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1. Introduction

The transfer factors for twisted endoscopy were defined by Kottwitz and Shelstad in [KS].
In this paper, we show that these factors define a transfer of (twisted) orbital integrals
between a real reductive group G and a reductive quasi-split real group H1 associated
to an endoscopic datum (Theorem 1.1 below). More precisely, we reduce the proof of the
transfer to a list of properties of transfer factors. These are established in a forthcoming
paper of Shelstad [Sh6]. We consider here only real groups. Even in the non-twisted case,
the transfer is still conjectural for p-adic groups.

Let G be a connected reductive algebraic group defined over R, Ĝ its complex dual
group and LG = Ĝ�ρG

WR a realization of its L-group (WR is the Weil group of C/R and
ρG an L-action of WR on Ĝ). A Langlands parameter is an L-homomorphism,

φ : WR → LG.

Two Langlands parameters are equivalent if they are conjugate by an inner automor-
phism Int g, g ∈ Ĝ. An equivalence class of Langlands parameters is associated to a
packet of irreducible admissible representations of G(R) (see [L1]). These L-packets are
finite, and all the representations inside a L-packet have same infinitesimal character.
Langlands parameters with a bounded image are associated to L-packets of tempered
representations. Temperedness is respected by L-packets, but not unitarity (i.e. there
might be unitary and non-unitary representations in the same L-packet), and this com-
plication leads to very interesting developments in the theory of unitary representations
(see [Art,ABV]).
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530 D. Renard

Suppose that we have two groups H and G (algebraic, connected, reductive, defined
over R), and that we are given an L-homomorphism

ε : LH → LG.

This gives a map from (equivalence classes of) Langlands parameters for H to (equiv-
alence classes of) Langlands parameters for G. The Langlands functoriality principle
asserts that there should be a map,

ε∗ : KΠ(H(R)) → KΠ(G(R)),

from the Grothendieck group of virtual representations of H(R) to the Grothendieck
group of virtual representations of G(R), compatible with L-packets (in the sense that
the image of a L-packet for H(R) should be contained in the subgroup of KΠ(G(R))
generated by the representations in the corresponding L-packet for G(R)).

This is a very rough formulation, which has to be refined when dealing with non-
tempered L-packets. This was carried out in [ABV], solving some conjectures of
Arthur [Art]. The map ε∗ is defined and proved to be compatible with tempered L-
packets. In an endoscopic setting, this result is generalized by introducing Arthur param-
eters and Arthur packets instead of Langlands ones. In this paper, we shall restrict
our attention to tempered representations, and deal only with Langlands parameters,
although some generalization might be possible.

The motivations for studying Langlands functoriality are connected with automorphic
representation theory and trace formula (see [L2]), from a global perspective. From a
local point of view (here it means over R), the problem may be expressed as follows. It
is known [Sh1] that the sum of characters of representations in a tempered L-packet is a
stable distribution (for a discussion of stable conjugacy, see [L2]). Let Θφ be the stable
distribution associated to a parameter φ. Now, given an irreducible admissible tempered
representation π of G(R), one would like to write down a ‘character identity’ relating
the character Θπ of π and some stable distributions ΘφH

on quasi-split groups H of
dimension smaller than G. These groups are such that there exist an L-homomorphism
ε : LH → LG, and the parameters φ and φH are related by φ = ε ◦ φH .

This program has been carried out by Shelstad in a series of papers (see [Sh1,Sh2,
Sh3,Sh4]). Only a finite number of groups H are necessary to decompose all irreducible
tempered characters of G(R). They are called endoscopic groups because they enable us
to ‘look inside’ L-packets.

What we mean by ‘character identity’ is somehow stronger than what is provided by
the maps ε∗ and the Langlands functoriality principle as described above, in the sense
that what is needed here is also a geometric correspondence between conjugacy classes
in G(R) and its endoscopic groups, in order to compute explicitly the characters Θπ.
We will be more precise about this after having introduced our more general setting of
‘twisted endoscopy’.

Let G be as above, and θ a finite-order automorphism of G. A basic example is when θ

is the automorphism associated with a base change C/R of ResC/R G. In that case,
we recover the results of Shelstad [Sh4]. Endoscopy for (G, θ) concerns the (tempered)
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representations π of G(R) such that π ◦ θ is equivalent to π, or more generally the
(tempered) L-packets Π such that Π ◦ θ = {π ◦ θ | π ∈ Π} = Π. The automorphism θ

preserves L-packets. From θ, we construct an automorphism θ̂ of Ĝ and an automorphism
Lθ of LG. Usual notions of invariant harmonic analysis on G, G(R) or Ĝ can be suitably
generalized to θ-twisted invariant harmonic analysis, and we will speak of θ-semi-simple
or θ-regular elements, θ-twisted conjugacy classes, θ-twisted orbital integrals and so on
(see [R]). If Π has parameter φ : WR → LG, then Π◦θ has parameter Lθ◦φ, so Π◦θ = Π

if and only if
Sφ = {s ∈ Ĝ | Int s ◦ Lθ ◦ φ = φ}

is non-empty. If it is so, then Sφ contains θ̂-semi-simple elements. Assume that s is
one of them, and let Ĥ be the connected component of the identity of Centθ̂(s, Ĝ) :=
{g ∈ Ĝ | gsθ̂(g)−1 = s}. This is a reductive subgroup of Ĝ. Let H be the subgroup of LG

generated by the image of φ and Ĥ. We have then a split exact sequence,

1 → Ĥ → H → WR → 1,

from which we obtain an L-action ρH of WR on Ĥ. Let H be a quasi-split connected
algebraic group over R such that LH = Ĥ�ρHWR is a realization of its L-group. The
tuple (H, H, s, ξ), where ξ is the inclusion of H in LG, constitutes what is called an
endoscopic datum for (G, θ). It turns out that H is not necessarily isomorphic to LH,
which causes some complications and introduces new features in the theory. From [KS],
we recall the definition of a z-pair (H1, ξH1) for H, where H1 is a central extension

1 → Z1 → H1 → H → 1

of H and ξH1 is an embedding of H into LH1.
By definition, the parameter φ has its image in H, so ξH1 ◦φ defines a parameter for H1.

In line with the Langlands functoriality principle, we expect to find a ‘character identity’
involving θ-twisted characters of representations in Π and the stable character on H1(R)
associated to ξH1 ◦ φ. As we said above, this character identity relies on a ‘geometric
correspondence’ between G and H1. But note that the relation between H and G is
usually defined on the dual group side (i.e. H is not a subgroup of G). Nevertheless,
there is a map (defined in [KS]),

AH/G : Clss(H) → Cl(θ, G),

between semi-simple conjugacy classes in H and θ-semi-simple conjugacy classes in G.
This map is not always defined over R, but we will assume it is, i.e. that the cocycle defined
in Lemma 3.1.A of [KS] is trivial. Let γ ∈ H(R) be a sufficiently regular element and Oγ

its conjugacy class in H. Then AH/G(Oγ) ∩ G(R) is either empty or constitutes a stable
θ-conjugacy class in G(R). In this case, we say that γ is a ‘norm’ of any δ ∈ Oγ ∩ G(R).

We turn now to the problem of transfer of orbital integrals. Let us denote by Jθ
G the

map which sends a function f ∈ C∞
c (G(R)) to its θ-twisted orbital integral (Jθ

G is a
smooth function on the open dense subset of θ-regular elements of G(R), invariant under
twisted conjugacy). The image of this map is denoted by Iθ(G(R)), and is characterized
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by a set of properties. Furthermore, it is endowed with a topology of an inductive limit
of Fréchet spaces. The transpose map tJθ

G realizes an isomorphism from the dual space
Iθ(G(R))′ onto the space of distributions invariant under θ-conjugacy [R].

There are, of course, similar results for ordinary or stable orbital integrals on
H1(R) [B1]. We have to consider here a slightly different situation, where we do not
deal with orbital integrals of compactly supported functions, but rather of smooth func-
tions f compactly supported modulo Z1(R) and satisfying

f(zh) = λH1(z)−1f(h)

for all z ∈ Z1(R) and all h ∈ H1(R). Here, λH1 is a quasi-character on Z1(R)
obtained from the endoscopic data (H, H, s, ξ) and the z-pair (H1, ξH1). We denote by
Ist(H1(R), λH1) the space of stable orbital integrals of these functions just described.

The principal result of this paper is the following.

Theorem 1.1. There is a continuous map

Trans : Iθ(G(R)) → Ist(H1(R), λH1),

ψ �→ Trans(ψ).

The orbital function Trans(ψ) is given for sufficiently regular elements γ1 of H1(R) by a
formula,

Trans(ψ)(γ1) =
∑

δ∈Σγ

∆(γ1, δ)ψ(δ),

where γ is the projection of γ1 on H(R) and the sum (which might be empty, in which
case the right-hand side is 0) is taken over a set of representative of θ-conjugacy classes
under G(R) of elements δ ∈ G(R) for which γ is a norm.

The factors ∆(γ1, δ) are the transfer factors defined in [KS].
In order to establish this result, we need two kinds of ingredients. Firstly, we will use

the properties of transfer factors as found in [KS], mainly to show that Trans(ψ) is
well defined. Secondly, we will study the behaviour of the transfer factors when moving
transversally to (θ-twisted) conjugacy classes (i.e. along ‘Cartan subspaces’). For this,
we use Shelstad’s results [Sh6] concerning transfer factors. This will enable us to deduce
that the properties of ψ transfer to the corresponding properties of Trans(ψ), and then
prove that Trans(ψ) is indeed in Ist(H1(R), λH1).

In a forthcoming paper, we will use these results to establish characters identities as
described above, using the transpose map tTrans from stable invariant distributions on
H1(R) to θ-twisted invariant distributions on G(R).

