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Abstract

This paper presents the use of data clustering methods applied to the analysis results of a design-stage, functional failure
reasoning tool. A system simulation using qualitative descriptions of component behaviors and a functional reasoning
tool are used to identify the functional impact of a large set of potential single and multiple fault scenarios. The impact
of each scenario is collected as the set of categorical function “health” states for each component-level function in the sys-
tem. This data represents the space of potential system states. The clustering and statistical tools presented in this paper are
used to identify patterns in this system state space. These patterns reflect the underlying emergent failure behavior of the
system. Specifically, two data analysis tools are presented and compared. First, a modified k-means clustering algorithm
is used with a distance metric of functional effect similarity. Second, a statistical approach known as latent class analysis
is used to find an underlying probability model of potential system failure states. These tools are used to reason about how
the system responds to complex fault scenarios and assists in identifying potential design changes for fault mitigation. As
computational power increases, the ability to reason with large sets of data becomes as critical as the analysis methods used
to collect that data. The goal of this work is to provide complex system designers with a means of using early design simu-
lation data to identify and mitigate potential emergent failure behavior.
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1. INTRODUCTION

Unexpected and underanalyzed interactions between compo-
nents and subsystems is a causal factor for many catastrophic
system failures. While individual component failure modes
can be modeled and predicted, the system-level effect of mul-
tiple faults across subsystem boundaries (software, hardware,
etc.) is challenging to identify. Methods of risk-based and
safety-centric design have been developed to address this
challenge and impact the design decision-making process.
A few methods use qualitative simulation of component be-
havior to provide an analysis of the system-level impact fail-
ures in terms of lost functional capability. Reasoning on the
functional effect of failures provides designers with the infor-
mation needed to understand the potential impact of faults in
a risk-informed approach to design.

The challenge of risk assessment at the design stage is the
lack of refined system information. Traditional methods of
failure and risk analysis rely on statistical failure data and

apply methods where expert knowledge of the system is
needed to know the impact and path of fault propagation.
For this reason, risk assessment traditionally occurs at the val-
idation stage of a well-refined design, where specific compo-
nent failure probabilities and likely fault propagation paths
can be defined. However, to achieve the benefits of early
risk-based decision making, several methods of failure anal-
ysis based on functional system descriptions have been devel-
oped. While some of these design-stage methods use historic
failure rates associated with the component types or functions
to identify risk (Stone et al., 2005; Grantham-Lough et al.,
2009), others have used a behavioral approach to determine
the potential impact of failures (Krus & Grantham Lough,
2007; Huang & Jin, 2008; Kurtoglu et al., 2008). By includ-
ing component behavior information in the analysis, these lat-
ter approaches can simulate fault propagation and identify the
effect of a fault within the context of the designed system.
Early design-stage failure analysis is a powerful decision-
making tool, allowing designers to make changes to decrease
the risk of single, multiple, or cascading faults (Kurtoglu
et al., 2010). However, the functional approach also enables
a high degree of failure characterization. Understanding the
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ways in which a system design can fail provides designers
with the information to develop more robust alternatives.

The function failure identification and propagation (FFIP)
framework is one of the methods for assessing the functional
impact of faults in the early design stage (Kurtoglu et al.,
2008). The result of using an FFIP-based analysis of a design
is an evaluation of the state of each function in the system in
response to a simulated failure scenario. In previous work,
these results have been used to evaluate the consequence of
different fault scenarios for a system design (Jensen et al.,
2009b; Papakonstantinou et al., 2011; Sierla et al., 2012)
and for making design decisions based on fault consequence
(Kurtoglu et al., 2010). In this work, we take a different ap-
proach. Instead of looking at the functional effect of a single
fault scenario, we reason on the total set of effects from dif-
ferent scenarios to make design decisions.

Identifying the system-level functional effect is key to
using potential failure behavior information for design deci-
sion making. For example, the decision between using two
different technologies should be informed by how faults in
those technologies and faults in the rest of the system interact-
ing with that technology to affect the mission objectives. For
this reason, top-down safety-based design methods such as
STAMP (Dulac & Leveson, 2005; Leveson, 2011) use the
control of undesired system functional states to develop the
system architecture requirements. The challenge for top-
down methods is providing assurance of completeness in cap-
turing the potential low-level causes that might lead to the
undesirable system state. Similarly, with bottom-up simula-
tion methods such as FFIP, interpreting the overall system-
level functional effect from a composite set of component-
level functional effects is challenging for complex systems.
For example, an electrical short is simple to simulate and to
identify the functional effect to that component and other
components on the same circuit. However, identifying sys-
tem-level functions affected by this fault is challenging and
usually relies on expert knowledge of the system. We see
that there is a connection between the top-down and bot-
tom-up approaches, and this paper demonstrates that data
analysis and clustering techniques can be used to identify
classes of potential system behavior from the simulation at
the component level.

To summarize, the overarching objective of this work is to
develop a design-stage simulation and analysis tool set that
uses simulation data to reason about the functional robustness
of systems to potential component faults and fault propaga-
tion. This type of approach is intended to enable designers
to compare potential system architectures, identify compo-
nent and subsystem behaviors that lead to undesired system
states, and assess the impact of complex fault scenarios. In or-
der to achieve this high-level objective, there are three spe-
cific objectives that this presented method addresses:

1. Characterize the impacts of a large space of the potential
complex failure scenarios. (In what types of ways does
the system fail?)

2. Identify the system-level importance of the sets of po-
tential system failures. (What does each type of failure
mean in terms of system functionality?)

3. Determine how this analysis can be used to make sys-
tem design decisions. (Can we use this data for a sys-
tems view of functional robustness?)

