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Fully developed turbulent free shear layers exhibit a high degree of order, characterized
by large-scale coherent structures in the form of spanwise vortex rollers. Extensive
experimental investigations show that such organized motions bear remarkable
resemblance to instability waves, and their main characteristics, including the length
scales, propagation speeds and transverse structures, are reasonably well predicted by
linear stability analysis of the mean flow. In this paper, we present a mathematical
theory to describe the nonlinear dynamics of coherent structures. The formulation
is based on the triple decomposition of the instantaneous flow into a mean field,
coherent fluctuations and small-scale turbulence but with the mean-flow distortion
induced by nonlinear interactions of coherent fluctuations being treated as part of
the organized motion. The system is closed by employing a gradient type of model
for the time- and phase-averaged Reynolds stresses of fine-scale turbulence. In the
high-Reynolds-number limit, the nonlinear non-equilibrium critical-layer theory for
laminar-flow instabilities is adapted to turbulent shear layers by accounting for (1) the
enhanced non-parallelism associated with fast spreading of the mean flow, and (2) the
influence of small-scale turbulence on coherent structures. The combination of these
factors with nonlinearity leads to an interesting evolution system, consisting of coupled
amplitude and vorticity equations, in which non-parallelism contributes the so-called
translating critical-layer effect. Numerical solutions of the evolution system capture
vortex roll-up, which is the hallmark of a turbulent mixing layer, and the predicted
amplitude development mimics the qualitative feature of oscillatory saturation that has
been observed in a number of experiments. A fair degree of quantitative agreement
is obtained with one set of experimental data.

Key words: critical layers, nonlinear instability, shear layer turbulence

1. Introduction
While turbulence generally refers to spatially and temporally random and chaotic

fluid motions, it has been widely recognized and accepted since the 1970s that orderly
and quasi-deterministic fluctuations, referred to as coherent structures (CS), are also
present in turbulent shear flows. A precise and universally accepted definition of
CS is not presently available and indeed may not ever be possible. The consensus
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Nonlinear dynamics of coherent structures in turbulent shear layers 397

is that they represent the portion of a fluid motion that is vortical and correlated
over fairly long length and time scales. The statistical correlations are likely to
be underpinned by fluctuations exhibiting relatively regular spatial patterns and
quasi-periodic reoccurrence. Since the latter are masked by random small-scale
fluctuations, CS could only be reliably detected by careful flow visualization (e.g.
Brown & Roshko 1974) and elaborate phase or ensemble averaging (e.g. Hussain
& Zaman 1985). By using these techniques, much information has been gained
about the properties and dynamical significance of CS. The main findings have been
comprehensively reviewed by Cantwell (1981), Hussain (1983) and Wygnanski &
Petersen (1987) among others. CS are known to appear in boundary layers as well as
in free shear layers. Our interest will be on the latter, which include mixing layers,
wakes and (planar or axisymmetric) jets.

Brown & Roshko (1974) provided the first visualizations of CS in a high-
Reynolds-number turbulent mixing layer. The striking images, which were to become
iconic, showed clearly that CS were predominantly two-dimensional, consisting
of an array of spanwise concentrated vortices. These vortices all propagate at a
constant speed, which is approximately the average of the free-stream velocities.
Their length scale is comparable with the local shear-layer thickness. Winant &
Browand (1974) observed that adjacent vortices appear to merge repeatedly to form
larger structures, a process referred to as ‘vortex pairing’. Further visualization
and measurements reaffirmed that CS are quasi-two-dimensional, persist despite
strong external turbulence (Wygnanski et al. 1979) and reside in the asymptotic
self-preserving region far downstream (Browand & Troutt 1980). These observations
led to the viewpoint that the instantaneous flow field can be decomposed into a mean
field, CS and small-scale turbulence (Reynolds & Hussain 1972).

CS were observed in plane jets (Hussain & Thompson 1980; Antonia et al. 1983)
and in the far field of a wake (e.g. Wygnanski, Champagne & Marasli 1986). These
flows have symmetric mean profiles, and hence CS consist of two arrays of counter-
rotating spanwise vortices. Observation of CS in a circular jet (Crow & Champagne
1971) preceded those in plane mixing layers. In the region near the nozzle, vortex
rings are the dominant CS, taking the place of spanwise vortex rollers, but helical
structures appear as well. As the shear layer thickens with the downstream distance,
vortex rings attenuate while helical structures become more significant.

Experimental studies indicate that CS arise whether the upstream boundary
layer (over the splitter plate or in the nozzle) is laminar or turbulent, tripped or
non-tripped. On the other hand, the mean-flow properties and fluctuations do exhibit
sensitive dependence on upstream conditions, including the disturbance level, the
state and thickness of the upstream boundary layer (Batt 1975; Weisbrot, Einav
& Wygnanski 1982), and the thickness of the splitter plate or nozzle (Dziomba &
Fiedler 1985). Remarkably, the impact may persist over a very long distance before
the self-preserving regime is reached, and furthermore, even when the mean flow has
already acquired a self-similarity shape, the imprint of initial conditions may remain
in the shear-layer thickness.

Many experiments have been conducted in which time-periodic disturbances are
introduced in a controlled manner. The resulting CS appear more organized so that
their characteristics can be studied in greater detail than otherwise possible. Using
a small flap at the trailing edge of the splitter plate, Oster & Wygnanski (1982)
introduced into a mixing layer a disturbance with a frequency an order of magnitude
smaller than the characteristic frequency of the initial shear layer. At small amplitudes,
the spreading rate is enhanced. At larger amplitudes, the forcing resonates with the
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mixing layer in a streamwise region, where the spreading rate is suppressed, and
most significantly the energy is extracted from turbulence and transferred into the
mean flow.

Gaster, Kit & Wygnanski (1985, hereafter GKW) focused on small-amplitude
disturbances, excited using the same method as in Oster & Wygnanski (1982). The
characteristic wavelength, propagation speed and transverse distribution of CS were
measured and found to be fairly well predicted by the linear stability analysis of the
mean flow. Fiedler & Mensing (1985) investigated a one-stream shear layer forced
by periodic disturbances of various frequency and amplitude. Compared with the
‘neutral’ (i.e. unforced) case, vortex rollers are more sharply defined. They amplify
as they propagate downstream, and reach a saturation point xs before decaying. It
was found that xs is inversely proportional to the frequency, consistent with linear
stability theory. The amplitude development of the periodic signal was mapped
out. For weak excitations, the evolution of CS of different frequency follows a
universal rule provided that the amplitude and distance are suitably normalized. For
strong excitations, the attenuation may be oscillatory. Weisbrot & Wygnanski (1988,
hereafter WW) investigated CS in a shear layer subject to high-amplitude excitation.
They measured both the streamwise and the transverse phase-averaged velocities, from
which the vorticity and Reynolds stress were determined. The transverse distributions
of the velocities and Reynolds stress were found to be well predicted by the linear
stability analysis of the time-averaged mean flow despite the high intensity of the
disturbance. However, the amplification rate of CS was poorly predicted. Wygnanski
& Weisbrot (1988) investigated the vortex pairing process in detail by introducing
both fundamental and subharmonic disturbances. They found that roll-up and pairing
may both be attributed to redistribution of vorticity taking place when the fundamental
and subharmonic modes approach their respective neutral positions (as predicted by
linear inviscid stability analysis).

Wygnanski et al. (1986) measured the phase-averaged velocity of forced sinuous
disturbances in a small-deficit turbulent wake, while varicose modes were investigated
subsequently by Marasli, Champagne & Wygnanski (1989). Linear non-parallel
stability theory predicts rather well the shapes of both modes as well as the growth
rate of the sinuous mode, but not that of the varicose mode. Marasli, Champagne &
Wygnanski (1991, 1992) measured the coherent Reynolds stress, which is generated
by nonlinear interactions of CS. The calculation using the eigenfunction of linear
stability analysis captures the transverse distribution of the Reynolds stress in the
region upstream of the neutral position, approaching which nonlinearity becomes
significant. Under high-amplitude excitations, the Reynolds stress was found to
change its sign in the neighbourhood of the neutral position. Hussain & Thompson
(1980) investigated CS in the near field of a plane jet. As in the plane mixing layer,
the transverse distribution of the velocity is in agreement with the prediction of linear
stability theory. However, the phase distribution is not.

CS in circular jets have received much attention since the pioneering work of
Crow & Champagne (1971). Zaman & Hussain (1980) and Hussain & Zaman (1981)
investigated the vortex pairing process subject to excitation. Extensive measurements
of fundamental, harmonic and (in the case of pairing) subharmonic components as
well as the Reynolds stress were carried out. However, the results were not interpreted
in the framework of hydrodynamic instability. More recently, Suzuki & Colonius
(2006) detected axisymmetric and the first two helical modes in a subsonic circular
jet, and mapped out their development from the nozzle to the end of the potential
core, while Oberleithner, Rukes & Soria (2014) focused on axisymmetric modes.
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Nonlinear dynamics of coherent structures in turbulent shear layers 399

Linear stability calculations were performed, and the agreement with measurements
supports the notation that CS behave, in a statistical sense, as instability waves on
the turbulent mean flow. It is worth noting that the calculations of Oberleithner
et al. (2014) were carried out for different levels of excitation, and in each case the
mean-flow profile used is that specifically measured for the given excitation.

While two-dimensional CS (of the kind observed in the experiment of Brown &
Roshko (1974)) have received much emphasis and attention, three-dimensional CS
have also been observed and studied. The reader is referred to Nygaard & Glezer
(1994) and Estevadeordal & Kleis (2002) as well as the references therein for further
details.

The discovery of CS has profoundly changed our perception of turbulence (Roshko
1976), and their potential dynamical significance could be immense for both modelling
and practical control of turbulence. It is well known that the gradient type of closure
model lacks universality. The failure was attributed to the fact that large-scale CS
are fundamentally influenced by upstream and boundary conditions, and the Reynolds
stresses generated by them cannot be characterized by the local strain rate of the mean
flow and an eddy viscosity. For the same reason, scalar transport and mixing models
of the usual gradient type also fail. A possible strategy for improved modelling is
to decompose fluctuations into large and small scales. The latter are expected to be
controlled by local dynamics so that a gradient type of model for their contribution
to Reynolds stresses might suffice. Now if the large scales could be treated separately
with the role of boundary and upstream conditions being taken into account, there
may be a prospect of developing closure models that are more physics-based and thus
have wider validity. Experimental studies in the past 40 years have acquired abundant
evidence and data supporting the dynamical role of CS. CS control entrainment and
mixing of species (Dimotakis & Brown 1976; Meyer, Dutton & Lucht 2006), and
contribute comparable amount to the Reynolds stresses and heat flux as does random
turbulence (Hussain & Zaman 1985; Antonia et al. 1986). The Reynolds stresses
may take negative values in the region of positive mean-flow gradient, indicating that
closure models of the mean-flow gradient type are inappropriate.

It has long been suggested that CS in turbulent jets, like instability modes in the
transitional stage, might be dominant sources of noise (Bishop, Ffowcs Williams &
Smith 1971; Crow & Champagne 1971). Experiments show that CS are instrumental
in generating noise. For instance, excitation of CS by pure-tone forcing on a jet could
amplify broadband noise if the frequency is relatively low (Bechert & Pfizenmaier
1975), or suppress the noise if the frequency is high (Hussain & Hasan 1985). More
direct evidence that CS may emit noise was provided recently by Cavalieri et al.
(2013) and Suzuki (2013). Latest efforts to model noise generation by CS have been
reviewed by Jordan & Colonius (2013), but the precise mechanisms remain to be
understood fully. They are probably similar to the mechanisms by which instability
modes in a laminar jet radiate sound; those mechanisms have been described on the
basis of first principles by Tam & Burton (1984) and Wu (2005) for supersonic and
by Wu & Huerre (2009) for subsonic regimes.

In order to develop appropriate physics-based models for Reynolds stresses,
mixing (entrainment) and noise generation, it is necessary to acquire better physical
understanding and quantitative descriptions of CS. As has been indicated above,
linear stability theory of the mean flow predicts the shape, propagation speed and
characteristic length scale of CS reasonably well. The concept of instability appears
to offer a viable theoretical framework for describing the dynamics of CS despite
objections by some investigators (see e.g. Hussain 1983). The problem of poor
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prediction of amplification rates has been alleviated by accounting for non-parallelism
by using the approach of Crighton & Gaster (1976) as was done by GKW and
Wygnanski et al. (1986). More recently, the linear parabolized stability equation
(PSE) approach was applied to study the evolution of CS (Gudmundsson & Colonius
2011), leading to improved accuracy in a certain range of parameters.

The theoretical studies mentioned above ignored nonlinearity and small-scale
turbulence completely. The development of CS under the influence of these effects
was tackled by Liu & Merkine (1976) and Alper & Liu (1978), who adapted the
energy method based on the so-called ‘shape assumptions’: (1) the mean flow assumes
a given self-similar shape but with its thickness evolving; (2) CS retains the shape of
the eigenfunction of the linear stability problem; and (3) the mean Reynolds stresses
take a presumed shape, while the phase-averaged Reynolds stresses, which account for
the effect of fine-scale turbulence on CS, were modelled with the aid of the transport
equations. From the transversely integrated kinetic energy equations for the mean flow,
CS and small-scale turbulence, a coupled system governing the shear-layer thickness,
the amplitude of CS and the turbulence energy was derived. The model involves a
fair degree of empiricism, but captures the essential physics, and indeed numerical
solutions appeared to predict some of the experimental observations qualitatively
(Mankbadi & Liu 1981; Liu 1989). Cohen, Marasli & Levinski (1994) considered
interaction between CS and the mean flow. At each location, the CS is treated as
an instability mode of the mean flow. The local eigenfunction and eigenvalue are
used to evaluate the Reynolds stresses, which are then used to calculate a corrected
mean flow downstream, where the above procedure is repeated. The approach, which
ignores harmonics as well as small-scale turbulence, was found to predict fairly well
the spreading rate of the shear-layer thickness up to the neutral position, in the
vicinity of which the theory fails. While nonlinear theories above have achieved some
success, unfortunately none of them was able to predict vortex roll-up.

