∈ N−
fλ,gµ

. This completes the proof.

Theorem 4.2. For each λ > 0 and µ > 0 with λp−2(1 + µ‖b‖∞)2−q < Λ0, equa-
tion (Efλ,gµ) has a positive solution u−

λ,µ ∈ N−
fλ,gµ

such that Jfλ,gµ(u−
λ,µ) = α−

fλ,gµ
.

Proof. Analogously to the proof of [37, proposition 9], one can show that for the
Ekeland variational principle [21] there exist minimizing sequences {un} ⊂ N−

fλ,gµ

such that

Jfλ,gµ(un) = α−
fλ,gµ

+ o(1) and J ′
fλ,gµ

(un) = o(1) in H−1(A).

Since α−
fλ,gµ

< α+
fλ,gµ

(A) + α0(A), by proposition 3.2 there exists a subsequence
{un} and u−

λ,µ ∈ N−
fλ,gµ

is a non-zero solution of equation (Efλ,gµ
) such that

un → u−
λ,µ strongly in H1

0 (A).

Since
Jfλ,gµ

(u−
λ,µ) = Jfλ,gµ

(|u−
λ,µ|) and |u−

λ,µ| ∈ N−
fλ,gµ

,

by lemma 2.3, it may be assumed that u−
λ,µ is a positive solution of (Efλ,gµ

).

5. Concentration behaviour

It is known that the equation (E0,g0) does not admit any solution u0 such that

J0,g0(u0) = inf
u∈N0,g0

J0,g0(u)

and

inf
u∈N0,g0

J0,g0(u) = inf
u∈N0(A)

J0(u) = α0(A)

(see [15, p. 38]). Furthermore, we have the following lemmas.

Lemma 5.1. We have

inf
u∈Nf0,g0

Jf0,g0(u) = inf
u∈N0,g0

J0,g0(u) = α0(A).

Furthermore, equation (Ef0,g0) does not admit any solution u0 such that

Jf0,g0(u0) = inf
u∈Nf0,g0

Jf0,g0(u).
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Proof. For wl as in (4.2). By lemma 2.6, there is a unique t−(wl) > 1 such that
t−(wl)wl ∈ Nf0,g0 for all l > 0, that is

‖t−(wl)wl‖2
H1 =

∫
A

f−(x)|t−(wl)wl|q dx +
∫

A

a|t−(wl)wl|p dx.

Since

‖wl‖2
H1 =

∫
A

|wl|p dx =
2p

p − 2
α0(A) for all l ∈ R,∫

A

f−(x)|wl|q dx = o(1) and
∫

A

a|wl|p dx =
∫

A

|wl|p dx + o(1) as |l| → ∞,

we have t−(wl) → 1 as |l| → ∞. Thus,

lim
|l|→∞

Jf0,g0(t
−(wl)wl) = lim

|l|→∞
J0,g0(t

−(wl)wl) = α0(A) as |l| → ∞.

Then
inf

u∈Nf0,g0

Jf0,g0(u) � inf
u∈N0,g0

J0,g0(u) = α0(A).

Let u ∈ Nf0,g0 . Then, by lemma 2.6(i), Jf0,g0(u) = supt�0 Jf0,g0(tu). Moreover,
there is a unique su > 0 such that suu ∈ N0,g0 . Thus,

Jf0,g0(u) � Jf0,g0(suu) � J0,g0(suu) � α0(A)

and so infu∈Nf0,g0
Jf0,g0(u) � α0(A). Therefore,

inf
u∈Nf0,g0

Jf0,g0(u) = inf
u∈N0,g0

J0,g0(u) = α0(A).

Next, we will show that equation (Ef0,g0) does not admit any solution u0 such that

Jf0,g0(u0) = inf
u∈Nf0,g0

Jf0,g0(u).

Suppose the contrary. Then we can assume that there exists u0 ∈ Nf0,g0 such that

Jf0,g0(u0) = inf
u∈Nf0,g0

Jf0,g0(u).