By addressing the first objective, this method moves beyond
single scenarios analysis and begins to develop a system-level
characterization based on simulation of component behav-
ior. The result of completing the first objective is distinct
types of system failure analogous to failure modes for the
system. However, because these are identified through
simulation and data analysis, the types of system failure
must be related to the system-level functionality. In this
way, the second objective enables this method to link
top-down and bottom-up analysis methods. The third objec-
tive begins to address how this approach can fit within the
overall systems design processes.

1.1. Terminology

Due to the need to use terms that are found and defined dif-
ferently in multiple disciplines, the following definitions
are intended for this paper.

Component: Any physical, software, or human element in a
system that has nominal and failure behavior.

Fault/failure mode: A discrete behavior of a component dif-
ferent from the nominal behaviors.

Fault scenario: The set of nominal and faulty component
modes provided to the system simulation. Each component
is in exactly one state at one time.

Flow: The energy, material, and signal that connects the func-
tions of the system.

Function: The action a designer intends in the system that af-
fects the flow of material, energy, or signal.

Function health state: The evaluation of the relationship be-
tween a components behavior and its intended function.
With the following categories:

Healthy: Function acts on flow as intended.
Degraded: Function acts on flow but not as intended.
Lost: Function does not act on flow.
No flow: There is no flow on which the function could act

(a type of lost).

System state: The set of health states for all functions resulting
from the simulation of one fault scenario.

2. BACKGROUND

This section discusses the three technical areas used in this
paper and presents some detail of the example system. First,
we discuss FFIP, which is the source of the data on which
the analysis and clustering methods will be applied. Second,
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we provide background on the method of clustering data
using a k-means algorithm. Third, we present a categorical
data-clustering approach for identifying an underlying prob-
abilistic model for the structure of the data, namely, latent
class analysis (LCA).

2.1. Function failure analysis in early design

The FFIP framework (Jensen et al., 2008, 2009b; Kurtoglu &
Tumer, 2008; Jensen et al., 2009a; Kurtoglu et al., 2010; Tu-
mer & Smidts, 2010; Coatanéa et al., 2011; Papakonstantinou
et al., 2011; Sierla et al., 2012) was introduced as a design-
stage method for reasoning about failures based on the map-
ping between components, functions, and nominal and off-
nominal behavior. The goal of the FFIP method is to identify
failure propagation paths by mapping component behavior
states to function “health.” This approach uses simulation to
determine fault propagation and fault effect, thus providing
the designer with the possibility of analyzing component
and interaction failures and reasoning about their effects on
the rest of the system. The two main advantages of the
FFIP method are: a functional abstraction that allows it to
be used in complex systems employing both software and
physical components; and a simulation-based approach al-
lowing analysis of multiple and cascading faults.

An FFIP analysis begins with a functional representation of
a system and utilizes the mapping of functions to components
in a component structural representation. A system simulation
is built following the structural representation. The nominal
and faulty behavior of generic components are stored as state
machines in a component library. Each state represents a be-
havioral mode of the component where the qualitative inter-
vals (high, low, etc.) of the input flow attributes are converted
to output flow attributes. For example, in the nominal mode of
a fuel line, the input flow level of fuel is the same as the out-
put. However, in the blockage fault mode, the output flow
level is reduced to zero. Finally, the main contribution of
the FFIP approach is the function failure logic reasoner,
which relates the input and output attributes of the component
simulation to the expected change in the function mapped to
those components. The result of the FFIP analysis is an evalu-
ation of the health state of each function in the system. There
are four potential health states for a function defined below.
These states are based on the concept that a function is the ex-
pression of the designer’s intent and describes the actions that
affect the flows of energy, material, and signal in the system.

1. Healthy: The function affects the flow as intended.
2. Degraded: The function affects the flow different than

intended.
3. Lost: The function does not affect the flow.
4. No flow: There is no flow for the function to act on

(usually due to an upstream failure).

In FFIP, a failure event is the triggering of one or more
component transitions. Based on the behavioral simulation,

the functional impact is identified by the function failure logic
reasoner. Each event scenario simulated produces one record.
These records will be used by the clustering approaches dem-
onstrated in this paper.

2.2. Data clustering

Separating data into clusters or partitions has been a useful ac-
tivity in the data-mining community to elicit meaning from
large data sets (Han et al., 2006). Starting with the classifica-
tion of human traits and personality in the 1930s–1940s,
clustering analysis continues to be an important tool to enable
machine learning. Multiple methods and algorithms have
been developed based on different perspectives on the mean-
ing of a cluster (Estivill-Castro, 2002). There are three main
approaches to clustering with multiple methods and algo-
rithms supporting them.

Hierarchical clustering assumes that some category or clas-
sification captures all the data and that data points can further
be subclassified into more specific groups in a tree structure.
In biology, the Linnaeus taxonomy of living things is an ex-
ample of hierarchical clustering. Hierarchical methods often
relate one or more data points by their similarity.

In contrast to hierarchical methods, partitioning methods
separate the data space into different clusters without imply-
ing a higher level relationship between those clusters. Data
points are related based on a measure of the distance between
values. Algorithms that implement partitioning identify cen-
troids of the clusters and then group all data points into a pre-
determined number of clusters based on their distance from
that centroid. One method of data partitioning that evaluates
the Euclidean distance between data points is k-means clus-
tering (Lloyd, 1982).

Two significant issues of k-means clustering are that the
number of clusters must be selected first and that data points
may only have membership in one cluster. To address the first
issue, heuristic rules such as choosing k based on the square
root of half the data set size can provide an initial assessment
(Mardia et al., 1980). Evaluation of the correctness of the value
of k can be done through heuristic metrics as well. Variations of
k-means known as soft or fuzzy clustering methods use a sim-
ilar approach but instead provide membership percentages.