Nonlinear development of instability modes in transitional laminar shear flows has
been extensively studied, where, in order to account for systematically competing
physical factors (such as nonlinearity, viscosity, non-parallelism and non-equilibrium),
a high-Reynolds-number asymptotic approach has been adopted. This has led to
nonlinear critical-layer theory; for reviews see Goldstein (1995) and Cowley & Wu
(1994). This approach was based on the key understanding that, as an initially small
instability mode propagates downstream, its growth rate decreases due to the gradual
thickening of the shear layer and a critical layer emerges at the transverse location
where the base-flow velocity equals the phase speed of the mode. The disturbance
then enters a nonlinear evolution stage due to enhanced nonlinear effects within the
critical layer. For a two-dimensional mode on a base flow with an inflectional profile,
the critical layer dynamics turns out to be strongly nonlinear. As a result, the vorticity
of the disturbance rolls up to form Kelvin–Helmholtz rollers (Goldstein & Hultgren
1988; Goldstein & Leib 1988).

The aim of the present paper is to propose a mathematical model that would
describe the nonlinear dynamics of CS, in particular the roll-up process. Prompted
by the striking similarity between CS and instability waves in laminar shear layers
(Ho & Huerre 1990), the nonlinear critical-layer theory for the latter will be adapted
to CS in turbulent flows. In doing so, two physical factors will be considered. The
first is the enhanced non-parallelism associated with thicker turbulent shear flows. We
shall choose the spreading rate, formally by taking a distinguished size of the mean
turbulent Reynolds number, such that non-parallelism appears at leading order in the
critical layer. This leads to, inter alia, a translating critical-layer effect. The second
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Nonlinear dynamics of coherent structures in turbulent shear layers 401

factor is the impact of small-scale fluctuations on CS through the phase-averaged
Reynolds stresses. This is taken into account by using an eddy-viscosity type of
closure model, one that allows for a phase lag, or relaxation time, between the
Reynolds stresses and the strain rate of CS (Wu & Zhou 1989).

The rest of the paper is organized as follows. Based on the triple decomposition
of the instantaneous field, a general formulation is proposed in § 2 for nonlinear
dynamics of CS. Simple closure models are introduced for the time- and phase-
averaged Reynolds stresses of fine-scale turbulence, which influence the mean flow
and CS, respectively. Section 3 is devoted to developing an asymptotic nonlinear
theory for CS, which is represented by a two-dimensional wavetrain of instability
mode. The formulation starts by specifying in § 3.1 the distinguished scalings that
lead to a non-equilibrium and strongly nonlinear critical layer, where non-parallel-flow
effects appear also at leading order. The disturbance in the main part of the shear
layer is considered in § 3.2; the analysis determines at leading order the eigenmode,
and at the second order leads to a solvability condition consisting of an unknown
jump across the critical layer. In § 3.3, we analyse the disturbance in the critical layer
to obtain the vorticity equation of the disturbance and the jump. Combining these
with the solvability condition, we arrive at the key result of the present paper, namely,
a system consisting of two coupled equations governing the nonlinear development
of the amplitude and the vorticity of CS in the critical layer. In order to solve these
equations, the appropriate ‘initial’ (upstream) and boundary conditions, consistent
with the governing equations, are specified in §§ 3.4 and 3.5, respectively. In § 4,
we analyse the Reynolds stress and the mean-flow distortion generated by nonlinear
interactions of CS. The evolution system is solved numerically in § 5, and numerical
solutions are presented and compared with experiments. A summary and further
discussions are given in § 6.

2. Formulation
We consider a spatially developing incompressible turbulent free shear layer.

The flow is to be described by Cartesian coordinates (x, y, z), where x, y and z
are in the streamwise, transverse and spanwise directions, respectively. They are
non-dimensionalized by δ∗0 , the thickness of the shear layer at a typical location,
which is to be specified later. The time t, the velocity (u, v,w) and the pressure p are
normalized by δ∗0/U

∗
0 , U∗0 and ρU∗20 , respectively, where U∗0 is a reference velocity

and ρ is the density of the fluid. The Reynolds number is

R=U∗0δ
∗
0/ν, (2.1)

where ν is the kinematic molecular viscosity.
We begin by giving a general mathematical formulation for the nonlinear evolution

of CS in a shear flow. For brevity, the Cartesian coordinates (x, y, z) and the velocities
(u, v,w) will be denoted as x= (x1, x2, x3) and u= (u1, u2, u3), respectively.

2.1. Flow decomposition and governing equations

The instantaneous field (u, p) is composed of a mean flow (Ū, P̄), quasi-periodic
coherent motion (ũ, p̃) representing CS and small-scale turbulence (u′, p′), and thus
has the triple decomposition (Reynolds & Hussain 1972)

(u, p)= (Ū, P̄)+ (ũ, p̃)+ (u′, p′), (2.2)
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where a quality with an overbar denotes the time average. CS can be extracted by the
phase average, which may, for an instantaneous flow quantity f (x, t), be defined as

〈f 〉(x, t)≡ lim
N→∞

1
N

N∑
i

f (x, t+ ti)= lim
N→∞

1
N

N∑
i

f (x, t+ iT), (2.3)

where ti denotes the instants at which the signal, or the structure, is deemed to have
the same phase with respect to a reference oscillation (Hussain 1983). The second
relation holds only when structures appear at regular interval T (Hussain & Reynolds
1970), which is the case where CS are introduced by controlled periodic excitation.
The signature of CS, f̃ , is then obtained as f̃ ≡ 〈f 〉 − f̄ .

The total time-averaged mean flow is driven by the Reynolds stresses contributed
by both CS and turbulence. Unlike the conventional treatment, here we take (Ū, P̄)
to be the ‘partial mean flow’ driven only by the Reynolds stresses of the latter, that
is, they satisfy the Reynolds-averaged equations

∂Ūj

∂xj
= 0, Ūj

∂Ūi

∂xj
=− ∂P̄

∂xi
+ 1

R
∂2Ūi

∂xj∂xj
− ∂

∂xj
u′iu′j. (2.4a,b)

This implies that the mean-flow distortion caused by nonlinear interactions of CS is
to appear as part of CS. As we will explain later, this treatment is necessary.

Substituting (2.2) into the Navier–Stokes equations and performing phase averaging,
we obtain, after use is made of (2.4), the equations governing CS:

∂ ũj

∂xj
= 0, (2.5)

∂ ũi

∂t
+ Ūj

∂ ũi

∂xj
+ ũj

∂Ūi

∂xj
=− ∂ p̃

∂xi
+ 1

R
∂2ũi

∂xj∂xj
− ∂

∂xj
(ũiũj)+ ∂τ̃ij

∂xj
. (2.6)

Here
τ̃ij =−[〈u′iu′j〉 − u′iu′j] (2.7)

are the phase-averaged Reynolds stresses of fine-scale turbulence; the latter affects CS
through τ̃ij. The system is to be closed by introducing suitable models for τ̃ij and τ̄ij≡
−u′iu′j.

The above formulation presents no difficulty if a reliable model for u′iu′j allows the
‘partial mean flow’ to be computed numerically. A problem does, however, arise if a
mean field needs to be specified beforehand. The measured velocity profile may not
be appropriate because it is the total mean flow. A simple resolution is to resort to
experiments where no artificial excitation is introduced and CS are relatively weak so
that the corresponding mean flow may be regarded as approximating the partial mean
flow. The measured mean flow may be used in the above formulation to investigate
the evolution of CS artificially excited subsequently. In this case, the viewpoint of
‘instability of a turbulent flow’ may be taken, leading to an alternative formulation as
follows. Suppose that an unforced turbulent flow is (Ū, P̄)+ (u′, p′). To this ‘turbulent
base flow’, coherent perturbations are then introduced in a controlled manner. The
resulting perturbed turbulent flow has a triple decomposition

(Ū, P̄)+ (ũ, p̃)+ (u′′, p′′). (2.8)
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Note that introduction of CS affects also small-scale turbulence, which is now denoted
by (u′′, p′′). Following the same steps, we can derive the equation

∂ ũi

∂t
+ Ūj

∂ ũi

∂xj
+ ũj

∂Ūi

∂xj
=− ∂ p̃

∂xi
+ 1

R
∂2ũi

∂xj∂xj
− ∂

∂xj
(ũiũj)+ ∂τ̃

†
ij

∂xj
, (2.9)

where
τ̃ †

ij =−[〈u′′i u′′j 〉 − u′iu′j]. (2.10)

When CS are weak or have moderate amplitude, introduction of them may not
significantly influence small-scale fluctuations, that is, u′′ remains close to u′ (whose
magnitude is of O(1)), or in a statistical sense u′′i u′′j ≈ u′iu′j, and the two viewpoints,
embodied in (2.6) and (2.9), are then equivalent.

Note that, in the formulation of Reynolds & Hussain (1972), (Ū, P̄) represents the
total mean flow. As a result, ũiũj is added to u′iu′j in (2.4), and correspondingly ũiũj

in (2.6) and (2.9) is replaced by (ũiũj − ũiũj), namely,

∂ ũi

∂t
+ Ūj

∂ ũi

∂xj
+ ũj

∂Ūi

∂xj
=− ∂ p̃

∂xi
+ 1

R
∂2ũi

∂xj∂xj
− ∂

∂xj
(ũiũj − ũiũj)+ ∂τ̃ij

∂xj
. (2.11)

The three formulations, (2.6), (2.9) and (2.11), are equally valid if suitable models
can be provided for both the time- and phase-averaged Reynolds stresses, −u′iu′j and
τ̃ij (or τ̃ †

ij ) of fine-grained turbulence. From the modelling perspective, the first and
third seem advantageous since τ̃ij should be less problematic to model than τ̃ †

ij , which
involves small-scale turbulence of both perturbed and unperturbed states. In practice,
further progress could be made by using an assumed mean flow, and it is better to
predict (1) the mean-flow correction by coherent fluctuations as part of CS, and (2) its
impact on the evolution of CS rather than presuming that (1) and (2) are taken into
account implicitly by the time-averaged mean flow. We shall therefore proceed with
the first viewpoint, i.e. with the system (2.6) and (2.7).

2.2. Closure models for Reynolds stresses of small-scale turbulence
Small-scale fluctuations contribute to time- and phase-averaged Reynolds stresses. No
reliable closure model is available for either of them. Given the local nature of fine-
grained turbulence, a gradient type of model will be employed. For the time-averaged
Reynolds stresses, the model is, in non-dimensional form, written as

τ̄ij =−u′iu′j =−
2
3

kδij + νt

RT

(
∂Ūi

∂xj
+ ∂Ūj

∂xi

)
, (2.12)

where k = (u′ · u′/2) is the kinetic energy, with δij being the Kronecker delta, νt is
the mean eddy viscosity normalized by a reference value ν∗t , and the mean turbulent
Reynolds number RT is defined as

RT =U∗0δ
∗
0/ν
∗
t . (2.13)

The phase-averaged Reynolds stresses are time-dependent, and they are related to
the time-dependent strain rate of CS by a gradient type of model that includes the
effect of time relaxation, namely,

τ̃ij =−[〈u′iu′j〉 − u′iu′j] =
ν̃t

R̃T

(
∂ ũi

∂xj
+ ∂ ũj

∂xi

)
(x, t− τ̂ ), (2.14)
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where ν̃t is an eddy viscosity accounting for the impact of small-scale turbulence on
CS; it is normalized by a reference value ν̃∗t and the associated Reynolds number

R̃T =U∗0δ
∗
0/ν̃
∗
t . (2.15)

The key difference of (2.14) from a usual eddy-viscosity model (cf. Reynolds &
Hussain 1972) is that it allows for a possible time delay τ̂ between the phase-averaged
Reynolds stresses and the strain rate. Let τ̂ij and û denote the Fourier transforms of
τ̃ij and ũ with respect to time t, respectively. Then the model (2.14) in spectral space
can be expressed as

τ̂ij(x, ω)=− ν̃t

R̃T
e−iωτ̂

(
∂ ûi

∂xj
+ ∂ ûj

∂xi

)
(x, ω), (2.16)

which consists of a complex eddy viscosity ν̃te−iωτ̂ . This generalized eddy viscosity
was first introduced by Wu & Zhou (1989) in their study of CS in turbulent boundary
layers. In general, both νt and ν̃t may depend on space variables and/or the mean flow
(Reynolds & Hussain 1972; Kitsios et al. 2010). In what follows, for simplicity they
are assumed to be constants, in which case we may set νt = ν̃t = 1.

Use of (2.14) in (2.4) and (2.6) leads to

∂Ūj

∂xj
= 0, Ūj

∂Ūi

∂xj
=− ∂

∂xi

(
P̄+ 2

3
k
)
+
(

1
R
+ 1

RT

)
∂2Ūi

∂xj∂xj
, (2.17a,b)

∂ ũi

∂t
+ Ūj

∂ ũi

∂xj
+ ũj

∂Ūi

∂xj
=− ∂ p̃

∂xi
+ 1

R
∂2ũi

∂xj∂xj
+ 1

R̃T

∂2ũi(x, t− τ̂ )
∂xj∂xj

− ∂

∂xj
ũiũj. (2.18)

The above closure model accounts for the influence of small-scale fluctuations on
CS (and the mean flow), but the fine-grained turbulence itself remains dynamically
passive. As a result, the evolution of CS becomes, in a nutshell, analogous to that of
waves propagating through a random medium.