Then, by lemma 2.6(i), Jf0,g0(u0) = supt�0 Jf0,g0(tu0). Moreover, there is a unique
su0 > 0 such that su0u0 ∈ N0,g0 . Thus,

α0(A) = inf
u∈Nf0,g0

Jf0,g0(u) = Jf0,g0(u0) � Jf0,g0(su0u0)

� J0,g0(su0u0) + sq
u0

∫
A

|f−(x)||u0|q dx � α0(A) + sq
u0

∫
A

|f−(x)||u0|q dx.

This implies ∫
A

|f−(x)||u0|q dx = 0

and so u0 ∈ N0,g0 and u0 ≡ 0 in {x ∈ A | f−(x) �= 0} form condition (D5).
Therefore,

α0(A) = inf
u∈N0,g0

J0,g0(u) = J0,g0(u0).
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By the Lagrange multiplier and the maximum principle, we can assume that u0 is
a positive solution of (E0,g0). This contradicts u0 ≡ 0 in {x ∈ A | f−(x) �= 0} and
completes the proof.

Lemma 5.2. Suppose that {un} is a minimizing sequence for Jf0,g0 in Nf0,g0 . Then∫
A

f−(x)|un|q dx = o(1).

Furthermore, {un} is a (PS)α0(A)-sequence for J0,g0 in H1
0 (A).

Proof. For each n, there is a unique tn > 0 such that tnun ∈ N0,g0 , that is

t2n‖un‖2
H1 = tpn

∫
A

a(x)|un|p dx.

Then, by lemma 2.6(i),

Jf0,g0(un) � Jf0,g0(tnun) = J0,g0(tnun) +
tqn
q

∫
A

f−(x)|un|q dx

� α0(A) +
tqn
q

∫
A

f−(x)|un|q dx.

Since Jf0,g0(un) = α0(A) + o(1) from lemma 5.1, we have

tqn
q

∫
A

f−(x)|un|q dx = o(1).

We will show that there exists c0 > 0 such that t > c0 for all n. Suppose the
contrary. Then we may assume tn → 0 as n → ∞. Since Jf0,g0(un) = α0(A) + o(1),
by lemma 2.2 we have that ‖un‖ is uniformly bounded and so ‖tnun‖H1 → 0 or
J0,g0(tnun) → 0. This contradicts the statement that J0,g0(tnun) � α0(A) > 0.
Thus, ∫

A

f−(x)|un|q dx = o(1),

which implies that

‖un‖2
H1 =

∫
A

a(x)|un|p dx + o(1)

and
J0,g0(un) = α0(A) + o(1).

Moreover, by [33, lemma 7], we have that {un} is a (PS)α0(A)-sequence for J0,g0 in
H1

0 (A).

The following lemma is a key lemma for proving our main results. Define the
upper infinite strip A

+
r and the lower infinite strip A

−
r as follows:

A
+
r = {(x′, xN ) ∈ A | xN > r} and A

−
r = {(x′, xN ) ∈ A | xN < r}.
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For a positive number δ, we consider the filtration of the manifold Nf0,g0 as follows:

Nf0,g0(δ, A) = {u ∈ Nf0,g0 | Jf0,g0(u) � α0(A) + δ};

N+
f0,g0

(δ, A) =
{

u ∈ Nf0,g0(δ, A)
∣∣∣∣
∫

A
+
0

|u|p dx <
pq

2(p − q)
α0(A)

}
;

N−
f0,g0

(δ, A) =
{

u ∈ Nf0,g0(δ, A)
∣∣∣∣
∫

A
−
0

|u|p dx <
pq

2(p − q)
α0(A)

}
.

Then we have the following results.

Lemma 5.3. There exists δ0 > 0 such that if u ∈ Nf0,g0(δ0, A), then either∫
A

+
0

|u|p dx <
pq

2(p − q)
α0(A) or

∫
A

−
0

|u|p dx <
pq

2(p − q)
α0(A).

Proof. We divide the proof into two steps.