The third category of data-clustering methods is model
based. These methods assume some structure to the data
and try to find the correct statistical model to match that struc-
ture. Methods in this category use different means of estimat-
ing and finding the maximum likelihood of the data fitting
the parameters of a statistical model (Pearl, 2000; MacKay,
2003). These methods assume that the reason some data
points are related to other data points is due to some unob-
served (or latent) variable. Unlike k-means, data points have
a probability of being within a particular cluster based on their
dependence to that unobserved variable. There are many var-
iations of model-based clustering depending on the form of
the data and the likely form of the clusters. For the analysis
of function-based failure simulation data, the most appropri-
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ate model-based method is LCA. The details of this analysis
and the justification for its use in this work are presented next.

2.3. LCA

Social scientists have used the concept of latent classes since
the 1950s (Lazarsfeld & Koch, 1959). Manifest (or observed)
variables are the data of empirical studies. A latent variable is
one not directly tested but is nevertheless correlated to observa-
tions of the manifest variables. If the latent variable is contin-
uous, then methods such as factor analysis and multivariate
mixture estimation can be used to find this structure. However,
if the latent variables have discrete categories, then the struc-
ture fits a latent class model (Vermunt & Magidson, 2004).
As an example, survey questions on personal views of several
political topics can form the parameters of a statistical model.
LCA on the survey data could be used to identify subgroups
into which the respondents are classified. Groups identified
within this data would likely correspond to labels like “conser-
vative” and “liberal.” There are three main results from per-
forming an LCA. First, each data point has a probabilistic
membership to each class of the latent variable (e.g., the re-
spondent’s likely political leaning). Second, each discrete vari-
able state is correlated to a latent class (e.g., liberals have a high
probability of answering affirmatively to question three). The
third component of the LCA output is class membership per-
centages for the entire data set (e.g., 40% conservative).

Formally, the latent class model is based on the concept
that the probability of observing a specific pattern (Y ) of man-
ifest variable states y, denoted P(Y¼ y), is a weighted average
of the C class-specific probabilities P(Y ¼ yjX ¼ x), where X
is a latent variable with C number of classes. Weighting with
the proportion of that class to the latent variable P(X ¼ x) re-
sults in Equation (1).

P(Y ¼ y) ¼
XC

x¼1
P(X ¼ x)P(Y ¼ yjX ¼ x): (1)

Further, the manifest variables within a class, Yl are as-
sumed to be locally independent. Therefore, Equation (2) de-
fines the probability of observing a pattern in the L manifest
variables within a class.

P(Y ¼ yjX ¼ x) ¼
QL

l¼1
P(Yl ¼ yljX ¼ x): (2)

Using the political example above, (Y) is the pattern of an-
swers associated with a political group answering the specific
questions y. This pattern is independent within each of the
discrete political groups in X.

As with k-means data clustering, algorithms for imple-
menting LCA use expectation maximization for a predefined
number of groups. Therefore, LCA must be executed itera-
tively in order to identify the correct number of classes for
the latent variables. Identifying the goodness of fit of the la-
tent class model is typically accomplished by examining

either the Akaike information criterion (AIC) or the Bayesian
information criterion (BIC). These are metrics to estimate the
information entropy (information lost) when a statistical
model is used to describe reality. The AIC formulation modi-
fies the log-likelihood estimation by the number of parame-
ters, punishing overfitting models. The objective in checking
goodness of fit with AIC is to find the minimum of Equation
(3), where K is the number of parameters and L the likelihood
function for the statistical model. The BIC formulation is sim-
ilar but accounts for the sample data size.

AIC ¼ 2K � ln (L): (3)

LCA was chosen as a clustering method over other cluster-
ing methods because the manifest variables are the discrete
health states of each function in the system. In addition, the hy-
pothesis of this work is that the failure behavior of a system is
also categorical. This categorical system-level failure is the la-
tent variable in our analysis. The discrete (and ordinal) nature
of the variables rules out other multivariate mixture models.

2.4. Example system

To demonstrate the clustering approaches applied to function
failure analysis results, we perform an FFIP analysis on a de-
sign concept of an electrical power system (EPS). This exam-
ple system will be used to simulate numerous fault scenarios,
identify the set of functional impacts for each scenario, and
apply the clustering algorithms to find patterns of system fail-
ure behavior. This EPS example is an early design-stage
model that uses batteries to provide power for a set of AC
and DC loads. This example is based on the design of the
Advanced Diagnostic and Prognostic testbed located at the
NASA Ames Research Center (Poll, 2007). In previous
work, various potential design architectures were compared
using a quantified interpretation of the FFIP results (Kurtoglu
et al., 2010). The example used in this work expands upon a
similar but less complex example (Jensen et al., 2012).

As seen in Figure 1, the concept for the EPS is a fault-
tolerant software-controlled hardware system. At the system
level, three operational states are recognized: nominal, when
both load banks of AC and DC loads are operational; degraded,
when only one of the load banks is operational; and lost, when
neither load bank is operational. The purpose of the software
control is to automatically maintain operation at a nominal state
if possible and a degraded state otherwise. By evaluating the
voltage levels in both the load banks and both battery banks,
the controller decides to open or close relays 1 through 4. The
first rule implemented in the software control is that no two bat-
teries can be connected together. For example, relays 1 and 4
cannot both be closed while there is power available from
both batteries, or an electrical over current will occur. After
this rule, the controller observes the voltage and relay position
sensor values to determine which relays to open or close to en-
sure continued operation. In a fault scenario, the controller can
decide to swap power, so that the first battery powers the second
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load and vice versa, or simply to shut down one line and run at a
degraded state. The control logic is implemented with a truth ta-
ble, where values of sensors correspond to specific relay posi-
tions. The control attempts to keep the system in the best oper-
ating state as described in Table 1. In this table, the term “Batt1
! Load1” indicates that battery bank 1 is powering load bank 1.