3. Asymptotic theory for nonlinear evolution of coherent structures
The model proposed in the previous section is now applied to free shear layers. In

order to present a self-consistent asymptotic description of the nonlinear development
of the disturbance, we assume that R � 1 and RT � 1 but RT � R, i.e. the mean
eddy viscosity is much greater than the molecular viscosity. The mean flow is two-
dimensional and may be written as

(Ū, P̄)= (ŪB(y, x̃), R−1
T V̄B(y, x̃), PB), (3.1)

where the slow streamwise variable

x̃= x/RT . (3.2)

Since RT�R, the variation of the mean flow in the streamwise direction is therefore
much faster than in the laminar case, implying enhanced non-parallelism. Substituting
into (2.17) and making the usual boundary-layer approximation, we obtain the
equations for ŪB and V̄B:

∂ŪB

∂ x̃
+ ∂V̄B

∂y
= 0, ŪB

∂ŪB

∂ x̃
+ V̄B

∂ŪB

∂y
= ∂

2ŪB

∂y2
. (3.3a,b)
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Nonlinear dynamics of coherent structures in turbulent shear layers 405

The focus of the present study will be on CS in the form of spanwise vortices
(i.e. Kelvin–Helmholtz rollers), which are predominantly two-dimensional (Brown &
Roshko 1974; Wygnanski et al. 1979). It is then possible and convenient to introduce
a streamfunction ψ̃ . Elimination of the pressure term in (2.18) yields the equation(
∂

∂t
+ ŪB

∂

∂x
+ V̄B

RT

∂

∂y

)
∇2ψ̃ − Ū′′B

∂ψ̃

∂x
− 1

R
∇4ψ̃(x, t)− 1

R̃T
∇4ψ̃(x, t− τ̂ )= J(ψ̃,∇2ψ̃),

(3.4)
where J(ψ, ϕ) is the Jacobian operator. Note that among high-order terms we have
retained only the O(R−1

T ) term of the third-order derivative, which becomes important
in the critical layer, whereas terms of the same order but of lower-order derivative are
omitted since they remain negligible in the entire flow.

3.1. Asymptotic scalings
Prompted by the overwhelming experimental evidence, we subscribe to the view
that CS in free shear layers behave as instability modes that develop from some
small-amplitude disturbances upstream. We consider a two-dimensional wavetrain
whose carrier wave has a frequency ωn, say. The carrier wave is locally neutral at
a streamwise location x̃ = xn. The reference length δ∗0 is taken to be the shear-layer
thickness at this location, which is chosen to be the origin of the coordinates for
convenience. The precise meaning of δ∗0 will transpire in § 5.2, where δ∗0 is related to
the well-defined and experimentally measurable momentum thickness. The wavetrain
becomes, following the initial exponential growth, neutrally stable in the vicinity of
xn and enters a nonlinear stage due to enhanced nonlinearity associated with the
emergence of a critical layer as in laminar flows (Cowley & Wu 1994; Goldstein
1995). Since the critical level is at the inflection point and the perturbation is planar,
the critical layer is strongly nonlinear and non-equilibrium, and has a thickness of
O(ε1/2), where ε� 1 represents the amplitude.

The formulation will be presented for a plane mixing layer. However, the nonlinear
critical-layer dynamics to be described is generic, and independent of the detailed
profile because the critical layer is thin. The analysis and resulting theory can easily
be adjusted to other free shear layers such as wakes and (planar and circular) jets.
Indeed, the fact that the same nonlinear critical-layer dynamics operates explains why
CS in these flows exhibit similar behaviours.

In the main part of the shear layer, the disturbance can, to leading order, be written
as

εA†(x̄, τ )φ1(y)eiαζ , ζ = x− ct, (3.5)

where α, c and φ1 are the wavenumber, phase speed and eigenfunction of the locally
neutral mode, respectively, and A† is the amplitude function of the slow spatial and
time variables, x̄ and τ , defined respectively as

x̄= ε1/2c−1x, τ = ε1/2t, (3.6a,b)

to describe the spatial and temporal modulation of the disturbance (Wu & Tian 2012).
For x̄ = O(1), the CS corresponds to a nearly neutral instability mode (or more
generally a wavetrain) residing on the turbulent mean flow. The effects of (molecular
and eddy) viscosities and nonlinearity are negligible in the main part of the shear
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406 X. Wu and X. Zhuang

layer, but they all come into play in the critical layer if we choose the distinguished
scaling, R=O(R̃T)=O(ε−3/2). These may be expressed more precisely by writing

R−1 = λ̄ε3/2, R̃−1
T = λ̃ε3/2, (3.7a,b)

where λ̄=O(1) and λ̃=O(1) are parameters measuring the importance of molecular
and eddy viscosities relative to nonlinearity, respectively (cf. Benney & Bergeron
1969; Haberman 1972). Crucially, we take RT =O(R2/3), that is,

σRT = R2/3 (3.8)

with σ being O(1), so that the non-parallel-flow effect appears as well at leading order
in the critical layer.

It follows from (3.2), (3.6) and (3.8) that the variables x̄ and x̃ are related to each
other via

x̃= (ε1/2RT)
−1cx̄= ε1/2(σ λ̄2/3c)x̄. (3.9)

In the vicinity of xn= 0, the mean-flow profile, ŪB and V̄B in (3.1), is expanded as

(ŪB(y, x̃), V̄B(y, x̃))= (Ū(y), V̄(y))+ ε1/2(σ λ̄2/3c)x̄(Ū1(y), V̄1(y))+ · · · , (3.10)

where (Ū1, V̄1)≡ ∂(ŪB, V̄B)/∂ x̃ evaluated at x̃= xn = 0.
The derivation of the evolution system involves using simultaneously the multi-scale

method and matched-asymptotic-expansion technique to analyse the disturbance
outside and within the critical layer. The procedure is similar to those in Goldstein &
Hultgren (1988) and Wu & Tian (2012), but the main difference is that non-parallelism
now appears at leading order in the critical layer. The reader who is interested
primarily in physical aspects of the problem may skip the detail, and go directly to
the final outcome of the analysis, which is the nonlinear evolution system consisting
of the amplitude equation (3.30) for A† coupled with a nonlinear equation (3.28)
for the critical-layer vorticity. The reader is also reminded that the scalings and
critical-layer dynamics are different for three-dimensional disturbances such as a
single (Churilov & Shukhman 1994) or a pair of oblique modes (see e.g. Goldstein
& Choi 1989; Wu, Lee & Cowley 1993).

3.2. Outer expansion

In the main part of the shear layer, the streamfunction ψ̃ expands as

ψ̃= εA†(x̄, τ )φ1(y)eiαζ + ε3/2
∞∑

m=1

φ
(m)
2 (y; x̄, τ )eimαζ + ε2

∞∑
m=0

φ
(m)
3 (y; x̄, τ )eimαζ + c.c.+· · · .

(3.11)
The eigenfunction φ1 is determined by the eigenvalue problem,

L (α)φ1 = 0, φ1→ 0 as y→±∞, (3.12)

where the Rayleigh operator

L (α)=
(
∂2

∂y2
− α2

)
− Ū′′

Ū − c
. (3.13)
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Nonlinear dynamics of coherent structures in turbulent shear layers 407

Let yc denote the critical level, i.e. Ū(yc)= c. As η̂≡ y− yc→ 0, φ1 has the asymptote

φ1 ∼ 1+ 1
2

(
α2 + Ū′′′c

Ū′c

)
η̂2 + a1η̂+ · · · , (3.14)

where a1 is a constant. The function φ(1)2 is governed by the system consisting of the
inhomogeneous Rayleigh equation and the boundary condition:

L (α)φ
(1)
2 =−2iαc−1 ∂A†

∂ x̄
φ1 − (iα)−1D0A† Ū′′

(Ū − c)2
φ1

− (σ λ̄2/3c)x̄A† Ū′′Ū1 − (Ū − c)Ū′′1
(Ū − c)2

φ1,

φ
(1)
2 → 0 as y→±∞,


(3.15)

where we have introduced the differential operator

D0 = ∂

∂τ
+ ∂

∂ x̄
. (3.16)

As η̂→ 0, the solution is, by examining the asymptotic properties of both sides of
(3.15), found to behave as

φ
(1)
2 ∼ b(1)2 + a(1)±2 η̂+ (iαŪ′c)

−1 Ū′′′c

Ū′c
{−D0A† + iχ2x̄A†}η̂ log |η̂| +O(η̂2), (3.17)

where b(1)2 and a(1)±2 are as yet unknown functions of x̄, and

χ2 = α(σ λ̄2/3c)(Ū′cŪ
′′
1,c − Ū′′′c Ū1,c)/Ū′′′c . (3.18)

The jump (a(1)+2 − a(1)−2 ) is to be determined by analysing the critical-layer dynamics.
For the boundary-value problem (3.15) to have a solution, a (modified) solvability
condition

a(1)+2 − a(1)−2 =−iα−1J2
∂A†

∂τ
+ i(2αc−1J1 − α−1J2)

∂A†

∂ x̄
+ (σ λ̄2/3c)I1x̄A† (3.19)

must be satisfied, which is derived via the following routine procedure. Multiply both
sides of the inhomogeneous Rayleigh equation in (3.15) by φ1, and perform integration
by parts on the left-hand side but take into account the jump across the critical layer
by using (3.17) (cf. Redekopp 1977). In (3.19),

J1 =
∫ ∞
−∞

φ2
1 dy, J2 =−

∫ ∞
−∞

Ū′′

(Ū − c)2
φ2

1 dy,

I1 =−
∫ ∞
−∞

Ū′′Ū1 − (Ū − c)Ū′′1
(Ū − c)2

φ2
1 dy,

 (3.20)

with J2 and I1 both being Cauchy principal values.
The solution for φ(1)2 could, of course, only be determined up to an arbitrary

multiple of the eigenfunction φ1. The multiplier of φ1 is a function of x̄, and can
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be fixed by imposing the condition that φ(1)2 be orthogonal to φ1. This is, however,
unnecessary in the present study, as the indeterminacy does not affect the dynamics
of the CS, or the Reynolds stresses and the mean-flow distortion to be considered in
§ 4.

The harmonic components φ(m)2 satisfy homogeneous Rayleigh equations

L (mα)φ(m)2 = 0 (m= 2, 3, . . .), (3.21)

and, as η̂→ 0,
φ
(m)
2 ∼ b(m)2 + a(m)±2 η̂+O(η̂2). (3.22)

It should be remembered that φ(m)2 (m 6= 1) are not eigenfunctions because there is a
forcing from the interaction within the critical layer through the jumps (a(m)+2 − a(m)−2 ),
which renders the boundary-value problem inhomogeneous. An important fact of a
strong nonlinear critical layer is that all harmonics are generated at the same order,
which causes the vortex to roll up.

3.3. Inner expansion: critical layer analysis
The dynamics of CS within the critical layer can be analysed by introducing the local
transverse variable

Y = η̂/ε1/2 = (y− yc)/ε
1/2. (3.23)

The mean-flow quantities are expanded as Taylor series in Y , namely,

Ū(y, 0)= c+ Ū′cε
1/2Y + 1

6 Ū′′′c ε
3/2Y3 + · · · ,

Ū1(y, 0)= Ū1,c + Ū′1,cε
1/2Y + 1

2 Ū′′1,cεY2 + · · · ,
V̄(y, 0)= V̄c + V̄ ′cε

1/2Y + · · · .

 (3.24)

The streamfunction of the perturbation, ψ̃ , is expanded as

ψ̃ = εΨ0 + ε3/2Ψ1 + ε2 ln ε1/2Ψ2L + ε2Ψ2 + ε5/2Ψ3 + · · · . (3.25)

The first three terms are just the straightforward continuation of the outer solution,
namely,

Ψ0 = A†eiαζ + c.c.,

Ψ1 =
∑

b(m)2 eimαζ + a1YA†eiαζ + c.c.,

Ψ2L = iŪ′′′c

αŪ′2c
[D0A† − iχ2x̄A†]Yeiαζ + c.c.,


(3.26)

and it can easily be verified that they all satisfy the required equations.
Substituting expansions (3.24) and (3.25) with (3.26) into (3.4), we obtain the

equation for Ψ2. That equation can, by introducing

Ω† =Ψ2,YY −
(
α2 + Ū′′′c

Ū′c

)
(A†eiαζ + c.c.), (3.27)

be simplified to

LNΩ
† − λ̄ ∂

2

∂Y2
Ω† − λ̃ ∂

2

∂Y2
Ω†(t− τ̂ )= Ū′′′c

Ū′c
{−D0 + iχ2x̄}(A†eiαζ + c.c.), (3.28)
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Nonlinear dynamics of coherent structures in turbulent shear layers 409

where the nonlinear operator

LN =D0 + [Ū′cY + (σ λ̄2/3cŪ1, c)x̄] ∂
∂ζ
− (iαA†eiαζ + c.c.− σ λ̄2/3V̄c)

∂

∂Y
. (3.29)

Matching with the outer solution for the fundamental component determines the jump
(a(1)+2 − a(1)−2 ), which is inserted into (3.19) to give the evolution equation for the
amplitude A†:

α

2π

∫ ∞
−∞

∫ 2π/α

0
Ω†e−iαζ dζ dY =−iα−1J2

∂A†

∂τ
+ i(2αc−1J1 − α−1J2)

∂A†

∂ x̄
+ (σ λ̄2/3c)I1x̄A†.

(3.30)
Equations (3.28) and (3.30) form the system that governs the nonlinear evolution of
the disturbance.

Matching the harmonic components determines the jump

a(m)+2 − a(m)−2 = α

2π

∫ ∞
−∞

∫ 2π/α

0
Ω†e−imαζ dζ dY. (3.31)

Once Ω† is known, the harmonics in the main part of the shear layer can be obtained
by solving (3.21) subject to (3.22) and (3.31).