Step 1 (existence). Suppose that there exists a sequence {un} ⊂ Nf0,g0 such that
Jf0,g0(un) = α0(A) + o(1),∫

A
+
0

|un|p dx � pq

2(p − q)
α0(A) and

∫
A

−
0

|un|p dx � pq

2(p − q)
α0(A). (5.1)

By lemmas 5.1 and 5.2, equation (Ef0,g0) does not admit any solution u0 such that

Jf0,g0(u0) = inf
u∈Nf0,g0

Jf0,g0(u)

and {un} is a (PS)α0(A)-sequence in H1
0 (A) for J0,g0 . Analogously to the proof

in [35, lemma 2.8], there exists a subsequence {un} such that {ξnun} is a (PS)α0(A)-
sequence in H1

0 (A) for J0,

‖un − ξnun‖H1 = o(1) (5.2)

and ∫
A

a(x)|ξnun|p dx =
∫

A

|ξnun|p dx + o(1) =
∫

A

|un|p dx + o(1), (5.3)

where ξn(x) = ξ(2|x|/n) and ξ ∈ C∞([0,∞)) such that 0 � ξ � 1 and

ξ(t) =

{
0 for t ∈ [0, 1],
1 for t ∈ [2,∞).

Let vn = ξnun. Then, by (5.2), (5.3) and [33, lemma 7], we obtain

J0(vn) = α0(A) + o(1) and J ′
0(vn) = o(1) in H−1(A) as n → ∞ (5.4)

and vn = 0 in Ā−1,1 for n > 2, where A−1,1 = {(x′, xN ) ∈ A | |xN | < 1}. Moreover,
vn = v+

n + v−
n and

v±
n (z) =

{
vn(z) for z ∈ A

±
0 ,

0 for z /∈ A
±
0 .

(5.5)
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Then, by (5.4) and (5.5), v±
n ∈ H1

0 (A±
0 ) and {v±

n } are bounded sequences. This
implies that

〈J ′
0(vn), v±

n 〉 = ‖v±
n ‖2

H1 −
∫

A
±
0

|v±
n |p dx = o(1).

Again using (5.4), we obtain

J ′
0(v

±
n ) = o(1) strongly in H−1(A±

0 )

and

J0(vn) = J0(v+
n ) + J0(v−

n ) = α0(A) + o(1).

Assume that J0(v±
n ) = c± + o(1). Then

c+ + c− = α0(A). (5.6)

Since c± are (PS)-values in H1
0 (A±

0 ) for J0, by [32, lemma 2.38], they are non-
negative. Moreover, by [26, lemma 2.6], α0(A) = α0(A±

0 ) > 0. Thus, by (5.6)
and the definition of the Nehari minimization problem, we may assume that c+ =
α0(A+

0 ) = α0(A) and c− = 0. Next, for n > 2,∫
A

|un|p dx =
∫

A

|vn|p dx + o(1) =
∫

A
+
0

|v+
n |p dx +

∫
A

−
0

|v−
n |p dx + o(1)

=
∫

A
+
0

|v+
n |p dx +

∫
A

−
0

|un|p dx + o(1).

Thus, ∫
A

−
0

|un|p dx =
∫

A

|un|p dx −
∫

A
+
0

∣∣v+
n

∣∣p dx = o(1),

which contradicts (5.1).

Step 2 (uniqueness). By lemma 5.2 and 1 < q < 2 < p, we can find δ0 > 0 such
that

inf
{ ∫

A

a(x)|u|p dx

∣∣∣∣ u ∈ Nf0,g0(δ0, A)
}

� qp

p − q
α0(A).

Claim. If u ∈ Nf0,g0(δ0, A), then either∫
A

+
0

|u|p dx <
pq

2(p − q)
α0(A) or

∫
A

−
0

|u|p dx <
pq

2(p − q)
α0(A).

Suppose the contrary. Then there exists u0 ∈ Nf0,g0(δ0, A) such that∫
A

+
0

|u0|p dx <
pq

2(p − q)
α0(A) and

∫
A

−
0

|u0|p dx <
pq

2(p − q)
α0(A).

Then

qp

p − q
α0(A) �

∫
A

a(x)|u0|p dx �
∫

A
+
0

|u0|p dx +
∫

A
−
0

|u0|p dx <
qp

p − q
α0(A).

