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INCOMPLETENESS IN THE FINITE DOMAIN

PAVEL PUDLÁK

Abstract. Motivated by the problem of finding finite versions of classical incompleteness
theorems, we present some conjectures that go beyond NP �= coNP. These conjectures for-
mally connect computational complexity with the difficulty of proving some sentences, which
means that high computational complexity of a problem associated with a sentence implies
that the sentence is not provable in a weak theory, or requires a long proof. Another reason
for putting forward these conjectures is that some results in proof complexity seem to be
special cases of such general statements and we want to formalize and fully understand these
statements. Roughly speaking, we are trying to connect syntactic complexity, by which we
mean the complexity of sentences and strengths of the theories in which they are provable,
with the semantic concept of complexity of the computational problems represented by these
sentences.
We have introduced the most fundamental conjectures in our earlier works [27, 33–35].

Our aim in this article is to present them in a more systematic way, along with several new
conjectures, and prove new connections between them and some other statements studied
before.

§1. Introduction. Gödel’s incompleteness theorem is undoubtedly one of
the most important theorems in logic. It speaks about absolute provabil-
ity, i.e., about proofs without any restriction on their length. The question
whether there is a “finite” or “feasible” version of the incompleteness the-
orem, where the complexity of proofs is bounded, has certainly intrigued
many people, but very little has been published about it. With the advent of
computers and theories developed for them, in particular complexity theory,
the question about a finite version of the incompleteness theorem became
evenmore interesting. The concept of polynomial time computations turned
out to be the most important concept in complexity theory. The distinction
between functions decidable in polynomial time and those computable only
in exponential time plays a similar role as the distinction between com-
putable and noncomputable in computability theory. The successful use of
polynomial bounds suggested that one should also study which theorems
have polynomial length proofs. A natural version of a finite incompleteness
theorem was formulated by Harvey Friedman in 1979. Let ConT (n̄) be a
natural formalization of the statement “there is no derivation of contradiction
of length n from the axioms of T”. Friedman proved a lower bound of the
form n� for some � > 0 and asked whether such sentences have proofs in
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T of polynomial (in n) lengths [14].1 It turned out that the answer to his
question is yes [29], but it is still possible, and seems very plausible, that for
natural variations of this question there are no polynomial length proofs.
Namely, this should be true if we ask about the lengths of proofs ofConT (n̄)
in a theory S sufficiently weaker than T . However, proving such a claim
must be extremely difficult, because it implies P �= NP (and even more than
that).
Our motivation for studying such problems is the fundamental question:
what is the connection between logical strength of theories and computational
complexity? which is basically what the field of proof complexity is about.
Here we refer to proof complexity in a broader sense that also includes the
study of first order theories called bounded arithmetic. Since there is a close
connection between propositional proof systems and first order theories, we
view these two concepts as nonuniform and uniform versions of the same
concept.
To give an example of a connection between theories and computational
complexity, let us consider Buss’s Witnessing Theorem [7]. This theorem
states that one can construct polynomial time algorithms from proofs of cer-
tain sentences in the theory S12 (see Theorem 2.2 below). This is an instance
of a general phenomenon: if a theory is weak, the provably total functions
have small computational complexity. Such theorems have been proven for a
number of other theories and complexity classes. Another connection is the
Feasible Interpolation Theorem of Krajı́ček [25]. According to this theo-
rem, one can construct circuits from proofs of certain tautologies in various
proof systems, in particular, in resolution; the circuits separate two sets of
Boolean vectors defined by the tautology. A high level form of these results
is that if something is provable in a weak formal system, i.e., the logical
strength of the system is bounded, we can give bounds on some computa-
tional problems associated with the systems. If we state it contrapositively it
suggests that increasing strength of logical formal systems is correlated with
increasing complexity of the associated computational tasks. Thus a more
specific question is: find general principles of which these results are special
instances.
Connection between proofs and computations have been extensively stud-
ied in constructive mathematics in the context of intutionistic logic. There
are also results that show interesting connections of proofs in the intutionis-
tic calculus with computational complexity. For example, Buss andMints [9]
proved that given an intuitionistic proof of a disjunction φ ∨ � in proposi-
tional logic (say, in the sequent calculus), one can find in polynomial time a
proof of either φ or �. A more general theorem, a version of a realizability
theorem for intuitionistic propositional calculus, was proved in [10]. How-
ever, the problems we are going to consider in this article have not been
studied in the context of intuitionistic logic and also in this article we will
only use classical logic.

1Here n̄ denotes a binary numeral, a term of length O(log n) that represents n. Therefore
the lower bound is nontrivial.
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The general principles that we study are connected with notoriously open
and probably very difficult problems in computational complexity theory,
so we cannot prove or disprove them with the currently available means.
They can only be stated as hypotheses or conjectures without any formal
supporting evidence. There are, essentially, two reasons for stating some
sentences as conjectures. First, we believe that some basic theorems of proof
theory should also hold true with suitable bounds on the lengths of proofs.
The prime example is the Second Incompleteness Theorem discussed above.
Second, some results in proof complexity and bounded arithmetic seem to
follow a general pattern. For example, as we noted above, polynomial time
computations are associated with the theory S12 by a witnessing theorem. If
we take S22 , which we believe is a stronger theory, then the corresponding
function class is PNP,2 which we believe is a larger class than P.3 The form
of this result suggests that S22 requires more complex functions.
Alternatively, we can view the proposed conjectures as axioms. In fact,
NP �= P has been treated as an axiom “to prove” hardness of various prob-
lems. In many cases NP �= P does not suffice and therefore a number of
stronger hypotheses have been proposed. For example, the Exponential
Time Hypothesis of Impagliazzo and Paturi [19] and its variants are used
to determine the time complexity of concrete polynomial time computable
problems. In the theory of approximate algorithms several conjectures have
been proposed in order to show nonapproximability of certain problems.
Although we have to treat themost interesting statements only as hypothe-
ses, there are some interesting problems that we can study and solve with the
currently available means. These are problems about relationships among
various conjectures. In particular, we would like to know whether there is
one general principle that would cover all instances, or an infinite hierar-
chy of principles. If there is a hierarchy, is it linear, or does it branch? If
it branches, is there a natural classification of conjectures? We will address
some questions of this kind in this article. Furthermore, one can study rel-
ativizations of these conjectures. Several results about relativizations have
been proven, but much more is needed. We will mention somemore concrete
problems at the and of the article.
We are primarily interested in these questions, because we want to under-
stand the essence of fundamental problems.However, there is also a practical
aspect of this research. The general conjectures suggest what specific prob-
lems in proof complexitywe should study. Thenwe can “test” the conjectures
onweak formal systems forwhichwedohavemeans to prove results connect-
ing them with computational complexity. In fact the main Conjectures CON
and TFNP represent what researchers in proof complexity believe is likely
to be true.
All conjectures that we consider in this article state something about
unprovability, although they often have a natural equivalent version stated

2This was also proved by Buss in [7].
3We are not able to prove it formally, because a formal proof would give us PNP �= P, which

is equivalent to NP �= P.
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in purely complexity-theoretical terms. The “finite domain” in the title refers
to the fact that the lengths of computations and lengths of proofs of instances
of the problems that we consider are at most exponential, hence there is a
finite bound on them. Perhaps, a more precise term would be “exponential
domain”. In previous presentations of this topic, in particular in [33, 34],
we used the term “feasible incompleteness”, which should be understood as
“being incomplete with respect to feasible proofs”. In [33, 34] we also stated
the feasible incompleteness thesis, which is an informal statement saying that
unprovability of a sentence in a weak formal system may be caused by high
computational complexity of a computational problem naturally associated
with the sentence.
This article is partly a survey, but a large part consists of new results, or
results that have not been published with full proofs. Specifically, the main
conjectures were already presented in [34], but connections between them
were only sketched there.
Here is how the article is organized. After two introductory sections, in
Section 3, we recall a conjecture about finite consistencies and introduce
a new conjecture about finite reflection principles. In Section 4 we present
another important conjecture about total polynomial search problems. We
discuss equivalent and stronger statements based on propositional proof
systems and disjoint NP and coNP pairs of sets in Section 5. We introduce
a classification of conjectures in Section 6 and show that uniform conjec-
tures can be stated as statements about unprovability, which suggests a way
towards general conjectures. Section 7 is about the role of reductions in the
statements of conjectures. We conclude the article with some open problems.

§2. Preliminaries.
2.1. Theories. In this article we will use the word “theory” for a set of
axioms that is decidable in polynomial time (i.e., for each formula we can
decide in polynomial time in the length of the formula whether or not it is an
axiom). This implies that given a sentence φ and a string of symbols d , it is
possible also to decide in polynomial time if d is a proof of φ. Furthermore,
we will only consider consistent arithmetical theories that use a fixed finite
set of function and relation symbols representing functions and relations
on the natural numbers. We use fragments of arithmetic (as those theories
are called), because one can easily refer to standard formalizations of basic
syntactical concepts. Being able to formalize syntactical concepts, such as
first order formulas and proofs, is the essential property of the theories that
we need.
Furthermore, we need that theories be sufficiently strong, because we need
the formalizations of basic properties of syntactical concepts and computa-
tions to to be provable in the theories we will use. As usual, we will ensure
that a theory is sufficiently strong by assuming that it contains a particular
fixed basis theory. We will use Buss’s theory S12 for this purpose. Theory S

1
2 is

one of the fragments of Bounded Arithmetic S2 defined by Buss [7] (see also
[17, 24]). Formally, it is not a fragment of PA (Peano Arithmetic), because
it is formalized in a slightly richer language, but it is interpretable in it.
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Definition 2.1. We denote by T the class of all consistent arithmetical
theories that extend Buss’s theory S12 by a set of axioms that is decidable in
polynomial time.

For lack of a good name, we will only use the symbol T to denote this
class of theories.

2.2. Bounded arithmetic. We will briefly describe S12 . It is very convenient
to useS12 , but it should be noted that essentially all results and conjectures do
not depend on the particular choice of the base theory. (This also concerns
the formalization of the class P; the particular formalization that we use is
also not essential.)
S12 is a basic fragment of S2 and it has similar relation to S2 as IΣ1 (Peano
Arithmetic with induction restricted to Σ1 formulas) to Peano Arithmetic.
In S2 (and so in S12 ) the standard language of arithmetic is enriched by
the symbols �x/2�, |x|, x#y. The intended interpretation of �x/2� is clear;
this symbol is used in induction axioms. |x| is the length of the binary
representation of x if x > 0 and |0| = 0. The interpretation of x#y is
2|x|.|y|. Note that we do not have exponentiation in S2, so # has to be a
primitive symbol. Also note that the length of the binary representation of
2|m|.|n| is roughly the product of the lengths ofm and n. One can easily show
that if t(x1, . . . , xk) is a term in the language of S2, then |t(n1, . . . , nk)| ≤
p(|n1|, . . . , |nk |) for some polynomial, and, vice versa, if f(x1, . . . , xk) is a
function that increases the lengths of input numbers at most polynomially,
then there exists a term t such that f(x1, . . . , xk) ≤ t(x1, . . . , xk).
The theory S2 is axiomatized by a finite set of axioms BASIC that fix the
intended interpretation of symbols and by induction axioms

α(0̄) ∧ ∀x(α(�x/2�)→ α(x))→ ∀x.α(x), (1)

for all bounded formulas α. Si2 is S2 with the axiom schema restricted to Σ
b
i

formulas; we will define the classes Σbi below.

