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In this paper the asymmetric shock reflection configurations in two-dimensional steady
flows have been studied theoretically. For an overall Mach reflection, it is found that
the horizontal distance between both triple points in the Mach stem is related to
the angles of two slip streams. Based on the features of the converging stream
tube, several assumptions are put forward to perform better the wave configurations
near the slip streams. Therefore, we present an analytical model here to describe
the asymmetric overall Mach reflection configurations which agrees well with the
computational and experimental results.
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1. Introduction
It is generally known that shock reflection phenomena appear in many practical

engineering applications, ranging from supersonic aircraft wings to hypersonic vehicles
and engines. In steady flows, there exist two classical types of shock reflection
configuration. One is called regular reflection (RR) and the other irregular reflection
(IR). In general, IR refers commonly to a three-wave shock wave configuration (Mach
reflection, MR).

Since Mach firstly observed two different shock reflection configurations in
1878, abundant research in this field has been carried out. Later, in the 1940s,
the detachment criterion and the von Neumann criterion were proposed to describe
the transition between MR and RR by von Neumann (1943, 1945), respectively.
Based on the two transition criteria, the (M0, θw)-plane (free-stream Mach number
M0 for the x axis and wedge angle θw for the y axis) could be divided into three
domains: the regular reflection domain, Mach reflection domain and dual solution
domain, shown in figure 1 (see Hornung, Oertel & Sandeman 1979; Chpoun et al.
1995; Ben-Dor 1999, 2007). Here, θD

w (M) is the detachment criterion and θN
w (M)

the von Neumann criterion. Therefore, for a given combination of M0 and θw, the
possible types of shock reflection configuration could be predicted theoretically.

† Email address for correspondence: WDliu@nudt.edu.cn
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FIGURE 1. Domains of possible shock reflection configurations (data for the curves taken
from Ben-Dor 2007, p. 77).

Further, regular reflection configurations could be well described with the inviscid
two-shock theory and Prandtl–Meyer expansion theory. However, it is difficult to
predict the Mach reflection configuration with these two theories due to the uncertainty
in the Mach stem height. Azevedo & Liu (1993) assumed that the sonic throat
formed by the converging stream tube behind the Mach stem, the slip stream and the
leading expansion wave, which emanates from the trailing edge, meet at one point.
Subsequently, Li & Ben-Dor (1997) developed a modified model, supposing that
the flow direction of the slip stream at the sonic throat is parallel to the symmetric
line. In this model, the reflected shock and the slip stream are slightly curved, due
to the effect of expansion waves. Based on geometric considerations of the flow,
Hornung & Mouton (2008), Mouton (2008), Mouton & Hornung (2008) presented a
new approach for estimating the steady-state Mach stem height. Subsequently, taking
the expansion waves and compression waves which exist over the slip stream into
consideration, Gao & Wu (2010) proposed a new model which describes the Mach
reflection configuration analytically and agrees very well with the computational fluid
dynamics (CFD) numerical results. Also, Bai & Wu (2017) introduced the effect of
secondary expansion waves and compression waves over the slip stream and presented
the analytical expressions for the slip stream.

However, the above analytical models focus on the interactions of symmetric, rather
than asymmetric shock waves that are more likely to occur in reality. Similar to the
interaction of symmetric shock waves in steady flows, two types of shock reflection
configuration may be formed when the interaction of asymmetric shock waves occurs.
One is called overall regular reflection (oRR) and the other overall Mach reflection
(oMR). Figure 2 clearly indicates that the oRR wave configuration consists of two RRs
and the oMR wave configuration consists of two MRs. Chpoun & Lengrand (1997)
conducted an initial experimental study on the reflection of asymmetric shock waves
and thereby verified the existence of the asymmetric shock reflection hysteresis in the
oRR ↔ oMR transition. Li, Chpoun & Ben-Dor (1999) presented the theoretically
possible wave configurations with the aid of shock polar combinations, and explained
the physical nature of the asymmetric shock reflection hysteresis phenomenon. Then, a
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(a) (b)