This fault-tolerant example system enables the identifica-
tion of high-level system goals such as maintain load opera-
tion and illustrates fault propagation over both software and
hardware components. This example system is complicated
enough to demonstrate the clustering methods, yet it still pro-
vides clarity in the impact of complex faults. The FFIP anal-
ysis has also been demonstrated on a more complicated sys-
tem (nuclear power generation; Papakonstantinou et al.,
2011; Sierla et al., 2012).

3. METHODS

The development and justification of the functional effect anal-
ysis using the FFIP methodology is documented in previous
work (Kurtoglu & Tumer, 2008; Jensen et al., 2009a; Kurtoglu
et al., 2010; Papakonstantinou et al., 2011; Sierla et al., 2012)

and will not be repeated here. Because the motivation of this
work is to use data analysis techniques to identify underlying
system behavior, we begin with collecting the analysis results
from the FFIP-based simulation. Other methods of design anal-
ysis and simulation could be used instead. The two things that
are needed to apply these techniques is a large number of be-
haviors to simulate (many scenarios) and multiple data points
to describe each scenario. FFIP provides this by the ability to
simulate single and multiple fault scenarios as well as varia-
tions in flow parameters. Further, for each scenario simulated,
the result is the health state of each component-level function in
the system. These function health states are the variables that
describe the system state in response to the simulated scenario.
In the following sections, we discuss the simulation and collec-
tion of functional effect failure data and the application of the
similarity clustering and probabilistic LCA.

3.1. Identifying the functional impact of component
faults and interactions

The impact of different component fault modes is identified
for the EPS using a simulation of the system built by connect-

Fig. 1. Architecture of the electrical power system used for function-based failure analysis and results clustering.

Table 1. Operational states the software control attempts to maintain

Nominal Degraded Lost

State 1 State 2 State 3 State 4 State 7

Batt1 � Load1
Batt2 � Load2

Batt1 � Load2
Batt2 � Load1

Batt1 � Load1 Batt2 � Load2 No Action

State 5 State 6

Batt1 � Load2 Batt2 � Load1
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ing component models created with the Stateflow toolbox in
Matlab Simulink. A scenario is simulated where one or more
faults is triggered and the resulting changes in system dynam-
ics are allowed to propagate. The output of each simulation is
the function health state of each component-level function.
For example, one scenario includes triggering the failure be-
havior for both batteries. To simulate this scenario, the system
simulation begins with all components operating nominally.
Then after 25 time steps, the first battery’s operating mode
is changed to “failed–disconnected.” The effects of this
change is the loss of current and voltage from that component.
After 50 time steps, the second battery’s operating state is
changed in the same way. The effect of these changes is al-
lowed to propagate through the system. In this example, the
software controller attempts to switch between sources by
changing which relays are closed. Finding no solution that
provided power to the loads, the software controller defaults
to opening all relays as a failure safety measure. After 100
time steps, the simulation is ended, and the final function
health states for each component-level function is recorded
as the result for that scenario. The injection of failures at
25 and 50 time steps is arbitrary. Through analysis of numer-
ous simulation, it was found that the state machines used need
4 to 8 time steps to reach a steady state. Further, reducing
the time between failure mode insertion resulted in no
change to the final system state. However, the order of the
fault mode changes did affect the final system state results
for many scenarios (excluding the one above). Therefore,
every order of faults is also simulated. Because this system
has 58 component-level functions, the result of simulating a
scenario is a vector where each element corresponds to the
health state of each of the 58 functions. These function
health states are recorded as integers from 1 to 4 to ease
data handling.

Using a Matlab script, a large set of scenario results is gen-
erated; first simulating each component fault mode as a single
fault scenario and then two fault combinations. Three or more
fault scenarios can also be generated in the same manner.
While simulating three or more scenarios is possible, for
this example system the limited number of components
resulted in few unique system states for more than two failure
scenarios. For this system, simulating every possible combi-
nation of two faults is not computationally expensive. How-
ever, for more complex systems, there are three possible
ways for guiding the scenario selection and simulation pro-
cess. First, expert knowledge can provide direction on the
components that are likely to negatively interact and have
known fault causation or simply using proximity. Second,
fault modes can be stimulated based on the relationship be-
tween causes and symptoms of faults (Jensen et al., 2009b).
This latter approach is based on triggering failure modes in
components with fault symptoms (e.g., leaking), which are
of the same type as fault causes (e.g., exposure to liquid).
Third, the clusters generated using the approach may provide
guidance in identifying fault modes that should be simulated
together in an iterative approach.

Function failure analysis results are collected from each
scenario in a matrix where each row is a separate scenario
and the columns correspond to the resulting identified health
state of the component functions. For the clustering analysis,
three sets of scenarios were generated. The first set of results
tested each failure mode of each component, resulting in 193
simulations. The second and third sets of scenarios tested two
fault scenarios. The difference between these last two sets
was a reversal of the order in which the faults where tested
(e.g., battery fault then relay fault, and reversed order in the
third set). For the three sets, this generated 37,299 fault simu-
lation records. Both fault orderings were included because it
is possible that the order of faults may change the system-
level effects.