2.3. Formulas and complexity classes. By a bounded formula, we mean
a formula in which quantified variables are bounded by terms in the
language of S2. As we noted above, x ≤ t(y1, . . . , yk) implies that the
length of x is polynomially bounded by the lengths of y1, . . . , yk . Some-
times we will also need to bound the number itself by a polynomial in
the lengths of some other numbers. For example, we may need to bound
the number of steps of an algorithm that has as an input the binary rep-
resentation of a number x. In such cases we use sharp bounds which are
bounds of the form x ≤ |s(y1, . . . , yk)|. Since the outer function sym-
bol in the term is | . . . |, x is polynomially bounded by the lengths of
y1, . . . , yk . Sharply bounded quantifiers are bounded quantifiers with sharp
bounds.
The hierarchy of bounded formulas Σbn,Π

b
n, n = 1, 2, . . . , is defined by

counting alternations of bounded quantifiers while ignoring sharply bounded
quantifiers. In particular, prenex formulas that use bounded existential
quantifiers and arbitrary sharply bounded quantifiers are Σb1. So in Σ

b
1
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(and similarly in higher classes) bounded existential quantifiers may alter-
nate with sharply bounded universal quantifiers. This complication can be
avoided by slightly extending S12 with more function symbols and axioms.
If we do this, then we can move all sharply bounded universal quanti-
fiers after the bounded existential ones. The Σbn formulas where all sharply
bounded quantifiers are after all bounded quantifiers are called strict-Σbn , or
Σ̂bn formulas. Π̂

b
n formulas are defined similarly.

In order to simplify formulas, we will sometimes use quantifiers with
a superscript ∀p, ∃p to indicate that the lengths of the quantified vari-
ables are polynomially bounded in the formula that follows. For example,
∀x∃py.φ(x, y)means that φ(x, y) is equivalent to the formula |y| ≤ p(|x|)∧
φ(x, y) for some polynomial p(x) (or, equivalently, to y ≤ t(x) ∧ φ(x, y)
for some S2 term t).
The subsets of N that are in NP are precisely those that are definable
by Σb1 formulas. Similarly, other classes from the hierarchy of formulas
Σbn,Π

b
n define corresponding complexity classes Σ

p
n ,Π

p
n from the Polynomial

Hierarchy.
For P, there is no simple definition of a class of formulas. Formulas from
the class Σb0(= Π

b
0) have only sharply bounded quantifiers. These bounds

imply that they define sets and relations computable in polynomial time, but
we cannot define all sets in P by such formulas. The standard approach is
to extend the language by function symbols for every polynomial time algo-
rithm as it is in Cook’s theory PV [11].4 This requires also adding infinitely
many axioms specifying the intended interpretation of each function sym-
bol. In this article we will use a different approach, one that does not need
an infinite number of function symbols and axioms. To this end we will use
Buss’s Witnessing Theorem.

Theorem 2.2 ([7]). Let φ(x, y) ∈ Σb1 and suppose that S12 � ∀x∃y.φ(x, y).
Then there exists a polynomial time computable function f such that N |=
∀x.φ(x,f(x)). Moreover, f is definable by a Σb1 formula.
The definability of f means that there exists a Σb1 formula �(x, y) such
that

S12 � ∀x∃!y.�(x, y) ∧ ∀x∀y(�(x, y)→ φ(x, y)).
A formula �(x) is Δb1 provably in a theory T if �(x) ∈ Σb1 and, for some
�(x) ∈ Πb1, T proves the sentence ∀x.�(x) ≡ �(x). By Buss’s Witnessing
Theorem, the provability of the equivalence in S12 ensures that �(x) defines
a set in P. We should stress that it is essential that the proof is in S12 . The
equivalence N |= ∀x.�(x) ≡ �(x) in general only ensures that �(x) defines
a set in NP ∩ coNP which is believed to be larger than P.
Thuswewill formalize polynomial decidable sets and relations by formulas
that are Δb1 provably in S

1
2 . In the rest of this article Δ

b
1 will always mean:

Δb1 provably in S
1
2 . Polynomial time computable functions will be formalized

by Σb1 formulas �(x, y) such that S
1
2 � ∀x∃!y.�(x, y). One can show that

4The relation of PV to S12 is similar to the relation of Primitive Recursive Arithmetic to
IΣ1.
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polynomial time computable functions are provably in S12 closed under
composition and a form of recursion called limited recursion on notation [7,
11, 24]. Because of these properties, one can formalize syntax in a natural
way in S12 .

2.4. Proofs. We will assume that proofs are formalized in a standard
Hilbert-style proof system for first order logic. We will view the proofs as
strings of formulas such that each formula is either an axiom (logical or an
axiom of the theory in question) or is derived from previous formulas by an
application of a deduction rule. The particular choice of the system makes
little difference, because various calculi for first order logic polynomially
simulate each other, whichmeans that there are polynomial time computable
transformations of proofs from one calculus to the other. However, it is
important that the graph of the proof is a general directed acyclic graph,
not just a tree, because transforming a general proof into the tree form may
increase the length exponentially.
We could also use sequent calculi, but only the calculi with the cut rule
present. Cut-elimination may increase the length more than any elementary
function.
We will assume that formulas and proofs are encoded by binary strings.
The length of a proof is the length of the string representing the proof. For
the Gödel number of a formula, or a proof, we add 1 at the beginning of the
string and take the number that it represents in binary notation.
A proof in a theory T will simply be called a T -proof.

2.5. Notation. A binary numeral is a suitably chosen closed term n̄ whose
value is n and whose length is O(log n). For example, we can represent a
number with binary representation a1a2 . . . ak by the term

(. . . ((a1 · 2̄) + a2) · 2̄ . . . · · ·+ ak−1)2̄ + ak,

where 2̄ is SS(0).
Our computation model is the standard Turing machine, where the inputs
are words in the alphabet Σ := {0, 1}. When computing with numbers,
we assume the binary representation. We will use numbers instead of
binary strings when we formalize computations. For n ∈ N, we denote
by |n| the length of the binary representation of n (the same symbol as is
in S2).
We will denote by PrT (x, y) a natural formalization of the relation “x
is a T -proof of y”. We will assume that basic properties of this relation
are provable in S12 . Furthermore, we will assume that the following fact is
true.

Fact 2.3. If m is a Gödel number of a T -proof of a sentence with a Gödel
number n, then there exists an S12 -proof of PrT (m̄, n̄) whose length is bounded
by a polynomial in |m| and |n|.
The main numerical parameter will be denoted by n. When we say “poly-
nomial length”without mentioning the argument of the polynomial, we will
always mean “length bounded by p(n) for some polynomial p”.
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§3. The basic paradigm – finite consistency.
3.1. Finite consistency. Let T ∈ T . We will denote byConT (x) a formula
expressing (in a natural way) the fact that there is no T -proof of contra-
diction of length x. In particular, we will need ConT (n̄), for n ∈ N. The
question mentioned in the introduction is:
Question 3.1. What is the length of the shortest T -proof of ConT (n̄)?
Using the analogy with Gödel’s incompleteness theorem, it is natural to
conjecture that the proof must be long, specifically, not polynomial in n.
Friedman also proved a lower bound n� for some � > 0.5 This lower bound
was improved to Ω(n/ log2 n) for a proof system with Rosser’s C-rule

∃x.φ(x)
φ(c)

,

where c is a new constant [30]. This rule enables one to refer to an element
satisfying φ without having to mention φ. The same asymptotic bound is
probably true for some other systems where this rule can be simulated. In
particular, in natural deduction systems, we can start with an assumption
φ(y) and argue about y without having to repeat the assumption in each
proof line.
The idea of the proofs of these lower bounds is to adapt the original proof
of Gödel to the finite setting. Thus instead of the original diagonal formula,
one uses a formula �(n̄) with intended meaning “I do not have a T -proof
of length ≤ n”. One can easily prove that �T (n̄) is true and any proof of
it must be longer than n. Then one proves that �T (n̄) can be derived from
ConT (n̄) by a short proof. This is essentially the same as in the proof of
Gödel’s theorem, except that one has to prove good upper bounds on the
lengths of proofs of certain true sentences. The shorter proofs one is able to
find, the larger the lower bound is.
In [29] a polynomial upper bound was proved for finitely axiomatized
sequential theories. In [30] the bound was improved to a linear upper bound
for finitely axiomatized sequential theories and proofs using the C-rule.
Sequential theories are, roughly speaking, theories in which one can code
any finite sequence of elements of the universe (see [17] for the definition).
Already very weak fragments of arithmetic and set theory are known to be
sequential. This bound is based on partial truth definitions. In the standard
proofs of the consistency of a theory T (without any bound on the lengths
of proofs), one uses a truth definition for all formulas. Since in proofs of
bounded length only formulas of bounded complexity can occur, it suffices
to use a partial truth definition that defines truth only for sentences of limited
complexity. The fact that partial truth definitions exist is well-known. How-
ever, to obtain such bounds one has to carefully estimate the length of the
formulas and the lengths of proofs of particular statements. A polynomial
upper bound can also be proved for theories axiomatized by a schema of
a particular form, which includes Peano Arithmetic and Zermelo-Fraenkel
Set Theory [29].

5Note that the length of the sentence ConT (n̄) is O(log n).
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To sum up the discussion above we state the bounds explicitly, but for the
sake of simplicity we will only use theories from T .
Theorem 3.2 ([14,29,30]). (1) For every theory T ∈ T , there exists � > 0
such that the length of the shortest T -proof of ConT (n̄) is at least n� .
(2) If, moreover, T is sequential and finitely axiomatized, then there are
T -proofs of ConT (n̄) lengths of polynomial in n.

In spite of the polynomial upper bound, we still believe that the incom-
pleteness phenomenon of Gödel’s theorem should manifest itself also in the
finite domain—manifest not only by the n� lower bound. We conjecture that
ifT is sufficiently stronger than a theory S, then S-proofs ofConT (n̄) cannot
be polynomially bounded. Concerning Gödel’s Theorem, in my opinion, the
fact that T does not prove its own consistency is not important—having a
proof of consistency in a theory that we do not a priori believe is consistent
would be useless. What is important is the consequence of Gödel’s Theorem
that there is no theory that could prove the consistency of all other consistent
theories. The paradigm for our conjecture is this corollary, not the theorem
itself.
Since it is not clear how much stronger T must be, we proposed the
following conjecture in [29]:

Conjecture 3.3 (CONN ). For every S ∈ T , there exists T ∈ T such that
the lengths of S-proofs of ConT (n̄) cannot be bounded by a polynomial in n.6

Of course, we would also like to know how much stronger T must be
than S so that there are no polynomial length S-proofs of ConT (n). It has
been conjectured that it suffices that T proves the consistency of S, i.e., the
following seems to be true:

Conjecture 3.4 (CONN+). For every S, T ∈ T , if T proves ConS , then
S-proofs of ConT (n̄) cannot be bounded by a polynomial in n.

The following observation suggests that the assumption about provability
of the consistency may be the right choice.

Proposition 3.5. Let TCon0 := T and TConk+1 := T
Con
k + ConTConk for k ∈ N.

Suppose that for every true theory T ∈ T , T proves ConT+ConT (n̄) by proofs
of polynomial length. Then every true theory T ∈ T proves ConTConk (n̄) by
proofs of polynomial length for every k ∈ N.

In plain words, if there are polynomial length T -proofs of ConT+ConT (n̄)
for every true theory T ∈ T , then there are polynomial length T -proofs of
bounded consistencies of theories essentially stronger than T + ConT . The
proposition is an immediate corollary of the following lemma.

Lemma 3.6. Suppose thatR provesCons(n̄) by proofs of polynomial length
andS provesConT (n̄) by proofs of polynomial length. ThenR provesConT (n̄)
by proofs of polynomial length. (Polynomial bounds are in terms of n.)