Let us conclude this introduction with a survey of the contents of this paper. After
introducing notation, we recall basic results on twisted conjugacy in § 2, and the defini-
tion of endoscopic datum in § 3. Section 4 is devoted to the geometric correspondence
between the group G and its endoscopic group H, and its properties. In § 5, we recall
results on orbital integrals (θ-twisted orbital integrals on G, stable orbital integrals on
H) and their characterizing properties. We are then in a position to state the transfer
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theorem (Theorem 5.4). In § 6, we reduce the proof of Theorem 5.4 to various lemmas and
one proposition (Proposition 6.5). Some of these lemmas are of geometric nature, and
involve Cayley transforms, Hirai order, etc. They are established in § 7. The remaining
assertions in Proposition 6.5 and Lemma 6.9 concern fine properties of transfer factors.
In fact, guided by available examples, these were defined in [KS] in order to satisfy these
properties. Some of them will be established in [Sh6], the rest are in § 8.

Finally, let us point out that we have not considered here the most general case of
twisted endoscopy. Firstly, we assume θ to be of finite order, while Kottwitz and Shelstad
consider all semi-simple automorphisms. However, this restriction should not be too
important in most applications. Secondly, Kottwitz and Shelstad introduce a character
ω on G(R), in order to study representations π such that π◦θ � π⊗ω. We limit ourselves
to the case where ω is trivial, because we do not know how to generalize the results in § 5
to the (θ, ω)-twisted setting. Thirdly, there is the technical assumption that the cocycle
zσ of [KS, Lemma 3.1.A] is trivial (see the beginning of § 4). We notice that this is
the case in many applications, and that, according to [KS, § 5.4], we could relax this
assumption, with a little more effort and notation.

2. Twisted conjugacy

2.1. Notation

We begin by introducing some notation. Let A be a Lie group, and B a set on which A

acts. Let

Cent(B, A) = {a ∈ A | ∀b ∈ B, a · b = b},

Norm(B, A) = {a ∈ A | ∀b ∈ B, a · b ∈ B}.

Different actions of a group on itself will be considered, so, unless otherwise stated, the
above notation will refer to the usual action by conjugation. The inner automorphism
of A given by an element a ∈ A will be denoted by Int a and Aa := {b ∈ A | Int a(b) =
aba−1 = b}. The connected component of the trivial element in A will be denoted by A0.

Let H be a connected reductive algebraic group defined over R. The group H is
identified with the group of its complex points. Let σ be the non-trivial element of
Γ = Gal(C/R). We will denote by σH the action of σ on H, by H(R) the group of real
points of H, and by h (respectively, hR) the Lie algebra of H (respectively, H(R)).

Following [KS], by a pair in H, we mean a couple (B, T ) where B is a Borel subgroup
of H and T a maximal torus in B, and by a splitting of H, we mean a triple splH =
(B, T, {X}) where (B, T ) is a pair in H and {X} a collection of non-zero root vectors,
one for each simple root of T in B. The group H is quasi-split if and only if it has
an R-splitting, i.e. one preserved by σH . It will be convenient to construct L-groups as
follows. Suppose that H is quasi-split and let splH = (B, T, {X}) be an R-splitting. Let
Ĥ be the dual group of H and splĤ = (B, T , {X}) a splitting of Ĥ. The dual of the based
root datum Ψ(B, T ) obtained from (B, T ) is isomorphic to the based root datum Ψ(B, T )
obtained from (B, T ). The action σH induces an action on Ψ(B, T ), which transfers to
an action σĤ on Ψ(B, T ) by this isomorphism. Let us denote also by σĤ the algebraic
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action on Ĥ which induces σĤ on Ψ(B, T ) and preserves the splitting splĤ . Let WR be
the Weil group of R (see [Bo]). As usual, we define the L-group LH of H to be the semi-
direct product Ĥ �ρH

WR, where the action ρH of WR on Ĥ factors through Gal(C/R),
with ρH(1 × σ) acting by σĤ . Note that such a realization of the L-group depends on
the choice of the splitting splĤ but not of the splitting splH . If H is not quasi-split, we
choose a quasi-split inner form H∗ of H, and a L-group for H will be one constructed
from H∗. We denote by Hsc the universal covering of the derived group Hder of H, and
if T is a maximal torus in H, Tsc denote the inverse image of T ∩ Hder in Hsc under the
natural projection. We will often identify elements in Hsc or Tsc with their image in H

or T without comments.

2.2. Basic results on twisted conjugacy

Let G be a connected reductive algebraic group defined over R and θ an R-
automorphism of G of finite order. We denote also by θ its differential which is an
isomorphism of g = Lie(G). The group G acts upon itself by θ-twisted conjugacy,

(g, x) �→ gxθ(g)−1.

We begin by recalling some material about θ-twisted invariant harmonic analysis on G

(and G(R)).
For any x ∈ G, let us denote Gxθ the twisted centralizer of x, i.e.

Gxθ = {g ∈ G | gxθ(g)−1 = x},

and by gxθ the centralizer in of g of Adx ◦ θ.

Definition 2.1.

(i) An element x ∈ G is θ-semi-simple if Ad x ◦ θ is a semi-simple automorphism of g.

(ii) An element x ∈ G is θ-regular if the multiplicity of the eigenvalue 1 of Adx ◦ θ is
minimal.

(iii) An element x ∈ G is strongly θ-regular if Gxθ is abelian.

We denote by Gθ-reg (respectively, G(R)θ-reg) the (dense, open) subset of θ-regular
elements in G (respectively, G(R)). More generally, if A is a subset of G, we denote by
Aθ-reg the set of θ-regular elements in A.

Proposition 2.2. We have the following results.

(i) If g ∈ G is θ-regular, then g is θ-semi-simple and ggθ is an abelian subalgebra of
g whose elements are semi-simple. Moreover, ggθ contains regular elements of g,
i.e. Cent(ggθ, g) is a Cartan subalgebra of g.

(ii) A strongly θ-regular element is θ-regular.
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(iii) Let x ∈ G be θ-semi-simple, z = gxθ and Z = (Gxθ)0. Then there exists a θ-regular
element y ∈ (exp z)x such that a = gyθ is a Cartan subalgebra of z and exp a is a
maximal torus in Z.

Proof. For (i) and (iii), see [R, Propositions 2.1 and 2.4]. The second assertion is obvious
as soon as we see that g ∈ G is regular if and only if (Gθg)0 is a torus, which is a
consequence of (i). �

Let x be a θ-regular element of G, a = gxθ, and h = Cent(a, g). We have a decomposi-
tion,

g = h ⊕
∑

β∈R(g,a)

g
β ,

where R(g, a) is a (non-reduced) root system and gβ is the root space for the root β. The
root system R(g, a) is the set of restrictions to a of the roots in R(g, h).

Since θ is of finite order, it preserves a pair (B, T ) of G, i.e. we have θ(B) = B and
θ(T ) = T [KS, (1.1)]. For such a pair, we have the following results.

Proposition 2.3.

(i) There exist θ-regular elements in T . More precisely, there exist θ-regular elements
in each subset of the form t · T θ, where t ∈ T and T θ denotes the fixed points of θ

in T .

(ii) Let t ∈ T be θ-regular. Then gtθ = tθ, (Gtθ)0 = (T θ)0 and Cent((T θ)0, G) = T .
Furthermore, Gtθ ⊂ Norm((T θ)0, G) and if t is strongly θ-regular, then Gtθ = T θ.

Proof. These are easy consequences of [R, § 2] and [KS, Theorem 1.1]. �

Definition 2.4. A Cartan subspace of G(R) is a subset of the form A = (exp gxθ
R

) · x,
where x is a θ-regular element of G(R).

Proposition 2.5. The number of θ-twisted conjugacy classes of Cartan subspaces in
G(R) is finite.

Proof. See [R, Proposition 7.4]. �

The interest of introducing these subspaces is that the twisted orbital integrals of com-
pactly supported functions on G(R) are determined by their restrictions to a system of
representatives of θ-twisted conjugacy classes of Cartan subspaces. They will replace Car-
tan subgroups in the point correspondences, since in twisted endoscopy Cartan subgroups
of G and its endoscopic groups are not isomorphic for non-trivial θ (see § 4 below).

We fix a quasi-split group G∗ in the inner class of real forms of G with an
inner twisting ψ : G → G∗. The group G∗ being quasi-split, it has an R-splitting
splG∗ = (B∗, T ∗, {X∗}). We may choose gθ ∈ G∗ such that the automorphism

θ∗ = Int gθ ◦ ψ ◦ θ ◦ ψ−1 (2.1)
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preserves splG∗ . Furthermore, σG∗(θ∗) = σG∗ ◦ θ∗ ◦ σG∗ = θ∗ because θ∗ is uniquely
determined by θ and splG∗ , and thus θ∗ is defined over R. Suppose we have L-group
data for G given by a splitting splĜ = (B, T , {X}). Then θ induces bijections of the
based root data Ψ(B∗, T ∗) and Ψ(B, T ). We denote by θ̂ the automorphism of Ĝ which
induces this bijection of Ψ(B, T ) and preserves splĜ. We denote by Lθ the automorphism
θ̂ � 1WR

of LG.

3. Endoscopic data

3.1.

Following [KS], we call the tuple (H, H, s, ξ) endoscopic data for (G, θ) if the following
hold.

(3.1.1) H is a quasi-split connected reductive algebraic group defined over R.

(3.1.2) H is a split extension of WR by Ĥ such that the L-action of WR on Ĥ defined
by this extension coincide with ρH .

(3.1.3) s is a θ̂-semi-simple element in Ĝ.

(3.1.4) ξ : H → LG is a L-homomorphism satisfying:

(3.1.4a) Int s ◦ Lθ ◦ ξ = a · ξ, where a is a 1-coboundary of WR in Z(Ĝ);

(3.1.4b) ξ maps isomorphically Ĥ into (Ĝθ̂s)0.