FIGURE 2. A schematic illustration of the possible overall wave configurations: (a) an
overall Mach reflection (oMR), (b) an overall regular reflection (oRR).

series of experiments were carried out and verified their partial analytical results. Also,
Ivanov et al. (2002) conducted a detailed numerical study, further verifying Li et al.’s
theoretical findings. In addition, Hornung & Mouton (2008), Mouton (2008), Mouton
& Hornung (2008) defined an equivalence shock angle to estimate the Mach stem
height of the asymmetric shock reflection. In short, the above-mentioned theories made
it possible to predict the type of overall wave configuration. Similarly to the regular
reflections in steady flows, the entire flow field of overall regular reflections could
be obtained by solving a series of governing equations. Note that owing to the flow
complexity of the converging stream tube formed by two slip streams it is extremely
difficult to describe the asymmetric overall Mach reflection configuration exactly.

Aiming to solve these problems, an analytical model is established, based on
the previous contributions of many researchers. In § 2, we form several acceptable
hypotheses on the shape of the asymmetric Mach stem according to Tao, Fan
& Zhao’s (2015) experimental results. Taking the features of the subsonic flow
behind the Mach stem into consideration, we describe the asymmetric overall wave
configurations analytically. Then, an analysis of the predicted results and previous
results is described.

2. Physical model
The reflection of asymmetric shock waves in steady flows may be divided into

two overall wave configurations: oRR and oMR. With a given combination of
oncoming flow Mach number M0 and two reflecting wedge angles θw1, θw2, the
possible theoretical overall wave configurations could be obtained by using the shock
polars. Since on both sides of the slip stream, the flows are parallel and the pressures
are the same, the oRR wave configuration could be well established. Because of the
existence of a subsonic region behind the asymmetric Mach stem, the difficulty of
reappearance of the oMR wave configuration is increased.

2.1. New features of oMR
A schematic illustration of an asymmetric oMR wave configuration is displayed in
figure 3(a). In the figure, the oMR configuration consists of two incident shocks (IS
and IS′), two reflected shocks (RS and RS′), two slip streams (SL and SL′) and an
asymmetric Mach stem (MS). Hw denotes the vertical distance between point A and
point C. Also, H and Hg are the Mach stem height and the vertical distance between
point B and point D, respectively. In addition, w1 (w2) is the wedge length and L
denotes the relative position between two wedges.
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FIGURE 3. An overall Mach reflection (a) and Gao & Wu’s symmetric Mach reflection
configuration (b) and equivalence curves, with theE representing the symmetric cases (c).

Figure 3(b) shows an analytical Mach reflection configuration by Gao & Wu
(2010). Comparatively speaking, there exist some new characteristics of the oMR
configuration. First, the Mach stem MS may be asymmetric, which is induced by the
difference in the wedge angles. Second, the flow direction in the stream tube behind
the Mach stem is unknown. Third, it is quite difficult to simulate the interactions
between the slip streams and several expansion waves, because they are asymmetric.

Hornung & Mouton (2008), Mouton (2008), Mouton & Hornung (2008) developed
a theory to predict the asymmetric Mach stem height, shown in figure 3(c). In the
figure, dashed lines denote equivalence curves, i.e. curves which are equidistant from
the von Neumann condition (solid line). Then, the equivalence angle (the E) can
be determined, with a given combination of θw1 and θw2. Although they defined an
equivalence angle to estimate the Mach stem height in an overall Mach reflection, it
should be noted that the effect of the relative position of the wedges on the Mach
stem height is still ignored in this theory.

Considering the new features, an improved analytical model is proposed below.

2.2. Wave interactions in oMR
Gao & Wu (2010) pointed out that the flow region between the reflected shock and the
slip stream is one filled with wave interactions. Similarly to the symmetric case, the
wave interactions in this region can also be divided into two types, shown in figure 4.
Both of these can be solved by using the previous theories. With Gao & Wu’s (2010)
analytical approach, we can hypothesize that the flow parameters ahead of the waves
are known, i.e. data in region 1 and region 2. Then, the flow parameters behind the
waves (data in regions 3, 4 and 5) can be obtained by solving a series of equations.