It is convenient to introduce the normalized dependent and independent variables

Ā= α2Ū′cA
†, Ω =Ω†(αŪ′c)

2/Ū′′′c , ζ̄ = αζ , (3.32a−c)

as well as the (normalized) local transverse coordinate centred at the moving critical
level,

η̄= αŪ′c(Y + (σ λ̄2/3cŪ1,c/Ū′c)x̄). (3.33)

The system (3.28)–(3.30) then becomes[
∂

∂τ
+ ∂

∂ x̄
+ η̄ ∂

∂ζ̄
− (iĀeiζ̄ + c.c.− χ) ∂

∂η̄
− λ̄1

∂2

∂η̄2

]
Ω − λ̄2

∂2

∂η̄2
Ω(t− τ̂ )

=
[
−
(
∂

∂τ
+ ∂

∂ x̄

)
+ iχ2x̄

]
(Āeiζ̄ + c.c.),

1
2π

∫ ∞
−∞

∫ 2π

0
Ωe−iζ̄ dζ̄ dη̄=Λ1

∂Ā
∂τ
+Λ2

∂Ā
∂ x̄
+Λ0x̄Ā,


(3.34)

where we have put
χ = ασ λ̄2/3(cŪ1,c + Ū′cV̄c), (3.35)

λ̄1 = (αŪ′c)
2λ̄, λ̄2 = (αŪ′c)

2λ̃, (3.36a,b)

Λ1 =−iJ2
Ū′2c
Ū′′′c

, Λ2 = i(2α2c−1J1 − J2)
Ū′2c
Ū′′′c

, Λ0 = α(σ λ̄2/3c)
Ū′2c
Ū′′′c

I1. (3.37a−c)

As the unknown amplitude function Ā appears in the coefficient of the partial
differential equation governing the vorticity, the critical-layer dynamics is ‘strongly
nonlinear’.
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The parameter χ characterizes the effect of a translating critical layer, which was
first identified by Cowley (1985) and Haynes & Cowley (1986) for certain time-
dependent flows. For the present problem, this effect arises because non-parallelism
causes the critical level to drift with respect to the streamwise variable x̄ at the
same rate as that at which the amplitude evolves. Non-parallelism is associated with
the streamwise variation of the streamwise velocity and with the transverse velocity
itself of the mean flow. The former alters directly the growth rate through the terms
proportional to x̄ in (3.34), while both contribute to the translating critical-layer effect
as (3.35) indicates.

3.4. Upstream condition
Let us now consider what condition should be imposed upstream as an ‘initial
condition’. In the upstream limit x̄ → −∞, the disturbance is small so that the
nonlinear term in the first equation of (3.34) can be neglected, and the resulting
linear equation admits the solution

Ω ∼
{
−
∫ ∞

0
[D0 − iχ2(x̄− ξ)]Ā(x̄− ξ, τ − ξ)e−(1/3)λ1ξ

3+(1/2)iχξ2−iη̄ξ dξ
}

eiζ̄ + c.c.,

(3.38)
where

λ1 = λ̄1 + λ̄2eiαcτ̂ . (3.39)

It follows that ∫ ∞
−∞

Ω dη̄=−π(D0 − iχ2x̄)Āeiζ̄ . (3.40)

This result is inserted into the second equation of (3.34) to give

∂Ā
∂ x̄
+ c−1

g
∂Ā
∂τ
= σsx̄Ā, (3.41)

where the group velocity

cg = Λ2 +π

Λ1 +π
= 1− 2α2c−1J1

iπŪ′′′c

Ū′c|Ū′c|
+ J2

, (3.42)

and the coefficient

σs = iπχ2Ū′c −Λ0|Ū′c|
πŪ′c +Λ2|Ū′c|

. (3.43)

It can be deduced from (3.41) that

Ā→ eσs x̄2/2+κ x̄−iS0τ as x̄→−∞, (3.44)

where κ = iS0/cg. Here S0 measures the deviation of the disturbance frequency
(αc+ ε1/2S0) from that of the neutral mode (and is equivalent to S1 in Goldstein &
Leib (1988)). Note that because cg is a complex number (which is expected since the
mode considered is neutral rather than being locally most unstable), it is impossible
to introduce the coordinate moving with the group velocity. As such, the modulation
equation is of first order rather than second order as would be the case if the group
velocity were real. Note that the linear growth rate is unaffected by the effect of a
translating critical layer; the latter remains dormant in the linear regime and only
comes into play in the nonlinear stage.
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3.5. Fourier decomposition and boundary conditions

The solution for Ā and Ω can be written as a Fourier series (cf. Goldstein & Leib
1988)

Ā= Ae−iS0τ , Ω =
∞∑

n=−∞
Qn(τ , x̄, η)ein(ζ̄−S0τ) (Q−n =Q∗n), (3.45a,b)

where η= η̄−S0. Then Qn (n=0,1,2, . . .), among which Q0 represents the mean-flow
distortion generated by the nonlinear interaction of CS, satisfy the system of coupled
equations:(

D0 + inη+ χ ∂

∂η
− λn

∂2

∂η2

)
Qn + i

∂

∂η
(A∗Qn+1 − AQn−1)=−δn1(D0 − iS0 − iχ2x̄)A,

(3.46)∫ ∞
−∞

Q1 dη=−iS0Λ1A+Λ1
∂A
∂τ
+Λ2

∂A
∂ x̄
+Λ0x̄A, (3.47)

where δn1 denotes the Kronecker delta, and λn is a complex quantity,

λn = λ̄1 + λ̄2einωτ̂ . (3.48)

It follows from (3.46) that, as η→±∞,

Q1→
{

i
η
− D0

η2
− iD0

2

η3
+ χ

η3

}
(D0 − iS0 − iχ2x̄)A+O(η−4), (3.49)

Q0→−|A|
2

η2
+ 2i
η3
{AD0A∗ − A∗D0A+ iS0|A|2 + iχ2x̄|A|2 + i(χ2 + χ)B1} +O(η−4),

(3.50)

Q2→− i
2η3

A(D0 − iS0 − iχ2x̄)A+O(η−4), (3.51)

where we have put

B1(x̄, τ )=
∫ ∞

0
|A|2(x̄− ξ, τ − ξ) dξ . (3.52)

Owing to the slow decay of Q1, the integral in (3.47) must be interpreted as a Cauchy
principal value. The infinite domain in the η direction is truncated to a large but finite
interval −M 6 η6 M. Then (3.47) can be written as

(Λ0x̄− iS0Λ1)A+Λ1
∂A
∂τ
+Λ2

∂A
∂ x̄
= I10 − 2

M
D0(D0 − iS0 − iχ2x̄)A+O(M−3), (3.53)

where we have defined

Ink =
∫ M

−M
ηkQn dη. (3.54)

The second-order derivative with respect to x̄ in the above equation is inconvenient
for numerical integration. Following a procedure similar to that in Wu & Tian (2012),
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412 X. Wu and X. Zhuang

we obtain a first-order system with respect to x̄:

Λ̃1
∂A
∂τ
+ Λ̃2

∂A
∂ x̄
− Λ̃d,1

∂2A
∂τ 2
− Λ̃d,2

∂2A
∂τ∂ x̄

+ Λ̃0A

=
(

q1 − q2x̄− 2Λd

MΛ2

∂

∂τ

)
I10 + 2i

M
I11 − 4

M2Λ2
(I12 + iχ I10 − A∗I20). (3.55)

The derivation and the expressions for the coefficients are given in appendix A. The
equation is subject to the initial condition

A→ eσs x̄2/2+κ x̄ as x̄→−∞. (3.56)

4. Reynolds stress and mean-flow distortion induced by coherent structures
The self-interaction of the CS produces Reynolds stresses, through which a mean-

flow distortion is generated. Two reasons may be given for retaining this distortion
as part of the coherent motion. First, the distortion evolves over the same streamwise
length scale as does the amplitude of the CS, and this scale is much shorter than
that of the background mean flow developing under the action of molecular diffusion
and small-scale turbulence. Second, when the CS is a temporally modulated packet,
the induced distortion is time-dependent, and hence should not be treated as part of
a mean field. However, as far as its impact on the nonlinear development of the CS
is concerned, the modulated distortion plays the same role as the steady distortion in
the special case of a single-frequency disturbance, which means that the distortion,
modulated or not, should be treated on the same footing, namely as part of the CS.
We note that this viewpoint was taken in the theory of Cohen et al. (1994).

The mean-flow distortion induced by an instability mode in a laminar mixing layer
with a tanh profile was analysed by Goldstein & Leib (1988). The present analysis is
for an arbitrary profile, and will lead to a more general and complete result.

4.1. Reynolds stresses of coherent structures
The characteristics of Reynolds stresses are of interest in their own right and are now
considered. In order to calculate them, the streamwise and transverse velocities of the
CS are obtained, to O(ε3/2) accuracy, in terms of the streamfunction:

ũ= εA†φ′1eiαζ + ε3/2[φ(1)2,yeiαζ + · · ·],
ṽ =−ε(iα)A†φ1eiαζ − ε3/2[(iαφ(1)2 + c−1A†

x̄φ1)eiαζ + · · ·],

}
(4.1)

where only the fundamental component is needed and written out. The general
solution for φ(1)2 , which is governed by (3.15), can be written as (Wu & Tian 2012)

φ
(1)
2 = B†φ1 +C±F0 − 2iαc−1A†

x̄F1 − (iα)−1D0A†F2 − (σλ2/3c)x̄A†F3, (4.2)

where B†(x̄, τ ) is a function of x̄ and τ , and

F0 = φ1

∫ y

yc

1
φ2

1
dy, (4.3)

F1 = φ1

∫ y

yc

1
φ2

1
dỹ
∫ ỹ

∞
φ2

1(ξ) dξ, F2 = φ1

∫ y

yc

1
φ2

1
dỹ
∫ ỹ

∞

Ū′′φ2
1

(Ū − c)2
dξ, (4.4a,b)
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Nonlinear dynamics of coherent structures in turbulent shear layers 413

F3 = φ1

∫ y

yc

1
φ2

1
dỹ
∫ ỹ

∞

[Ū′′Ū1 − (Ū − c)Ū′′1 ]φ2
1

(Ū − c)2
dξ . (4.5)

In order for φ(1)2 to satisfy the boundary conditions that φ(1)2 → 0 as y→±∞, we have
to set

C+ = 0, C− =−2iαc−1J1A†
x̄ − (iα)−1J2D0A† − (σλ2/3c)x̄A†I1. (4.6a,b)

Taking the limit y→ yc, the solution (4.2) assumes the asymptote (3.17) with

b(1)2 = B†, (4.7)

a(1)±2 =C± + a1B† − 2iαc−1A†
x̄

∫ yc

∞
φ2

1 dy− (iα)−1D0A†J0 − (σλ2/3c)x̄A†I0, (4.8)

where

J0 =
∫ â

∞

Ū′′φ2
1

(Ū − c)2
dy+

∫ yc

â

[
Ū′′φ2

1

(Ū − c)2
− Ū′′′c

Ū′2c (y− yc)

]
dy− Ū′′′c

Ū′2c
ln|â− yc|, (4.9)

I0 =
∫ â

∞

[Ū′′Ū1 − (Ū − c)Ū′′1 ]φ2
1

(Ū − c)2
dy

+
∫ yc

â

[ [Ū′′Ū1 − (Ū − c)Ū′′1 ]φ2
1

(Ū − c)2
− χ1

y− yc

]
dy− χ1 ln|â− yc|, (4.10)

with â 6= yc being an arbitrary constant and χ1 = (Ū′′′c Ū1,c − Ū′cŪ
′′
1,c)/Ū

′2
c .

Of interest is the shear stress component τ12 ≡−(ũṽ∗ + c.c.). For a nearly neutral
mode, the leading-order term vanishes, leaving us with

τ12 =−ε5/2[A†(iαφ(1)∗2 − c−1A†∗
x̄ φ1)φ

′
1 + iαA†∗φ1φ

(1)
2,y + c.c.]. (4.11)

The first two terms in (4.11) are regular, while the third term, or rather φ(1)2,y in
it, exhibits a logarithmic singularity at yc. In order to find an expression for the
Reynolds stress valid in the entire shear layer, φ(1)2,y has to be replaced by a composite
solution, (φ(1)2,y)c, which is constructed as follows. First, the inner solution for the
O(ε3/2) velocity is

U3/2 ≡ a(1)−2 + Ū′′′c /(αŪ′c)
3

{
lim

M→∞

[
i(D0 − iχ2x̄)A ln|M| +

∫ η

−M
Q1 dη

]}
. (4.12)

By using the additive rule, the composite solution is constructed as

(φ
(1)
2,y)c = φ(1)2,y + (U3/2 − a(1)±2 )− iŪ′′′c

αŪ′2c
(D0 − iχ2x̄)A† ln|η|, (4.13)

where the last term is the common part of φ(1)2,y and U3/2 in the limits of y→ yc and
η →∞, respectively. It is important to note that the undetermined complementary
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solution B†φ1 in (4.2) does not contribute to the Reynolds stress, and nor does the
last term. Taking this into account and inserting (4.2) and (4.13) into (4.11), we can,
without the need for the complete solution for φ(1)2 , determine fully the Reynolds
stress,

τ12 = c−1 ∂|A†|2
∂ x̄

{
φ1φ

′
1 + 2α2φ′1(F1 + Ĉ±F0)− cφ′1(F2 + Ĉ±F0)

− 2α2φ1(F
′
1 + Ĉ±F ′

0)+ cφ1[F ′
2 + Ĉ±F ′

0]
}

−
[

iαA†∗φ1

(
U3/2 − a(1)±2 − iŪ′′′c

αŪ′2c
A†

x̄ ln|η|
)
+ c.c.

]
, (4.14)

where we have put Ĉ+ = 0 and Ĉ− = 1. Since the last term in (4.14) is confined
within the critical layer, in the majority of the shear layer the Reynolds stress τ12 is
proportional to ∂|A†|2/∂ x̄ and would therefore change its sign when the CS evolves
through its peak amplitude, as was observed in experiments (WW; Marasli et al.
1992).

4.2. Mean-flow distortion

The mean-flow distortion in the main part of the shear layer has an O(ε2) streamwise
velocity, whereas that in the critical layer has a larger, O(ε3/2), streamwise velocity
due to the larger gradient of the Reynolds stress there. Despite being weaker, the
mean-flow distortion in the main part makes the dominant contribution to the change
in the shear-layer thickness. The solution takes the form ε2(uM, ε

1/2vM, pM) with uM

and vM being related to φ(0)3 in (3.11)

uM = φ(0)3,y, vM =−c−1φ
(0)
3,x̄. (4.15a,b)

The governing equations are found as

c−1 ∂uM

∂ x̄
+ ∂vM

∂y
= 0,

∂pM

∂y
=− ∂

∂y
(2α2|A†|2φ2

1),[
∂

∂τ
+ Ū

c
∂

∂ x̄

]
uM + vMŪ′ =−c−1 ∂pM

∂ x̄
−
[

2c−1 ∂|A†|2
∂ x̄

φ′21 −
∂τ12

∂y

]
.