Proof-sketch. Instead of polynomially bounded proofs of bounded con-
sistency statements, suppose that R � ConS and S � ConT . Arguing in R,

6The superscriptN stands for “nonuniform”,whosemeaningwill be explained in Section 6.
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suppose that ¬ConT . By the Σ-completeness of S, we have S � ¬ConT ,
hence S is inconsistent, contrary to the assumption R � ConS .7 To prove
the lemma just restate the proof with bounded consistency statements and
polynomial bounds on the proofs. �
It is well-known [13] that if T is stronger (proves more sentences) than
S, then some sentences provable in both theories have much shorter proofs
in T compared to the proofs in S. This may suggest that it would suffice
to make T just a little stronger than S, namely, to add any true unprov-
able Π1 sentence, in order to ensure that S-proofs of ConT (n̄) do not have
polynomial length proofs. However, recently Pavel Hrubeš proved, using a
Rosser-type selfreferential sentence, that in general this is not the case [per-
sonal communication]. His result is even stronger than the mere refutation
of such a strengthening of Conjecture CONN+.
Theorem 3.7 (P. Hrubeš, unpublished). Let S ∈ T be a sequential finitely
axiomatized theory and let S ⊆ T ∈ T . Then there exists a true Π1 sentence
φ such that φ is not provable in T , yet the lengths of S-proofs of ConS+φ(n̄)
can be bounded by a polynomial in n.
Proof. By the fixpoint theorem, one can construct a sentence φ such that

S � φ ≡ ∀x(PrT (x, φ̄)→ ∃y(|y| ≤ 2|x| ∧ PrS(y,¬φ̄))), (2)

where PrT (u, v) (and PrS(u, v)) are natural formalizations of the relation
u is a T -proof (respectively S-proof) of v. This is the well-known Rosser
sentence, except that we use the bound |y| ≤ 2|x| instead of the usual one
y < x and two proof relations instead of one. One can easily prove

T �� φ, S �� ¬φ, and N |= φ,
in the same way as it is done for the standard Rosser sentence (cf. [17]). The
idea of the proof of the theorem is to adapt the proof ofS �� ¬φ so that it gives
a polynomial length S-proof of ConS(p(n))→ ¬∃x(PrS(x,¬φ̄) ∧ |x| ≤ n̄)
for some polynomial p. Note that the consequent of the implication is
essentially ConS+φ(n̄). Hence we get the statement of the theorem from
Theorem 3.2(2).
In the rest of this proof we will use the symbol �∗ to denote provability by
a proof of length polynomial in n.
Lemma 3.8. S �∗ ¬∃x(PrT (x, φ̄) ∧ 2|x| < n̄), or equivalently, S �∗

∀x(PrT (x, φ̄)→ 2|x| ≥ n̄).
Proof-sketch. The number of numbers x such that 2|x| < n is at most
n−1. Thus S can verify that each of them is not aT -proof of φ using a proof
whose total length is polynomial in n. We are using the fact (not provable in
S) that T �� φ. �
Now we continue with the proof of the theorem. We will abbreviate the
formula ∃y(PrS(y, x) ∧ |y| ≤ z) by PrlS(z, x). We have

S �∗ PrlS(n̄,¬φ)→ PrlS(m̄2, �(PrlS(n̄,¬φ))�), (3)

7A high-level proof is: ConS is the Π1-reflection principle for S and ConT is a Π1 sentence.
Hence R � ConT .

https://doi.org/10.1017/bsl.2017.32 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.32


INCOMPLETENESS IN THE FINITE DOMAIN 415

wherem2 is polynomially bounded by n. This follows by the principle: given
a proof of length ≤ n, S can prove that such a proof exists by a proof of
length polynomial in n (see Fact 2.3). Observe that according to (2)

S �∗ (∀x(PrT (x, φ̄)→ 2|x| ≥ n̄) ∧ PrlS(n̄,¬φ))→ φ.
(This is in fact provable by a logarithmic length proof.) From Lemma 3.8,
we get

S �∗ PrlS(n̄,¬φ)→ φ.
Again, by formalizing this proof,

S �∗ PrlS(m̄2, �PrlS(n̄,¬φ)�)→ PrlS(m̄3, φ),

for some m3 polynomially bounded by n. By (3), this reduces to

S �∗ PrlS(n̄,¬φ)→ PrlS(m̄3, φ).
Since the antecedent says that ¬φ is provable by a proof of length ≤ n, we
get

S �∗ PrlS(n̄,¬φ)→ ¬ConS(m̄),
for some m polynomially bounded by n. Since ConS(m̄) has an S-proof of
length polynomial inm, we get a polynomial length S-proof of the negation
of the antecedent, hence also of ConS+φ(n̄). �
More recently, Emil Jeřábek came up with an alternative proof. His idea
is to use a sentence φ such that both φ and ¬φ are interpretable in S. It is
well-known that such sentences exist for every sufficiently strong theory S
(see Theorem 4.5(5) in [17]).8 These sentences are also modifications of the
classical Rosser sentences. Then we only need:

Lemma 3.9. Let S, T ∈ T be sequential finitely axiomatized theories. If T
is interpretable in S, then there exists a polynomial p such that

S12 � ∀x(ConS(p(x))→ ConT (x)).

Proof-sketch. Suppose S, T ∈ T are sequential finitely axiomatized the-
ories and T is interpretable in S. Given a proof of contradiction in T we
can translate the proof into a proof of contradiction in S. The translation is
explicit and simple, therefore it can be formalized in S12 . �
Continuing the proof of Jeřábek, this implies that S proves ConS+φ(n̄)
and ConS+¬φ(n̄) by proof of polynomial lengths, provided that S is finite
and sequential and we can use Theorem 3.2(2). On the other hand, for every
consistent T , either T �� φ or T �� ¬φ. �
Since S+¬Cons is interpretable in S (see Theorem 4.5(1) in [17]), we also
get the following result.

Proposition 3.10. Let S ∈ T be a sequential finitely axiomatized theory
and let IΣ1 ⊆ S.9 Then S proves ConS+¬Cons (n̄) by proofs of polynomial (in
n) lengths.

8In [17] the assumption is that IΣ1 ⊆ S, but we believe that it could be reduced to S12 ⊆ S.
9Again, we can surely use a much weaker assumption than IΣ1 ⊆ S.
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Finally, we observe that if T is not finitely axiomatized, then it is possible
that it does not prove the sentences ConT (n̄) by proofs of polynomial (in n)
lengths. I am indebted to Fedor Pakhomov for suggesting this problem.

Proposition 3.11. Suppose CONN is true. Then for every S ∈ T , there
exists S ′, S ⊆ S ′ ∈ T such that the lengths of S ′-proofs of ConS′(n̄) cannot
be bounded by a polynomial in n.
Proof. Let S ∈ T be given. Let T ∈ T be such that the lengths of
S-proofs of ConT (n̄) cannot be bounded by a polynomial in n. Such a T
exists if we assume CONN . Define

S ′ := S ∪ {¬PrT (N̄ ,⊥) | N ∈ N}.
Suppose that S ′ proves ConS′(n̄) by a proof of length p(n) for some poly-
nomial p. Such a proof can only use a polynomial number of the axioms
of the form ¬PrT (N̄ ,⊥) with |N | ≤ p(n) (while there are exponentially
many such axioms). But S can prove each of these axioms by a proof of
polynomial size. Hence

S � ConS′(n̄)

by a polynomial size proof. Furthermore, for a suitable polynomial q,

S � ConS′(q(n))→ ConT (n̄)
by a polynomial (in fact, even polylogarithmic) length proof. To prove this
claim, one only needs to formalize the following argument in S:

“Suppose there exists a proof P of contradiction in T of length ≤ n.
Then it is possible to prove in S that PrT (P̄,⊥) holds true by a proof
of length polynomial in |P|, i.e., also polynomial in n. Hencewewould
get a proof of contradiction in S ′ of length q(n).”

Thus we would get polynomial length S-proofs of ConT (n̄) contrary to our
assumption. �
3.2. A finite reflection principle. Recall that the sentences expressing con-
sistency of a theory T are special cases of reflection principles (see [40]).
There are many versions of reflection principles. Here we will focus on the
uniform Σ1-reflection principles.
The uniformΣ1-reflection principle forT ,Σ1RFNT , is the following schema
for all Σ1 sentences �(x) with one free variable x

∀x∀u(PrT (u, ��(x̄)�)→ �(x)),
where ��(x̄)� denotes the function that assigns the Gödel number of the
formula �(x̄) to a given x, andPrT (u, v) says that u is a proof of v inT . The
principle is true if T is Σ1-sound, i.e., T does not prove a false Σ1 sentence.
This schema can be axiomatized by a single sentence using a partial truth
definition for Σ1 formulas (a universal Σ1 formula). Therefore the principle
is called “uniform” and abbreviated with capital letters.
In order to get a meaningful finite version of Σ1RFNT we have to make a
couple of modifications. We start by defining a finite Σb1 reflection principle
for one formula.
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Definition 3.12. Let T be a theory, let α(x) be a Σb1 formula and let
n ∈ N. Then Σb1Rfn

α
T (n̄) will denote the sentence:

∀u, x, |u| ≤ n̄, |x| ≤ n̄
(
PrT (u, �α(x̄)�)→ α(x)) .

Having defined the reflection principle for one formula, we can study the
schema, i.e., the set of sentences Σb1Rfn

α
T (n̄) for all Σ

b
1 formulas, but it is more

interesting to have a single sentence for every n from which all instances are
derivable by short proofs. To this end we need a universal Σb1 formula. One
can construct a Σb1 formula 	1 such that for every Σ

b
1 formula α(x) there

exist a natural number e and a polynomial p such that

|z| ≥ p(|x|)→ (α(x) ≡ 	1(ē, x, z)) (4)

is provable in S12 (see [17], page 336). The sentences that we are going to
define are essentially Σb1Rfn

	1
T (n̄).

Definition 3.13. The finite uniform Σb1 principle is the sequence of
sentences Σb1RFNT (n̄), n ∈ N, defined by

∀e, u, x, z(|e|, |u|, |x|, |z| ≤ n̄ ∧ PrT (u, �	1(ē, x̄, z̄)�)→ 	1(e, x, z)).
Lemma 3.14. For every Σb1 formula α(x), there exist polynomials q and r
such that S12 -proofs of the sentences

Σb1RFNT (q(n))→ Σb1RfnαT (n̄)
can be constructed in time r(|n|).
Proof. Let e ∈ N and p be such that (4) is provable in S12 . Let n ∈ N be
such that n ≥ |e| and let m = p(n). The following argument can be done
in S12 .

Suppose |u|, |x| ≤ n andPrT (u, �α(x̄)�). Then we also have |u|, |x| ≤
m and, since (4) is provable in T , we have PrT (u′, �	1(ē, x̄, 2m)�) for
some u′. The proof u′ is constructed from u using the proof of (4)
in T , which adds only a constant to the length and a small part in
which this sentence is instantiated for the numerals x̄ and 2m. This
makes the proof u′ at most polynomially longer than m. Let m′ be
this polynomial bound. Applying Σb1RFNT (m′), we get 	1(ē, x̄, 2m).
Then using (4) in S12 , we finally get α(x̄).

Now we only need to observe that the above S12 proof was explicitly con-
structed and the number of steps and the length of the formulas involved
are of length polynomial in |n|. �
Corollary 3.15. Let S, T ∈ T . Suppose that
1. T � ∀x.φ(x), where φ ∈ Σb1, and
2. S-proofs of the sentences Σb1RFNT (n̄) can be constructed in polynomial
time in n.