Recall that in § 2.1 we have chosen a realization of the L-group of H, i.e. we have fixed
a splitting splĤ = (BH , TH , {XH}) to define ρH (splĤ is preserved by ρH). The action of
σ on Ĥ given by the split extension H can be modified by an inner automorphism of Ĥ

to preserve splĤ and (3.1.2) means that it coincides with ρH .
There is a notion of isomorphism of endoscopic data: (H, H, s, ξ) is isomorphic to

(H ′,H′, s′, ξ′) if there exists g ∈ Ĝ such that

gξ(H)g−1 = ξ′(H′), (3.1)

gsθ̂(g)−1 = s′ mod Z(Ĝ). (3.2)

Recall the splitting splĜ = (B, T , {X}) used to form LG. We may replace (s, ξ) by
(gsθ̂(g)−1, Int g ◦ ξ) for any g ∈ Ĝ and therefore assume that s ∈ T . Then (B, T ) is
an Int s ◦ θ̂-stable pair and by making another such replacement with a g ∈ (Ĝsθ̂)0, we
may assume that

ξ(BH) = B ∩ (Ĝsθ̂)0 and ξ(TH) = T ∩ (Ĝsθ̂)0 = (T θ̂)0. (3.3)
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3.2. z-pair

Since H is not necessarily an L-group for H (see [KS, § 2.1]), we need to introduce a
z-extension H1 of H. We recall the following definition [K].

Definition 3.1. A z-extension of a connected reductive algebraic quasi-split real group
H is a central extension H1 of H,

1 → Z1 → H1 → H → 1,

where H1 is a connected reductive algebraic quasi-split real group whose derived group is
simply-connected and Z1 is a central torus in H1, isomorphic to a product of ResC/R R

×.

Note that since H1(Γ, Z1) = {1}, we also have

1 → Z1(R) → H1(R) → H(R) → 1.

Dual to the exact sequence in the above definition is

1 → Ĥ → Ĥ1 → Ẑ1 → 1,

so we regard Ĥ as a subgroup of Ĥ1. This inclusion can be extended to a L-
homomorphism ξH1 : H → LH1 (see [KS, Lemma 2.2.A]).

Definition 3.2. By a z-pair for H, we mean a pair (H1, ξH1) where H1 is a z-extension
of H and ξH1 : H → LH1 a L-homomorphism that extends Ĥ ↪→ Ĥ1.

Observe that ξH1 determines a character λH1 of Z1(R). This character has Langlands
parameter

WR

c−→ H
ξH1−−→ LH1 → LZ1,

where c is any section of H → WR. For a discussion of the significance of λH1 in terms of
Langlands functoriality principle, see [KS, end of § 2.2]. Let us just say here that if H is
not a L-group, then there is no matching between compactly supported smooth functions
on G(R) and compactly supported smooth functions on H(R). Instead, we will establish a
matching between compactly supported smooth functions on G(R) and smooth functions
on H1(R), compactly supported modulo Z1(R) and transforming under translations by
elements of Z1(R) according to λH1 .

4. Norm mappings

4.1.

Recall that θ∗ = Int gθ ◦ψ◦θ◦ψ−1 preserves the R-splitting splG∗ . Let us choose uσ ∈ G∗
sc

such that
ψσ(ψ)−1 = Intuσ. (4.1)

Then the map

m : G → G∗,

δ �→ ψ(δ)g−1
θ ,
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is easily checked to preserve θ-conjugacy, so it induces a bijection

m : Cl(G, θ) → Cl(G∗, θ∗),

where Cl(G, θ) (respectively, Cl(G∗, θ∗)) is the set of θ- (respectively, θ∗-) conjugacy
classes of G (respectively, G∗). This map may not respect the action of σ. In the rest of
this paper, we consider only the case when it does, i.e. we suppose that the class of the
1-cocycle zσ of [KS, Lemma 3.1.A] is trivial in H1(Γ, Zsc

θ ) (for example, this holds for
standard (non-twisted) endoscopy, when θ arises from base change C/R, or when G(R)
is quasi-split). We may then choose gθ and uσ such that gθuσ = θ∗(uσ)σG∗(gθ). Then m

is defined over R (on classes), and for all δ ∈ G,

σ(m)(δ) = u−1
σ m(δ)θ∗(uσ). (4.2)

Suppose that (B, T ) is a θ∗-stable pair in G∗, let Ω = Ω(G∗, T ) be the Weyl group
of T in G∗ and Ωθ∗

= {w ∈ Ω | w ◦ θ∗ = θ∗ ◦ ω}. Note that each element of Ωθ∗
is

represented by an element of G1 := (Gθ∗
)0 (see [KS, § 1.1]). Let us denote (1 − θ∗)T =

{uθ∗(u)−1 | u ∈ T}, Tθ∗ = T/(1 − θ∗)T and Nθ∗ the projection from T onto Tθ∗ .

Lemma 4.1 (cf. (3.2.A) of [KS]).

(i) Each O ∈ Clss(G∗, θ∗) meets T .

(ii) The image of O ∩ T in Tθ∗ is a single Ωθ∗
-orbit

The subscript ‘ss’ stands for ‘semi-simple’. Thus we have a bijection,

Clss(G∗, θ∗) → Tθ∗

Ωθ∗ ,

between θ semi-simple twisted conjugacy classes in G and θ∗ semi-simple twisted conju-
gacy classes in G∗. The composition

Nθ : Clss(G, θ) → Clss(G∗, θ∗) → Tθ∗

Ωθ∗

is called an abstract norm map. If T is defined over R, then Nθ is also defined over R.
Let us consider the endoscopic data (H, H, s, ξ). We recall now the point correspon-

dences between H and G.

Theorem 4.2 (cf. (3.3.A) of [KS]). There is a canonical map defined over R,

AH/G : Clss(H) → Clss(G, θ), (4.3)

between semi-simple conjugacy classes in H and θ-semi-simple twisted conjugacy classes
in G.

This map is obtained in the following way. Suppose (BH , TH) is a pair in H and that
(B, T ) is a θ∗-stable pair in G∗. Attached to (BH , TH) and (BH , TH) is an isomorphism
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T̂H � TH and attached to (B, T ) and (B, T ) is an isomorphism T̂ � T . By θ-stability,
the latter induces

T̂θ∗ = (T̂ θ̂)0 � (T θ̂)0.

We therefore have a chain of isomorphism,

T̂H � TH
ξ−→ (T θ̂)0 � T̂θ∗ ,

which yields TH � Tθ∗ and ΩH := Ω(H, TH) ↪→ Ωθ∗
, and so induces

TH

ΩH
→ Tθ∗

Ωθ∗ .

Therefore, we have

Clss(H) → TH

ΩH
→ Tθ∗

Ωθ∗ → Clss(G∗, θ∗) → Clss(G, θ),

yielding the map (4.3).
If TH is defined over R, we may choose (B, T ) and BH such that both T and the

isomorphism TH � Tθ∗ are defined over R (see [KS, 3.3.B]). An R-isomorphism TH � Tθ∗

as above will be called an admissible embedding of TH , and TH will be called a norm
group for T .

4.2. Norms

We define norms in H(R) in the following way. Let δ ∈ G be θ-regular and let
Tδ = Cent((Gδθ)0, G). We know that Tδ is a maximal torus of G, stable under Int δ ◦ θ,
and that

T δθ
δ ⊂ Gδθ,

with equality if and only if δ is strongly regular.
Let us denote by Oγ the conjugacy class of an element γ ∈ H, and by Oθ-δ the θ-twisted

conjugacy class of δ ∈ G.

Definition 4.3. An element γ ∈ H is G-regular (respectively, strongly G-regular) if
AH/G(Oγ) is a θ-regular (respectively, strongly θ-regular) θ-conjugacy class in G.

Lemma 4.4 (cf. (3.3.C) of [KS]).

(i) G-regular implies regular.

(ii) Strongly G-regular implies strongly regular.

Corollary 4.5. The stable conjugacy class of a strongly G-regular element γ ∈ H(R) is
Oγ ∩ H(R).

Proof. This is merely the definition of stable conjugacy class for strongly regular ele-
ments. �
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Definition 4.6. The stable θ-conjugacy class of a strongly θ-regular element δ ∈ G(R)
is Oθ-δ ∩ G(R).

We extend this definition for θ-regular elements. Let δ ∈ G be such a element.
Suppose that δ′ = gδθ(g)−1 ∈ G(R). Then we have σG(g)−1g ∈ Gδθ. Let us denote
Tδ = Cent((Gδθ)0, G). Since δ is θ-regular, Tδ is a torus.

Definition 4.7. In the above setting, we say that δ′ is in the stable θ-conjugacy class
of δ if and only if σG(g)−1g ∈ Iδ := Gδθ ∩ Tδ.

We will see below the reason for this requirement. Note that if δ is strongly θ-regular,
then Gδθ ⊂ Tδ and the two definitions agree.

Definition 4.8. Let γ ∈ H(R) be G-regular, and let TH be the maximal torus of H

containing it. Fix an admissible embedding TH
η−→ Tθ∗ of TH in G∗ defined over R. We

say that γ is a norm of δ ∈ G(R) if

(i) δ lies in the image of Oγ under AH/G.

Then, by definition, there exist x ∈ G∗
sc and δ∗ ∈ T such that δ∗ = xm(δ)θ∗(x)−1 and

Nθ∗(δ∗) = η(γ). An easy computation shows that Intx ◦ ψ maps Gδθ bijectively onto
(G∗)δ∗θ∗

and T δθ
δ = Tδ ∩ Gδθ onto T θ∗

= T ∩ (G∗)δ∗θ∗
.

(ii) Intx ◦ ψ : T δθ
δ → T θ∗

is defined over R.

We will see in the proof of the next theorem that if γ is strongly G-regular, then the
condition (ii) is automatically fulfilled. When it is not possible to find such an element
δ, we say that γ is not a norm.

Theorem 4.9. Let γ ∈ H(R) be G-regular. Then γ is a norm of exactly one stable
θ-conjugacy class in G(R) or is not a norm.

Proof. In the setting as above, Intx ◦ ψ : T δθ
δ → T θ∗

is defined over R if and only
if Int(vσ) is trivial on T θ∗

, where vσ = xuσσG∗(x)−1. To see this, recall that we have,
from (4.1),

ψ = Intuσ ◦ σG∗ ◦ ψ ◦ σG.