 (4.16)

From the transverse momentum equation we find that

pM =−2α2|A†|2φ2
1 . (4.17)

In terms of the streamfunction φ(0)3 , the streamwise momentum equation in (4.16) can
be written as [

∂

∂τ
+ Ū

c
∂

∂ x̄

]
∂φ

(0)
3

∂y
− Ū′

c
∂φ

(0)
3

∂ x̄
=−S, (4.18)

where

S= c−1 ∂|A†|2
∂ x̄

(φ′21 − φ1φ
′′
1 − 2α2φ2

1)+ iαA†(φ′′1φ
(1)∗
2 − φ1φ

(1)∗
2,yy )+ c.c. (4.19)
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Nonlinear dynamics of coherent structures in turbulent shear layers 415

A numerical approach is needed when the disturbance is a modulated wavepacket. For
a simple wave, it turns out that S can be written as

S= c−1 ∂|A†|2
∂ x̄

Ŝ(y) (4.20)

with the shape function

Ŝ(y) = (φ′21 − φ1φ
′′
1 − 2α2φ2

1)− φ′′1 [2α2(F1 + Ĉ±F0)− c(F2 + Ĉ±F0)]
+φ1[2α2(F ′′

1 + Ĉ±F ′′
0 )− c(F ′′

2 + Ĉ±F ′′
0 )]. (4.21)

Once again, the expression (4.20) explains the experimental observation that the
Reynolds stress (in the main part of the shear flow) switches its sign at the location
where the CS reaches its peak amplitude and starts to attenuate. Equation (4.18)
reduces to

Ū
∂φ

(0)
3

∂y
− Ū′φ(0)3 =−Ŝ, (4.22)

and the solution is found as

φ
(0)
3 = |A†|2Ū

[
a(0)±3 −

∫ y

±∞

Ŝ
Ū2

dy

]
, (4.23)

where a(0)±3 are unknown constants. Let Ū→ Ū± as y→±∞. Then

φ
(0)
3 → a(0)±3 Ū±|A†|2 as y→±∞, (4.24)

which implies that the mean-flow distortion spreads to the outer inviscid layer, where
the streamwise and transverse velocities both become O(ε5/2), and a pressure of the
same order of magnitude is induced. On introducing ȳ= ε1/2y/c, the perturbation may
be written as ε5/2(û±M, v̂

±
M, p̂±M), where the scaled velocity (û±M, v̂

±
M) and pressure p̂±M are

functions of x̄ and ȳ, and satisfy the equations

∂ û±M
∂ x̄
+ ∂v̂

±
M

∂ ȳ
= 0, Ū±

∂ û±M
∂ x̄
=−∂ p̂±M

∂ x̄
, Ū±

∂v̂±M
∂ x̄
=−∂ p̂±M

∂ ȳ
. (4.25a−c)

It follows that

∇2p̂±M = 0,
∂ p̂±M
∂ ȳ

∣∣∣∣
ȳ=0

= c−1Ū2
±a(0)±3

∂2|A†|2
∂ x̄2

(−∞< x̄<∞), (4.26a,b)

where the boundary condition corresponds to the matching with the transverse velocity
vM =−c−1φ

(0)
3,x̄ at the upper and lower outer edges of the shear layer. Clearly, in the

lower stream, if ȳ is changed to −ȳ>0, the Laplace equation for p̂−M remains invariant,
but the boundary condition changes its sign, that is,

∇2p̂− = 0,
∂ p̂−

∂ ȳ

∣∣∣∣
ȳ=0

=−c−1Ū2
−a(0)−3

∂2|A†|2
∂ x̄2

(−∞< x̄<∞). (4.27a,b)
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416 X. Wu and X. Zhuang

In the main part of the shear layer, there exists an induced mean pressure, ε5/2p(2)M ,
with p(2)M satisfying

∂p(2)M

∂y
=− ∂

∂y
(2iαA†∗φ1φ

(1)
2 + c.c.). (4.28)

Integration across the shear layer gives

p(2)M (∞)− p(2)M (−∞)= 0. (4.29)

It follows by matching that p̂+M = p̂−M at ȳ= 0, and hence

a(0)+3 Ū2
+ =−a(0)−3 Ū2

−. (4.30)

On the other hand, as y→ y±c it follows from (4.23) that

φ
(0)
3 → Ūc

[
a(0)±3 + Ū′′′c

ŪcŪ′2c
ln|y− yc| − I±s

]
|A†|2, (4.31)

φ
(0)
3,y→ Ū′c

[
a(0)±3 − I±s +

Ū′′′c

ŪcŪ′2c
ln|y− yc|

]
|A†|2 + Ū′′′c

Ū′2c

|A†|2
y− yc

, (4.32)

where

I±s =
∫ â±

±∞

Ŝ
Ū2

dy+
∫ yc

â±

[
Ŝ

Ū2
+ Ū′′′c /Ū

′2
c

Ūc(y− yc)

]
dy+ Ū′′′c

ŪcŪ′
2

c

ln|yc − â±|, (4.33)

with â+ > yc and â− < yc being arbitrary constants.
The jump (a(0)+3 − a(0)−3 ) can be found by considering the mean-flow distortion Q0 in

the critical layer. Let Ψ (0)
2 be the streamfunction related to Q0: Ψ (0)

2YY = Ū′′′c /(αŪ′c)
2Q0.

Using this in (3.46) for n= 0 and integrating the resulting equation with respect to η,
we obtain [

D0 + χ ∂

∂η
− λ0

∂2

∂η2

]
Ψ
(0)

2,η =−
iŪ′′′c

(αŪ′c)4
(A∗Q1 − AQ∗1). (4.34)

Integrating once more and making use of (3.47), we find that

D0[Ψ (0)
2 (∞)−Ψ (0)

2 (−∞)] = (α2Ū′c)
−2

[
(2α2c−1J1 − J2)

∂|A|2
∂ x̄
− J2

∂|A|2
∂τ

]
. (4.35)

For a non-modulated disturbance, from the above relation, the jump Ψ
(0)

2 (∞) −
Ψ
(0)

2 (−∞) is obtained, which must, by the matching principle, be equal to φ(0)3 (y+c )−
φ
(0)
3 (y−c ), leading to the relation

a(0)+3 − a(0)−3 − (I+s − I−s )= (2α2c−1J1 − J2)/Ūc. (4.36)

It follows from (4.30) and (4.36) that

a(0)±3 =± Ū2
∓[(I+s − I−s )+ (2α2c−1J1 − J2)/Ūc]

(Ū2+ + Ū2−)
. (4.37)
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Nonlinear dynamics of coherent structures in turbulent shear layers 417

The mean-flow distortion in the critical layer is given by (ε3/2U(1)
M + ε2U(2)

M ) with

U(1)
M =

Ū′′′c

(αŪ′c)3

∫ η

−∞
Q0 dη, (4.38)

and the O(ε2) term U(2)
M is contained in Ψ3 in (3.25), which consists, like Ψ2, of all

harmonics. Let the mean-flow component be denoted by Ψ
(0)

3 . Then U(2)
M = Ψ (0)

3,Y . As
in Wu & Tian (2012), Ψ (0)

3,YY ∼ O(1/η) for η � 1, and so U(2)
M → cM|A|2 ln|η| with

cM = Ū′′′c /(α
4ŪcŪ′3c ), matching to the corresponding logarithmic term in (4.32). The

composite solution for the mean-flow distortion is then given by

UM = ε3/2U(1)
M + ε2[(U(2)

M − cM|A|2 ln|η|)] + ε2

[
φ
(0)
3,y −

Ū′′′c /Ū
′2
c

(y− yc)
|A†|2

]
. (4.39)

The width of the shear layer is usually measured by the momentum thickness,
defined as

Θ = 1
4

∫ ∞
−∞
(U+ − Ū†)(Ū† −U−) dy, (4.40)

where Ū† = Ū + UM is the perturbed mean velocity. At leading order, the definition
gives the momentum thickness of the ‘partial’ (or unperturbed) mean flow,

θ = 1
4

∫ ∞
−∞
(U+ − Ū)(Ū −U−) dy. (4.41)

The O(ε2) change in the momentum thickness is then found as

1Θ =−1
2
ε2
∫ ∞
−∞
(Ū − c)

{[
φ
(0)
3,y −

Ū′′′c /Ū
′2
c

y− yc
|A†|2

]
+ ε−1/2U(1)

M +(U(2)
M − cM|A|2 ln|η|)

}
dy.

(4.42)

The contribution of the leading-order inner solution was ignored in Goldstein & Leib
(1988) on the ground that U(1)

M is trapped in the critical layer of O(ε1/2) width, where
the integrand, ε−1/2(Ū − c)U(1)

M , is of order one so that the contribution is of O(ε1/2).
Here it is retained in the spirit of composition approximation, but the even smaller
term U(2)

M will be neglected. Using (4.22) and performing integration by parts, we find
that

1Θ = −1
4
ε2

{
[(1− c)φ(0)3 (∞)+ (1+ c)φ(0)3 (−∞)]

+ c[φ(0)3 (y
+
c )− φ(0)3 (y

−
c )] −

∫ ∞
−∞

S dy
}

− 1
2
ε2
∫ ∞
−∞
(Ū − c)

[
− Ū′′′c /Ū

′2
c

y− yc
|A†|2 + ε−1/2U(1)

M

]
dy

= −1
4
ε2|A†|2

[
(a(0)+3 − a(0)−3 )− c2(I+s − I−s )−

∫ ∞
−∞

Ŝ dy
]

− 1
2
ε2
∫ ∞
−∞

[
Ū − 1

2
(Ū+ + Ū−)

] {
− Ū′′′c /Ū

′2
c

y− yc
|A†|2 + ε−1/2U(1)

M

}
dy. (4.43)
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Substitution of (4.36) into the above gives the final expression for 1Θ:

1Θ = −1
4
ε2|A†|2

[
(1− c2)(I+s − I−s )+ (2α2c−1J1 − J2)/Ūc −

∫ ∞
−∞

Ŝ dy
]

− 1
2
ε2
∫ ∞
−∞

[
Ū − 1

2
(Ū+ + Ū−)

] {
− Ū′′′c /Ū

′2
c

y− yc
|A†|2 + ε−1/2U(1)

M

}
dy. (4.44)

It is interesting that 1Θ can be determined without fixing the individual values
of a(0)±3 .

Equation (4.39) indicates that, if the full profile is to be obtained accurate up to
O(ε2), the critical-layer equation at O(ε5/2) has to be solved to calculate Ψ3 and Ψ (0)

3Y =
U(2)

M . An O(ε2) velocity jump across the critical layer is present in the outer solution
φ
(0)
3,y , and is smoothed out by the inner solution U(2)

M . This can be shown by examining
(but without solving) the equation for Ψ3, which reads

LNΨ3,YY = G − c−1Ū1,cΨ2,YYx̄ − Ū′1,cYΨ2,YYζ − σ λ̄2/3[V̄ ′cY + (σ λ̄2/3c)x̄V̄1,c]Ψ2,YYY

− Ū1,cΨ1,ζ ζ − Ū′1,cYΨ0,ζ ζ − 2c−1Ū1,cΨ0,ζ x̄ + Ū′′1,c[Ψ1,ζ + c−1Ψ0,x̄]
+ Ū′′′1,cYΨ0,ζ + 1

2(σ λ̄
2/3c)2x̄2[Ū′′2Ψ0,ζ − Ū2Ψ0,ζ ζ ], (4.45)

where G stands for the right-hand side of (2.42) in Wu & Tian (2012), and Ū2 =
∂2ŪB/∂ x̃2 evaluated at yc and xn= 0. Integrating (4.45) with respect to Y for the mean-
flow component, and making use of the asymptotic behaviours of Ψ (0)

2,Y and Ψ (0)
3,YY , we

obtain

D0[Ψ (0)
3,Y (∞)−Ψ (0)

3,Y (−∞)] = c−1Ū′c
∂

∂ x̄
[Ψ (0)

2 − YΨ (0)
2,Y ]∞−∞ = c−1Ū′c

∂Ψ
(0)

2

∂ x̄

∣∣∣∣∣
∞

−∞
. (4.46)

For the non-modulated case, evaluation of the right-hand side by matching with (4.31)
shows that

U(2)
M (∞)−U(2)

M (−∞)= Ū′c[a(0)+3 − a(0)−3 − (I+s − I−s )]. (4.47)

From this relation and (4.32) it follows that

U(2)
M (∞)−U(2)

M (−∞)= φ(0)3,y(y
+
c )− φ(0)3,y(y

−
c ), (4.48)

indicating that the jump in the streamwise velocity is smoothed out within the critical
layer, as expected.

The expressions for the Reynolds stress (4.14), the mean-flow distortion (4.39) and
the change in the momentum thickness (4.44) are valid for a general profile Ū. These
quantities are of physical interest as they are relevant for understanding CS and/or
their impact on the shear layer, and they will be calculated in § 5 and presented
after numerical solutions for the amplitude and vorticity of the CS are obtained. In
performing the computation, use is to be made of the relation

η= αŪ′c[(y− yc)/ε
1/2 + (σ ¯λ2/3cŪ1,c/Ū′c)x̄] − S0. (4.49)
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5. Numerical solutions for mixing layers
5.1. Numerical method

The numerical work consists of solving the coupled evolution system (3.46) and (3.55)
subject to the initial condition (3.56) and the boundary conditions (3.49)–(3.51). The
system is truncated with 06n6N (where n refers to the order of harmonics in (3.45)),
and solved in a large but finite domain, −M 6 η 6 M. A predictor–corrector method
is employed to march downstream. The amplitude equation for A is discretized using
the fourth-order explicit (Adams–Bashforth) and implicit (Adams–Moulton) schemes
to construct the predictor and corrector, respectively. The integrals are evaluated using
Simpson’s rule. The vorticity equations for Qn are discretized by the Crank–Nicolson
scheme.