This is a contradiction. We thus complete the proof of lemma 5.3.

https://doi.org/10.1017/S0308210508000942 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210508000942


Unbounded Dirichlet boundary problem 1317

By the consequence of lemma 5.3, it is easy to prove the following result.

Lemma 5.4. There exists δ0 > 0 such that

(i) N±
f0,g0

(δ0, A) �= ∅,

(ii) N+
f0,g0

(δ0, A) ∩ N−
f0,g0

(δ0, A) = ∅,

(iii) Nf0,g0(δ0, A) = N+
f0,g0

(δ0, A) ∪ N−
f0,g0

(δ0, A).

By (2.3 b), (2.6) and lemma 2.6(i), for each u ∈ N−
fλ,gµ

there is a unique t−0 (u) > 0
such that t−0 (u)u ∈ Nf0,g0 and

t−0 (u) > tmax,0(u) =
(

(2 − q)‖u‖2
H1

(p − q)
∫

RN |u|p dx

)1/(p−2)

> 0.

Then we have the following results.

Lemma 5.5. There exist λ1, µ̃ > 0 with λp−2
1 (1 + µ̃‖b‖∞)2−q < 1

2qΛ0 such that for
every λ ∈ (0, λ1) and µ ∈ (0, µ̃) we have

(i) α+
fλ,gµ

� α+
fλ,g0

,

(ii)
∫

A

fλ(x)|u|q dx > 0 for all u ∈ N−
fλ,gµ

with Jfλ,gµ(u) � α+
fλ,gµ

+ α0(A).

Proof. (i) By lemma 2.6 and theorem 3.3, for each λp−2 < 1
2qΛ0 there exists

u+
λ,0 ∈ N+

fλ,g0
, a positive solution of (Efλ,g0) such that Jfλ,g0(u

+
λ,0) = α+

fλ,g0
,

tmax,0(u+
λ,0) =

( (2 − q)‖u+
λ,0‖2

H1

(p − q)
∫

A
|u+

λ,0|p dx

)1/(p−2)

> 1 (5.7)

and
tmax,0(u+

λ,0) → ∞ as λ → 0. (5.8)

Moreover, by (2.9) there exists a positive constant c0 independent of λ such that

µ

∫
A

b(x)|u+
λ,0|p dx � µc0‖b‖∞. (5.9)

Then, by (5.7)–(5.9), there exists λ1, µ̃ > 0 with

λp−2
1 (1 + µ̃‖b‖∞)2−q < 1

2qΛ0

such that, for every λ ∈ (0, λ1) and µ ∈ (0, µ̃),

tmax,0(u+
λ,0) � tmax,µ(u+

λ,0) =
( (2 − q)‖u+

λ,0‖2
H1

(p − q)
∫

A
gµ(x)|u+

λ,0|p dx

)1/(p−2)

> 1.

Thus, by lemma 2.6,

Jfλ,g0(u) � Jfλ,gµ(u) � inf
0�t�tmax,µ(u)

Jfλ,gµ(tu) � α+
fλ,gµ

and so
α+

fλ,gµ
� α+

fλ,g0

for all λ ∈ (0, λ1) and µ ∈ (0, µ̃).
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(ii) First, we will show that there exists d0 > 0 independent of µ such that
‖u‖H1 � d0 for all λ ∈ (0, λ0), µ ∈ (0, µ̃) and for all u ∈ N−

fλ,gµ
with Jfλ,gµ(u) �

α+
fλ,gµ

+ α0(A). By (2.2),

α0(A) > α+
fλ,gµ

+ α0(A) � Jfλ,gµ(u)

=
p − 2
2p

‖u‖2
H1 − p − q

pq

∫
A

[λf+(x) + f−(x)]|u|q dx

� p − 2
2p

‖u‖2
H1 − p − q

pq
λ‖f+‖Lq∗ S−q/2‖u‖q

H1

� p − 2
2p

‖u‖2
H1 − p − q

pq
λ0‖f+‖Lq∗ S−q/2‖u‖q

H1 .