3.2. Preprocessing to enhance clustering effectiveness

The clustering methods demonstrated in this work are applied
to find similarities and structure between different fault sce-
narios. However, the first level of grouping is to identify
which fault scenarios resulted in identical functional results.
These represent scenarios that cannot be functionally distin-
guished from each other. For example, faults in two loads
that both cause high current draw can trip a breaker. The large
number of combinations of two-load faults results in a large
set of identical faults, that is, they all result in the same tripped
breaker and subsequent loss of power. This grouping is
accomplished through a simple sorting algorithm that groups
identical scenario results into bins. Selecting one scenario re-
sult from each bin represents the set of unique system states.
When applied to the EPS example system, the 37,299 total
scenarios were sorted and 3509 unique system states were
identified. The significant reduction reflects a large number
of identical functional impacts. Many of these identical im-
pacts are related to faults in the sensors, which all had five
failure modes but resulted in little effect to the system because
the controllers that use those sensors were not simulated. The
exception to this was failures in the sensors used by the con-
troller, where faults did result in a change in the behavior of
the system. The unique system states represent one or more
failure scenario results and are the data provided to the clus-
tering methods.

3.3. Clustering of results based on functional
similarity

The motivation for implementing similarity clustering is to
identify groupings of failure scenarios and aid designers in
creating robust mitigation methods. For example, if a system
designer knows of a particular undesirable system state, then
finding all scenarios that lead to a similar functional state can
identify if adequate control methods have been implemented.
In order to identify the relationship between two system
states, we must develop a metric of distance between function
health states. In data-clustering methods, the distance be-
tween variables can be determined based on the Euclidean
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distance between the variable values (Distance ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2
p

).
However, the values chosen to represent health states are cat-
egorical numbers not nominal numbers, which violates an un-
derlying assumption in the Euclidean formulation. Therefore,
we introduce a functional distance metric based on functional
impact. A relational table (Table 2) is generated to define the
similarity between function health states. For this analysis, we
identify “Lost” and “No Flow” as having no significant func-
tional difference to the system. Here, designers could choose
to increase the distance of off-nominal states to effectively
punish and group those scenarios as being worse. Because
a low system-knowledge approach is being used for this
example, all states have a single unit of difference. For exam-
ple, we can consider a system with two functions and com-
pare the similarity of two fault scenarios. If the resulting sys-
tem state from Scenario 1 is fHealthy, Lostg and the system
state from Scenario 2 is fDegraded, NoFlowg, then the Eu-
clidean distance between these two using the relation matrix
in Table 2 is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ 02
p

, or 1.
Table 2 is one way to quantify the qualitative distance be-

tween functional health states. The k-means clustering algo-
rithm was also applied to the same simulation results, using
different distance values and where “No Flow” and “Lost”
were not equivalent. The cluster centroid and distances be-
tween centroids changes when this scale is changed. How-
ever, when comparing the population of scenarios between
clusters using different distance matrices, the average error
is about 0.5%. This is within the normal variation of the algo-
rithm when repeated with the same relational matrix. As a re-
sult of this finding, it is clear that the concept of functional
similarity is strongly dependent on the scale used in this rela-
tional matrix. However, population of the clusters and the re-
sulting meaning of those clusters are consistent across scales.

3.3.1. Results of similarity clustering

The total distance is calculated by summing over the dis-
tance for each function health state. A weighting for func-
tional importance could be incorporated into this step.
However, for this analysis each function is given equal impor-
tance. This algorithm identifies the functional similarity
using Table 2 for each low-level function. Because there is
no way to know a priori how many clusters to expect, we re-
peatedly call the k-means algorithm to cluster the data using
1–10 clusters. In addition, the algorithm is replicated 100
times for each clustering to avoid local minimums. There
are several recognized methods of identifying the appropriate

number of clusters. The first approach implemented is the
“knee method” (MacKay, 2003), where the within-cluster
sum of square distance to the cluster centroid is plotted.
When additional clusters do not substantially change the
within-cluster sum of square, there is no need to further clus-
ter the data. Using the EPS example data, the inflection point
appears between 5 and 7 clusters (see Fig. 2a). This ambiguity
results in the need for a second cluster validation method. By
comparison of the dispersion of the scenario similarities
within a cluster and the dispersion of the impacts of those sce-
narios, it is possible to identify the appropriateness of the
clustering groups. For this work, a plot is developed where
cluster centroids are plotted against the sum of their function
health states normalized by the total number of functions.
That is, a vertical value of 1 indicates that all functions are
at the healthy state (a nominal scenario). If all component
functions in the system were lost in a scenario, then the nor-
malized impact would be 4. Vertical position gives an esti-
mate of the scope of the system affected by the fault. Each
scenario in a cluster is then plotted based on a horizontal po-
sition representing the distance of that scenario to the cluster
centroid and a vertical position based on the normalized sum
of function health states. Selecting to use five clusters for the
k-means algorithm, the plot shown in Figure 2b illustrates the
variance of the distances from the cluster centroid in the hor-
izontal direction and the variance of the scenario impacts in
the vertical direction.

For this example system, Table 3 records the mean and
coefficient of variation for each cluster for the distance
from the centroids and the normalized impact of the scenario.
The coefficient of variation (CV) is the ratio of the standard
deviation and the mean of a population, where larger numbers
indicate greater dispersion of the data. For the distance metric,
the CV indicates how similar the scenarios in the cluster are to
each other. For the impact metric, the CV shows the variation
in the impact for scenarios in that cluster. Based on this data,
the scenarios with the least similarity are in clusters 3 and
5. Similarly, the most diverse set of impacts is in found in
clusters 1 and 3. Based on this analysis, cluster 3 has the po-
tential to have very dissimilar scenarios with somewhat sig-
nificant differences in total functional impact. Because there
was ambiguity in the correct number of clusters between 5
and 7 and the potential for cluster 3 to be subdivided, 6 clus-
ters where selected for the analysis of scenario similarity.