Figure 4(a) presents the interaction between the reflected shock wave r (RS/RS′) and
the expansion wave E that emanates from the trailing edge of the reflecting wedge.
Specifically, the reflected shock r interacts with an expansion wave E at point R,
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FIGURE 4. Schematic illustration of the wave interactions. (a) Type (a), a reflected shock
r interacts with an expansion wave E, (b) type (b), an expansion wave e (compression
wave c) interacts with an expansion wave E.

resulting in a refracted shock r′, a refracted expansion wave E′ and a slip stream
(denoted by dashed line).

By using the Prandtl–Meyer relations, Mach number M, pressure P and flow
direction θ in region 3 can be achieved. Note that subscripts 1, 2, 3, 4 and 5 refer
to the flow states in the corresponding regions.

θ3 − θ1 = ν(M3)− ν(M1), P3/P1 = χ(M1,M3), (2.1a,b)

where

ν(M)=

√
γ + 1
γ − 1

arctan

(√
(γ − 1)(M2 − 1)

γ + 1

)
− arctan(

√
M2 − 1), (2.2)

χ(M0,M)=
[

2+ (γ − 1)M2
0

2+ (γ − 1)M2

]γ /(γ−1)

. (2.3)

Here, γ is the ratio of specific heats.
Similarly, we also can obtain the flow parameters in region 5,

θ5 − θ2 = ν(M5)− ν(M2), P5/P2 = χ(M2,M5). (2.4a,b)

Considering that

P4 = P5, θ4 = θ5, (2.5a,b)

the Mach number M4 and the shock angle of r′ βr′ can be obtained with the oblique
shock relations. These equations are

M2
4 = F(M3, βr′), θ4 − θ3 =G(M3, βr′), P4/P3 = J(M3, βr′), (2.6a−c)

where

F(M, β)=
M2
+

2
γ − 1

2γ
γ − 1

M2 sin2 β − 1
+

M2 cos2 β

γ − 1
2

M2 sin2 β + 1
, (2.7)
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G(M, β)= arctan
(

2 cot β
M2 sin2 β − 1

M2(γ + cos 2β)+ 2

)
, (2.8)

J(M, β)= 1+
2γ
γ + 1

(M2 sin2 β − 1). (2.9)

Thus, type (a) of figure 4(a) can be obtained.
Figure 4(b) displays another type of wave interaction. Specifically, the expansion

wave e (compression wave c) induced by the evolution of the slip stream SL (SL′)
interacts with the expansion wave E emanating from the trailing edge of the wedge.
Based on the above conclusions, the flow parameters in region 3 satisfy

θ3 − θ1 = ν(M3)− ν(M1), P3/P1 = χ(M1,M3). (2.10a,b)

In the same way, by using the Prandtl–Meyer function we get:

θ2 − θ1 = ν(M2)− ν(M1), P2/P1 = χ(M1,M2),
θ4 − θ3 = ν(M4)− ν(M3), P4/P3 = χ(M3,M4),

θ5 − θ2 = ν(M5)− ν(M2), P5/P2 = χ(M2,M5).

 (2.11)

Considering the features of slip stream, an additional relations are supplemented,

P4 = P5, θ4 = θ5. (2.12a,b)

By solving the equations (2.10)–(2.12), M, P and θ in region 3–5 can be obtained.
Consequently, similar to the symmetric case, the flow parameters in the region
between RS and SL (RS′ and SL′) can be solved and obtained.

2.3. Mach stem shape
For MR, Li & Ben-Dor (1997) pointed out that the Mach stem shape is slightly
curved. Tan, Ren & Wu (2006) analytically proved, using the small disturbance theory,
that the Mach stem is a circular arc. Then, the fine structure of Mach stem was
well observed experimentally by Tao et al. (2015), using the nano-tracer planar laser
scattering technique, shown in figure 5. In their experiments, the inflow Mach number
M∞ is 4, the inflow total pressure P∞ 101 kPa and the wedge angles 25.7◦ (upper)
and 20.9◦ (lower), respectively.