Then S-proofs of the sentences φ(m̄) can be constructed in time r(|m|) for
some polynomial r.
Proof. Since ∀x.φ(x) is provable in T , the sentences φ(m̄) have T -proofs
of length bounded by q(|m|) for some polynomial q. This is provable in S12 ,
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so also in S. According to the assumption about S and by Lemma 3.14, one
can construct in polynomial time proofs of Σb1Rfn

φ
T (q(|m|) in polynomial

time in |m|. Thus we get S-proofs of φ(m̄) in polynomial time. �
Using Σb1RFNT (n̄), we can state a conjecture similar to our conjecture
about ConT (n̄).

Conjecture 3.16 (RFNN1 ). For every S ∈ T , there exists T ∈ T such that
the lengths of S-proofs of Σb1RFNT (n̄) cannot be bounded by p(n) for any
polynomial p.

When α is 0 = 1, then Σb1Rfn
α
T (n̄) is equivalent toConT (n̄) and this equiv-

alence has an S12 -proof of length polynomial in |n|. Thus, by Lemma 3.14,
there exists a polynomial q such that Σb1RFNT (q(n)) → ConT (n̄) has an
S12 -proof of length polynomial in |n|. Consequently, Conjecture CONN

implies Conjecture RFNN1 .
We will prove that Conjecture RFNN1 implies NP �=coNP.
Proposition 3.17. If NP=coNP, then there exists S ∈ T such that for all
T ∈ T , the lengths of S-proofs of Σb1RFNT (n̄) can be bounded by p(n) for
some polynomial p.

Proof. The basic idea is to take some base theory and add all sentences
of the form Σb1RFNT (n̄) that are true as axioms, regardless whether or not
T is consistent. AssumingNP=coNP, it is possible to test these sentences in
nondeterministic polynomial time for each T . Since the polynomial bound
is different for different theories T we have to apply padding.
Here is a sketch of a proof in more detail. Assume NP=coNP. Instead
of just the sentences expressing Σb1RFNT (x), we will consider all formulas
with one free variable x of the form

Q1 y1, |y1| ≤ p1(x) . . . Qk yk, |yk| ≤ pk(x) φ(y1, . . . , yk),
where Qi ∈ {∀, ∃} and φ(y1, . . . , yk) ∈ Δb1. Let Γ denote the class of such
formulas. Our assumption implies that every formula φ(x) ∈ Γ is equiv-
alent to a formula from this class in which all quantifiers are existential.
Consequently, for every φ(x) ∈ Γ, there exists a nondeterministic Turing
machine M that accepts only true sentences of the form φ(n̄) and runs in
time polynomial in n. With some additional (and tedious) work, one can
show:

Case 1. There exists a nondeterministic Turing machineM that accepts
true sentences of the form φ(n̄), for φ(x) ∈ Γ and n ∈ N, such that for
every φ(x) ∈ Γ, there exists a polynomial pφ such that on sentences φ(n̄)
the machine always stops after pφ(n) steps.

For every φ(n̄) ∈ Γ and n,m ∈ N, let a padded version of φ(n̄) be

φ(n̄)m := φ(n̄) ∨ (0 = 1 ∧ · · · ∧ 0 = 1︸ ︷︷ ︸
m

).

Clearly, φ(n̄) is derivable from φ(n̄)m in predicate calculus using a proof
whose length is polynomial (in fact, linear) in the length of the sentence

https://doi.org/10.1017/bsl.2017.32 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.32


INCOMPLETENESS IN THE FINITE DOMAIN 419

φ(n̄)m . Using a simple modification of the machine M from the previous
claim, one can prove:

Case 2. There exists a nondeterministic polynomial time Turing machine
M ′ that accepts only some true sentences of the form φ(n̄)m, for φ(x) ∈ Γ,
n,m ∈ N and such that for every φ(x) ∈ Γ, there exists a polynomial pφ
such that for all n ∈ N,M ′ accepts φ(n̄)m for some m ≤ pφ(n).

Let S ′ be the theory axiomatized by the sentences accepted by M ′. By
construction, every true sentence of the form φ(n̄),φ(x) ∈ Γhas anS ′-proof
of length polynomial in n; in particular, this holds true for true sentences of
the form Σb1RFNT (n̄). The only issue is that the set of axioms is in NP and,
maybe, not in P. This can also be fixed by padding: we can encode accepting
computations into padding. E.g., by using 0 = 1 and 1 = 0, we can encode
an arbitrary bit string and let a padded formula be accepted iff the padding
encodes an accepting computation ofM ′ on input φ(n̄)m. �
The reason for introducing the conjecture about Σb1RFN is that it enables
us to connect diverging branches of so far postulated conjectures, as we will
see shortly. One can certainly study similar statements based on stronger
reflection principles for classes of formulas Σb2 ,Σ

b
3, . . . . The strength of these

conjectures decreaseswith increasing indexes, so they are not interesting ifwe
are looking for stronger conjectures. However, the study of these conjectures
may reveal further interesting connections.

3.3. What is the finite Gödel theorem? We finish this section with a remark
concerning the question what should be called the finite Gödel theorem. If
Conjecture CONN were proven true, we would certainly advocate calling it
the finite Gödel theorem. However, one can also argue that the connection
is different. Note that if T proves ConS , then T -proofs of ConS(n̄) are very
short; they are of logarithmic length in n, because the length of ConS(n̄)
is logarithmic (recall that we are using binary numerals) and this sentence
follows from ConS by substitution (if we formalize ConS as ∀x.ConS(x)).
Using this fact, we can deriveGödel’s theorem fromFriedman’s lower bound
n� on the lengths of T -proofs of ConT (n̄). So Friedman’s lower bound can
also be viewed as the finite Gödel theorem.
Proving Gödel’s theorem in this roundabout way is certainly not natural,
but in some cases it may be useful. Using estimates on finite consistency
statements, we proved [31] that S2 does not prove bounded consistency
of the apparently weaker theory S12 , which ruled out an approach to the
separation problem of these two theories. (Bounded consistency means that
we only consider proofs in which all formulas are bounded.)

§4. Fast growing functions and hard search problems. An important prop-
erty of first-order theories studied in classical proof theory is their strength
measured by the set of arithmetical sentences provable in them. Among
the arithmetical sentences the most important role is played by Π1 and
Π2 sentences. A proper Π2 sentence, a sentence that is not equivalent to
a Π1 sentence, expresses the fact that some function is total. Specifically,
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∀x∃y.φ(x, y), where φ is a bounded formula, can be interpreted as saying
that there exists a computable function such that∀x.φ(x,f(x)). If we cannot
write it equivalently using a formula ∀x.�(x, y), where in � all quantifiers
are bounded, then f has to grow faster than all functions defined by the
terms of the theory. Moreover, for pairs of natural theories S and T with T
essentially stronger than S, there are provably total computable functions in
T that cannot be bounded by computable functions provably total in S. One
can say that “T proves the existence of larger numbers than S”. This intuition
can be made more precise using cuts of nonstandard models of arithmetic
in which the arithmetical theories of S and T are satisfied: in general, T
requires longer cuts than S.10

Remark 4.1. It is important to realize what “provably total” means.
For a given theory and a computable function f, we can always find a Σ1
definition for which the totality of f is not provable (e.g., given a defining
formula φ(x, y), we can extend it by adding the consistency of T , i.e.,
φ(x, y) ∧ ConT (x)). So when we say that f is provably total, we mean that
f is provably total for some Σ1 definition of f.

4.1. Total polynomial search problems. We are interested in the exponen-
tial domain, which means that we only consider functions f such that the
length of f(x) is bounded by p(|x|) for some polynomial p, so it does not
make sense to compare the growth rate of the functions. Instead, we study the
complexity of these functions. The class of sentences corresponding to Π2
are ∀Σ̂b1 sentences—the sentences starting with unbounded universal quan-
tifier followed by a Σ̂b1 sentence. Essentially, this class consists of sentences
of the form

∀x∃y(|y| ≤ p(|x|) ∧ φ(x, y)), (5)

where φ is a formalization of a polynomial time relation (i.e., φ ∈ Δb1) and
p is some polynomial. There is a computational task naturally associated
with such sentences. Since this is important, we define it formally.

Definition 4.2. A total polynomial search problem is given by a pair
(p,R), where p is a polynomial and R is a binary relation such that

1. R is decidable in polynomial time,
2. N |= ∀x∃y(|y| ≤ p(|x|) ∧R(x, y)).
The computational task is, for a given x, find y such that |y| ≤ p(|x|) ∧
R(x, y).

The class of all total polynomial search problems will be denoted by
TFNP.11 Here are two examples of TFNP problems.

Example 4.3. This example is based on the Pigeon-Hole Principle, which
says that there is no one-to-one mapping from an N + 1-element set to
an N -element set. The computational task associated with this principle is:

10Consider cuts that contain a fixed nonstandard element.
11The abbreviation TFNP is standard, but is rather misleading; the class is not a class of

functions and it is not defined using NP relations. Therefore we used TPS in [34].
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given a mapping from an N + 1-element set to an N -element set, find a
“collision”, which is a pair x �= x′ such that f(x) = f(x′). This problem
is algorithmically trivial if the mapping is given as a list of pairs (x,f(x)).
In this case N is less than the input length. However, if the problem is
presented so that N is exponential in the input length, no polynomial time
algorithm is known. Such a representation can be defined using Boolean
circuits, or polynomial time algorithms that compute the function f. In
fact, researchers in cryptography believe that the problem is hard even if
the mapping is from [N ] to [M ] for M much smaller than N . These hash
functions are used in various protocols.

A TFNP problem based on the Pigeon-Hole Principle can formally be
defined as follows. Take a polynomial time computable function f(r, x);
think of f as a set of polynomial time computable functions of one variable
x parametrized by r. Define a binary relation computable in polynomial
time by

R(r, u) :≡ (u ≤ r∧f(r, u) ≥ r) ∨ ∃x, x′ ≤ r(u = (x, x′)∧f(r, x) = f(r, x′)).
In this formula, u is a witness of the fact that f does not map {0, . . . , r}
into {0, . . . , r − 1} or a witness of a collision. A polynomial bound on |u|
is determined by a polynomial bound on the lengths pairs of elements less
than r.

Example 4.4. Our second example is based on the problem of factoring
integers. Again the problem is nontrivial only if the number to be factored
is presented in binary (decimal etc.) notation, in which case it is exponential
in the input length. Since the search problem must have a solution for every
number N , we have to distinguish the cases when N is prime and when
it is composite. It is well-known that this is decidable in polynomial time.
Formally, we define a binary relation computable in polynomial time by

Q(N,M ) :≡ N is prime ∨ (1 < M < N ∧M divides N ).
The bound on M is simply |M | ≤ |N |. A solution is any number M ,
|M | ≤ |N |, if N is prime, or a proper factor if N is composite.
Having the concept of a total polynomial search problem, we can now
replace the growth rate of functions by the computational complexity of find-
ing solutions. Not surprisingly, the situation is much less clear than in the
classical setting. Firstly, we can only hypothesize about the computational
complexity of specific search problems. But this is what we expected and
are ready to face. Secondly, we do not have a quantitative measure of com-
plexity that we could apply to this kind of computational problems. We
can distinguish problems for which the task is solvable in polynomial time
from those for which it isn’t, but some evidence suggests that there are also
distinct classes of problems that are not solvable in polynomial time and
have different complexity. To compare the complexity of different problems,
we use reductions. Polynomial reductions are known for decision problems
and used, in particular, in the theory of NP completeness. For TFNP there
is also a natural concept of polynomial reduction. (Note that TFNP is not
a class of decision problems, so we do need a different concept.)
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Definition 4.5 ([20]). LetR and S be total polynomial search problems.
We say thatR is polynomially reducible to S ifR can be solved in polynomial
time using an oracle that gives solutions to S. We say that R and S are
polynomially equivalent if there are polynomial reductions in both directions.
We say that R is many-one polynomially reducible to S, if it is polynomially
reducible using one query to the oracle for S.