3.4. The LCA method

The second method of grouping the failure results is focused
on identifying patterns of failure behavior. For this method, a
LCA is performed on the 3509 unique fault simulation results
using the package poLCA (Linzer & Lewis, 2011a, 2011b)
for the statistical software tool R (R Development Core
Team, 2011). The poLCA package treats the manifest vari-
ables as categorical. The manifest variables in this analysis
are the function health states, and the latent variable describes
the system failure behavior. Similar to the k-means clustering,

Table 2. Relational matrix for identifying the distance between
function health states

State Healthy Degraded Lost No Flow

Healthy 0 1 2 2
Degraded 1 0 1 1
Lost 2 1 0 0
No flow 2 1 0 0
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the number of latent variable classes must be specified prior to
the analysis. Therefore, an iterative approach is also taken to fit
multiple latent class models with different numbers of classes.
In order to avoid local maxima, the poLCA classification algo-
rithm is executed 10 times for each specified number of
classes. The correct number of classes is identified as the latent
class model with the lowest AIC and the lowest BIC.

Once the correct latent class model is identified, there are
three desired outputs from the LCA. The first output is a set

of conditional probability tables for each manifest variable.
These tables identify the probability of finding a manifest vari-
able at a specific state for each category of the latent variable.
In the context of this analysis, this indicates that if a failure
event is of a particular class of system failure, then the function
is likely to be in a specific state (healthy, degraded, etc.) The
second output uses these probability tables to identify the pos-
terior probability of a scenario belonging to each class of the
latent variable. This is the output used for the probabilistic

Fig. 2. Summary of results for applying a modified k-means clustering to the unique system failure states. (a) The sum of the within-cluster
square distance of scenarios to the centroid of their respective cluster. (b) Graphing clusters based on their distance from centroid and total
scenario impact with five clusters. Cluster 3 has both vertical (impact) variance and horizontal (similarity) variance and could be separated
into two clusters.

Table 3. Evaluating cluster distance and impact mean and coefficient of variation

Metric Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Distance centroid Mean ¼ ll.99
CV ¼ 0.39

Mean ¼ 7.54
V ¼ 0.3

Mean ¼ 7.48
CV ¼ 0.90

Mean ¼ 8.03
CV ¼ 0.26

Mean ¼ 5.73
CV ¼ 0.92

Normalized scenario impact Mean ¼ l.44
CV ¼ 0.l0

Mean ¼ 1.11
CV ¼ 0.02

Mean ¼ l.28
CV ¼ 0.l8

Mean ¼ l.08
CV ¼ 0.02

Mean ¼ 1.31
CV ¼ 0.04
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classification of the failure events. Third, the proportion of
each classification is reported. This leads to the identification
of the class with the largest membership of failure events.

3.4.1. Results of model-based clustering

The AIC and BIC tend to flatten when evaluating latent
models with more classes. Implementing a LCA on the exam-
ple system data set, minima of AIC and BIC can be seen at
five classes and eight classes. Unlike k-means clustering,
LCA can identify probabilistic membership of scenarios
into each class. Due to the low level of emergent behavior
in this system, scenarios were classified into each class with
very high confidence. The classification of individual scenar-
ios in five or eight latent classes was compared, and five
classes was selected due to the tendency to split 100% confi-
dent classification in the five-class model into two or more
groups with partial classification in the eight-class model.

The meaning of the different classes is not directly found
but must be inferred from the resulting groups. That is, if
the system is found to have five different classes of failure,
providing a description of those failure classes cannot be gen-
erated from the analysis but requires expert knowledge. The
normal approach in an LCA is to compare the probabilities
of observing a particular variable (function) state within a
class to develop descriptions for that class. However, given
58 function variables that each have four different states,
this task can be very challenging and is not scalable to large
systems. Instead, by comparing the classification provided by
LCA to the clustering found through the modified k-means,

these groups can be readily identified. This will be discussed
in the next section.

3.5. Comparing and validating clustering methods

The modified k-means clustering partitioned all of the unique
scenario result states into six clusters. Each scenario result
then has two properties: the normalized total impact of that
scenario and the distance of that scenario from the theoretical
centroid of the cluster in which it belongs. This distance is a
measure of functional similarity over the identified 58 func-
tions in the space. Scenarios very near the centroid are the
“typical” scenarios for that cluster.

The result of the LCA model is a predictive description of
the latent failure behavior and the probabilities of observing
a particular function’s state. Comparing this model-based ap-
proach to the k-means approach has two benefits. First, LCA
provides a mathematical validation of the partitioning of the
k-means method when the two clustering methods agree. Sec-
ond, the centroid of the k-means cluster can be used to iden-
tify the meaning of the matching LCA cluster.

In Figure 3, the k-means clusters are plotted based on total
normalized impact and their distance from the cluster cen-
troid. The classification of scenarios by the LCA and the
modified k-means was inconsistent for 26 of the 3509 unique
scenarios. The scenarios that where classified differently by
the two methods are noted with diamonds in Figure 3. Be-
cause this plot compares similarity and normalized impact,
some of the markers overlap. This means that these scenarios

Fig. 3. Comparing the clustering found through the k-means and latent class analysis method. Discrepancies are marked with diamonds.
Note that some markers overlap.
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are equally different from the cluster centroid and affect the
same number of functions. It does not mean that the final sys-
tem state of these scenarios is identical.