Thus
σ(Intx ◦ ψ) = σG∗ ◦ (Intx ◦ ψ) ◦ σG = Int(σG∗(x)u−1

σ ) ◦ ψ,

and σ(Intx ◦ ψ) = Intx ◦ ψ if and only if Int(vσ) is trivial, proving the assertion.
Now, we deduce from (4.2),

σG∗(δ∗) = σG∗(xm(δ)θ∗(x)−1)

= σG∗(x)σ(m)(σG(δ))σG∗(θ∗(x))−1

= σG∗(x)u−1
σ m(δ)θ∗(uσ)θ∗(σG∗(x))−1

= (σG∗(x)u−1
σ x−1)(xm(δ)θ∗(x)−1)θ∗(xuσσG∗(x)−1)v−1

σ δ∗θ∗(vσ)
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and, since η is defined over R, σG∗(δ∗) = δ∗ mod(1− θ∗)T , there exists a t ∈ T such that
σg∗(δ∗) = tδ∗θ∗(t)−1 and thus

(vσt)−1δ∗θ∗(vσt) = δ∗.

Therefore, we have
vσt ∈ (G∗)δ∗θ∗

, with vσ ∈ G∗
sc.

Note that (G∗)δ∗θ∗ ⊂ Norm(T θ∗
, G∗), so Int vσ normalizes T θ∗

and T , and if γ is strongly
G-regular, then (G∗)δ∗θ∗

= T θ∗
(see (2.3)). �

Lemma 4.10. Int vσ is trivial on T θ∗
if and only if vσt ∈ T θ∗

.

Proof. Suppose that Int vσ is trivial on T θ∗
. Then it is trivial on T , because T θ∗

contains
strongly θ∗-regular elements. We conclude that vσ ∈ Tsc and that vσt ∈ T θ∗

. The other
implication is immediate.

From this discussion, we see that if γ is strongly G-regular, then Intx ◦ ψ : T δθ
δ → T θ∗

is defined over R.
We now come back to the proof of the theorem. Suppose that γ is a norm of δ, and let x,

vσ be as above. In particular, Int vσ is trivial on T θ∗
. Suppose that δ1 is stably θ-conjugate

to δ, i.e. there exists g ∈ G, with δ1 = gδθ(g)−1 ∈ G(R) and σG(g)−1g ∈ Gδθ ∩ Tδ. Then
we compute

δ∗ = xψ(g)−1m(δ1)θ∗(xψ(g)−1)−1.

We want to prove that γ is a norm for δ1, so we have to check that Int(xψ(g−1) ◦ ψ) :
T δ1θ

δ1
→ T θ∗

is defined over R. From the discussion above, this is the case if and only if
Int(xψ(g)−1uσσG∗(xψ(g)−1)−1) is trivial on T θ∗

. We compute

xψ(g)−1uσσG∗(xψ(g)−1)−1 = (xψ(g)−1uσ)(u−1
σ ψ(σG(g))uσ)σG∗(x)−1

= xψ(g−1σG(g))uσσG∗(x)−1

= xψ(g−1σG(g))x−1vσ.

Hence we want to check that Int(xψ(g−1σG(g))x−1) is trivial on T θ∗
, i.e. Int(g−1σG(g))

is trivial on T δθ ∩Tδ. This is now obvious by the definition of stable θ-conjugacy and the
requirement that g−1σG(g) ∈ Gδθ ∩ Tδ.

Let us now prove the other inclusion, and so suppose that γ is a norm for δ, δ1 ∈ G(R),
i.e. there exist δ∗, δ∗

1 in T and x, x1 ∈ G∗
sc such that

δ∗ = xm(δ)θ∗(x)−1, δ∗
1 = x1m(δ1)θ∗(x1)−1, Nθ∗(δ∗

1) = Nθ∗(δ∗) = η(γ).

Therefore, there is a t ∈ T such that

δ∗
1 = tδ∗θ∗(t)−1.

From this last equation, easy computations lead to

δ1 = ψ−1(x−1
1 tx)δθ(ψ−1(x−1

1 tx))−1.
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We have then to show that w−1σG(w) ∈ Gδθ ∩ Tδ, where w = ψ−1(x−1
1 tx). This is equiv-

alent to Intx ◦ ψ(w−1σG(w)) ∈ (G∗)δ∗θ∗ ∩ T = T θ∗
, but

Intx ◦ ψ(w−1σG(w)) = t−1σG∗(v1)−1σG∗(t)σG∗(v),

where v = vσ as above and v1 = x1uσσG∗(x1)−1. This is a product of elements in T , and
hence Int x ◦ ψ(w−1σG(w)) ∈ T , and it is easy to check that it fixes δ∗, and it is, in fact,
in T θ∗

. The proof of the theorem is now complete. �

4.3. Admissible coverings

Let TH be a maximal torus of H defined over R, and let AH be a connected component
of TH(R). If there exists a G-regular element γ ∈ AH which is the norm of an element
δ ∈ G(R), we say that AH originates in G(R). Recall this means that given an admissible
embedding TH

η−→ Tθ∗ of TH in G∗ defined over R, there exist x ∈ G∗
sc and δ∗ ∈ T such

that δ∗ = xm(δ)θ∗(x)−1, Nθ∗(δ∗) = η(γ) and

Intx ◦ ψ : T δθ
δ → T θ∗

is defined over R.
We want to prove now that every G-regular element in AH := (exp(tH)R)γ is a norm

of an element in the Cartan subspace A = (exp gδθ
R

)δ of G(R).

Lemma 4.11. The restriction of Nθ∗ to (T θ∗
(R))0 = exp tθ

∗

R
is a finite covering of

(Tθ∗(R))0.

Proof. The surjectivity comes from the decomposition

tR = t
θ∗

R ⊕ (1 − θ∗)tR.

Let us show now that θ∗ has finite order on T . Recall that θ has finite order on G, say
r. From (2.1), we compute easily that θ∗r is a inner automorphism of G∗, given by the
element θ∗r−1(gθ)θ∗r−2(gθ) · · · θ∗(gθ)gθ. Thus its restriction to the θ∗-stable torus T is
of finite order. Let l be the order of θ∗ on T .

Suppose that t ∈ (T θ∗
(R))0 such that there exists u ∈ T with t = uθ∗(u)−1. We

compute
tθ∗(t) · · · θ∗l−1(t) = tl = 1.

Since in a torus there are only a finite number of elements of a given finite order, we see
that this covering is indeed finite. �

Let X ∈ (tH)R such that (expX)γ is G-regular. Choose Y ∈ tθ
∗

R
such that

Nθ∗(exp Y ) = η(exp X) and U ∈ gδθ
R

such that Intx ◦ ψ(exp U) = expY . We then have

xm((expU)δ)θ∗(x)−1 = (xψ(exp U)x−1)xm(δ)θ∗(x)−1 = (expY )δ∗.

Thus, since

(G(exp U)δθ)0 = (Gδθ)0 and ((G∗)(exp Y )δ∗θ∗
)0 = ((G∗)δ∗θ∗

)0 = (T θ∗
)0,

(exp X)γ is a norm of (expU)δ.
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Notice that in the previous lemma we define a map from A to AH , depending a priori
on the initial choice of γ and δ. It is easy to check that this map depends, in fact, only on
the admissible isomorphism TH

η−→ Tθ∗ and the choice of x. We summarize this discussion.

Proposition 4.12. Let AH be a Cartan subspace of H(R) and let γ ∈ AH be a G-regular
element, norm of δ ∈ G(R). Then there is a covering map,

η(A,AH) : A = exp(gδθ
R )δ → AH ,

such that η(A,AH)(δ′) is a norm of δ′ for all regular element δ′ ∈ A.

We call these maps admissible coverings. They provide local isomorphisms between
Cartan subspaces of G(R) and Cartan subspaces (i.e. connected components of Cartan
subgroups) of H(R). The following lemma might seem obvious, but it could also help for a
better understanding of what is going on. Consider the following situation, where γ ∈ AH

is G-regular and a norm for a stable θ-conjugacy class of regular elements in G(R). Let Σγ

be a set of representatives of θ-conjugacy classes in G(R) in this given stable θ-conjugacy
class. For each δi ∈ Σγ , there is a admissible covering η(Ai,AH) constructed as above
(the construction depends on some choices, but note we may take the same admissible
embedding TH → Tθ∗ for the various η(Ai,AH)). Now let γ′ ∈ AH be another G-regular
element. Then, for every admissible covering η(Ai,AH), we can pick a δ′

i in Ai such that
η(Ai,AH)(δ′

i) = γ′ (in particular, γ′ is a norm for δ′
i, so they are all stably θ-conjugate).

We then have the following result.

Lemma 4.13. The set of δ′
i described above is the set of representatives of θ-conjugacy

classes in G(R) in the stable θ-conjugacy class of elements for which γ′ is a norm.

Proof. It is not difficult to check from the constructions that the δ′
i are indeed repre-

sentatives of different θ-conjugacy classes in the stable θ-conjugacy class of elements for
which γ′ is a norm. We can conclude by a counting argument that we have a complete
set of representatives. It comes from the parametrization of θ-conjugacy classes in G(R)
in the stable θ-conjugacy class of a θ-regular element δ ∈ G(R) found in [KS, p. 54], or
in [La, p. 54], in terms of

Ker[H1(Γ, Gδθ ∩ Tδ) → H1(Γ, G)].

�

In the situation described above, we say that {η(A1,AH), . . . , η(Ar,AH)} is a complete
system of (admissible) coverings if, for any G-regular γ ∈ AH , we obtain a system of
representatives of θ-conjugacy classes in G(R) in the stable θ-conjugacy class of elements
for which γ is a norm by taking, for each i, an element δi ∈ Ai in the fibre above γ

of η(Ai,AH).
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5. Matching functions

5.1. Normalization of measures

In order to define the transfer of orbital integrals, we have to normalize invariant measures
on the various groups in a consistent way. We chose Duflo–Vergne’s normalization, defined
as follows. Let A be a reductive group (complex or real), and pick an A-invariant sym-
metric, non-degenerate bilinear form κ on a. Then a will be endowed with the Lebesgue
measure dX such that the volume of a parallelotope supported by a basis {X1, . . . , Xn}
of a is equal to |det(κ(Xi, Xj))|1/2 and A will be endowed with the Haar measure tangent
to dX. If M is a closed subgroup of A, such that κ is non-degenerate on m, we endow M

with the Haar measure determined by κ as above. If M ′ ⊂ M are two closed subgroups
of A such that κ is non-degenerate on their respective Lie algebras, we endow M/M ′

with the M -invariant measure, which is the quotient of the Haar measures on M and M ′

defined as above. We will denote it by dṁ.