Many-one polynomial reducibility can be equivalently defined by the con-
dition: there are functions f and g computable in polynomial time such that
for all x and z,

S(f(x), z) ⇒ R(x, g(x, z)),

were we are assuming that polynomial bounds on the lengths of numbers
involved are implicit in the relations R and S.
Reductions enable us to study the structure ofTFNP anddefine subclasses.
We are interested in classes that are closed under polynomial reductions.
One important class is PHP, the class of all TFNP problems reducible to
an instance of the Pigeon-Hole Problem as described in Example 1 above.
Several other classes were defined already in the seminal paper [20]. They
enable one to show that a problem is probably not solvable in polynomial
time. Specifically, if one proves that a problem is complete in one of the
well-known classes, it implies that the problem is not solvable in polynomial
time unless the class collapses to the bottom class consisting of all problems
solvable in polynomial time.
From the point of view of computational complexity, it is natural to
identify polynomially equivalent problems. However, we should bear in
mind that from the point of view of a particular theory, two definition of the
same problem may behave differently, as we noted above. We will consider
definitions of TFNP by Δb1 formulas and for a given theory we will take “the
best possible definition”. Formally, this is defined as follows.

Definition 4.6. 1. A Δb1 definition of a TFNP problem (p,R) is a pair
(q, φ) where q is a polynomial and φ is a Δb1 formula such that

N |= ∀x, y((|y| ≤ p(|x|) ∧R(x, y)) ≡ (|y| ≤ q(|x|) ∧ φ(x, y))).

2. We say that (p,P) ∈ TFNP is provably total in a theory T , if for some
Δb1 definition (q, φ) of (p,P), T proves that

∀x∃y(|y| ≤ q(|x|) ∧ φ(x, y)).

3. The set of all (p,P) ∈ TFNP provably total in T will be denoted by
TFNP(T ). The set of all P ∈ TFNP polynomially reducible to some
Q ∈TFNP(T ) will be denoted by TFNP∗(T ).

Note that according to our definition of the class Δb1 (in Section 2.3), the
formula φ must be a Σb1 formula equivalent to a Π

b
1 formula provably in S

1
2

(to ensure that it defines a set in P it does not suffice to have a proof in
T ). On the other hand, we do not require that a problem P in TFNP∗(T ) is
provably reducible to someQ ∈TFNP(T ). The difference betweenTFNP(T )
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and TFNP∗(T ) is small; in fact, if we defined TFNP usingNP relations (see
TFNP below), these classes would be the same.
To characterize low complexity theorems of fragments of arithmetic is
an important problem studied in proof complexity. In particular, we are
interested in sentences that are universal closures of Σb1 formulas. Naturally,
we want to identify sentences that express the same fact. The best way to do
that is to focus on provably total polynomial search problems. Provably total
polynomial search problems of all fragments of bounded arithmetic Si2, i =
1, 2, . . . , have been characterized using combinatorial principles [1,2,36,39].
(Si2 is S2 with the induction schema (1) restricted to Σ

b
i formulas.) For S

1
2

they are all TFNP problems that are solvable in polynomial time (the lowest
class in TFNP). The class of provably total problems of S22 turned out to
be surprisingly the class Polynomial Local Search, a class that had been
introduced in [20].
Here is another important conjecture.

Conjecture 4.7 (TFNP). For every theory T ∈ T there exists a TFNP
problem P that is not polynomially reducible to any TFNP problem provably
total in T . Stated in symbols TFNP∗(T ) �= TFNP.12

The weaker statement TFNP(T ) �= TFNP, in plain words, says that, for
every theory T ∈ T , there exists a total polynomial search problem (p,R)
such that T cannot prove that the problem is total for any proper definition
(definition by a Δb1 formula) of (p,R). This means that the unprovability
in T is not caused by a particular way we define the problem, but by a
semantic property of it that we imagine as high computational complexity.
We state the conjecture in the stronger form, TFNP∗(T ) �= TFNP, because
TFNP(T ) may not be closed under polynomial time reductions.
Let us compare this conjecture with the corresponding statement about
fast growing recursive functions. One can easily prove by diagonalization
that for every T ∈ T , there exists a computable function f which grows
faster than any computable function provably total in T . This means that
for any computable function g provably total in T , there exists an n0 such
that f(n) > g(n) for all n ≥ n0. Thus for any formalization of f by a
Σ1 formula T cannot prove that f is total. In the above conjecture, the
condition that f cannot be bounded by provably total functions is replaced
by the condition that a TFNP problem is not polynomially reducible to
TFNP problems that are provably total in T .
All conjectures in this area can be stated in purely complexity theoretical
terms. The above conjecture has an especially simple equivalent form, which
we state now.

Conjecture 4.8 (equivalent to TFNP). There is no complete problem in
TFNP, i.e., there exist no TFNP problem to which all TFNP problems can be
polynomially reduced.

12We distinguish the complexity class TFNP and the conjecture about itTFNP by different
fonts.
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The proof of the equivalence of the versions is easy. To prove that the first
version implies the second, suppose the second is false. Let P be a complete
problem in TFNP. Then take a fragment of arithmetic and add the axiom
that (a formalization of) P is total.
The converse implication follows immediately from the following fact.

Lemma 4.9. For everyT ∈ T , there exists aTFNP problem (p,P) such that
all TFNP problems provably total in T are many-one polynomially reducible
to (p,P).
Proof. The proof is based on the fact that one can effectively enumerate
all problems in TFNP∗(T ). (Such proofs are routine and we include a proof
here only because it demonstrates a method that can be applied in other
similar situations, in particular, we will use it in Proposition 6.6.) The basic
idea is to connect all provably total problems into one. We can recognize
a definition of a provably total problem by finding a proof of the totality
for this definition. A minor complication is that different provably total
problems may require different polynomials as bounds on the witnesses
and bounds in the Δb1 formulas defining them. This can easily be solved by
suitable padding.
Now we present the argument in more detail. Recall that from the point
of view of provability in a theory, it does not matter if we use Δb1 formulas
or, more generally, Σb1 in the definition of the problems. So, for the sake of
simplicity, we will enumerate Σb1 formulas.
Given a Σb1 formula �(x), we say that r(n) is a syntactic nondeterministic
time bound for � if the bounds at quantifiers in the formula ensure that
�(x) is decidable by a nondeterministic Turing machine in time r(n) where
n is the length of x. Since� is a Σb1 formula, there always exists a polynomial
r that is such a bound for �.
Let T ∈ T be given. We define a binary relation R(u, v) by the following
condition:

• if u = (x′, φ, q, d, a) is a quintuple such that φ is a Σb1 formula, q
is a polynomial, d is |T |-proof of ∀x∃y(|y| ≤ q(|x|) ∧ φ(x, y)), and
|a| = r(|x′|), where r is a syntactic nondeterministic time bound for
∃y(|y| ≤ q(|x|) ∧ φ(x, y)), then φ(x′, v).
Note that Φ := ∀x∃y(|y| ≤ q(|x|) ∧ φ(x, y)) is a Π1 sentence and T is
consistent and Σ1-complete (since it contains S12 ). Hence if T proves Φ, then
Φ is true in N.
The relation R is computable in nondeterministic polynomial time,
because the condition on (x′, φ, q, d, a) is a simple syntactical condition
and if the condition is satisfied, φ(x′, v) can be computed in nondeter-
ministic polynomial time bounded by |a|. Further, for every u there exists
some v, |v| ≤ |u|, such that R(u, v) holds true, because if the condition
on (x′, φ, q, d, a) is satisfied, then for every x′ there exists v, |v| ≤ |a|, that
satisfies φ(x′, v), and if the condition is not satisfied, then one can take
v = 0.
The fact that we only know that R is computable in nondeterministic
polynomial time is not a problem. Clearly, there exists a ternary relation P′
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computable in polynomial time and a polynomial p′ such that

R(u, v) ≡ ∃w(|w| ≤ p′(|u|, |v|) ∧ P′(u, v, w)).

So we define

P(u, y) :≡ ∃v,w(y = (v,w) ∧ P′(u, v, w))

and note that |y| ≤ p(|u|) for some polynomial p, because |v| ≤ |u| and
|w| ≤ p′(|u|, |v|) ≤ p′(|u|, |u|).
Let a TFNP problem (q,Q) be given and suppose that it is provably
total in T . We have a Σb1 formula φ and a polynomial q that defines the
problem and a T -proof of totality d for this representation. Also we have a
nondeterministic polynomial time bound r for ∃y(|y| ≤ q(|x|) ∧ φ(x, y)).
We define a reduction of (q,Q) to (p,P) by

x �→ f(x) := (x, φ, q, d, 2r(|x|)).

Given awitness (v,w) forP(f(x), (v,w))we get awitness forQ(x, v) simply
by taking the first element from the pair (v,w). �
We are indebted to to Emil Jeřábek for the following proposition.

Proposition 4.10 (E. Jeřábek, unpublished). There exists a complete
problem in TFNP w.r.t. polynomial reductions if and only if there exists a
complete problem in TFNP w.r.t.many-one polynomial reductions.

The proposition is an immediate corollary of the following lemma.

Lemma 4.11. For every TFNP problem P, there exists a TFNP problem P′

such that for every TFNP problemQ, ifQ is polynomially reducible to P, then
Q is many-one polynomially reducible to P′.

Proof. Let P be given by a polynomial p and a binary relation R. We
define a binary relationR′(u, v) as follows. Interpret a string u as an encoding
of a string x and an oracle Boolean circuit C . We will only allow oracle
circuits that have p(n) input bits for a possible oracle answer for each query
of length n. Then R′((x,C ), v) will be defined to be true if v encodes a
computation ofC on input x with the oracle queries and answers to be pairs
r, s such that R(r, s) holds true; in other words, v encodes a computation of
C that uses P as an oracle. Furthermore, R′(u, v) is defined to be true, if u
does not have the form described above. Clearly, R′ defines a total problem:
given (x,C ), we can run C on input x using P as an oracle.
Suppose Q is reducible to P using a polynomial time query machineM .
For each input x for the problemQ, we can construct in polynomial time an
oracle Boolean circuit C that simulates computations of M on x. Given a
string v such thatR′((x,C ), v), we get an output string y of the computation
ofM that satisfiesQ(x, y), becauseM is a polynomial reduction ofQ toR.
So the reduction is given by the polynomial time functions x �→ (x,C ) and
v �→ y, where y is the output of the computation encoded by v. �
Furthermore, Jeřábek noted that we also get a conjecture equivalent to

TFNP if we use the following modification. Let us denote by TFNP the class
of search problems defined in the same way as TFNP except that the binary
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relations are only required to be in NP.13 Many-one polynomial reductions
for TFNP are defined exactly in the same way as for TFNP.

Proposition 4.12. There exists a complete problem in TFNP if and only if
there exists a complete problem in TFNP.

Proof-hint. (1)Every problemP inTFNP is, by definition, also inTFNP.
(2) LetQ ∈ TFNP. LetQ be given by a binary relation ∃pz.R(x, y, z). Then
the binary relation R′ defined by

R′(x, (y1, y2)) := R(x, y1, y2)

defines a problem in TFNP. �

4.2. Some arguments supporting the conjecture. It is always difficult to
justify a mathematical conjecture. Either the sentence is true, or it is false,
but unlike in physics, in mathematics there are no experiments that may
support one or the other. Thus the belief in a conjecture is based on subjective
feelings. Here are our reasons why we believe that conjecture TFNP should
be true.