There are two metrics for evaluating the consistency of the
clusters found by the two algorithms. In Table 4 both metrics
are shown for the five class LCA results and the six clusters
from the k-means algorithm. Using the first metric to compare
if the scenario populations are consistent, the union of cluster
membership is evaluated. In Table 4, the number below each
cluster name is the total number of scenarios classified into
that cluster or class. The integers within the table show the
membership union. For example, two of the scenarios found
in the third LCA class are also found in second cluster from
the k-means algorithm. The numerical order provided by
the algorithm is random. The second metric for comparing
clusters is the distance between centroids. Because the LCA

gives a probability distribution of health states for each func-
tion as the centroid, it cannot be directly compared to the sin-
gle–value centroids from the k-means algorithm. Instead, the
centroid of the resulting classification from the LCA is used.
That is, if a class contained scenarios 1–3, then the centroid is
based on the centroid of those three scenario results and not
the probabilistic centroid of the model of that class which
the LCA algorithm used to fit scenarios 1–3. In Table 4,
the centroid to centroid distance is reported for each cluster
and class as a real number in units of the distance between
functional states. From Table 4, both metrics identify the
same overlap in the k-means clusters and LCA classes (as in-
dicated in the colored cells). Using this example, it is clear
that the fourth LCA class is the combination of first and third
k-means clusters.

3.6. Relating clusters to system-level functionality

The centroid of each cluster found through the modified k-
means analysis represents a point in the functional state space
defined by 58 functions. In this space, each function may have
the value between 1 and 3, representing nominal, degraded,
and lost or no flow, respectively. By observing what scenario
is closest to the cluster centroid and what functional
dimensions have the largest impact for a cluster, the meanings
of the clusters become apparent. In Table 5 the k-means clus-
ters are sorted so that the highest functional impacts are
grouped together. All component functions that do not appear
in Table 5 have values near 1 and are considered predominately
nominal for the scenarios in that cluster. In addition, the repre-
sentative scenario for that cluster is also listed in the second
row. The nonnominal functions are listed for each cluster,
along with the centroid’s location along that functional axis.
By looking at these characteristic functions and the health
states for each cluster centroid, the clusters can be described

Table 4. Comparing the centroid to centroid cluster distance
and scenario membership overlap

LCA Classes

Clusters & LCA1 LCA2 LCA3 LCA4 LCA5
No. of Scenarios 243 209 245 2605 206

K1 10.19 7.95 11.41 2.33 8.25
213 0 0 0 213 0
K2 12.07 9.27 815 5.17 2.60
213 0 2 2 3 206
K3 10.99 7.79 11.05 0.30 7.75

2385 0 0 0 2385 0
K4 7.94 2.60 12.02 5.17 9.35
218 8 207 0 3 0
K5 3.51 5.77 12.73 7.40 10.64
243 235 0 8 0 0
K6 12.99 10.62 3.67 7.39 5.76
235 0 0 235 0 0

Table 5. Off-nominal functional impact for each cluster and representative scenario

K1 K2 K3 K4 K5 K6
Breaker 5 Breaker 6 Fan 2 Breaker 3 Breaker 1 Battery 2

Open Open Failed Off Open Open Disconnected

DC 1 3 Fan relay 2 2.99 Fan 2 1.28 Fan relay 1 2.99 Breaker 3 3 Breaker 6 3
DC 1 relay 2.33 Pump relay 2 2.99 Fan 1 1.19 Pump relay 1 2.99 Inverter 1 3 Inverter 2 3
Fan 1 2.06 Pump 2 2.99 DC 2 1.19 Pump 1 2.99 Breaker 4 3 Breaker 7 3
Fan 2 1.14 Light 2 relay 2.99 Light 2 1.14 Light 1 2.99 Fan relay 1 3 Fan relay 2 3

Light 2 2.99 Light 1 1.14 Light 1 2.99 Pump relay 1 3 Pump relay 2 3
Inverter 2 2.97 Inverter 1 2.97 Pump 1 3 Pump 2 3
Fan 2 2.97 Fan 1 2.97 Light relay 1 3 Light relay 2 3
Breaker 7 2.34 Breaker 4 2.35 Light 1 3 Light 2 3

Breaker 5 3 Breaker 8 3
DC Relay 1 3 DC relay 2 3
DC1 3 DC2 3
Fan 1 2.99 Fan 2 2.99
Relay 2 2.93 Relay 4 2.93
Battery 1 2.91 Battery 2 2.91
Breaker 1 2.91 Breaker 2 2.91
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in terms of their dominant system-level effects. Thus each clus-
ter is defined by a set of functions in some off-nominal health
state. Although the clustering algorithm identifies that there are
dependencies between these functions (and thus clusters them
together), it cannot directly reveal causality. For this reason, we
take the component-level functions identified in each cluster
and use the model to organize the connectivity of the graph
shown in Figure 4. Care should be taken not to interpret this
as the direction of fault propagation. Instead, Figure 4 shows
the relationship between the functional dependencies in the
clusters and the physical system architecture. Finally, as can
be seen in Table 5, the K3 cluster centroid does not have any
characteristic functions in the degraded or lost state. This
means that scenarios within this group have few failures that
affect multiple functions and there are minimal dependencies
between the faulty states of functions. Because the degraded
and lost state functions are used to characterize the clusters,
the K3 cluster is not included in Figure 4.