5.2. Twisted orbital integrals on G(R)

Let f ∈ C∞
c (G(R)). Its θ-twisted orbital integral is the function defined on G(R)θ-reg

by

Jθ
G(f)(x) = |det(Id−(Adx ◦ θ)−1)g/a|1/2

∫
G(R)/(Gxθ∩Tx)(R)

f(gxθ(g−1)) dġ,

where a = gxθ and dġ is the invariant measure on G(R)/(Gxθ∩Tx)(R) normalized with our
conventions. Note that if x is strongly θ-regular, then (Gxθ ∩ Tx)(R) = Gxθ(R). These
objects have been studied in [R]. We recall their properties. We need some notation.
Recall that if x is a θ-regular element of G, with a = gxθ and h = Cent(a, g), then we
have a decomposition,

g = h ⊕
∑

β∈R(g,a)

g
β ,

where R(g, a) is a (non-reduced) root system and gβ is the root space for the root β.
The root system R(g, a) is the set of restrictions to a of the roots in R(g, h). Let A be
the Cartan subspace exp aRx. Let P be a system of positive imaginary roots in R. We
introduce the ‘Harish-Chandra’ normalizing factor bP on Areg,

bP (a) =
∏

α∈P det(Id−(Ad a ◦ θ)−1)|gα

|
∏

α∈P det(Id−(Ad a ◦ θ)−1)|gα | .

Definition 5.1. Let A = exp aRx be a Cartan subspace of G(R). We will denote by
Aθ-I-reg (respectively, Aθ-In-reg) the set of a ∈ A such that the root system of a in gaθ has
no imaginary (respectively, non-compact imaginary) roots. This implies (in both cases)
that aR is a maximally split Cartan subalgebra of gaθ

R
.

With the above notation, we denote by S(a) the symmetric algebra of a, and we identify
it with the algebra of differential operators on A which are invariant under left transla-
tions by elements of exp aR. We denote by ∂(u) the differential operator corresponding
to u ∈ S(a).
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We say that x ∈ G(R) is semi-θ-regular when the derived algebra of gxθ
R

is isomorphic
to sl(2, R) or su(2). Suppose it is sl(2, R). Let aR be a fundamental Cartan subalgebra of
gxθ

R
, and ±α the roots of a in gxθ: they are non-compact imaginary and satisfy

det(Id−(Adx ◦ θ)−1)|gα = 0.

Pick a non-zero root vector Xα in the root space corresponding to α and fixed by Adx◦θ.
Then X−α := X̄α is a root vector for −α (the conjugation in gxθ is with respect to its real
form gxθ

R
). Let Hα ∈ a be the coroot of α. We may chose Xα such that (Xα, X−α, Hα) is

a sl2-triple, so we do. Then a1,R := Kerα⊕Ri(Xα −X−α) is a Cartan subalgebra of gxθ
R

.
The adjoint automorphism cα given by exp(−i 14π(Xα + X−α)) is such that cα(a) = a1.
Furthermore, A := exp aRx and A1 := exp a1,Rx are Cartan subspaces of G(R). We refer
to this notation by saying that (x, A, A1, cα) is a jump datum for G(R).

Let A be a Cartan subspace of G(R), y ∈ A and φ a function on Aθ-reg. Let β be an
imaginary root of a in g, and Hβ ∈ iaR its coroot. Then, when the limits in the following
formula exist, we set

[φ]+β (y) = lim
t→0+

φ((exp tiHβ)y) + lim
t→0−

φ((exp tiHβ)y).

Let Iθ(G(R)) be the subspace of C∞(Gθ-reg(R)) of functions ψ which are constant on
the θ-twisted conjugacy classes and have the properties (Iθ

1 ), (Iθ
2 ), (Iθ

3 ), (Iθ
4 ), defined as

follows.

(Iθ
1 ) If A = exp aRx is a Cartan subspace of G(R), for all compact subset K of A and

for all u ∈ S(a), we have

sup
a∈Kθ-reg

|∂(u) · ψ|A(a)| < ∞.

(Iθ
2 ) If A = exp aRx is a Cartan subspace of G(R), for all system P of positive imaginary

roots in R(a, g), bP ψ|A has a smooth extension on Aθ-In-reg. This is equivalent to
the following property.

(Iθ
2

′) ψ|A has a smooth extension on Aθ-I-reg, and for all semi-θ-regular element x ∈ A

such that the roots ±α of a in gxθ are compact imaginary, for all u ∈ S(a),

[∂(u) · ψ|A]+α (x) = 0.

(Iθ
3 ) For all jump data (x, A, A1, cα), and for all u ∈ S(a), we have

[∂(u) · ψ|A]+α (x) = d(x)∂(cα · u) · ψ|A1(x),

where d(x) is equal to 2 if the reflection sα ∈ W (G, A) is realized in (Gxθ(R)) and 1
otherwise.

(Iθ
4 ) If A = exp aRx is a Cartan subspace of G(R), SuppA(ψ|A) is a compact subspace

of A.
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The space Iθ(G(R)) is endowed with a topology of an inductive limit of Fréchet spaces,
and we denote by Iθ(G(R))′ its dual. We have the following result.

Theorem 5.2 (cf. Théorème 9.4 of [R]). The map Jθ
G is linear, continuous and

surjective from C∞
c (G(R)) onto Iθ(G(R)), and its transpose tJθ

G realizes a bijection from
Iθ(G(R))′ onto the space of θ-invariant distributions on G(R).

5.3. Stable orbital integrals on H1(R)

Let C∞
c,Z1

(H1(R), λH1) be the space of smooth functions fH1 on H1(R) with compact
support modulo Z1 and such that

fH1(zh) = λH1(z)−1fH1(h), h ∈ H1(R)reg, z ∈ Z1(R).

The orbital integral of such a function is given by

JH1(f
H1)(γ1) = |det(Id− Ad γ−1

1 )hR/tR
|1/2

∫
H(R)/T (R)

f(hγ1h
−1) dġ,

where γ1 ∈ H1(R) is regular, T is the projection on H of the Cartan subgroup T1 contain-
ing γ1 and dḣ is the invariant measure on H(R)/T (R) normalized with our conventions.
Notice that H(R)/T (R) � H1(R)/T1(R), where T1 is the inverse image of T in H1. This
is a well-defined converging integral, since Supp f ∩ Oγ1 is compact.

The stable orbital integral of the function fH1 ∈ C∞
c,Z1

(H1(R), λH1) is defined by

J st
H1

(fH1)(γ1) =
∑
γi

JH1(f
H1)(γi),

where the sum is taken over a system of representatives of conjugacy class in H1(R) in
the stable conjugacy class of γ1.

In [B1], Bouaziz gave a characterization of stable orbital integrals of compactly sup-
ported functions on a real algebraic reductive connected group. We rephrase his results
for functions in C∞

c,Z1
(H1(R), λH1), indicating briefly how the proof can be adapted. The

notation is consistent with the one used in the preceding section (take θ trivial).
The map γ1 �→ J st

H1
(fH1)(γ1) is smooth on H1(R)reg, stably invariant (i.e. constant on

stable conjugacy classes) and satisfies for all h ∈ H1(R)reg, z ∈ Z1(R),

J st
H1

(fH1)(zh) = λH1(z)−1J st
H1

(fH1)(h). (5.1)

Let Ist(H1(R), λH1) be the subspace of C∞(H1(R)reg) of functions ψ which are constant
on the stable conjugacy classes and have the properties (Ist

1 ), (Ist
2 ), (Ist

3 ), (Ist
4 ), (Ist

5 ),
defined as follows.

(Ist
1 ) If A is a maximal torus of H1 defined over R, for all compact subset of A(R) and

for all u ∈ S(a), we have

sup
a∈Kreg

|∂(u) · ψ|A(a)| < ∞.
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(Ist
2 ) If A is a maximal torus of H1 defined over R, for all system P of positive imaginary

roots in R(a, h1), bP ψ|A has a smooth extension on A(R)st-In-reg, where A(R)st-In-reg

is the set of a ∈ A such that all elements in A stably conjugate to a are in A(R)In-reg.
Note that this rather subtle definition is not really necessary here since, for H1

quasi-split, we have A(R)st-In-reg = A(R)I-reg (see [Sh1, Proposition 4.11]). So, in
fact, this reduces to the following property.

(Ist
2

′) ψ|A has a smooth extension on A(R)I-reg.

(Ist
3 ) For all jump data (x, A, A1, cα), and for all u ∈ S(a), we have

[∂(u) · ψ|A]+α (x) = 2∂(cα · u) · ψ|A1(x).

Note that the right-hand side is well defined because x ∈ A1,I-reg.

(Ist
4 ) If A is a maximal torus of H1 defined over R, SuppA(ψ|A(R)) is a compact subspace

of A(R) mod Z1(R).

(Ist
5 ) For all h ∈ H1(R), z ∈ Z1(R),

ψ(zh) = λH1(z)−1ψ(h). (5.2)

The space Ist(H1(R), λH1) is endowed with a topology of an inductive limit of
Fréchet spaces and we denote by Ist(H1(R), λH1)

′ its dual. For all functions fH1 ∈
C∞
c,Z1

(H1(R), λH1), J st
H1

(fH1) ∈ Ist(H1(R), λH1) (see [Sh4] and [B1, § 6] for the case
H1 = H, i.e. orbital integrals of smooth functions with compact support, and see below
for an argument of how this can be adapted to the general case). The last property is a
easy consequence of (5.1).

Theorem 5.3 (cf. Théorème 6.1 of [B1]). The map

J st
H1

; C∞
c,Z1

(H1(R), λH1) → Ist(H1(R), λH1)

is linear, continuous, surjective and its transpose tJ st
H1

realizes a isomorphism between
Ist(H1(R), λH1)

′ and the subspace of stable invariant ‘distributions’ C∞
c,Z1

(H1(R), λH1)
′.