1. Every TFNP problem is based on some mathematical principle that
ensures that for every input there exists a solution. Although these
principles are simple for the basic classes of TFNP problems, it seems
likely that there is no universal mathematical principle that would work
for every TFNP problem.

2. Combinatorial characterizations of provably total polynomial search
problems have been obtained for some fragments of Bounded Arith-
metic. The description of these combinatorial problems suggests that
their strength increases with increasing strength of the theories.14

3. An oracle has been constructed relative to which the conjecture holds
true [35].

4. The connection with search problems verifying the consistency of a
theory that we describe below can also be viewed as a supporting
argument.

4.3. Herbrand consistency search. Conjecture TFNP has another equiv-
alent form in which the concept of consistency plays a key role. The
well-knownHerbrand theorem provides a “combinatorial” characterization
of provability in predicate calculus (see, e.g., [8]). In particular one can char-
acterize the consistency of theories. Let us consider logic without equality
and the special case of universal sentences.According toHerbrand’s theorem
a universal sentence Φ := ∀x1 . . . ∀xk.φ(x1, . . . , xk), where φ is quantifier
free, is consistent if and only if for every family of terms 
ij , i = 1, . . . , n,

13It would be more logical to use TFP for what is called TFNP and reserve TFNP for
TFNP.
14We only hypothesize that the strength of fragments Si2 of Bounded Arithmetic increases

with increasing i , but this hypothesis is supported by a connection with the Polynomial
Hierarchy in computational complexity [28].
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j = 1, . . . , k,
n∧
i=1

φ(
i1, . . . , 
ik) (6)

is satisfiable as a propositional formula. Sentences expressing consistency
using standard proofs (in Hilbert-style, or Gentzen calculi) and sentences
expressing consistency using Herbrand’s theorem are equivalent provably in
every theory that proves Herbrand’s theorem. However, the corresponding
restricted finite versions of consistency statements are essentially different
because the transformation of standard proofs into sets of terms that wit-
ness provability in Herbrand’s theorem is nonelementary. But here we are
interested in a different aspect of Herbrand’s theorem: the complexity of
finding a satisfying assignment for (6). Since the formula, as a proposition,
is always satisfiable when Φ is consistent, every consistent universal sentence
defines a natural TFNP problem.

Definition 4.13. Let Φ := ∀x1, . . . , xk.φ(x1, . . . , xk) be a consistent uni-
versal sentence. Then HCS(Φ), the Herbrand Consistency Search for Φ,
is the following total polynomial search problem. Given terms 
ij in the
language of Φ, i = 1, . . . , n, j = 1, . . . , k, find a truth assignment to the
atomic subformulas occurring in φ(
i1, . . . , 
ik), for i = 1, . . . , n, that makes∧n
i=1 φ(
i1, . . . , 
ik) true.

For simplicity, we define Herbrand consistency search only for universal
sentences in this article, but using Skolemization, one can easily extend
this definition to conjunctions of prenex formulas. In [35] we proved the
following theorem.
Theorem 4.14. For every total polynomial search problem P, there exists
a consistent universal sentence Φ such that the problem P is many-one
polynomially reducible to HCS(Φ).
Using this theorem we can state Conjecture TFNP in the following
equivalent form.
Conjecture 4.15 (equivalent to TFNP). For every theory T ∈ T there
exists a consistent universal sentence Φ such that HCS(Φ) is not polynomi-
ally reducible to any TFNP problem provably total in T , i.e., HCS(Φ) �∈
TFNP∗(T ).
This form of the TFNP conjecture suggests a natural question: what is
a sentence Φ that is likely not in TFNP∗(T )? The following could be an
answer to this question.
Conjecture 4.16 (TFNP+). Suppose T ∈ T is axiomatized by a universal
sentence. Then T does not prove that HCS(T ) is total for any formalization
of it by a Δb1 formula.
Note that if T is strong enough to prove Herbrand’s theorem, then it does
not prove the totality of HCS(T ) formalized in a natural way, because if it
did, it would prove its own consistency. However, this does not exclude the
possibility that it proves the totality for some contrived definition. Although
we call it a conjecture, we are not very confident that it is true. But suppose

https://doi.org/10.1017/bsl.2017.32 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.32


428 PAVEL PUDLÁK

it were true and suppose that S ∈ T is axiomatized by a universal formula
and T is a theory that proves Herbrand’s Theorem and the consistency of S.
Then we would haveHCS(S) ∈ TFNP∗(T )\TFNP∗(S). Thus according to
this conjecture, adding the consistency of a theory to itself produces more
provably total polynomial search problems (at least for theories axiomatized
by a universal formula).

§5. Propositional proof systems, disjointNP-pairs and disjoint coNP-pairs.
So far we were concerned with first order theories. In this section we will
show that one can also use other formal systems, namely, propositional
proof systems, in order to state and study conjectures about incompleteness
in the finite domain.
Let a language for classical propositional logic be fixed; say, we take
connectives ¬,∧,∨, and variables p1, p2, . . . . Let TAUT be the set of all
tautologies and SAT be the set of all satisfiable propositions. Following [12],
we say that a proof system is a polynomial time computable function P from
Σ∗ onto TAUT.15 If P(w) = φ, we say that w is a proof of φ in the proof
system P. This elegant definition captures three basic properties of proof
systems:

1. the relation “w is a proof of φ” is decidable in polynomial time;
2. the system is sound;
3. the system is complete.

In the rest of this section the term “proof system” will always refer to
“propositional proof system”.
According to this definition, a proof can be any evidence that shows log-
ical validity of a proposition. The standard formalizations of propositional
calculus based on axioms and logical rules are systems from a special class
of proof systems, called Frege systems.
We say that a proof system P is polynomially bounded if there exists a poly-
nomial p such that every tautology φ has aP-proof of length at most p(|φ|).
Since TAUT is coNP-complete, the existence of a polynomially bounded
proof system is equivalent to NP=coNP.
A weaker concept is length optimality. We say that a proof system P is
length-optimal if for every proof system Q, there exists a polynomial p such
that if φ has a proof of length n in P, then it has a proof of length at most
p(n) in Q. (Length-optimality is a nonuniform version of p-optimality that
will be defined in Section 6.) In [27] we showed that Conjecture CONN is
equivalent to the following one.

Conjecture 5.1 (equivalent to CONN ). There exists no length-optimal
proof system.

Why do we believe that this conjecture is true? An argument that we can
give is based on a construction of proof systems used to prove that the
two statements of Conjecture CONN are equivalent. Given an arithmetical

15Recall that in this article Σ denotes {0, 1}, but in this definition it could be any finite
alphabet of size at least 2.
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theory T , we can formalize the concept of a propositional tautology by
some formula 
(x). For a given tautology t, we take its Gödel number
n and treat any first order T -proof of 
(n̄) as a proof in a propositional
proof system. Then it seem plausible that in stronger theories we can prove
some tautologies by shorter proofs. Moreover, one can show that these
proof systems are in a sense universal. So the fact that the logical strength of
theories cannot be bounded is likely to be projected into these proof systems.
Another argument supporting the conjecture is from our experience with
specific proof systems studied in proof complexity. Most systems are based
on some class of formulas and deduction rules. If we enlarge the class of
formulas then, usually, the system becomes stronger. For example, if we
use quantified Boolean formulas instead of ordinary Boolean formulas, the
system seemsmuch stronger. For some weak systems, in particular, bounded
depth Frege systems, this has actually been proven [21].As, apparently, there
is no limit on how strong expressive power formulas can have, we also believe
that there is no limit on how efficient a proof system can be.

5.1. Disjoint NP pairs. In [37] Razborov defined the canonical pair of a
proof system P to be the pair of sets (PR(P), NSAT ∗) where

PR(P) :={(φ, 2m); φ has a P-proof of length at most m},
NSAT ∗:={(φ, 2m); ¬φ is satisfiable}.

Note that this is a pair of two disjoint NP sets.
We say that a disjointNP pair (A,B) is polynomially reducible to a disjoint
NP pair (C,D) if there exists a polynomial time computable function f
that maps A into C and B into D. We say that pairs (A,B) and (C,D)
are polynomially equivalent if there are reductions between them in both
directions.
It is not difficult to show that canonical pairs of proof systems are universal
in the class of all disjointNP pairs, which means that every disjoint NP pair
(A,B) is polynomially reducible to the canonical pair of some proof system
P. In fact, even more is true.

Proposition 5.2 ([15]). For every disjoint NP pair (A,B), there exists a
proof system whose canonical pair is polynomially equivalent to (A,B).

Furthermore, if P and Q are proof systems and there exists a polynomial
p such that for every tautology φ, if φ has a P-proof of length n, then
φ has a Q-proof of length at most p(n), then the canonical pair of P is
polynomially reducible to the canonical pair of Q. Indeed, the mapping
(φ, 2n) �→ (φ, 2p(n)) is such a reduction. Thus we get:
Proposition 5.3 ([22, 37]). If P is a length-optimal proof system, then
its canonical pair is a complete disjoint NP pair with respect to polynomial
reductions (i.e., every disjointNP pair is reducible to it).16

Therefore the following conjecture is a strengthening ofConjectureCONN .

16Razborov proved this fact for p-optimal proof systems (seeDefinition 6.1 below);Köbler,
Messner and Torán improved it to length optimal proof systems.
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Conjecture 5.4 (DisjNP). There exist no complete disjointNP pair (with
respect to polynomial reductions).
Glaßer et al. [16] constructed an oracle relative to which there is no com-
plete disjointNP-pair. Other than that, we have little supporting evidence. A
combinatorial characterization of the canonical pair has only been found for
the resolution proof system. In [16] they also constructed anoracle relative to
which there exists a complete disjoint NP-pair, but no length-optimal proof
system exists, i.e., ConjectureDisjNP fails, but Conjecture CONN holds true.

5.2. Disjoint coNP pairs. We now turn to disjoint coNP pairs. When
comparing different disjoint coNP-pairs, one can use the same polynomial
reduction as used for disjoint NP-pairs; hence one can also ask similar
questions. In particular, are there disjoint coNP pairs inseparable by a set
in P? Are there complete disjoint coNP pairs? We believe that the answer to
the first question is yes, because we accept NP ∩ coNP �= P as a very likely
fact. The answer to the second question is less clear, but we still lean to the
negative answer.
Conjecture 5.5 (DisjCoNP). There exist no complete disjoint coNP pair
(with respect to polynomial reductions).
An oracle relative to which the conjecture is true was recently constructed
by Erfan Khaniki [private communication]. The next proposition states that
Conjecture TFNP is a consequence of the above conjecture.
Proposition 5.6. If there exists a complete TFNP problem, then there
exists a complete disjoint coNP pair.
The proposition follows from the two lemmas below and Proposition 4.10.
First we need a definition.