As measured from the photograph, the angle of SL θup is −8.4◦ and the angle of
SL′ θdown is −1.0◦. Further, we assume that the averaged flow deflection angle while
fluid passing across the Mach stem, MS, is equal to the flow deflection angle formed
across a strong shock (straight line TT ′). In the figure, the angle of the straight line
connected to two triple points (T , T ′) is −88.6◦. By using the oblique shock wave
relations, the calculated flow deflection angle θm across the MS could be obtained and
the value is −4.9◦. It is easy to notice that the calculated flow deflection angle is
approximately equal to the averaged flow deflection angle, i.e. θm ≈ (θup + θdown)/2.
Based on this, a simplified schematic of Mach stem configuration is abstracted and
plotted, see figure 6.

As shown in figure 6, the interaction between two incident shocks IS, IS′ would
result in two reflected shocks RS, RS′, two slip streams SL, SL′ and a Mach stem,
MS. Using the classical three-shock theory, it is easy to describe the flow fields near
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FIGURE 5. (Colour online) The fine structure of the oMR configuration (see Tao et al.
2015).
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FIGURE 6. (Colour online) Schematic illustration of the Mach stem configuration.

both of the triple points T , T ′. Hence, the flow parameters behind the shock waves
could be expressed by the following equations:

M2
1 = F(M0, βi), θ1 =G(M0, βi), P1/P0 = J(M0, βi),

M2
2 = F(M1, βr), θ2 = θ1 +G(M1, βr), P2/P1 = J(M1, βr),

M2
3 = F(M0, βm), θ3 =G(M0, βm), P3/P0 = J(M0, βm),

P2 = P3, θ2 = θ3.

 (2.13)

Here, βi, βr and βm denote the incident shock angle, the reflected shock angle and
the angle of Mach stem, respectively. Subscripts 0, 1, 2 and 3 still refer to the flow
states in the corresponding region separately. Then, the angles of the slip streams θup,
θdown could be obtained. Based on the foregoing discussion, the initial flow deflection
angle θm across MS can be expressed as:

θm = (θup + θdown)/2. (2.14)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

28
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.280


8 Y. Tao, W. D. Liu, X. Q. Fan, B. Xiong, J. F. Yu and M. B. Sun

Consequently, the angle βm′ of line TT ′ can be obtained using the oblique shock
relation,

θm =G(M0, βm′). (2.15)

In addition, point A and point C are the leading edge points of the reflecting
wedges and their coordinates in the (x, y)-coordinates system are (xA, yA) and (xC, yC),
respectively. For a given vertical distance H between two triple points, the coordinates
of T and T ′ can be expressed as:

xT =
tan βm′H − tan βm′yA − tan β2H + tan βm′ tan β1xA + tan βm′yc − tan βm′ tan β2xc

tan βm′(tan β1 − tan β2)
,

yT = tan β1(xT − xA)+ yA,
xT ′ = xT −H/tanβm′,

yT ′ = yT −H.


(2.16)

2.4. The flow in the subsonic pocket
For the oMR configurations, it is difficult to describe the flow in the subsonic pocket
analytically because of the uncertainty of the flow direction. In order to describe the
flow state behind the Mach stem MS, several assumptions are made in our model.

In many instances, it is a valid approximation to neglect viscous effects along the
slip stream completely. Therefore, we assume that the flow in the subsonic pocket is
isentropic and quasi-one-dimensional, ignoring the flow deflection. It should be noticed
that the actual flow parameters at any cross-section along the flow direction are not the
same. Considering that the zone of dependence at any position in subsonic flows is the
whole subsonic region, we assume that the averaged flow direction at any cross-section
is merely related to the flow directions on the two sides of the slip stream.