Then there exists d0 > 0 independent of λ, µ such that ‖u‖H1 � d0 for all λ ∈
(0, λ1), µ ∈ (0, µ̃) and for all u ∈ N−

fλ,gµ
with Jfλ,gµ(u) � α+

fλ,gµ
+ α0(A). Moreover,

there is a unique t−(u) > 0 such that t−(u)u ∈ N0,g0 , where

t−(u) =
( ‖u‖2

H1∫
RN |u|p dx

)1/(p−2)

<

[
(1 + µ‖b‖∞)(p − q)

(2 − q)

]1/(p−2)

.

Then, by lemma 2.6 and theorem 3.1,

Jfλ,gµ
(u) = sup

t�0
Jfλ,gµ

(tu) � Jfλ,gµ
(t−(u)u)

� J0,g0(t
−(u)u) − [t−(u)]q

q

∫
RN

fλ(x)|u|q dx − µ[t−(u)]p

p

∫
RN

b(x)|u|p dx

� α0(A) − [t−(u)]q

q

∫
RN

fλ(x)|u|q dx − µ[t−(u)]p

p

∫
RN

b(x)|u|p dx.

This implies that

[t−(u)]q

q

∫
RN

fλ(x)|u|q dx

� −α+
fλ,gµ

− µ[t−(u)]p

p

∫
RN

b(x)|u|p dx

> −α+
fλ,gµ

− µ

p

[
(1 + µ‖b‖∞)(p − q)

(2 − q)

]p/(p−2)

‖b‖∞S−2/pdp
0.

Since α+
fλ,gµ

� α+
fλ,g0

for all λ ∈ (0, λ1) and µ ∈ (0, µ̃), we have

[t−(u)]q

q

∫
RN

fλ(x)|u|q dx > −α+
fλ,g0

−µ

p

[
(1 + µ‖b‖∞)(p − q)

(2 − q)

]p/(p−2)

‖b‖∞S−2/pdp
0.

Thus, we can conclude that for every λ ∈ (0, λ1) and µ ∈ (0, µ̃) we have∫
RN

fλ(x)|u|q dx > 0

for all u ∈ N−
fλ,gµ

with Jfλ,gµ(u) � α+
fλ,gµ

+ α0(A).
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Let λ1, µ̃ > 0, as in lemma 5.5, and let

θ0 =
[
(1 + µ̃‖b/a‖∞)(p − q)

2 − q

×
(

1 + ‖f−‖Lq∗

(
(1 + µ̃‖b/a‖∞)(p − q)

S
(p−q)/(2−q)
p (2 − q)

)(2−q)/(p−2))]p/(p−2)

.

Then we have the following results.

Lemma 5.6. There exists a positive number λ2 � λ1 such that, for every λ ∈ (0, λ2)
and µ ∈ (0, µ̃), we have

(i) 1 < [t−0 (u)]p < θ0,

(ii)
∫

A

|u|p dx � qp

θ0(p − q)
α0(A) for all u ∈ N−

fλ,gµ
with

Jfλ,gµ
(u) < α+

fλ,gµ
(A) + α0(A).

Proof. (i) For u ∈ N−
fλ,gµ

with Jfλ,gµ
(u) < α+

fλ,gµ
(A) + α0(A), we have

‖u‖2
H1 −

∫
A

fλ(x)|u|q dx −
∫

A

gµ(x)|u|p dx = 0

and
(2 − q)‖u‖2

H1 < (p − q)
∫

A

gµ(x)|u|p dx.

By lemma 2.6(i) there is a unique t−0 (u) > 0 such that t−0 (u)u ∈ Nf0,g0 and so

[t−0 (u)]2‖u‖2
H1 = [t−0 (u)]q

∫
A

f−(x)|u|q dx + [t−0 (u)]p
∫

A

a|u|p dx

� [t−0 (u)]p
∫

A

gµ(x)|u|p dx.