Definition 5.7. Let a TFNP problem (p,R) be given. Assume that
R(x, y) ⇒ |y| = p(|x|). The canonical disjoint coNP pair of (p,R) is the
pair (A0, A1) defined as follows. The elements of A0 ∪ A1 are pairs (x,C )
where x is an arbitrary binary string and C is a Boolean circuit with p(|x|)
bit-inputs and one bit-output. The sets A0 and A1 are defined by

(x,C ) ∈ Ai ≡ ∀y(R(x, y)→ C (y) = i). (7)

The condition that, for a givenx, all elements y satisfyingR(x, y) have the
same length is, clearly, not essential, because we can always pad the string y
to the maximal length p(|x|).
Lemma 5.8. For every disjoint coNP pair (B0, B1) there exists a TFNP
problem (p,R) such that (B0, B1) is polynomially reducible to the canonical
disjoint coNP pair of (p,R).
Proof. Let a disjoint coNP pair (B0, B1) be given. Suppose that Bis are
defined by

x ∈ Bi ≡ ∀y(|y| ≤ ri(|x|)→ �i(x, y))
for i = 0, 1, where �i is computable in polynomial time and ri is a
polynomial. Let the binary relation R be defined by

R(x, z) ≡ ∃i ∈ {0, 1}∃y(z = (i, y) ∧ |y| ≤ ri(|x|) ∧ ¬�i(x, y)).
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Since �i s are computable in polynomial time, so is also R and the length
of every z satisfying R(x, z) is polynomially bounded in the length of x.
Furthermore, since B0 and B1 are disjoint, R is total. Again, by suitably
padding z we may ensure that R(x, z)⇒ |z| = p(|x|) for some polynomial
p. Let (A0, A1) be the canonical pair of (p,R). The pair (B0, B1) is reducible
to (A0, A1) by the mapping

x �→ (x,C ),

whereC is a circuit such thatC (i, y) = 1−i , because for thisC , (x,C ) ∈ Aj
iff x ∈ Bj . �
Lemma 5.9. Let (p,P) and (q,Q) be two TFNP problems such that
P(x, y) ⇒ |y| = p(|x|) and Q(x, y) ⇒ |y| = q(|x|). Let (A0, A1), respec-
tively (B0, B1), be their canonical coNP pairs and suppose that (p,P) is
polynomially many-one reducible to (q,Q). Then (A0, A1) is reducible to
(B0, B1).

Proof. Let (p,P), (q,Q), and a polynomial many-one reduction (f, g) of
(p,P) to (q,Q) be given. Let (A0, A1) and (B0, B1) be the canonical coNP
pairs of (p,P) and (q,Q). We define a polynomial reduction of (A0, A1) to
(B0, B1) as follows. For an input of the form (x,C ) where C is a Boolean
circuit, we put

h(x,C ) = (f(x), Dx),

whereDx is a Boolean circuit with q(|f(x)|) bit inputs such that for all y of
length q(|f(x)|),

Dx(y) = C (g(x, y)). (8)

If an input z does not have the required form, we put h(z) = 0.Wewill check
that this defines a polynomial reduction of (A0, A1) to (B0, B1). Let (x,C ) ∈
Ai and let y be any number such that |y| = q(|f(x)|) and Q(f(x), y).
Since P(x, g(x, y)), we have C (g(x, y)) = i by the definition of Ai . By (8),
Dx(y) = i . This proves that f(x) ∈ Bi . �

5.3. Multivalued functions. A class closely related to TFNP and the ques-
tion whether there exists a complete problem in this class were studied
by Beyersdorff, Köbler and Messner [5]. We need a couple of preliminary
definitions.
A multivalued partial function f is called an NP multivalued function
if it is computed by a nondeterministic polynomial time Turing machine
M in the following sense. M stops in two possible states: ACCEPT and
REJECT. For a given input value x, the values of f are those words on the
output tapewhich appear when the state ACCEPT is reached. For a function
f ∈ NPMV we denote by f{x} the set of all values for the input x. Thus
f is total iff f{x} �= ∅ for all x. The class of NP multivalued functions is
denoted by NPMV. The class of total NP multivalued functions is denoted
by NPMVt .
By their nature, NPMVt functions are TFNP problems, but there is an
essential difference in how one defines reduction. For f, g ∈ NPMV, we
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say that f is polynomially reducible to g if there exists a polynomial time
computable function h such that for all x,

f{x} = g{h(x)}.
A relation to our Conjecture TFNP is given by the following proposition.

Proposition 5.10. The existence of a complete function inNPMVt implies
the existence of a complete TFNP problem.

Proof. Let g be a complete function inNPMVt .We can represent g using
a polynomial time computable ternary relation as follows:

g{x} = {y; ∃pz.R(x, y, z)}.
Recall that the superscript at the existential quantifier means that we tacitly
assume that there exists a polynomial boundp such thatR(x, y, z) is satisfied
only if the lengths of y and z are bounded by p(|x|). Define

Q(x, u) := R(x, (u)1, (u)2).

We claim that Q defines a complete TFNP problem. Let S(x, y) be a binary
relation computable in polynomial time viewed as a TFNP problem (again,
we tacitly assume an implicit polynomial bound on the length of y). Define
a function f ∈ NPMVt by

f{x} := {y; S(x, y)}.
Since f is reducible to the complete function g, there exists a polynomial
time computable function h such that f{x} = g{h(x)}, which is equivalent
to

{y; S(x, y)} = {y; ∃z.R(h(x), y, z)} = {y; ∃z.Q(h(x), (y, z))}.
Thus the pair of functions h, k, where k(u) := (u)1, is a polynomial
reduction of S to Q. �
We do not know if the opposite implication holds true. Beyersdorff et al.
[5] proved that if there exists a complete function inNPMVt , then there exists
a complete disjoint coNP pair. This is now a consequence of Propositions
5.6 and 5.10.

§6. Classification of conjectures.
6.1. Uniform and nonuniform. A more natural way to compare proof
systems than just comparing the lengths of proofs is polynomial simulation.
This is a concept, introduced in [11], similar to polynomial reductions used
in the theory of NP-completeness and those we used to compare TFNP
problems.

Definition 6.1. We say that a proof P system polynomially simulates a
proof system Q if there exists a polynomial time computable function f
such that given a Q-proof d of φ, f(d ) is a P-proof of (the same) φ. We say
that a proof system P is p-optimal if it polynomially simulates every proof
system.

https://doi.org/10.1017/bsl.2017.32 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.32


INCOMPLETENESS IN THE FINITE DOMAIN 433

Using this concept we can state a conjecture slightly weaker than
Conjecture CONN .

Conjecture 6.2 (CON). There exists no p-optimal proof system.
In [27]weproved that this conjecture is equivalent to the following uniform
version of Conjecture CONN .

Conjecture 6.3 (equivalent to CON). For everyS ∈ T , there existsT ∈ T
such that S-proofs of ConT (n̄) cannot be constructed in polynomial time in n.
A uniform version of Conjecture RFNN1 is obtained in the same way.

Conjecture 6.4 (RFN1). For every S ∈ T , there exists T ∈ T such that
S-proofs of Σb1RFNT (n̄) cannot be constructed in polynomial time in n.
Except for modifications of these conjectures, such as Conjecture CONN+,
we do not know of any other pair of uniform and nonuniform conjectures of
the kind studied in this article. In particular, TFNP is apparently uniform,
but we do not know if it has a nonuniform companion.
Note that NP �= coNP is implied by the nonuniform conjectures CONN
and RFNN1 , while the uniform versions CON and RFN1 are only known to
imply P �= NP. Thus we should also classify NP �= coNP as nonuniform
and P �= NP as uniform. Then it may seem strange that according to this
classificationNP �= coNP should be a nonuniform conjecture, in spite of the
fact that both NP and coNP are uniform complexity classes. But if we look
at NP �= coNP from the point of view of proof complexity, then it is clearly
a nonuniform version of P �= NP. Just consider the following equivalent
formulations of these conjectures:

• P �= NP⇔ there exists a proof system P such that for every tautology

 a P-proof of 
 can be constructed in polynomial time;

• NP �= coNP⇔ there exists a proof system P such that every tautology

 has a P-proof of polynomial length.

However, although Conjecture DisjNP seems to be uniform, it does imply
the nonuniform Conjecture CONN (see Proposition 5.3). We do not have an
explanation for this.

6.2. Logical complexity. We started with statements about finite con-
sistency, statements that express facts about logic, and eventually arrived
at statements about disjoint sets of certain complexity, statements from
structural complexity theory that apparently have nothing to do with the
main theme of incompleteness. But one should realize that expressing these
conjectures using concepts from computational complexity theory is just a
convenient way to state them. It seems that it should be possible to present all
uniform conjectures as statements about unprovability of certain sentences
in theories from the class T . The following proposition shows how to state
Conjecture CON in this way.

Proposition 6.5. There exists a p-optimal proof system ( for TAUT) if and
only if there exists a theory T ∈ T such that for every proof system P there
exists a definition of P by a Δb1 formula such that T proves the soundness of P
represented by this formula.
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For the proof, see [34], pages 578–9. The next proposition shows how
to express Conjecture DisjNP as a statement about unprovability of certain
sentences.

Proposition 6.6. There exists a complete disjoint NP pair if and only if
there exists a theory T ∈ T such that for every disjointNP pair (B0, B1) there
are Σb1 definitions ofB0 andB1 for which T proves that they define disjoint sets.

Proof. Suppose that there exists a complete disjoint NP pair (A0, A1).
Let ∃py.αi(x, y) be Σb1 definitions of Ai , i = 0, 1. Define a theory T to be

S12 + ∀x(¬∃py.α0(x, y) ∨ ¬∃py.α1(x, y)).
Let (B0, B1) be an arbitrary disjoint NP pair. Let ∃py.�i (x, y) be some
Σb1 definitions of Bi , i = 0, 1. Since (A0, A1) is complete, there exists a
polynomial time reduction f of (B0, B1) to (A0, A1). Consider the following
definitions of Bi , i = 0, 1, by Σb1 formulas:

∃py.�i (x, y) ∧ ∃pz.αi (f(x), z).
It is clear that they define the sets Bi correctly and that T proves that sets
defined by these formulas are disjoint.
The proof of the converse implication is a standard argument that we have
already presented in the proof of Lemma 4.9, so we will be very brief.
Let T be a theory with the property stated in the proposition. For i = 0, 1,
let Ai be the set of tuples (x, �0, �1, d, a) such that

• �0 and �1 are Σb1 formulas, d is a T -proof of the disjointness of the sets
defined by �0 and �1, a is a nondeterministic time bound for �0 and �1,
and ∃py.�i(x, y) holds true.

We leave to the reader to verify that these conditions define a disjoint NP
pair and that every disjoint NP pair is polynomially reducible to it. �
The nonexistence of a complete disjoint coNP pair, Conjecture DisjCoNP,
can be expressed as a statement about provability in the same way. Con-
jecture TFNP was, in fact, introduced as a sentence about unprovability in
theories in T .
Thus a natural way to classify such conjectures is according to the logical
complexity of sentences that are claimed to be unprovable. The two most
important classes are∀Πb1 and∀Σb1 (i.e., the sentences of the form: universally
quantified Πb1 and Σ

b
1 formulas). Our uniform conjectures are classified as

follows:
∀Πb1 – CON, DisjNP;
∀Σb1 – RFN1, TFNP, DisjCoNP.

6.3. Some related statements. Several concepts related to our conjectures
have been studied. We will present some of these sentences here. We will call
them conjectures, since we believe that they are true, but we do not have
essentially any supporting argument for their truth.
We have observed that Conjecture CONN can be strengthened to
Conjecture DisjNP. Its uniform version, Conjecture CON, can, furthermore,
be strengthened in a differentway.Recall thatUP, unambiguousP, is the class
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of languages that are accepted by polynomial time nondeterministic Turing
machines that satisfy the property that for every accepted input, there is a
unique accepting computation. Köbler, Messner and Torán [22] proved that
if there exists a p-optimal proof system, then UP has a complete set with
respect to many-one reductions. Hence the following is a strengthening of
Conjecture CON.