The subsonic region before the leading characteristic line interacts with the slip
streams is sketched, see figure 7. In the figure, symbols T , T ′ denote two triple points
and lines TUn, T ′Vn denote slip streams. Based on (2.14), the cross-sections which are
perpendicular to the flow direction (TT1 and T ′T ′1) can be obtained. And, U1 and V1
are midpoints of TT ′1 and T1T ′, respectively. Therefore, U1V1 is defined as the entrance
cross-section, and its sectional height is H1,

H1 =
Hm1 +Hm2

2
. (2.17)

Here, Hm1 and Hm2 are the length of TT1 and T ′T ′1, respectively.
The height of the throat Hs can be expressed as

H1

Hs
= σ(M), σ (M)=

1
M

(
1+

γ − 1
2

M2

)(γ+1)/(2γ−2)

. (2.18)

Here, M is the averaged Mach number behind MS, i.e.

M2
= F(M∞, β ′m). (2.19)

Besides, the averaged pressure P along the U1V1 line is

P= J(M∞, β ′m) · P∞. (2.20)
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FIGURE 7. Schematic illustration of the subsonic region that is not affected by
expansion fan.

Gao & Wu (2010) indicated that the pressure decreases along the stream tube,
resulting in expansion waves. Subscripts 1–6 still refer to the flow states in
corresponding regions. The flow parameters behind en and e′n can be calculated
using the following equations,

θun = θ2 − θ1 = ν(M2)− ν(M1), P2/P1 = χ(M1,M2), (2.21a,b)

θdn = θ6 − θ5 = ν(M6)− ν(M5), P6/P5 = χ(M5,M6), (2.22a,b)

P3 = P1 = P5 = (PHn−1 + PHn)/2, P4 = P2 = P6 = (PHn + PHn+1)/2, (2.23a,b)

where

PHi = χ(M,Mi) · P(i= 1, 2, . . . n, . . .). (2.24)

Here, the averaged Mach number Mi at UiVi can be obtained using the quasi-one-
dimensional steady relation,

Hi

Hs
= σ(Mi)(i= 1, 2, . . . n, . . .), (2.25)

where Hi is the length of UiVi (i = 1, 2, 3 . . .) and PHi denotes the pressure at the
cross-section UiVi.

Based on the above, the averaged flow directions in region 3 (Un−1Vn−1VnUn) and
region 4 (UnVnVn+1Un+1) are expressed as follows,

θ3 = (θ1 + θ5)/2, θ4 = (θ2 + θ6)/2. (2.26a,b)
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(1) (2)
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FIGURE 8. Schematic illustration of the subsonic region where one side is affected by
the expansion fan.

In the (x, y)-coordinate system, the coordinates of Ui, Vi are (xui, yui), (xvi, yvi), i =
1, 2, . . . . Then, several geometric relations are supplemented as follow,

xun = xun−1 +1x, yun = yun−1 +1x · tan θ1,

xun+1 = xun +1x, yun+1 = yun +1x · tan θ2,

}
(2.27)

yvn − yvn−1

xvn − xvn−1

= tan θ5,
yvn − yvn+1

xvn − xvn+1

= tan θ6,

yvn − yun

xvn − xun

= tan(π/2+ θ3),
yvn+1−yun+1

xvn+1 − xun+1

= tan(π/2+ θ4).

 (2.28)

Here, 1x is an arbitrary finite value.
Combining (2.17) with (2.28), the flow parameters of the region before the leading

characteristic line of the expansion fan can be solved.
Figure 8 shows the wave configuration of the subsonic region and the evolution of

one slip stream is affected by the expansion fan. On the one side of the stream tube,
expansion waves interact with a slip stream, resulting in compression waves c. On
the other side, several expansion waves, which are induced by the evolution of the
other slip stream, occur. In the same way, the flow states of regions (3, 5, 7) and the
positions of point Un+1 and point Vn+1 can be obtained.