Proof. Suppose that the extension

1 → Z1(R) → H1(R) → H(R) → 1 (5.3)

is split, and let c : H(R) → H1(R) be a section. This section provides an isomorphism,

Restr : C∞
c,Z1

(H1(R), λH1) → C∞
c (H(R)),

by restricting a function to c(H(R)) � H(R).
Thus C∞

c,Z1
(H1(R), λH1)

′ � Distr(H(R)) and we have the following commutative dia-
gram:

C∞
c,Z1

(H1(R), λH1)
Restr−−−−→ C∞

c (H(R))�Jst
H1

�Jst
H

Ist(H1(R), λH1)
Restr−−−−→ Ist(H(R))
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When (5.3) is not split, we use the fact that H1(R) � H1,der(R) × Z(H1)(R)/F ,
where F is a finite subgroup and Z(H1)(R) is the centre of H1(R). The theorem is
established for functions in C∞

c,Z1
(H1,der(R) × Z(H1)(R), λH1). We deduce the statement

for Ist(H1(R), λH1) thanks to the following commutative diagram:

C∞
c,Z1

(H1,der(R) × Z(H1)(R), λH1)
M−−−−→ C∞

c (H1(R), λH1)�Jst
H1,der×Z(H1)

�Jst
H1

Ist(H1,der(R) × Z(H1)(R), λH1)
M−−−−→ Ist(H1(R), λH1)

where M(φ)(γ) =
∑

z∈F φ(γz) for any function φ on H1,der(R) × Z(H1)(R). �

Let TH1(R) be a Cartan subgroup of H1(R) with projection TH(R) on H(R). We have
then a exact sequence,

{0} → (z1)R → (h1)R → hR → {0}, (5.4)

of Lie algebras, with (z1)R central in (h1)R. Since such a sequence always splits, we may,
by fixing a section of (5.4) identify hR with a subalgebra of (h1)R, and

(h1)R = (z1)R ⊕ hR. (5.5)

This decomposition (5.5) induces

(tH1)R = (z1)R ⊕ (tH)R.

Furthermore, the decompositions

h1 = tH1 ⊕
∑

α∈R(TH1 ,H1)

h
α
1 , h = tH ⊕

∑
α∈R(TH ,H)

h
α

provide identification between R(TH1 , H1) � R(TH , H) and hα
1 � hα.

Let γ1 ∈ TH1(R) and γ be its projection on TH(R). Let α ∈ R(TH1 , H1) � R(TH , H);
then we have α(γ1) = α(γ). Thus, if P is a system of positive imaginary roots in
R(TH1 , H1) � R(TH , H), then bP (γ1) = bP (γ).

We end this section by the following remark concerning differential operators from
S(TH1). It is clear that for all smooth functions ψ on H1(R)reg satisfying (5.2) and for
all u, ∈ S(z1), we have

∂(u) · ψ = dλ−1
H1

(u)ψ,

i.e. ψ is a eigenfunction for all u ∈ S(z1). Thus, in order to check properties (Ist
1 ),

(Ist
2 ), (Ist

3 ), we have only to consider differential operators coming from S(tH) (since
S(TH1) = S(tH) ⊗ S(z1)).
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5.4. Transfer of orbital integrals

Let (H, H, s, ξ) be an endoscopic datum for (G, θ), and (H1, ξH1) be a z-pair for H.
We say that γ1 ∈ H1(R) is G-regular (respectively, strongly G-regular) if its projection
γ on HR is G-regular (respectively, strongly G-regular). In this situation, we say that γ1

is a norm for δ ∈ G(R) if γ is a norm for δ.
Kottwitz and Shelstad defined absolute transfer factors ∆(γ1, δ), where γ1 ∈ H1(R) is

G-regular and is a norm of δ ∈ G(R). This transfer factor is a product of three terms, ∆I,
∆II and ∆III (we omit their fourth term ∆IV, since it is already included in our definition
of orbital integrals). We will recall the properties of these transfer factors when we will
need it.

We say that the function f ∈ C∞
c (G(R)) and the function fH1 ∈ C∞

c,Z1
(H1(R), λH1)

have matching orbital integrals if

J st
H1

(fH1)(γ1) =
∑

δ∈Σγ1

∆(γ1, δ)Jθ
G(f)(δ) (5.6)

for every G-regular γ1 ∈ H1(R). The sum (which might be empty, in which case the
right-hand side is 0) is taken over a set of representative of θ-conjugacy classes under
G(R) of elements δ ∈ G(R) for which γ1 is a norm.

Our principal result is that for every function f ∈ C∞
c (G(R)), there is a function

fH1 ∈ C∞
c,Z1

(H1(R), λH1) having matching orbital integrals with f . Using the terminology
of the previous paragraphs, we can rephrase it in the following form.

Theorem 5.4. There is a transfer map

Trans : Iθ(G(R)) → Ist(H1(R), λH1),

ψ �→ Trans(ψ),

linear and continuous, such that

Trans(ψ)(γ1) =
∑

δ∈Σγ1

∆(γ1, δ)ψ(δ) (5.7)

when γ1 is a G-regular element of H1(R). Furthermore, Trans(ψ) is defined on regular,
non-G-regular elements of H1(R) by smooth extension.

The next section will be devoted to the proof of Theorem 5.4.

6. Reduction of the proof of Theorem 5.4

6.1.

We sketch briefly the proof of the theorem before going into details. Let us first remark
that the right-hand side of (5.7) is well defined, i.e. does not depend on the choices of
representatives in Σγ . This is a consequence of the following lemma.
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Lemma 6.1 (cf. Theorem 5.1.D of [KS]). We have

∆(γ1, δ) = ∆(γ1, δ
′)

when δ and δ′ are θ-conjugate in G(R).

Then we will show how Trans(ψ) is defined on regular element of H1(R) (but not G-
regular) by a smooth extension of (5.7). This is a generalization in our present context
of Lemma 4.3 of [Sh2].

The fact that Trans(ψ) is constant on stable conjugacy classes comes from the following
lemma of [KS].

Lemma 6.2 (cf. Lemma 5.1.B of [KS]). ∆(γ1, δ) is unchanged when γ1 is replaced
with a stably conjugate element in H1(R).

To complete the theorem, we have to establish that properties (Ist
1 )–(Ist

5 ) hold for
Trans(ψ). As notation suggests, properties (Ist

1 )–(Ist
4 ) for Trans(ψ) are consequences of

properties (Iθ
1 )–(Iθ

4 ) for ψ. Some are immediate ((Ist
1 ), (Ist

2 ), (Ist
4 )); the other one (Ist

3 )
requiring extra work. The last property (Ist

5 ) is established by the following lemma.

Lemma 6.3 (cf. Lemma 5.1.C of [KS]). ∆(zγ1, δ) = λH1(z)−1∆(γ1, δ), where γ1 ∈
H1(R) is a regular element and z ∈ Z1(R).

6.2. More about geometric correspondences

Fix a function ψ ∈ Iθ(G(R)) and define ϕ = Trans(ψ) by (5.7) on G-regular elements
of H1(R). Let AH be the Cartan subspace in H(R) (i.e. a connected component of a
Cartan subgroup TH(R) in H(R)), and let AH1 be its inverse image in H1(R) (so that
AH1 is a Cartan subspace in H1(R)).

If AH does not originate in G(R), then, by definition, the sum in the right-hand side
of (5.7) is empty, so ϕ|AH1

≡ 0.
If AH originates in G(R), then there exist a Cartan subspace A in G(R), and a covering

map,
η(A,AH) : A → AH ,

such that η(A,AH)(δ) is a norm of δ for all θ-regular δ ∈ A. Recall that this map depends
on the choices of a admissible embedding TH

η−→ Tθ∗ and an element x ∈ G∗
sc. For any

regular element δ ∈ A, we have a = gδθ and A = (exp aR)δ. There is a chain of R-
isomorphisms,

a
Ad x◦ψ−−−−−→ t

θ∗ N∗
θ−−→ tθ∗

η−1

−−→ tH . (6.1)

Let us denote by η(A,AH) again the isomorphism between the extreme terms of (6.1) and
also for the induced isomorphism between S(a) and S(tH). This will enable us to transfer
differential operators.

Let γ0
1 be an element in AH1 , We need to study ϕ|AH1

in a neighbourhood of γ0
1 in

AH1 . Let γ0 be the projection of γ0
1 on AH , and δ0 ∈ A be in the fibre above γ0 of the

covering map η(A,AH). Then there is a neighbourhood U of δ0 in A such that η(A,AH)

realizes a isomorphism between U and its image V in AH .
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In fact, thanks to property (Ist
5 ) of ϕ, it will be sufficient to study its restriction in a

neighbourhood of γ0
1 in

exp(tH)Rγ0
1 ⊂ AH1 .

Let V1 be the inverse image of V in exp(tH)Rγ0
1 . This yields an isomorphism,

η(U,V1) : U → V1.

Let φ be a smooth function on V1 and let φ̃ be its pull-back on U by η(U,V1). Take
u ∈ S(tH) and u′ = η−1

(A,AH)(u) ∈ S(a). It is clear that we have, for all δ ∈ U ,

∂(u′) · φ̃(δ) = ∂(u) · φ(η(U,V1)(δ)). (6.2)

Now, suppose that δ0 ∈ U is θ-semi-regular, such that the roots ±α of a in gδ0θ are
imaginary. Let Hα ∈ iaR be the coroot of α, and δν = exp(iνHα)δ0 ∈ A. Then for ν

sufficiently small and non-zero, δν is a θ-regular element in U . Let wα ∈ (Gδ0θ)0 be an
element realizing the Weyl reflection sα with respect to α. We then have

wα exp(iνHα)δ0θ(wα)−1 = exp(−iνHα)δ0.

Hence δν and δ−ν are stably θ-conjugate, and there are two possibilities: either they
are in the same θ-conjugacy class in G(R), or they are not. Let us consider the second
case.

Our isomorphism η(U,V1) has been constructed from an admissible covering η(A,AH).
This admissible covering is itself obtained from an admissible embedding TH

η−→ Tθ∗ and
an element x ∈ G∗

sc having some properties (see § 4.3 above). Let ν be small enough and
non-zero, so that δν ∈ U is regular. Let γν = η(U,V1)(δ

ν), and Σγν be a set of represen-
tatives of θ-conjugacy classes under G(R) in the stable θ-conjugacy class of elements for
which γν is a norm. Then we may assume that δν and δ−ν are in Σγν .