This implies

[t−0 (u)]p−2 >
‖u‖2

H1∫
A

gµ(x)|u|p dx
= 1 +

∫
A

fλ(x)|u|q dx∫
A

gµ(x)|u|p dx

and so, by lemma 5.5(ii), t−0 (u) > 1. Moreover,

[t−0 (u)]p
∫

A

a|u|p dx = [t−0 (u)]2‖u‖2
H1 − [t−0 (u)]q

∫
A

f−(x)|u|q dx

< [t−0 (u)]2
(

‖u‖2
H1 −

∫
A

f−(x)|u|q dx

)
;

thus, we have

[t−0 (u)]p−2 �
‖u‖2

H1 +
∫

A
f−(x)|u|q dx∫

A
a|u|p dx

. (5.10)
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By u ∈ N−
fλ,gµ

and (2.3 b),

‖u‖2
H1 <

p − q

2 − q

∫
A

gµ(x)|u|p dx � p − q

2 − q
(1 + µ‖b/a‖∞)

∫
A

a(x)|u|p dx

� (1 + µ‖b/a‖∞)S−p/2
p

p − q

2 − q
‖u‖p

H1 (5.11)

and so

‖u‖H1 �
(

2 − q

(1 + µ‖b/a‖∞)(p − q)

)1/(p−2)

Sp/2(p−2)
p . (5.12)

Thus, by (5.10)–(5.12),

[t−0 (u)]p−2 � (1 + µ‖b/a‖∞)
(

p − q

2 − q

)(
1 +

∫
A

f−(x)|u|q dx

‖u‖2
H1

)

� (1 + µ‖b/a‖∞)
(

p − q

2 − q

)(
1 +

‖f−‖Lq∗

S
−q/2
p ‖u‖2−q

H1

)

� (1 + µ‖b/a‖∞)
(

p − q

2 − q

)

×
(

1 + S(q−p)/(p−2)
p

(
(1 + µ‖b/a‖∞)(p − q)

2 − q

)(2−q)/(p−2)

‖f−‖Lq∗

)

< (1 + µ0‖b/a‖∞)
(

p − q

2 − q

)

×
(

1 + S(q−p)/(p−2)
p

(
(1 + µ0‖b/a‖∞)(p − q)

2 − q

)(2−q)/(p−2)

‖f−‖Lq∗

)
or [t−0 (u)]p � θ0.

(ii) By lemma 5.1 and t−0 (u)u ∈ Nf0,g0 ,

α0(A) � Jf0,g0(t
−
0 (u)u)

=
(

1
2

− 1
q

)
[t−0 (u)]2‖u‖2

H1 +
(

1
q

− 1
p

)
[t−0 (u)]p

∫
A

|u|p dx

<

(
1
q

− 1
p

)
[t−0 (u)]p

∫
A

|u|p dx.

This implies ∫
A

|u|p dx � 1
[t−0 (u)]p

(
pq

p − q

)
α0(A).

By part (i), we can conclude that∫
A

|u|p dx � pq

θ0(p − q)
α0(A)

for all u ∈ N−
fλ,gµ

with Jfλ,gµ(u) < α+
fλ,gµ

(A) + α0(A). This completes the proof.
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Now, we consider the filtration of the submanifold N−
fλ,gµ

as follows:

Nλ,µ(A) = {u ∈ N−
fλ,gµ

| Jfλ,gµ
(u) � α+

fλ,gµ
(A) + α0(A)};

N+
λ,µ(A) =

{
u ∈ Nλ,µ(A)

∣∣∣∣
∫

A
+
0

|u|p <
pq

2θ0(p − q)
α0(A)

}
;

N−
λ,µ(A) =

{
u ∈ Nλ,µ(A)

∣∣∣∣
∫

A
−
0

|u|p <
pq

2θ0(p − q)
α0(A)

}
.

By the proof of proposition 4.1, for each l ∈ R with |l| � l1 there exists a positive
number t∗(l) such that u+

λ,µ + t∗wl ∈ N−
fλ,gµ

and

Jfλ,gµ
(u+

λ,µ + t∗(l)wl) < α+
fλ,gµ

(A) + α0(A).

This implies N±
λ,µ(A) �= ∅. Then we have the following result.

Lemma 5.7. There exist positive numbers λ0 � λ2 and µ0 � µ̃ such that, for every
λ ∈ (0, λ0) and µ ∈ (0, µ0), we have

(i) N±
λ,µ(A) �= ∅,

(ii) N+
λ,µ(A) ∩ N−

λ,µ(A) = ∅,

(iii) Nλ,µ(A) = N+
λ,µ(A) ∪ N−

λ,µ(A).