Specifically, the flow parameters in regions 3 and 7 are expressed, using the Prandtl–
Meyer relations, as

θ3 − θ2 = ν(M3)− ν(M2), P3/P2 = χ(M2,M3), (2.29a,b)

θ7 − θ6 = ν(M7)− ν(M6), P7/P6 = χ(M6,M7). (2.30a,b)
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Based on the features of slip streams, we can obtain,

P1 = P3 = P6 = (PHn−1 + PHn)/2, P3 = P5 = P7 = (PHn + PHn+1)/2, (2.31a,b)

θ4 = (θ1 + θ6)/2, θ5 = (θ3 + θ7)/2. (2.32a,b)

In the same way, the coordinate of G(n, 2) is (xg(n,2) , yg(n,2)). When the interaction
between the expansion fan and the slip stream occurs in the upper side, the angle of
G(n,2)Un+1 (βn1) is (θ3− arcsin 1/M3). And when it occurs in the lower side, the value
is (θ3 + arcsin 1/M3). Therefore, the relations between the point Un+1 and the points
Un, G(n,2) can be established as,

yun+1 − yg(n,2)

xun+1 − xg(n,2)
= tan βn1,

yun+1 − yun

xun+1 − xun

= tan θ3. (2.33a,b)

Similarly, the following geometric relations are added,

yun+1 − yvn+1

xun+1 − xvn+1

= tan (θ5 +π/2),
yvn+1 − yvn

xvn+1 − xvn

= tan θ7. (2.34a,b)

By solving (2.29)–(2.34), we can perfectly describe the interaction process displayed
in figure 8.

In addition, the expansion fans emanating from the trailing edges may have a direct
physical impact on the slip streams on both sides of the subsonic pocket, and this
interaction is sketched in figure 9. The flow parameters in region 3 and region 6 can
still be expressed as follows,

θ3 − θ2 = ν(M3)− ν(M2), P3/P2 = χ(M2,M3), (2.35a,b)

θ6 − θ5 = ν(M6)− ν(M5), P6/P5 = χ(M5,M6). (2.36a,b)

Note that there is a short distance between the cross-sections VjV ′j and UiU′i , the
complexity of this problem for solving the downstream flow states is increased greatly.
In order to simplify the analytical model, we assume that points V ′j and U′i are located
on the extended lines of Ui−2Ui−1 and Vj−1Vj, respectively.

When VjV ′j is the upstream cross-section relative to UiU′i , it is necessary to calculate
the flow states in region VjVj+1F( j,2) first.

Then, the pressures on both sides of the slip stream VjVj+1 satisfy the following
condition,

P6 = (PHn + PHn+1)/2. (2.37)

The averaged flow deflection angle θvj+1 at the cross-section Vj+1V ′j+1 is

θvj+1 = (θ1 + θ6)/2. (2.38)

The angle of line F( j,2)Vj+1 (βj1) is

βj1 = θ6 + arcsin
1

M6
. (2.39)
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(2)

(5)
(4)

(1)

(3)
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FIGURE 9. Schematic illustration of the subsonic region where both sides are affected by
the expansion fans.

Considering that the coordinate of F( j, 2) is (xf( j,2) , yf( j,2)), several geometric relations
are added as follows,

yvj+1 − yf( j,2)

xvj+1 − xf( j,2)

= tan βj1,
yvj+1 − yvj

xvj+1 − xvj

= tan θ6, (2.40a,b)

yv′j+1
− yvj+1

xv′j+1
− xvj+1

= tan (θvj+1 +π/2). (2.41)

Using (2.36)–(2.41), the position of point Vj+1 can be obtained. Then, the location
of the new cross-section Vj+1V ′j+1 is compared with that of UiU′i . If Vj+1V ′j+1 is still
the upstream cross-section relative to UiU′i , the forgoing procedure (2.30)–(2.41) is
repeated for several cycles until VV ′ becomes the downstream cross-section relative
to UiU′i . In addition, we have to obtain the flow parameters in region UiUi+1G(i,2). In
the same way, a series of equations can be listed below,

P3 = (PHm + PHm+1)/2, (2.42)
θui+1 = (θ3 + θ6)/2, (2.43)

βi1 = θ3 − arcsin
1

M3
, (2.44)

yuj+1 − yg(i,2)

xui+1 − xg(i,2)
= tan βi1,

yui+1 − yui

xui+1 − xui

= tan θ3, (2.45a,b)
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FIGURE 10. Schematic illustration of an overall Mach reflection.

yu′i+1
− yui+1

xu′i+1
− xui+1

= tan (θui+1 +π/2). (2.46)

Here, βi1 is the angle of line G(i,2)Ui+1 and θui+1 is the angle of the averaged flow
direction at Ui+1U′i+1.