We can construct another admissible covering,

η̄(A,AH) : A → AH ,

δ−ν �→ γν ,

using the same admissible embedding TH
η−→ Tθ∗ and the element xψ(w−1

α ), and from
this, another isomorphism,

η̄(U,V1) : U → V1,

δ−ν �→ γν
1 .

Then there is a complete system of coverings of AH containing η(A,AH) and η̄(A,AH).
Let u ∈ S(tH). The following lemma will be useful in the next section.

Lemma 6.4. Let u′ = η−1
(A,AH)(u) and ū′ = η̄−1

(A,AH)(u). Then ū′ = (u′)sα .

Proof. The proof is straightforward and left to the reader. �
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6.3. More about transfer factors

Suppose that we are in the situation as above, in particular, we have an isomorphism
η(U,V1). Then, for any θ-regular element δ ∈ U , η(U,V1)(δ) is a norm of δ, so we have a
well-defined map,

∆̃U : U → C,

δ �→ ∆(η(U,V1)(δ), δ).

Note that this map depends on η(U,V1), although this is not apparent in the notation.
This is of some importance, for example, in the situation considered at the end of the
preceding paragraph, where the construction obtained from η(U,V1) and η̄(U,V1) are nor
the same and will have to be distinguished. We will need the following properties of this
function.

Proposition 6.5. In the setting above, we have the following.

(i) ∆̃U is smooth on Uθ-reg. Let δ ∈ Aθ-reg. Then there exists λ ∈ a∗ and c ∈ C such
that

∆̃U ((expX)δ) = ceλ(X)

for all X ∈ aR such that (exp X)δ ∈ Uθ-reg. Furthermore, ∆̃U has a smooth con-
tinuation on Uθ-I-reg. Let τλ be the algebra automorphism of S(a) mapping X ∈ a

on X + λ(X). We have the following identity of differential operators on U : for all
u ∈ S(a),

∂(u) ◦ ∆̃U = ∆̃U ◦ ∂(τλ(u)).

Let δ0 ∈ U be a θ-semi-regular element such that the roots ±α of a in gδ0θ are
imaginary. Let Hα ∈ iaR be the coroot of α, and δν = exp(iνHα)δ0 ∈ A. For ν small
enough and non-zero, δν ∈ Uθ-reg, we have the following.

(ii) If α is compact and γ0 = η(U,V1)(δ
0) ∈ (V1)reg, then

lim
ν→0+

∆(γν
1 , δν) = − lim

ν→0−
∆(γν

1 , δν).

(iii) If α is compact and γ0 = η(U,V1)(δ
0) is semi-regular, then

lim
ν→0+

∆(γν
1 , δν) = lim

ν→0−
∆(γν

1 , δν).

(iv) If α is non-compact and γ0 = η(U,V1)(δ
0) ∈ (V1)reg, then the reflection sα with

respect to the root α is not realized in Gδ0θ(R), i.e. δν and δ−ν are not θ-conjugate
in G(R), and

lim
ν→0+

∆(γν
1 , δν) = − lim

ν→0−
∆(γν

1 , δν),

∆(γν
1 , δν) = −∆(γν

1 , δ−ν).
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(v) If α is non-compact and γ0 = η(U,V1)(δ
0) is semi-regular, then

lim
ν→0+

∆(γν
1 , δν) = lim

ν→0−
∆(γν

1 , δν),

∆(γν
1 , δν) = ∆(γν

1 , δ−ν).

The proof of this proposition, which uses the fine properties of transfer factors, will be
given in the next sections.

Fix a function ψ ∈ Iθ(G(R)) and define ϕ = Trans(ψ) by (5.7) on G-regular elements
of H1(R).

Let γ0
1 ∈ H1(R) be semi-simple, belonging to some Cartan subspace AH1 , and let γ0

its projection on H(R). Let AH be the projection of AH1 on H(R). Recall that, in the
non-twisted case, Cartan subspaces are just connected components of Cartan subgroups.
We would like an expression of ϕ around γ0

1 .
Suppose that AH originates in G(R). This means that there exist γ ∈ AH , G-regular,

and a stable θ-conjugacy class of regular elements in G(R) whose norm is γ. Fix a system
Σγ of representatives of θ-conjugacy classes under G(R) of elements in this stable θ-
conjugacy class. For each δi ∈ Σγ , let Ai be the Cartan subspace of G(R) to which δi

belongs. Recall the covering maps,

η(Ai,AH) : Ai = exp(gδiθ
R

)δi → AH .

They form a complete system of admissible coverings of AH . Set

δ0
i = η−1

(Ai,AH)(γ0).

Let the η(Ui,V1) be isomorphisms as constructed before from neighbourhoods Ui of δ0
i

onto a neighbourhood V1 of γ0
1 . We can rewrite (5.7) as

ϕ|V1(γ1) =
∑

η(Ui,V1)

∆̃Uiψ|Ui
(δi). (6.3)

6.4. Smooth extension to H1(R)reg

Let γ0
1 ∈ H1(R) be regular but not G-regular, and let γ0 be its projection to H(R). Let

AH (respectively, AH1) be the Cartan subspace of H(R) (respectively, H1(R)) to which
γ0 (respectively, γ0

1) belongs. If AH does not originate in G(R) (see (4.12)), then, by
definition, the restriction of ϕ to AH1 is zero, and there is certainly a smooth extension
of ϕ around γ0

1 . Suppose that AH originates in G(R). We are in the situation considered
at the end of the previous paragraph.

Suppose that one of the δ0
i is in Ai,θ-I-reg. Then it will be the case for all of them. To

see this, take two of them, say δ0
i and δ0

j . Then they are θ-conjugate by an element g ∈ G,
such that Int g sends Gδ0

i θ isomorphically onto Gδ0
j θ and ai isomorphically onto aj , this

latter being defined over R. It follows that Int g sends the roots of ai in gδ0
i θ bijectively

onto the roots of aj in gδ0
j θ, respecting their types (real, complex or imaginary).
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It follows from Proposition 6.5 (i) and property (Iθ
2 ) of ψ that there is a smooth exten-

sion of ψ|AH1
around γ0

1 .
Now suppose that δ0

i /∈ Ai,θ-I-reg (if one is like that, all of them are). We want to study
the behaviour of δi �→ ∆̃Uiψ|Ai

around δ0
i . We drop the indices ‘i’, since we are working

with only one of them. Assume that δ0 is θ-semi-regular. Then the roots ±α of a in gδ0θ

are imaginary. Suppose they are of compact type. Then, for all u ∈ S(a),

[∂(u) · (∆̃Uψ|A)]−α (δ0) = lim
ν→0+

∂(u) · (∆̃Uψ|A)(δν) − lim
ν→0−

∂(u) · (∆̃Uψ|A)(δν)

= lim
ν→0+

∆̃U (δν)∂(τλ(u)) · ψ|A(δν) − lim
ν→0−

∆̃U (δν)∂(τλ(u)) · ψ|A(δν)

= lim
ν→0+

∆̃U (δν)[∂(τλ(u)) · ψ|A]+α

= 0.

We have used parts (i) and (ii) of Proposition 6.5 and property (Iθ
2

′) of ψ. Thus the
contribution of η(U,V1) to the right-hand side of (5.7) is smooth around δ0.

Let us see what happens in the other case, i.e. when the roots ±α are non-compact.
Lemma 6.5 (iv) asserts that in that case δν and δ−ν are not θ-conjugate in G(R), i.e. the
reflection sα with respect to the root α is not realized in Gδ0θ(R).

Then we are in the situation considered at the end of § 6.2. To check that ϕ has
a smooth extension around γ0

1 , we have to look at the contributions the right-hand
side of (5.7) of η(U,V1) and η̄(U,V1). We denote by ˜̄∆U the function obtained from
η̄(U,V1) (see (6.3)). Let u ∈ S(tH) and u′ = η−1

(U,V1)
(u) and ū′ = η̄−1

(U,V1)
(u). Recall that

∂(u′) = ∂(ū′)sα (Lemma 6.4). This contribution is

lim
ν→0+

∂(u′) · (∆̃Uψ|A)(δν) − lim
ν→0−

∂(u′) · (∆̃Uψ|A)(δν)

+ lim
ν→0+

∂(ū′) · ( ˜̄∆Uψ|A)(δ−ν) − lim
ν→0−

∂(ū′) · ( ˜̄∆Uψ|A)(δ−ν)

= lim
ν→0+

∆̃U (δν)∂(τλ(u′)) · ψ|A(δν) − lim
ν→0−

∆̃U (δν)∂(τλ(u′)) · ψ|A(δν)

+ lim
ν→0−

( ˜̄∆U )(δν)∂(τλ(ū′)) · ψ|A(δν) − lim
ν→0+

( ˜̄∆U )(δν)∂(τλ(ū′)) · ψ|A(δν).

We have
lim

ν→0+

˜̄∆U (δν) = lim
ν→0+

(∆̃U )(δν)

(Proposition 6.5 (iv)). Hence, if ∂(τλ(u′)) = ∂(τλ(ū′)) = ∂(τλ(u′))sα , the whole expression
cancels. To complete the proof, it remains to check what happens when ∂(τλ(u′)) =
−∂(τλ(ū′)) = −∂(τλ(u′))sα , the general case being deduced by linearity. Under this
latter assumption, we have, using Proposition 6.5 (iv),

[∂(u′) · (∆̃Uψ|A)]−α (δ0) = ( lim
ν→0+

∆̃U (δν))[∂(τλ(u′)) · ψ|A]+α (δ0)

and a well-known principle of Harish-Chandra [HC1], valid also for the twisted case
asserts that this is zero. Symmetrically,

[∂(ū′) · ( ˜̄∆Uψ|A)]−α (δ0) = 0.
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To conclude, we have proved that if δ0
i /∈ Ai,θ-I-reg and is θ-semi-regular, then the same

is true for all the δ0
j , and that the various contributions to the right-hand side of (5.7),

when suitably grouped, extends to smooth functions around the δ0
j . Another principle of

Harish-Chandra [HC2] asserts that these results still hold if the δ0
j are not semi-regular.