Proof. For u ∈ N−
fλ,gµ

with Jfλ,gµ(u) � α+
fλ,gµ

(A) + α0(A), by lemma 2.6(i) there
exists t−0 (u) > 0 such that t−0 (u)u ∈ Nf0,g0 . Moreover,

Jfλ,gµ(u) = sup
t�0

Jfλ,gµ(tu) � Jfλ,gµ(t−0 (u)u)

= Jf0,g0(t
−
0 (u)u) − λ[t−0 (u)]q

q

∫
A

f+(x)|u|q dx − µ[t−0 (u)]p

p

∫
A

g(x)|u|p dx.

Thus, by lemma 5.6 and the Hölder and Sobolev inequalities

Jf0,g0(t
−
0 (u)u) � Jfλ,gµ

(u) +
λ[t−0 (u)]q

q

∫
RN

f+(x)|u|q dx

+
µ[t−0 (u)]p

p

∫
RN

g(x)|u|p dx

< α+
fλ,gµ

(A) + α0(A) +
λθ

q/p
0

q
‖f+‖Lq∗ S−q/2

p ‖u‖q
H1

+
µθ0‖b‖∞

p
S−p/2

p ‖u‖p
H1 .

Since Jfλ,gµ(u) < α+
fλ,gµ

(A) + α0(A) < α0(A). By (2.2), there exists a positive num-
ber c̃ such that ‖u‖H1 � c̃ for all λ ∈ (0, λ2), µ ∈ [0, µ̃) and for all u ∈ N−

fλ,gµ
(A)

with Jfλ,gµ
(u) < α+

fλ,gµ
(A) + α0(A). Therefore,

Jf0,g0(t
−
0 (u)u) < α+

fλ,gµ
(A) + α0(A) +

λθ
q/p
0

q
‖f+‖Lq∗ S−q/2

p c̃q +
µθ0‖b‖∞

p
S−p/2

p c̃p.
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Let δ0 > 0 as in lemma 5.3. Then there exist positive numbers λ0 � λ2 and µ0 � µ̃
such that for λ ∈ (0, λ0) and µ ∈ [0, µ0),

Jf0,g0(t
−(u)u) < α0(A) + δ0. (5.13)

Since t−0 (u)u ∈ Nf0,g0 , by lemma 5.3 and (5.13) either∫
A

+
0

∣∣t−0 (u)u
∣∣p dx <

pq

2(p − q)
α0(A) or

∫
A

−
0

∣∣t−0 (u)u
∣∣p dx <

pq

2(p − q)
α0(A).

Then, by lemma 5.6(i), either∫
A

+
0

|u|p dx <
pq

2θ0(p − q)
α0(A) or

∫
A

−
0

|u|p dx <
pq

2θ0(p − q)
α0(A)

for all u ∈ N−
fλ,gµ

with Jfλ,gµ(u) < α+
fλ,gµ

(A) + α0(A). To complete the proof of
lemma 5.7, it remains to show that

N+
λ,µ(A) ∩ N−

λ,µ(A) = ∅.

Suppose the contrary. Then there exists u0 ∈ Nλ,µ(A) such that∫
A

+
0

|u|p dx <
pq

2θ0(p − q)
α0(A) and

∫
A

−
0

|u|p dx <
pq

2θ0(p − q)
α0(A).

By lemma 5.6(ii),

qp

θ0(p − q)
α0(A) �

∫
A

|u0|p dx �
∫

A
+
0

|u0|p dx +
∫

A
−
0

|u0|p dx <
qp

θ0(p − q)
α0(A),

which is a contradiction. This completes the proof.

Let N±
λ,µ(A) denote the closure of N±

λ,µ(A). Then we have the following result.

Lemma 5.8. N±
λ,µ(A) = N±

λ,µ(A).