Finally, the schematic illustration of an oMR can be well presented and is shown
in figure 10. In addition, the relation regarding the sonic throat is performed, i.e. the
flow directions of slip streams on the two sides of the tube at the sonic throat are the
same. Therefore, the minimum height of the cross-section along the flow direction H∗s
can be achieved. If H∗s 6=Hs, we need to update the initial guess value of H.

2.5. Discussion
Table 1 gives the comparison of the Mach stem configuration between the present
analytical results and the previous CFD results. For symmetric conditions (row a and
row b), the analytical Mach stem height Hthe/Hw agrees very well with Gao & Wu’s
(2010) CFD result Hnum/Hw. Note that both of Hthe and Hnum are the vertical distances
between two triple points and βthe and βnum indicate the angle of the straight line
connected by two triple points. Therefore, it is easy to understand that βthe and βnum
are both 90◦. Furthermore, we can expect that the Mach stem height increases when
w1/Hg(w2/Hg) is increased. So Hthe/Hw in row b is larger than that in row a.

For the asymmetric conditions, Kudryavstsev, Khotyanosky & Ivanov (2000)
presented the hysteresis phenomenon that exists in the transition between oRR
and oMR. During the hysteresis process, a series of asymmetrical shock reflection
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No. w1/Hg(w2/Hg) θw1 θw2 Hnum/Hw Hthe/Hw βnum βthe

a 1.14 28 28 0.283 0.289 90◦ 90◦
b 1.19 28 28 — 0.3058 — 90◦
c 1.19 28 24 0.1892 0.1982 −89◦ ± 0.5◦ −89.5◦
d 1.19 28 18 0.0485 0.0596 −88◦ ± 0.5◦ −87.8◦
e 1.19 36 18 0.2917 0.2980 −86◦ ± 0.5◦ −85.9◦

TABLE 1. Mach stem height for various conditions at M0 = 4.96, L/Hw = 0.

No. w1/Hg(w2/Hg) L/Hg θw1 θw2 Hexp/Hw Hthe/Hw

a 2.53 0.0591 21.93 20.99 0.027 0.0274
b 2.56 0.0665 23.67 20.90 0.055 0.548
c 2.61 0.0758 25.89 20.73 0.099 0.981
d 2.60 0.0764 26.12 21.08 0.106 0.103
e 2.63 0.0871 28.43 20.90 0.146 0.127

TABLE 2. Mach stem height for various conditions at M0 = 4.

configurations are displayed numerically. From rows c, d and e in table 1, it is
observed that there is a relatively good agreement between the numerical and the
theoretical results of the overall Mach reflection configuration. Specifically, it is
shown that excellent agreement between βthe and βnum can be observed. Furthermore,
the non-dimensionalized Mach stem height Hthe/Hw predicted by this model agrees
with results of Kudryavstsev et al. (2000), though the theoretical value is slightly
larger than the numerical value.

The Mach stem height results for various wedges are presented in table 2. From
the table, current theoretical results Hthe agree with the previous experimental results
Hexp of Hornung & Mouton (2008), Mouton (2008), Mouton & Hornung (2008). The
experimental work of Mouton & Hornung shows slightly higher Mach stem heights
than the corresponding ones in the current theoretical work.

3. Conclusions

In conclusion, we have studied the asymmetric shock reflection configurations
in steady supersonic flows. On one hand, the overall regular reflection wave
configurations can be well established by the current model, because the flow
directions are consistent and the pressures are the same on both sides of the slip
stream.

On the other hand, it is somewhat powerless to predict the overall Mach reflection
wave configurations using the previous analytical models for Mach reflection.
Accordingly, the symmetrical reflection model has been extended to an asymmetrical
one. Specifically, we abstracted the shape of the Mach stem wave MS from Tao
et al.’s (2015) experimental results and assumed an average slip angle to fix the
direction of the quasi-one-dimensional duct. This model is capable of predicting the
Mach stem height with good comparison to the previous numerical and experimental
data.
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