5.2. Mean velocity profile
The theory is now applied to a mixing layer that forms between two uniform streams
with velocities U∗1 and U∗2 < U∗1 . The reference velocity is U∗0 = (U∗1 − U∗2)/2. As
in many previous studies, we will specify a mean-flow profile that is broadly in
agreement with experimental data. The latter indicate that the mean-flow profile
remains self-similar in the streamwise direction while its local thickness varies, and
thus it takes the form

ŪB =Uc + F(η†), η† = [y− y0(x̃)]/δ(x̃), (5.1)

where
Ūc = (U∗1 +U∗2)/(U

∗
1 −U∗2), (5.2)

the function F characterizes the shape, while y0 and δ represent the centre and
thickness of the shear layer, respectively. The dimensional momentum thickness θ∗,
which is often measured in experiments, is related to θ (as defined by (4.41)), δ and
δ∗ by

θ∗ = δ∗0θ =C1δ
∗
0δ =C1δ

∗, (5.3)

where for the similarity profile (5.1) the constant C1 is found as

C1 = 1
4

∫ ∞
−∞
(1− F2) dη†. (5.4)

With a given F, the (rescaled) transverse velocity VB, whose value at the critical
level is needed in our theory, can be obtained from the continuity equation, as will
be shown below. Before prescribing the profile F, it is informative to discuss useful
mean-flow properties that are independent of F. First, the streamwise variations of
y0(x̃) and δ(x̃) are not independent but satisfy a constraint. We derive it by considering
the momentum equation (3.3), which can be rewritten as

∂[ŪB(ŪB − Ū±)]
∂ x̃

+ ∂[V̄B(ŪB − Ū±)]
∂y

= ∂
2ŪB

∂y2
, (5.5)

where the subtraction of Ū± = Ūc ± 1 is for y> 0 and y< 0, respectively. Integration
of the above equation with respect to y gives∫ 0

−∞
ŪB(ŪB − Ū−) dy+

∫ ∞
0

ŪB(ŪB − Ū+) dy=C0, (5.6)
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where C0 is a constant. The relation corresponds to conservation of the (renormalized)
streamwise momentum flux. Inserting (5.1) into (5.6), we have∫ −y0/δ

−∞
ŪB(η

†)[ŪB(η
†)− Ū−] dη† +

∫ ∞
−y0/δ

ŪB(η
†)[ŪB(η

†)− Ū+] dη† = C0

δ
. (5.7)

On taking a derivative of (5.7) with respect to x̃, the equation becomes

ŪB(−y0/δ)(Ū+ − Ū−)(ẏ0δ − y0δ̇)=C0δ̇, (5.8)

which relates ẏ0, the rate of drift of the shear-layer centre, to δ̇, the spreading rate of
its thickness.

The corresponding transverse velocity VB can be found by introducing a stream-
function ψB such that

ŪB = ∂ψB

∂y
= 1
δ

∂ψB

∂η†
, V̄B =−∂ψB

∂ x̃
. (5.9a,b)

Integration of the first equation yields

ψB = δ
[∫ η†

−∞
(ŪB − Ū−) dη† + Ū−η†

]
+ d0(x̃), (5.10)

and so

VB =−δ̇
[∫ η†

−∞
(ŪB − Ū−) dη̃+ Ū−η†

]
+ (ẏ0 + η†δ̇)ŪB − ḋ0(x̃), (5.11)

where d0(x̃) is an unknown function of x̃. In order to determine d0(x̃), which affects
nonlinear dynamics of the CS, we now analyse the impact of the viscous shear layer
on the mean flow in the far field. From (5.11), one finds that

VB→ Ū±ẏ0(x̃)− ḋ0(x̃)≡ V̄± as y→±∞, (5.12)

where V̄± are the so-called ‘transpiration velocities’, i.e. the transverse velocities
induced by the viscous motion in the shear layer. Through V±, an O(R−1

T ) perturbation
R−1

T (û±, v̂±, p̂±) is induced in the far field corresponding to ỹ≡ y/RT = O(1), where
the scaled velocity (û±, v̂±) and pressure p̂± are functions of x̃ and ỹ. They satisfy the
same equations as (4.25) provided that x̄ and ȳ are replaced by x̃ and ỹ, respectively.
It it follows that p̂± satisfies the Laplace equation

∇2p̂± = 0,
∂ p̂±

∂ ỹ

∣∣∣∣
ỹ=0

=−Ū±
∂V̄±
∂ x̃

(−xn < x̃<∞), (5.13a,b)

where the boundary condition corresponds to the matching with the transpiration
velocities at the upper and lower outer edges of the shear layer. The solution for p̂±
may depend on other bounding surfaces that may be present in an experimental set-up.
On the assumption that any asymmetry in the upper and lower streams is absent, then
p̂± are determined by the boundary conditions at ỹ= 0. A simple order-of-magnitude
argument indicates that a mixing layer cannot sustain a pressure difference of O(R−1

T ),
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Nonlinear dynamics of coherent structures in turbulent shear layers 421

which means that p+ = p− on ỹ= 0. This requires −Ū+V̄+ = Ū−V̄−, from which one
finds

ḋ0 = Ū2
+ + Ū2

−
Ū+ + Ū−

ẏ0(x̃). (5.14)

The relations (5.7), (5.8) and (5.14) hold for any x̃. Specifically, putting x̃= 0 where
y0 = 0 and δ = 1, we have∫ 0

−∞
ŪB(ŪB − Ū−) dη† +

∫ ∞
0

ŪB(ŪB − Ū+) dη† =C0, (5.15)

ẏ0 = C0δ̇

Ūc(Ū+ − Ū−)
, ḋ0 = Ū2

+ + Ū2
−

Ūc(Ū2+ − Ū2−)
(C0δ̇). (5.16a,b)

In our calculations, we choose the profile

ŪB = Ūc + (1+ qc sech2η†) tanh η†, (5.17)

which GKW found to fit their low-excitation experimental data for qc = 0.67. The
special case of qc= 0 has been the popular choice in theoretical studies, as the neutral
mode can be found analytically. Substitution of (5.17) into (5.15) and (5.4) gives the
constants

C≡C0/2= ln 2− 1+ 1
6 qc + 2

15 q2
c, C1 = 1

2(1− 2
3 qc − 2

15 q2
c). (5.18a,b)

It follows that

Ū′c= 1+ qc, Ū′′′c =−2(1+ 4qc), Ū1,c=−(1+ qc)Cδ̇/Ūc, Ū′′1,c= 2(1+ 4qc)Cδ̇/Ūc.

(5.19a−d)
For the evaluation of I1, only the odd parts of Ū1 and Ū′′1 are required, which are

found as

Ū1 =−ηŪ′Bδ̇ + even part, Ū′′1 =−ηŪ′′′B δ̇ + even part. (5.20a,b)

Use of these in (3.20) shows that I1 may be written as

I1 = Î1δ̇, Î1(qc)=
∫ ∞
−∞

(Ū − c)Ū′′′ − Ū′′Ū′

(Ū − c)2
ηφ2

1 dη. (5.21a,b)

The parameters characterizing non-parallelism are found as

χ =−α(1+ qc)(ln 2− 1
2 qc +C+C/c2)bs, χ2 = 0,

Λ0 =−αc(1+ qc)
2Î1(qc)

2(1+ 4qc)
bs, σs = αc(1+ qc)

2Î1

2(1+ 4qc)(π+Λ2)
bs ≡ σ0bs,

 (5.22)

where
bs = dθ∗/dx∗

εC1
, (5.23)

and

Λ2 =− iα2(1+ qc)
2J1(qc)

c(1+ 4qc)
. (5.24)
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When qc = 0, it is found that

φ1 = sech η†, α = 1, c= Ūc, J1 = 2, Î1 =−4, J2 = 0, (5.25a−f )

but for qc 6= 0, it is necessary to solve the Rayleigh equation numerically to find the
neutral mode, and then evaluate Î1 and J1. Here Î1 is a Cauchy principal value but
can be computed easily using its definition.

5.3. Numerical results
Flow quantities of interest include the amplitude A of the fundament component and
the so-called ‘critical-layer vorticity’ Ω†

c of CS. The latter is defined as (see Goldstein
& Leib 1988)

Ω†
c = 1

2 Ū′′′c + (Ψ2,YY +Ψ0,ζ ζ )= 1
2 Ū′′′c Y2 +Ω† + (Ū′′′c /Ū

′
c)A

†eiζ̄ + c.c., (5.26)

with which (Ū′c + εΩ†
c ) represents the total vorticity within the critical layer. For

convenience, the results will be presented by plotting the renormalized vorticity

Ωc ≡Ω†
c (αŪ′c)

2/Ū′′′c = 1
2(η+ S0)

2 + Aeiζ̄ + c.c.+Ω. (5.27)

The choice of the parameters is guided by the experiments of GKW, where U∗1 =
10 m s−1, U2 = 4 m s−1, dθ∗/dx∗ = 1/54 (see the data set III in table 1 of GKW)
and the momentum thickness θ∗ = 18.78 mm, which can be read from figure 1 of
GKW. For the purpose of demonstrating qualitative behaviours of the evolution, we
take qc = 0, for which δ∗0 = θ∗/C1 with C1 = 0.5. Based on δ∗0 and U∗0 , the Reynolds
number R turns out to be 7100. We choose S0 < 0 such that κr = 1, and set the
amplitude ε = 0.1036, for which nonlinear effects are significant, and the parameters
characterizing the non-parallel-flow effects, χ and σs, take O(1) values: χ =−0.1180
and σs =−0.4943− 0.1349i. The eddy viscosity and phase lag have to be treated as
free parameters because no experimental data about them are available. The expression
(3.48) implies that, if τ̂ 6= 0 and λ̄2> λ̄1 (i.e. R̃T <R), the effective diffusion coefficient
λ̄1+ λ̄2 cos(nθ̂ ) (θ̂ ≡αcτ̂ ) will become negative for certain n, rendering the problem ill-
posed. This unfavourable feature reflects a shortcoming of the model, which assumes
the same relaxation time τ̂ for the fundamental and all harmonics. Improved models
are being pursued, and here the ill-posedness is avoided by restricting R̃T 6 R, i.e.
λ̄2 6 λ̄1. Specifically, we choose R̃T = R, for which λ̄2= λ̄1= 0.00422, and take phase
lag θ̂ = π/5. These values are rather arbitrary. Fortunately, the evolution of the CS
turns out to be rather insensitive to either of θ̂ and λ̄2, as will be shown later.

Figure 1 shows the amplitude evolution (curve a) under the influence of both
nonlinearity and non-parallelism. In order to see their roles, the results when either of
these is artificially suppressed are also plotted. Without nonlinearity, the development
is Gaussian, featuring a broad peak and rapid monotonic decay (curve c). On the other
hand, with the nonlinear effect included but non-parallelism neglected (curve b), the
amplitude undergoes oscillatory saturation (and actually slight algebraic amplification;
see later). The simultaneous effects of non-parallelism and nonlinearity cause the
amplitude to decay in an oscillatory manner, which is obviously different from the
linear approximation and parallel–nonlinear theory. The neutral position of the mode
with frequency ωn = αc corresponds to x̄= 0, but the disturbance under consideration
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FIGURE 1. Nonlinear development of the amplitude A: solid line (curve a), non-parallel–
nonlinear theory with dθ∗/dx∗ = 1/54; dashed line (curve b), parallel–nonlinear theory
dθ∗/dx∗ = 0; dotted line (curve c), non-parallel–linear theory.
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FIGURE 2. Nonlinear development of the amplitude A for different spread rates of the
momentum thickness dθ∗/dx∗ = 0 (curve a), 1/108 (curve b), 1/54 (curve c), 1/27
(curve d) and 1/18 (curve e).

has the frequency αc + ε1/2S0 < αc ≡ ωn, and so it becomes linearly neutral and
attains its maximum somewhat downstream of x̄= 0.

In the present theory, non-parallelism manifests in two ways: (1) it alters the growth
rate of the CS, which is well known, and (2) it induces a translating critical layer, the
effect of which becomes active in the nonlinear stage of the evolution. Non-parallelism
is controlled by the spreading rate of the shear-layer thickness dθ∗/dx∗. The amplitude
evolution for a range of 06 dθ∗/dx∗6 1/18 is displayed in figure 2. As is illustrated,
non-parallelism tends to inhibit CS in the sense that the decay starts earlier and
becomes faster, and the peak value decreases as dθ∗/dx∗ increases. However, the
overall feature of oscillatory attenuation remains. Such oscillatory attenuations have
been observed in a number of experiments (Hussain & Thompson 1980; Zaman &
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FIGURE 3. The development of the amplitude A for different viscosity parameters λ̄1 and
λ̄2. Parallel–nonlinear theory (dθ∗/dx∗= 0) for λ̄1= λ̄2= 0.5 (curve a), 0.1 (curve b) and 0
(curve c). Non-parallel–nonlinear theory (dθ∗/dx∗= 1/54) for λ̄1= λ̄2= 0 (curve d), 0.0442
(curve e), 0.05 (curve f) and 0.1 (curve g).

Hussain 1980; Fiedler & Mensing 1985; WW). It is worth noting that the amplitude
ε influences the evolution through χ , Λ0, σs, λ̄1 and λ̄2. Since the first three of these
parameters are proportional to bs = (dθ∗/dx∗)/(C1ε) (see (5.23)) while λ̄1 and λ̄2
are practically zero, curves b and d would represent approximately the evolution for
ε = 0.2072 (doubled) and 0.0518 (halved), respectively, with a fixed dθ∗/dx∗ = 1/54.

We now examine the role of molecular and eddy viscosities, represented by λ̄1 and
λ̄2, respectively. The amplitude evolution for different values of these parameters is
shown in figure 3, where the corresponding result with non-parallelism ignored is
also presented. Neither of the viscosities affects the linear stage of the development,
and their impact on the nonlinear evolution is opposite depending on whether non-
parallelism is included. When non-parallelism is neglected, the amplitude continues
to amplify and eventually follows an algebraic growth (Goldstein & Hultgren 1988).
The amplitude is greater for larger values of λ̄1 and λ̄2, indicating that viscosities
promote the growth of the perturbation, the reason being that nonlinearity plays a
stabilizing role and a larger viscosity corresponds to weaker nonlinearity and therefore
a less stabilizing effect. On the contrary, when non-parallelism is included, increasing
viscosities tend to enhance decay and reduce the oscillation, as is expected intuitively.
The quantitative difference indicates the importance of accounting for non-parallelism.
In comparison, viscous effects are rather weak, affecting only the later stage of the
development, since typical values of λ̄1 and λ̄2 turn out to be fairly small. This is
entirely consistent with the assertion made by Fiedler & Mensing (1985) based on
their experimental observations.