4. RESULTS

In this section, we will present how the results of conducting
the clustering approach address the three objectives of charac-
terizing the impacts of a large number of failure scenarios,
identifying the system-level meaning of those characteriza-
tions, and determining how this analysis can be used to
make system design decisions. The first objective of charac-
terization is accomplished through identifying an underlying
pattern of failure behavior exhibited in the system states that
result from numerous fault simulations. This underlying pat-
tern of behavior is found through applying the LCA to the set
of unique systems states. The result of applying the LCA to
the 3509 unique systems states that result from fault-scenario
simulation for the example system best fit a model with five
discrete classes of system failure. Further, the probability of
scenarios fitting exactly one of the five classes is very high
(most are 100%). This confirms that five different patterns
of system failure emerge from the simulation of combinations
of component fault behavior. Because the LCA approach fits
a structure to the data, each class is fully defined by the prob-
ability of a function being at a health state. The health state of
a function as a result of simulating a scenario is deterministic
and has a known value after simulation. However, the class of
system failure is a model where each function has a probabil-
ity of being at each health state. The system-level failure be-
havior classes are the result of the interactions of component
behaviors. For this reason, the five classes represent emergent
failure behavior observed at the system level in the scenarios
simulated. This does not represent all potential emergent
behaviors of the system. The clustering algorithm uses the
simulation data, and thus if the behavior is not present in the
simulation, it will not be identified by the algorithm. However,
due to the large number of scenarios that form the data for each
class model, this approach does provide some confidence that
this system will not experience significantly different behav-
ior. While the LCA-based clustering was able to address the

first objective by finding underlying classes of system behav-
ior to characterize scenarios, those classes must also be related
to the system-level functions of interest.

The second objective, to identify the system-level meaning
(for designers) of the classes of behavior, is accomplished
using a k-means clustering on scenario impact similarity.
By using the cluster centroids, each cluster is described
with a set of functions and their health state. Limiting the fo-
cus to degraded and lost functionality provided five of six
clusters that can be used to relate the system functionality
to the scenario clusters. Figure 4 shows the characteristic
functions and their health states for each cluster and uses
the system model to identify physical connections. The third
cluster centroid did not exhibit consistently degraded or lost
functionality and is not included. By comparing the system
model to the cluster’s representative functions, the relation
to system-level functions begins to emerge. For example,
the scenarios classified in Cluster 4 are predominately scenar-
ios affecting the first load bank. When certain fault scenarios
result in loss of power to that load bank, the function of those
components is lost or degraded. For this simple system, this
demonstrates that, without a priori knowledge of component
connectivity, the clustering approaches identified behavior-
based connections. For more complex systems with emergent
behavior, these connections could be identified in compo-
nents in different subsystems where interactions may be
harder for designers to predict.

The third objective of this work was to determine whether
the discrete failure behavior of the system identified through
the clustering analysis could be used for system-level design
decision making. As described in Section 2.4, the example
system is designed to be fault tolerant where the software con-
trol attempts to operate as many of the loads as possible. The
software control was designed to recognize and operate the
system at the best available of the seven potential states iden-
tified in Table 1. Comparing these seven control action states
to the clusters provides an assessment of the effectiveness of
the system architecture and control. Table 6 shows how the
degraded control states address faults from certain clusters.
One example of a design decision that could be made after ap-
plication of this analysis is to redesign the architecture and
control to address the individual load faults that are seen in
Cluster 3. The application of this approach has shown that
the current control method addresses four of the fundamental
failure behaviors of the system but has no specific action
states to address the other two.

Finally, the small set of scenarios that k-means classified in
Cluster 5 and that the LCA grouped in cluster 6 (see Fig. 3),
correspond to scenarios where both battery banks could pro-
vide no power. These special scenarios that are hard to cluster
indicate important scenarios for the system designer to inves-
tigate. For this system, scenarios where both batteries are dis-
connected (and other similar scenarios) are unrecoverable by
the software control. Based on the probability, and the conse-
quence of those faults, designers may want to redesign the
system redundancies.
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Fig. 4. The clusters identified through the modified k-means and latent class analysis are mapped to the system model.
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5. CONCLUSIONS

This paper proposed two different approaches for clustering
the results of a function-based failure analysis method in
the early design stage. In contrast to others methods, which
focus on single faults or single failure scenarios, the goal of
this work is to characterize a design’s overall failure behavior.
The results of implementing these clustering approaches on
an example fault tolerant, software-controlled EPS demon-
strates the ability to both identify system-level failure behav-
ior and use the classification of that behavior for design deci-
sion making.

The first clustering approach was a modified k-means algo-
rithm, where the distance between failure scenarios was deter-
mined based on the functional similarity of the impact of
those scenarios. This method partitions the fault scenarios
into discrete clusters. Each cluster has a centroid, which is
the representative set of functions and their health states for
that cluster. The second clustering approach was a model-
based method that used LCA to identify a latent variable
with a set of discrete classes. The latent variable is a single
unmeasurable variable that describes the system’s failure state
or failure modes. The LCA provides a probabilistic model
that is used to characterize the system behavior. By compar-
ing these methods, the k-means clustering was mathemati-
cally validated when the scenario groupings agreed with the
LCA classifications. Further, the challenge of describing
the system failure modes found through LCA is addressed
by using the centroids of the corresponding k-means clusters.

The example EPS describes how the designed control ad-
dressed some but not all of the system failure behavior modes.
When informed by other variables such as cost, this could be
used in a multiobjective decision-making process. A future
challenge that this work can address is that large-scale system
modeling may be impossible at the component fidelity level.
However, the LCA classes are models of the system state and
could be used as abstractions for the component details. For
example, the EPS can be described as having a few nominal
modes and the identified five failure modes. This simplified
model can then be incorporated into a larger model without
the need to specify low-level component behavior. In addi-
tion, more work is needed in applying the presented method-
ology to complex systems to develop a relationship between
the completeness of the analysis and the number and types
of failures to simulate.

The objective of this work is to aid designers in identifying
the potential system-level failure behaviors and use the clas-

sification of those behaviors to improve system design. By
using data analysis techniques on large sets of design-stage
analysis data, designers can make better risk-informed deci-
sions and provide stakeholders with safer systems.
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