Proof. The proofs of the ‘+’ and ‘−’ cases are similar. Therefore, we only need to
prove the ‘+’ case. Suppose that u0 is a limit point of N+

λ,µ(A). Then Jfλ,gµ(u0) �
α+

fλ,gµ
(A) + α0(A) and ∫

A
+
0

|u0|p dx � qp

θ0(p − q)
α0(A).

This implies u0 ∈ Nλ,µ(A). If∫
A

+
0

|u0|p dx =
qp

2θ0(p − q)
α0(A),

then by lemma 5.7 u0 ∈ N−
λ,µ(A). Thus, by lemma 5.6(ii),

qp

θ0(p − q)
α0(A) �

∫
A

|u0|p dx �
∫

A
+
0

|u0|p dx +
∫

A
−
0

|u0|p dx <
qp

θ0(p − q)
α0(A),

which is a contradiction. Thus, u0 ∈ N+
λ,µ(A) and so N+

λ,µ(A) = N+
λ,µ(A).
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6. Proof of theorem 1.1

First, we establish the existence of local minima for Jfλ,gµ
on N±

λ,µ(A). We need
the following result.

Proposition 6.1. Let λ0, µ0 > 0, as in lemma 5.7. Then, for each λ ∈ (0, λ0) and
µ ∈ (0, µ0), there exist minimizing sequences {u±

n } ⊂ N±
λ,µ(A) such that

Jfλ,gµ(u±
n ) = σ±

λ,µ + o(1) and J ′
fλ,gµ

(u±
n ) = o(1) in H−1(A),

where σ±
λ,µ = inf{Jfλ,gµ

(u) | u ∈ N±
λ,µ(A)}.

Proof. Analogously to the proof of [37, proposition 9], one can show that by the
Ekeland variational principle [21] there exist minimizing sequences {u±

n } ⊂ N±
λ,µ(A)

such that

Jfλ,gµ(u±
n ) = σ±

λ,µ + o(1) and J ′
fλ,gµ

(u±
n ) = o(1) in H−1(A).

We will omit a more detailed proof here.

Theorem 6.2. Let λ0, µ0 > 0, as in lemma 5.7. Then for each, λ ∈ (0, λ0) and
µ ∈ (0, µ0), equation (Efλ,gµ) has positive solutions u±

0 ∈ N±
λ,µ(A) such that

Jfλ,gµ(u±
0 ) = σ±

λ,µ.

Proof. By proposition 6.1, there exist sequences {u±
n } ⊂ N±

λ,µ(A) such that

Jfλ,gµ
(u±

n ) = σ±
λ,µ + o(1) and J ′

fλ,gµ
(u±

n ) = o(1) in H−1(A).

Since σ±(δ) < α+
fλ,gµ

(A) + α0(A), by proposition 3.2 and lemma 5.8 there exist sub-
sequences {u±

n } and u±
0 ∈ N±

λ,µ(A) which are non-zero solutions of equation (Efλ,gµ
)

such that
u±

n → u±
0 strongly in H1

0 (A).

Since Jfλ,gµ
(u±

0 ) = Jfλ,gµ
(|u±

0 |) and |u±
0 | ∈ N±

λ,µ(A), by lemma 2.3, we may assume
that u±

0 are positive solutions of equation (Efλ,gµ).

Sketch of the proof of theorem 1.1.
(i) Combining the results of theorems 3.3 and 4.2, equation (Efλ,gµ

) has two positive
solutions u+

λ,µ and u−
λ,µ such that u+

λ,µ ∈ N+
fλ,gµ

, u−
λ,µ ∈ N−

fλ,gµ
. Since

N+
fλ,gµ

∩ N−
fλ,gµ

= ∅,

this implies that u+
λ,µ and u−

λ,µ are different.

(ii) Combining the results of theorems 3.3 and 6.2, equation (Efλ,gµ) has three
positive solutions u+

λ,µ, u+
0 and u−

0 such that u+
λ,µ ∈ N+

fλ,gµ
and u±

0 ∈ N±
λ,µ(A).

Since
N+

fλ,gµ
∩ N−

fλ,gµ
= ∅ and N+

λ,µ(A) ∩ N−
λ,µ(A) = ∅,

this implies that u+
λ,µ, u+

0 and u−
0 are different.
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