The effect of the phase lag θ̂ ≡ αcτ̂ is also considered. Figure 4 shows the
amplitude evolution for different θ̂ with typical values of λ̄1 = λ̄2 = 0.004 as well
as with artificially elevated values, λ̄1 = λ̄2 = 0.05. In both cases, increasing θ̂ only
slightly alleviates the decay, which may be attributed to a slightly smaller total
viscosity (λ̄1 + λ̄2 cos θ̂ ). The results in figures 3 and 4 indicate that the phase lag
and the magnitude of the eddy viscosity have a negligible influence on the CS,
suggesting that the latter evolves practically in the same manner as an instability
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FIGURE 4. The development of the amplitude A for different phase lags θ̂ = αcτ̂ : (a) for
λ̄1= λ̄2= 0.00422 and θ̂ = 0 (curve a), π/5 (curve b) and π/2 (curve c); (b) an enlarged
view of (a) for 4< x̄< 8; (c) for λ̄1 = λ̄2 = 0.05 and θ̂ = 0 (curve a), π/5 (curve b) and
π/2 (curve c); (d) an enlarged view of (c) for 2< x̄< 8.

wave on a laminar shear layer. Indeed, the dynamics is essentially inviscid since the
effect of molecular viscosity is more likely to be even smaller and negligible as well.

As was mentioned earlier, the most significant feature of the strongly nonlinear
critical-layer theory is that all harmonics appear simultaneously at the same order.
They are measured by the streamwise velocity jump

Hn ≡ a(n)+2 − a(n)−2 . (5.28)

Figure 5 shows the development of Hn for n= 2, 3, 4. The size of Hn decreases with n.
In the earlier nonlinear phase, the first harmonic H2 is dominant, but all three become
more or less comparable in the later stage 2.2< x̄< 5.

The simultaneous appearance of harmonics leads to roll-up of vortices. This process
is illustrated in figure 6 by plotting contours of the normalized critical-layer vorticity
of the CS at representative streamwise locations. At the same time, distributions of the
fundamental Q1, the first harmonic Q2 and the mean-flow distortion Q0 are monitored.
In the initial linear stage x̄= 0, the fundamental is dominant and the vorticity exhibits
a simple pattern of a ‘cat’s eye’ associated with a simple sinusoidal perturbation. By
x̄=1, vorticity lines begin to fold and a vortex roller starts forming. The first harmonic
acquires an amplitude approximately half of that of the fundamental, whereas the
mean-flow distortion becomes comparable with the latter. The harmonic and the mean-
flow distortion remain trapped in the critical layer as they decay rapidly towards its
outer edges. When x̄ = 2, a fully developed vortex roller has emerged. The relative
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FIGURE 5. The development of the harmonics as shown by
Hn ≡ a(n)+2 − a(n)−2 (n= 2, 3, 4) for dθ∗/dx∗ = 1/54, λ̄1 = λ̄2 = 0.0422 and θ̂ =π/5.

magnitudes of the three components remain similar as at x̄= 1. However, the profile
of the first harmonic exhibits rapid oscillations. A further calculation with the mesh
size halved indicates that they are well resolved. At x̄= 4, vortices become elongated
in the streamwise direction and there is considerable overlapping between two adjacent
vortices. This might be related to ‘partial pairing’ observed in experiments (Hussain &
Clark 1981). In this case, vortices appear to merge without involving the subharmonic.

The Reynolds stress and the mean-flow distortion are calculated. For the chosen
profile (5.17) with (qc = 0), it is found that

F1 + Ĉ±F0 = 1
2 [tanh y sinh y∓ (y sech y+ sinh y)],

F2 + Ĉ±F0 =−
[

sinh y ln|tanh y| + sech y
∫ y

0
ln|tanh s| ds

]
,

 (5.29)

Ŝ= sech4y (1+ 2Ūc coth y), (5.30)

I+s − I−s =
2

Ūc
ln
∣∣∣∣Uc + 1
Uc − 1

∣∣∣∣ . (5.31)

Substitution of (5.29) into (4.14) gives

τ12 = −∂|A|
2

∂ x̄
{sech2y+ 2 ln|tanh y| + c−1[(2+ sech2y) tanh y∓ 2]}

− [iA∗ sech y (U3/2 − i(−1± 2/c)Ax̄ + 2iAx̄ ln|η|)+ c.c.], (5.32)

where the jump in the outer solution is smoothed out by the contribution of the inner
solution U3/2.

Substituting (5.30) and (5.31) into (4.44), we find that

1Θ = ε2|A|2
{

1
3
− 1

Ū2
c

+ Ū2
c − 1
2Ūc

ln
∣∣∣∣ Ūc + 1
Ūc − 1

∣∣∣∣}
− 1

2
ε2
∫ ∞
−∞

tanh y
{
− Ū′′′c /Ū

′2
c

y− yc
|A|2 + ε−1/2U(1)

M

}
dy. (5.33)
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FIGURE 6. Contours of the critical-layer vorticity Ωc (a,c,e,g), and profiles of the
fundamental Q1, first harmonic Q2 and the mean distortion Q0 (b,d,f,h) at x̄ = 0, x̄ = 1,
x̄= 2 and x̄= 4.
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The result reduces to that of Goldstein & Leib (1988) when the contribution
from the critical layer is ignored. Finally, the indefinite integral in (4.23) can be
evaluated analytically. Inserting the result along with (5.30) into (4.39), we obtain the
streamwise velocity of the mean-flow distortion,

UM = ε3/2U(1)
M + ε2|A|2

{
sech2y

[
a(0)±3 + 2

Ūc
ln
∣∣∣∣ Ūc + tanh y
(Ūc ± 1) tanh y

∣∣∣∣]
− 2 sech4y coth y+ 2

y− yc

}
+ ε2

(
U(2)

M +
2

Ūc
|A|2 ln|η|

)
. (5.34)

As was mentioned earlier, (4.45) coupled with an amplitude equation for B† has to
be solved to find U(2)

M . As the calculation is highly complex, we shall ignore (U(2)
M +

(2/Uc)|A|2 ln|η|), which decays like 1/η as η→∞. The resultant O(ε2) error causes
a small discontinuity at y= yc, but does not change the overall feature of the solution.
In calculations, use is made of the relation

y= ε1/2(η+ S0)+ C dθ∗/dx∗

C1ε1/2
x̄. (5.35)

Figure 7 displays the distributions of the Reynolds stress τ12 and the mean-flow
distortion UM at four representative streamwise locations. At x̄ = 0 and 1, the
disturbance is amplifying, and the Reynolds stress τ12 > 0 almost everywhere. The
amplitude of the CS peaks at x̄≈ 1.3, downstream of which (e.g. at x̄= 2) τ12 < 0 for
all y, giving rise to a negative production. As a result, the energy is transferred from
the perturbation to the mean flow in this region. At x̄= 3, τ12 becomes positive again,
but its value has almost vanished. The overall features of the mean-flow distortion,
which concentrates in the critical layer, are well represented by the leading-order
inner solution U(1)

M . Interestingly, the mean-flow distortion still persists and retains a
significant magnitude farther downstream due to the non-equilibrium effect. That the
Reynolds stress changes its sign twice is consistent with the experimental observations
shown in figures 8(a) and 15 of WW.

Figure 8 shows the change of the momentum thickness. That 1Θ > 0 at all
locations indicates that the shear layer thickens in the presence of CS, consistent with
experimental observations. Before the peak position, the contribution from the critical
layer is small but appreciable. Its effect becomes rather significant in the attenuating
phase as the contribution from outside of the critical layer vanishes quickly. The slow
relaxation of the mean-flow distortion and the shear-layer thickness implies that the
imprint of the CS in these two related quantities lasts longer than the CS itself, as
has been observed in experiments (e.g. Wygnanski et al. 1986). This long memory
must be associated with the non-equilibrium effect in the critical layer, which causes
the mean-flow distortion to be history-dependent, whereas the distortion outside is
proportional to |A|2 (i.e. memoryless) as (4.23) indicates.

5.4. Comparison with experiments
Let the dimensional variables/quantities be indicated by the superscript ∗. In order
to facilitate the comparison with experiments, note that there exist the following
relationships with the non-dimensional variables/quantities adapted in the present
paper:

x̄= ε1/2c−1x= ε1/2c−1C1(x∗− x∗n)/θ
∗, y=C1y∗/θ∗, v= 2v∗/(U∗1 −U∗2), (5.36a−c)
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FIGURE 7. (Colour online) Distribution of the CS-induced Reynolds stress τ12 (dashed
lines) and mean-flow distortion UM (solid lines) at x̄ = 0 (a), 1 (b), 2 (c) and 3 (d). A
small, O(ε2), discontinuity at y= yc= 0 arises due to neglecting (U(2)

M − cM|A|2 ln|η|). The
dashed lines with symbols denote U(1)

M , the leading-order inner solution.

where C1 is a profile-dependent constant defined by (5.4). The dimensional frequency
f ∗ is related to ω≡ αc (with S0 = 0) by the relation

αc= 4πf ∗θ∗

C1(U∗1 −U∗2)
. (5.37)

In the experiment of WW, the measured amplitude of CS, shown in figure 8(b) of
their paper, is represented by the integrated intensity

Aexp =
f ∗
∫ ∞
−∞
|〈v∗〉| dy∗

(U∗1 −U∗2)U∗c
, (5.38)
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FIGURE 8. The change of the momentum thickness 1Θ/ε2 versus x̄: solid line, full result
calculated using (5.33); dashed line, the result with the contribution from the critical layer
omitted.

where U∗c = (U∗1 + U∗2)/2 and 〈·〉 represents the amplitude of the time-dependent
signature. Application of the relations in (5.36)–(5.38) yields∫ ∞

−∞
|〈v〉| dy= C1(U∗1 +U∗2)

f ∗θ∗
Aexp. (5.39)

In the present work,

v =−εiαA†φ1(y)eiα(x−ct) + c.c.= 2ε(αŪ′c)
−1Aφ1(y) sin(αx−ωt). (5.40)

It follows from (5.39) and (5.40) that

ε|A| = αŪ′c
2Iv

C1(U∗1 +U∗2)
f ∗θ∗

Aexp, (5.41)

where

Iv =
∫ ∞
−∞
|φ1| dy. (5.42)

In the linear regime, the amplitude function has the solution

A= exp{ 1
2σsx̄2 + κ x̄} = exp{ 1

2σ
∗
s (x
∗ − x∗n)

2 + κ∗(x∗ − x∗n)}, (5.43)

where

σ ∗s =
εC2

1

(cθ∗)2
σs, κ∗ = C1ε

1/2

cθ∗
κ. (5.44a,b)

The parameter ε is determined by using (5.41), i.e. by requiring the predicted
amplitude to be the same as the measured one, at a suitable location x∗, e.g. at the
peak position or in the linear regime upstream. For the latter case, the expression
(5.43) may be used.

For the profile (5.17) with qc 6= 0, the Rayleigh equation is solved numerically to
find the neutral mode and to evaluate the constants related to the eigenfunction. The
results for several qc are listed and contrasted with those for qc = 0 in table 1.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

64
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.646


Nonlinear dynamics of coherent structures in turbulent shear layers 431

qc C C1 α Iv J1 Î1

0 −0.3069 0.5 1 π 2 −4
0.1 −0.28885 0.4660 1.1828 2.6654 1.6954 −4.4845
0.3 −0.2448 0.3940 1.5219 2.1278 1.3657 −5.2233
0.67 −0.1353 0.2467 2.0665 1.6703 1.0920 −6.0890
0.9 −0.04885 0.1460 2.3636 1.5156 0.9994 −6.4316

TABLE 1. Neutral wavenumber and the eigenfunction-related constants for typical qc.

The experiment of WW was performed for U∗1 = 10 m s−1, U∗2 = 6 m s−1 and
f ∗ = 44.5 Hz. Assuming that the profile is approximated by (5.17), we need to
provide three parameters characterizing the unperturbed mean flow: qc, dθ∗/dx∗ and
θ∗. Unfortunately, they are not available from the data of WW. Noting that the
experiments of WW and GKW were performed in the same apparatus, we decided
to estimate these parameters by appealing to the latter. Curiously, for qc = 0.67, the
frequency of the neutral mode in GKW does not satisfy the constraint (5.37) despite
the fact that the profile was in agreement with the measurement. Our calculation
shows that, if qc= 0.9 is taken instead, the constraint is satisfied in all three cases of
GKW. For the same experimental set-up, the spreading rate of the unperturbed flow
depends primarily on U∗1/U

∗
2 (Oster & Wygnanski 1982; Weisbrot et al. 1982). This

ratio in WW is the same as in case I of GKW, where dθ∗/dx∗ = 1/85 was found.
For controlled disturbance with f ∗ = 20 Hz and U∗1 = 5 m s−1 and U2 = 3 m s−1,
the measured momentum thickness is approximately 11.5 mm, which converts to
a corresponding θ∗ ≈ 10 mm in WW by using (5.37), which indicates that the
non-dimensional frequency f ∗θ∗/(U∗1 − U∗2) must be equal in the two experiments.
Therefore, we take qc = 0.9, dθ∗/dx∗ = 1/85 and θ∗ = 10 mm in our calculations.

The amplitude development predicted by the theory is shown in figure 9 and
compared with the experimental data of WW. The agreement is good in the linear
and earlier nonlinear stages up to the peak position. Further downstream, the theory
mimics the general trend, e.g. both the theoretical result and the measurement feature
a local maximum downstream, but considerable discrepancy emerges: the decay
predicted by the theory is much faster and the maximum is more pronounced than
those measured. As VB and hence χ may be influenced by the detailed arrangements
of the experiments, the value of χ is doubled, halved (not shown) and set to zero.
None of these leads to significant change in the overall features of the solution.
However, if the non-parallel-flow effect is suppressed, the result (represented by the
dashed line) bears little resemblance to the measurement. Even in the linear stage,
reasonable agreement comes only when non-parallelism is accounted for. However,
purely linear but non-parallel theory does not capture the characteristics of attenuation.