Conjecture 6.7 (UP). There is no complete set, with respect to many-one
reductions, in UP.

So far we only talked about proof systems for TAUT. In the same way one
can define proof systems and polynomial simulations for any set. In partic-
ular, a proof system for SAT is a polynomial time computable function from
Σ∗ onto SAT. There is one essential difference between proof systems for
TAUT and SAT—the latter does have polynomially bounded proof systems.
In fact, the definition of SAT itself gives one such proof system; in this
system any pair (φ, a), where a is a satisfying assignment of a formula φ is
a proof (of the satisfiability of) φ. This is called the standard proof system
for SAT.
Here is an example of a nonstandard proof systemP for SAT. InP a proof
of φ is either a pair (φ, a), where a is a satisfying assignment of φ, or it is φ
itself in the case when φ is a proposition �n expressing, in a natural way, the
fact that n is a composite number and n is a composite number. Note that
in the standard proof system the proof of �n encodes a nontrivial factor of
n. Hence, if the standard proof system p-simulated P, then factoring would
be in polynomial time.
Beyersdorff et al. [5] proved that the existence of a p-optimal proof system
for SAT implies the existence of a complete function in NPMVt . Hence, by
our Proposition 5.10, it also implies the existence of a complete problem in
TFNP. To put the conjecture about complete sets in SAT into context, we
need the following proposition.

Proposition 6.8. Let S ∈ T be a theory such that for every theory T ∈ T ,
S-proofs of Σb1RFNT (n̄) can be constructed in polynomial time in n. Then
there exists a p-optimal proof system for SAT.

Proof. Let sat(x, y) be a Δb1 formula expressing the fact that y is a satis-
fying assignment of a propositional formula x. Suppose that S satisfies the
assumption of the proposition. We define a proof system P for SAT by:

y is a P-proof of x ⇔ y is an S-proof of ∃z.sat(x̄, z).

Given a proof system f for SAT, we take T ∈ T such that it proves the
soundness of f, i.e.,

T � ∀y∃z.sat(f(y), z). (9)

By Corollary 3.15, S-proofs of ∃z.sat(f(d̄ ), z) can be constructed in poly-
nomial time for every d . Thus, given anf-proof d off(d ), we can construct
in polynomial time a proof in P. Hence P is a p-optimal proof system for
SAT. �
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Conjectures DisjNP, DisjCoNP, and UP are related to our main conjec-
tures CON and TFNP. Here is an example of a plausible conjecture that is
apparently incomparable with CON and TFNP.

Conjecture 6.9 (NP∩coNP). There is no complete set in NP ∩ coNP.
Beyersdorff et al. [5] proved that if both TAUT and SAT have p-optimal
proof systems, then there exists a complete set in NP ∩ coNP. Hence
Conjecture NP∩coNP is above Conjecture RFN1.
The implications between the most important uniform conjectures con-
sidered in this article are depicted in the figure below. Recall that CON is
equivalent to the nonexistence of a p-optimal proof system for TAUT.

DisjCoNP

����
���

��
��

DisjNP

���
��

��
��

� UP

��

TFNP

����
��
��
��

CON

���
��

��
���

� NP ∩ coNP

��

SAT

����
��
��
��
�

CON ∨ SAT

��

RFN1

��

P �= NP

6.4. Towards general conjectures. We will focus on uniform conjectures,
because the situation there seems to be clearer.Wehave seen that our uniform
conjectures are statements about unprovability of particular sentences. The
structure of these sentences is determined by

1. some class C of sentences,
2. associated with computational problems P , and
3. some complexity hierarchyH of the associated problems.
The conjectures say that the more difficult the associated computational
problem is, the more difficult is to prove the sentence.
Consider, for example, Conjecture DisjNP. In this conjecture we have
sentences expressing that two sets defined by Σb1 sentences are disjoint. These
sentences are of the form:

∀x(¬φ(x) ∨ ¬�(x)), (10)

where φ and � are Σb1 sentences defining the two sets. These sentences are
equivalent to universally quantified Πb1 sentence, but they have a special
form. For sentences of this form, a natural task is, for a given x, to decide
which of the two ¬φ(x) or ¬�(x) is true. The complexity hierarchy of the
computational problems is defined using polynomial time reductions.
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Consider Conjecture CON. In the equivalent form of this conjecture given
by Proposition 6.5, the sentences expressing that a propositional proof sys-
tem P is sound are also universally quantified Πb1 sentences. They have the
form

∀x, y, z(proof P(x, y)→ sat(x, z)), (11)

where proofP(x, y) is a Δb1 formula expressing that y is a P-proof of x. The
structure of sentences (10) and (11) is similar (essentially, they are universally
quantified disjunctions), but the length of y in the second formula is not
polynomially bounded in the length of x. Furthermore, we use a different
kind or reductions to define the hierarchy: in the first case, a reduction can
map x to another element, but we do not care about the witnesses of the Σb1
formulas; in the second case, x does not change, but we map a witness y to
another witness.
Ideally, we would like to state a general conjecture from which our current
conjectures would follow as special cases. However, to be able to do that,
we first need to fully understand what are the classes C whose sentences
can be associated with computational tasks, what are the computational
problems P , and what are the complexity hierarchiesH. So far we only have
examples.

§7. The role of reductions. In Propositions 6.5 and 6.6 we saw that conjec-
tures whose statements used reductions can be equivalently stated without
referring to any concept of polynomial reduction. In this section we will
explain how polynomial reductions naturally appear when we compare the
logical strength of sentences.
When we are comparing sentences from some class C, we do it with respect
to some base theory T . Thus for some Φ,Ψ ∈ C, we are asking whether
T � Φ→ Ψ. One can show that at least for a specific type of sentences and
a specific theory T , the provability implies the existence of a reduction.
Let the base theory be S12 and the sentences have the form ∀x∃py.φ(x, y),
where φ is Σb1. We will show that provability of one sentence from the other
implies the existence of a polynomial reduction of one TFNP problem to
the other. The following is a well-known fact (see [18]), but we will still give
a proof, because we want to argue that it can be generalized to stronger
theories.

Proposition 7.1. Suppose that N |= ∀x∃py.φ(x, y) ∧ ∀u∃pv.�(u, v) and

S12 � ∀x∃py.φ(x, y)→ ∀u∃pv.�(u, v), (12)

where φ and � define polynomial time computable relations. Then the TFNP
problem defined by � is polynomially reducible to the TFNP problem defined
by �.

Proof. This proposition is an immediate consequence of the following
result (see [32]).
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Lemma 7.2. IfS12 � ∀x∃py∀pz.α(x, y, z), whereα isΠb0 , then for a givenx,
one can compute y such that ∀pz.α(x, y, z) using a polynomial time oracle Tur-
ing machine with any oracle that, for a given x and y such that ∃pz.¬α(x, y, z)
holds true, produces some z such that ¬α(x, y, z) holds true.
Write the implication in (12) in the following prenex form

∀u∃x∃v∀y(φ(x, y)→ �(u, v)).

The quantifiers ∃v, ∀y are bounded already in the original formula and ∃x
can be bounded by Parikh’s theorem. By the lemma, there is a polynomial
time Turing machine M that computes x and v from a given u using any
oracle that whenever ∃y(φ(x, y) ∧ ¬�(u, v)) holds true produces a witness
for y. We want to use an oracle that only produces witnesses for ∃y.φ(x, y).
Clearly, such an oracle suffices. IfM asks a query (x, v) such that �(u, v) is
true, then we can stop, because we already have a witness for ∃pv.�(u, v).
If no such query occurs during the computation ofM , then the oracle must
always produce a witness for ∃y.φ(x, y), hence we get x and v such that
∀y(φ(x, y)→ �(u, v)) is true, which is equivalent to ∃y.φ(x, y)→ �(u, v).
But the antecedent is always true, so we have �(u, v). �
If the base theory T is stronger than S12 , we believe that we nevertheless
get some class of reductions that is probably stronger than polynomial time
computable reductions, but still somewhat restricted so that the classes of
TFNP equivalent with respect to these reductions do not completely col-
lapse. These reductions should be defined using the provably total search
problems of T . The idea is that the provably total polynomial search prob-
lems of S12 are the problems solvable in polynomial time and this gives us
reductions that are polynomial time computations with oracle queries to
which we substitute solutions of the problem to which we are reducing the
given problem. Similarly, if S is the class of provably total polynomial search
problems ofT , then provability inT should give us reductions that are prob-
lems from S with oracle queries. A special case of this appeared in [6] (not
quite explicitly) where the theory was T 12 and the class of search problems
was PLS. Although it may be interesting to study such reductions in gen-
eral, we believe that they would give the same conjectures if used instead of
polynomial reductions.

§8. Conclusions and open problems. In this article we put forward the
thesis that there exists a connection between the complexity of problems
associated with first order sentences and their logical strength manifested as
impossibility of proving them in weak theories. If we interpret this thesis in a
broad sense, then the thesis is true; e.g., we cannot prove in aweak theory that
some computation stops if the problem requires extremely long time to be
solved. However, our argument here is that there may be such a connection
already on the very low level, namely in the domain of problems solvable in
nondeterministic polynomial time. Since the current state of research into
such low complexity classes does not have the means to prove separations,
we can only state and compare hypotheses about such a connection.
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There are two basic conjectures which have equivalent formulations and
come in some flavors. The first one is about finite consistency statements and
was proposed already a long time ago [27]. The second one is more recent
and concerns provably total polynomial search problems. We showed how
they are related to some weaker statements and some stronger ones. Some
of these statements had already been studied before. There are still many
problems that need to be solved if we want to fully understand this topic;
some are of a fundamental nature, some are more specific. Some problems
have already been mentioned in previous sections. Below we briefly mention
some more.

1. The main problem, mentioned in Section 6.4, is to find a general
conjecture about incompleteness and computational complexity. The
conjectures we studied in this article should be special cases of it.

2. More specifically, propose a natural and plausible conjecture that
implies the two main Conjectures CON and TFNP, or prove that one
of these conjectures implies the other, or show that their relativizations
are independent.

3. Construct oracles that show that relativized conjectures are different or
show that they are equivalent for pairs of conjectures presented in this
article. Apparently the only separation that is known is a separation of
Conjectures CON and DisjNP, see [16].

4. In order to get more evidence for Conjecture TFNP, characterize
provably total polynomial search problems in stronger systems of
Bounded Arithmetic. The strongest theory for which a combinatorial
characterization has been found is V 12 , see [3, 23].

5. Characterize more canonical pairs of propositional proof systems in
order to get more evidence for Conjecture DisjNP. A combinatorial
characterization of the canonical pair has only been found for Reso-
lution, see [4]. Characterize canonical pairs of some total polynomial
search problems (as defined in this article) in order to get some evidence
for Conjecture DisjCoNP. Nothing is known in this direction.

6. We would also be interested in seeing connections between the nonexis-
tence of complete problems in some probabilistic classes and our main
conjectures. Köbler et al [22] proved that if TAUT2 (or SAT2) have a
p-optimal proof system, then BPP, RP and ZPP have many-one com-
plete problems. (TAUT2 and SAT2 are the sets of Π2 and Σ2 quantified
Boolean tautologies.) But most researchers believe that these proba-
bilistic classes do have complete problems, because they are in fact
equal to P.

7. Another important subject are proof-complexity generators of Krajı́ček
and Razborov (see [26, 38] and the references therein). One conjecture
about proof-complexity generators states that they are hard for every
proof system. It would be very interesting to find connections to our
conjectures.
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of this article was written while the author was visiting Simons Insitute in
Berkeley, California. I would like to thank Pavel Hrubeš, Emil Jeřábek, Jan
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