Calculations were also performed pertaining to the experiment of Fiedler & Mensing
(1985), where the free-stream velocities are U∗1 = 11 m s−1 and U∗2 = 0, and a
disturbance with frequency f ∗ = 30 Hz was introduced through controlled excitation.
Fiedler & Mensing provided the spreading rate and thickness of the mixing layer for
what they referred to as ‘neutral flow’, i.e. the state without artificial excitation. The
mean flow is thus primarily influenced by small-scale turbulence and its spreading
rate, dθ∗/dx∗ = 0.0354, is used in our calculations. The experimental data for two
weakest excitations, shown in figure 13 of their paper, indicate that the amplitude
of the fundamental component saturates at x∗, where Sx = f ∗(x∗ − x∗0)/U

∗
1 ≈ 1.25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

64
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.646


432 X. Wu and X. Zhuang

0 0.5 1.0 1.5 2.0
–6

–5

–4

–3

–2

–1

0

1

a

b

c

d

e

f

FIGURE 9. Comparison with the experimental data of WW. Curves a–e represent
theoretical results for qc= 0.9: (a) χ =−0.0306, the value calculated for the experimental
condition; (b) parallel–nonlinear theory; (c) linear solution including non-parallelism;
(d) χ =−0.0612, twice the experimental value; and (e) χ = 0. Curve f shows experimental
data.

(x∗0 ≈ −88 mm), which corresponds to x∗ ≈ 370 mm and θ∗ ≈ 16 mm, as can be
inferred from figure 28 of Fiedler & Mensing (1985). This position is taken as an
approximation for the neutral location of the imposed disturbance, and hence the
value θ∗ = 16 mm was selected. The relation (5.37) is then satisfied for the profile
(5.17) with qc ≈ 0.1. The amplitude ε was chosen such that the prediction and the
measurement are the same at the peak position.

Fiedler & Mensing (1985) measured the root-mean-square velocity of the funda-
mental component at y= 0, normalized by U∗1 . Interestingly, the disturbance amplitude,
as displayed in figures 18 and 22 in their paper, experiences more reduction and
exhibits more pronounced oscillation than that in the experiment of WW. The
measured quantity, denoted here by Aexp, is related to A in the present theory by

Aexp = ε(αŪ′c)
−1A/
√

2. (5.45)

The comparison is shown in figure 10. There is a fairly good degree of quantitative
agreement. With non-parallelism being included, the prediction for the initial growth
in the linear regime is quite accurate. The theory not only captures the overall
nonlinear development, but also mimics the rather detailed feature of non-monotonic
attenuation. The measurement is less oscillatory than the theoretical result, which
is also the case for the experiment of WW. The reason for this remains unclear. It
might be that the closure model for fine-scale turbulence is not sophisticated enough,
or that the disturbances in experiments have narrow spectral bands rather than being
monochromatic as assumed in calculations. The possibility of the smoothing effect of
phase averaging experimental data cannot be ruled out either.

In order to examine the sensitivity of the prediction to uncertainty of the parameters,
further calculations were carried out with the value of χ being doubled, halved (not
shown) and set to zero, and also with qc= 0.3. In all these cases, the evolution retains
its overall features. While the behaviour of the solution is remarkably robust with
respect to χ and qc, nonlinearity and non-parallelism are both instrumental. With the
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FIGURE 10. Comparison with the experimental data of Fiedler & Mensing (1985). Curves
a–e are for qc = 0.1: (a) χ = −0.01729, the value calculated for the experimental
condition; (b) parallel–nonlinear theory; (c) linear solution including non-parallelism;
(d) χ =−0.03458, twice the experimental value; (e) χ =0. Curve f is for qc=0.3. Curve g
shows experimental data.

former being ignored, the disturbance would feature a too broad peak and would decay
monotonically as indicated by the linear solution in the figure. On the other hand, if
non-parallelism is neglected, the theory would fail to predict attenuation.

Finally, figure 11 displays contours of the critical-layer vorticity of the CS at four
representative streamwise locations. They illustrate the roll-up process leading to the
formation of Kelvin–Helmholtz rollers.

The different performance of the theory, i.e. a fairly good quantitative agreement
with the experiment of Fiedler & Mensing (1985) versus a merely qualitative
agreement with that of WW, requires some comments. For the latter case, we
took the parameter qc in the mean-flow profile (5.17) to be 0.9 rather than 0.67
suggested by experiments because the latter value led to inconsistency in the neutral
frequencies. However, it is possible that the assumed profile (5.17) is not entirely
appropriate, thereby causing the inaccuracy of the prediction.

6. Summary and conclusions
In this paper, a nonlinear theory was proposed to describe the dynamics of

large-scale coherent structures in free shear layers. The formulation was based on
decomposing the flow field into a mean flow, coherent fluctuations and small-scale
turbulence, but differs from the existing approach of triple decomposition in that the
mean-flow induced by CS is treated as part of the organized motion. The time- and
phase-averaged Reynolds stresses of fine-scale turbulence, which influence the mean
flow and CS, respectively, are modelled by eddy-viscosity models, of which the one
for the phase-averaged stresses allows for possible time-relaxation effects.

In the limit of large Reynolds numbers, the nonlinear non-equilibrium critical-layer
theory for instability modes on laminar flows was adapted to CS on turbulent free
shear layers. In addition to accounting for the impact of small-scale fluctuations,
non-parallelism associated with the fast spreading of the mean flow was retained
along with nonlinear, non-equilibrium and viscous effects, at leading order in the
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FIGURE 11. Vortex roll-up pertaining to the experimental condition of Fiedler & Mensing
(1985), illustrated by contours of Ωc, the normalized critical-layer vorticity of CS, at x∗=
0.1, 0.2, 0.3 and 0.5 m from the leading edge.

critical layer. This leads to an interesting evolution system consisting of an amplitude
equation coupled with a strongly nonlinear vorticity equation. As is well known,
non-parallelism influences the local growth rate, but was found also to contribute
the so-called translating critical-layer effect. The latter remains dormant in the
linear regime and becomes active only during the nonlinear stage. The simultaneous
interplay with nonlinearity, non-equilibrium and (in principle) viscosity means that
non-parallelism operates rather differently from that in the theories of Crighton &
Gaster (1976) and Goldstein & Hultgren (1988), where its influence is of higher order.

With appropriately specified initial and boundary conditions, the nonlinear evolution
system was solved numerically. The solutions were found to capture the main
characteristics observed of CS during their growth and attenuation phases. The
combination of nonlinearity and non-parallelism turned out to be crucial. Owing to
its strongly nonlinear nature, the theory was able to predict vortex roll-up, which is
the hallmark of CS. Detailed comparisons were made with experiments, and a fair
degree of quantitative agreement was achieved for one set of experimental data.

The present work represents just a preliminary step to model nonlinear dynamics
of CS and is by no means complete. The closure models proposed for the time- and
phase-averaged Reynolds stresses of small-scale turbulence are rather primitive. Indeed,
the model for the time-averaged Reynolds stresses was not implemented, as we instead
chose the mean-flow profile on an empirical and approximate basis. This creates some
uncertainty regarding the profile to be used and also limits the predictive power of
the theory. With the time-delay eddy-viscosity model for the phase-averaged Reynolds
stresses, random fluctuations were found to exert little impact on CS, which appeared
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to evolve inviscidly. However, it remains to be checked whether the conclusion holds
when sophisticated closure models were employed. Possibly, they would account for
some of the discrepancies between the measurements and the current prediction.

With the current or the prospective improved models, the present work could be
extended to three-dimensional disturbances and to other free shear flows. The latter
include plane wakes and jets, where sinuous and varicose modes coexist (Wygnanski
et al. 1986). It would be interesting to investigate their mutual interactions and
perform comparisons with available experimental measurements (Marasli et al.
1989, 1991, 1992). The formulation could readily be generalized to circular jets
by accounting for the circumferential curvature. Furthermore, once the nonlinear
evolution of CS is described, the noise generated by them could be predicted by
following the approaches of Wu (2005) and Wu & Huerre (2009). Work along these
lines is in progress.

Finally, it is worth pointing out that, although inclusion of non-parallelism as a
leading-order effect in the present paper was formalized by assuming a distinguished
size of the turbulent Reynolds number, the significance of non-parallelism is not
restricted to turbulent shear flows. In the laminar case, it is customarily assumed that
the base flow evolves on the scale of O(Rδ∗), that is, dθ∗/dx∗ = O(R−1). In reality,
however, the spreading rate is not solely controlled by viscous diffusion; other factors,
such as the state of the oncoming boundary layer and conditions on the splitter plate,
may make a significant difference. The spreading rate turns to be much greater than
O(R−1) in general: typically, dθ∗/dx∗ is of O(10−2) whereas R−1 = O(10−3). It is
therefore reasonable to treat dθ∗/dx∗ as an independent quantity. For both laminar
and turbulent flows, the relevant parameter measuring the non-parallel-flow effect is
ε−1 dθ∗/dx∗ (see (5.23)), which is usually of O(1) for laminar flows too, suggesting
that non-parallelism may also need to be included at leading order in the same
fashion as in the present paper.
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Appendix A. Detailed derivation of (3.55)

Let D0≡ (∂/∂τ + ∂/∂ x̄) act on both sides of (3.53) with the O(M−1) term omitted.
Then (

Λ0x̄− iS0Λ1 +Λ1
∂

∂τ
+Λ2

∂

∂ x̄

)
D0A+Λ0A=

∫ M

−M
D0Q1 dη+O(M−1)

=−2M(D0 − iS0 − iχ2x̄)A− iI11 +O(M−1), (A 1)

where use has been made of (3.46) and (3.49). The above equation may be written
as

Λ2D
2
0 A+Λ0A = −

(
Λ0x̄− iS0Λ1 +Λd

∂

∂τ

)
D0A

− 2M(D0 − iS0 − iχ2x̄)A− iI11 +O(M−1), (A 2)

where we have put Λd =Λ1 −Λ2.
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Using (A 2) in (3.53) to eliminate D2
0 A, we obtain a first-order equation (with

respect to ∂/∂ x̄),

(Λ0x̄− iS0Λ1)A+Λ1
∂A
∂τ
+Λ2

∂A
∂ x̄

= 4
Λ2
(D0 − iS0 − iχ2x̄)A+ 2

MΛ2

[
Λ0A+

(
Λ0x̄− iS0Λ1 +Λd

∂

∂τ

)
D0A+ 2iI11

]
+ I10 + 2i(S0 + χ2x̄)

M
D0A+ 2iχ2

M
A+O(M−2), (A 3)

which may be rearranged to

D1D0A = I10 −
(
Λ0x̄− iS0Λ1 +Λd

∂

∂τ

)
A− 4i(S0 + χ2x̄)

Λ2
A+ 2iχ2

M
A

+ 2Λ0

MΛ2
A+ 2iI11

MΛ2
+O(M−2), (A 4)

where we have introduced

D1 =
[
Λ2 − 2i(S0 + χ2x̄)

M
− 4
Λ2
− 2

MΛ2

(
Λ0x̄− iS0Λ1 +Λd

∂

∂τ

)]
. (A 5)

Let D0 act on (A 4). Then

D1D
2
0 A = −2M(D0 − iS0 − iχ2x̄)A− iI11 + 4Λ0

MΛ2
D0A−

(
Λ0 + 4iχ2

Λ2

)
A

−
(
Λ0x̄− iS0Λ1 +Λd

∂

∂τ

)
D0A− 4(iS0 + iχ2x̄)

Λ2
D0A+ 4iχ2

M
D0A

− 2i
MΛ2

{
iI12 + χ

∫ M

−M
η
∂

∂η
Q1 dη+ i

∫ M

−M
η
∂

∂η
(A∗Q2 − AQ0) dη+O(M−1)

}
=
{
−2M −

(
Λ0x̄− iS0Λ1 +Λd

∂

∂τ

)
− 4i(S0 + χ2x̄)

Λ2
+ 4Λ0

MΛ2
+ 4iχ2

M

}
D0A

+
{

2iM(S0 + χ2x̄)−
(
Λ0 + 4iχ2

Λ2

)}
A− iI11

+ 2
MΛ2

(I12 + iχ I10 − A∗I20)+O(M−2). (A 6)

In the last step above, integration by parts is performed. Now eliminating the
term D0A between (3.53) and (A 6) and rearranging, we finally obtain (3.55), the
coefficients in which are found as

Λ̃1 = (q1 − q2x̄)
[
Λ1 − 2i(S0 + χ2x̄)

M

]
+ 2

M

[
p1 + p2x̄− Λd(Λ0x̄− iS0Λ1)

Λ2
+ 2iχ2Λd

MΛ2

]
, (A 7)

Λ̃2 = (q1 − q2x̄)
[
Λ2 − 2i(S0 + χ2x̄)

M

]
+ 2

M
(p1 + p2x̄), (A 8)
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Λ̃d,j = 2Λd

M

[
1− 2i(S0 + χ2x̄)

MΛ2
+ Λj

Λ2

]
(j= 1, 2), (A 9)

Λ̃0 = (q1 − q2x̄)
(
Λ0x̄− iS0Λ1 − 2iχ2

M

)
+ 2

M
(r1 + r2x̄), (A 10)

with

q1 =Λ2 − 2iS0

M
− 4
Λ2
+ 2iS0Λ1

MΛ2
, q2 = 2iχ2

M
+ 2Λ0

MΛ2
, (A 11a,b)

p1 =−2M + iS0Λ1 − 4iS0

Λ2
+ 4Λ0

MΛ2
+ 4iχ2

M
, p2 =−Λ0 − 4iχ2

Λ2
, (A 12a,b)

r1 = 2iS0M −Λ0 − 4iχ2

Λ2
, r2 = 2iχ2M. (A 13a,b)
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