Thus ϕ = Trans(ψ) has a smooth extension to H1(R)reg.

6.5. Properties (Ist
1 ), (Ist

2 ), (Ist
4 )

In this paragraph, we show that ϕ = Trans(ψ) satisfies the properties just listed.
Let AH1 be a Cartan subspace of H1(R) and AH its projection on H(R). If AH does

not originate in G(R), then the support of ϕAH1
is empty. If AH originates in G(R), we

choose a complete system of coverings of AH . For each Cartan subspace A in G(R) in
this complete system, the restriction of ψ to A has compact support (Iθ

4 ). It follows easily
from the definitions that the support of ϕ|AH1

is compact modulo Z1(R).
The two other properties are local, so it is sufficient to check them in the setting of (6.3).

Then, they are immediate consequences of (Iθ
1 ), (Iθ

2 ) for ψ and Proposition 6.5 (i).

6.6. Jump relations

In this section, we will prove the jump relations for ϕ = Trans(ψ). We postpone the
proofs of the various lemmas until the next section. Let (γ0

1 , TH1 , T
′
H1

, cαH
) be a jump

datum on H1(R), and γ0, TH , T ′
H the corresponding projections on H(R).

Lemma 6.6 (cf. §2 of [Sh1]). If AH = γ0 exp(tH)R does not originate in G(R), nor
does A′

H = γ0 exp(t′H)R.

In that case, ϕ|AH
≡ 0 and ϕ|A′

H
≡ 0, and (Ist

3 ) is satisfied at γ0
1 .

We suppose now that AH = γ0 exp(tH)R does originate in G(R). We fix a complete
system of coverings {η(Ai,AH)} as before, and a set of isomorphisms {η(Ui,V1)}, where V1

is a connected neighbourhood of γ0
1 . We suppose first that δ0

i = η−1
(Ui,V1)

(γ0
1) is θ-semi-

regular (recall that if one is, all of them are) and we denote by ±αi the roots of aig
δ0

i θ.
It means that αH and αi have corresponding coroots (up to a change of signs for ±αi)
through the isomorphisms Tθ∗ � TH and Ai � (T θ∗

R
)0. Recall that δν

i = (exp iνHαi)δ
0
i .

For ν small enough, δν
i ∈ Ui, and let γν

1,i = η(Ui,V1)(δ
ν
i ). In fact, as the following lemma

shows, this element does not depend on i.

Lemma 6.7. γν
1,i = exp(iνmαHαH

)γ0
1 , where mα is the dimension of the root space g

αi

C

or twice this dimension. This integer does not depend on i, thus nor does γν
1,i, and we

simply denote it by γν
1 .

Notice that the notation is a little bit misleading but the lack of coherence due to the
factor mα is not really important since we eventually only consider limits when ν tends
to 0.

Lemma 6.8 (cf. Proposition 9.3 of [Sh2]). If, for all i, δ0
i ∈ Ai,θ-In-reg, then T ′

H(R)
does not originate in G(R).
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It is then easy to check that the two side of the jump relation are 0, and so (Ist
3 ) is

satisfied.
We are now dealing with the case where both AH and A′

H originate in G(R). Let
u ∈ S(tH) and vi = η−1

(Ai,AH)(u). We then have

[∂(u) · ϕ|AH1
]+αH

(γ0
1) =

∑
i

[∂(vi) · (∆̃Uiϕ|Ai
)]+αi

(δ0
i ).

As in the previous paragraph, thanks to Proposition 6.5 (ii), if δ0
i ∈ Ai,In-reg, the contri-

bution of this term to the right-hand side is 0, so we are left only with the ones such that
the root αi is imaginary and non-compact in ∆(ai, g

δ0
i θ). As we have already noticed,

there are two exclusive possibilities.

(1) The reflection sαi is realized in Gδ0
i θ(R). Then d(δ0

i ) = 2 and δν
i , δ−ν

i are in the
same θ-conjugacy class in G(R). Let I1 be the set of indices such this holds.

(ii) The reflection sαi is not realized in Gδ0
i θ(R). Then d(δ0

i ) = 1 and δν
i , δ−ν

i are not
θ-conjugate in G(R). Let I2 be the subset of indices i such this holds. Notice that
we are then in the situation considered at the end of § 6.2. We may suppose that
our complete system of coverings is such that if i ∈ I2 corresponds to a covering
η(Ai,AH), then the covering η̄(Ai,AH) constructed above is also in the system of
coverings. Thus there is a set of indices I ′

2 such that

{η(Ai,AH)}i∈I2 = {η(Ai,AH), η̄(Ai,AH)}i∈I′
2
.

Let vi = η−1
(Ai,AH)(u). A general principle of Harish-Chandra asserts that if

∂(u)sαH = −∂(u), then the jump relations are satisfied, the jump being 0. In
the following computations we assume that ∂(u)sαH = ∂(u), the general case being
deduced by linearity. In particular, if i ∈ I ′

2, we have vi = v̄i. We compute

[∂(u) · ϕ|AH1
]+αH

(γ0
1) =

∑
i

[∂(vi) · (∆̃Uiψ|Ai
)]+αi

(δ0
i ) (6.4)

=
∑
i∈I1

[∂(vi) · (∆̃Uiψ|Ai
)]+αi

(δ0
i ) +

∑
i∈I2

[∂(vi) · (∆̃Uiψ|Ai
)]+αi

(δ0
i )

(6.5)

=
∑
i∈I1

2( lim
ν→0

∆̃Ui(δ
ν
i ))∂(cαi · τλ(vi)) · ψ|A′

i
(δ0

i )

+
∑
i∈I′

2

( lim
ν→0

∆̃Ui(δ
ν
i ))∂(cαi · τλ(vi)) · ψ|A′

i
(δ0

i )

+ ( lim
ν→0

˜̄∆Ui(δ
ν
i ))∂(cαi · τλ(v̄i)) · ψ|A′

i
(δ0

i ) (6.6)

=
∑

i∈I1∪I′
2

2( lim
ν→0

∆̃Ui
(δν

i ))∂(cαi · τλ(vi)) · ψ|A′
i
(δ0

i ) (6.7)
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=
∑

i∈I1∪I′
2

2∂(cαi
· vi) · (∆̃U ′

i
ψ|A′

i
)(δ0

i ) (6.8)

= 2∂(cαH
· u) · ϕ|A′

H1
(γ0

1). (6.9)

Let us make some comments on these computations. The first line (6.4) is obtained by
using the local expression of ϕ around γ0

1 . The contribution of the indices i ∈ I, not in
I1 ∪ I2 being 0, we have (6.5). In (6.6), we use parts (i) and (v) of Proposition 6.5 and
the jump relations for ψ, where cαi

is the standard Cayley transform defined in § 5.2. For
the last steps, we need one more lemma.

Lemma 6.9 (cf. Proposition 4.6 of [Sh1] and Theorem 6.1.1 of [Sh5]). Suppose
that we are in the situation of § 6.6. Then, for each i ∈ I1 ∪ I2, one can construct by
Cayley transform an admissible covering η(A′

i,A
′
H) of A′

H . Furthermore, {η(A′
i,A

′
H)}i∈I1∪I′

2

is a complete set of admissible coverings of A′
H and this induces a set of isomorphisms

{η(U ′
i ,V′

1)}i∈I1∪I2 , where V ′
1 is a neighbourhood of γ0

1 in exp(tH)Rγ0
1 and U ′

i is a neigh-
bourhood of δ0

i in A′
i having the following properties.

(1) limν→0 ∆̃Ui
(δν

i ) = ∆̃U ′
i
(δ0

i ).

(2) Fix i ∈ I1 ∪ I ′
2 and let λ ∈ a∗

i (respectively, λ ∈ (a′
i)

∗) be the linear functional
appearing in the statement of Proposition 6.5 (i) with respect to Ui (respectively,
U ′

i). Also fix u ∈ S(tH) and vi = η−1
(Ai,AH)(u), v′

i = η−1
(A′

i,A
′
H)(cαH

· u). Then

cαi · τλ(vi) = τλ′(v′
i).

The left-hand side in (1) is well defined because of Proposition 6.5 (v). So far, we have
supposed that the δ0

i are θ-semi-regular. A well-known result of Harish-Chandra enables
us to relax this assumption. Thus the ϕ satisfies the jump relations, and complete the
proof of Theorem 5.4.

The next sections are devoted to the proofs of the various lemma stated above.

7. Roots, coroots, Cayley transforms, etc.

7.1. Cayley transforms

We need to be more precise about the standard Cayley transforms we use. Let gR be a
real reductive Lie algebra and g its complexification. We denote by σ the conjugation
of g with respect to gR. Let bR ⊂ gR be a Cartan subalgebra. Let α ∈ R(g, b) be an
imaginary root. Choose a root vector Xα for α and fix a root vector X−α of −α such
that [Xα, X−α] = Hα. Then C · Xα + C · X−α + C · Hα is a simple complex Lie algebra
invariant under conjugation, σ(Hα) = −Hα = H−α and σ(Xα) = cX−α for some c ∈ C.
Either there is a Xα for which σ(Xα) = −X−α or there is one for which σ(Xα) = X−α.
In the former case, α is compact, and non-compact in the latter. In § 5, we defined the
standard Cayley transform cα with respect to a non-compact imaginary root α to be
the element exp(−iπ/4(Xα + X−α)) of the adjoint group of gδ0θ for some δ0 in G(R),
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θ-semi-regular. We will say that cα is a standard Cayley transform with respect to α

and δ0. We have

b = Ker α ⊕ C · Hα,

bR = Ker α|bR
⊕ iR · Hα.

Let a := cα ·b = Ker α⊕C · (Xα −X−α). This is a Cartan subalgebra defined over R and

aR = Ker α|bR
⊕ iR · (Xα − X−α).

The root β := cα · α of R(g, a) is real and cα · Hα = Hβ = i(Xα − X−α). Furthermore,

σ(cα) = exp
(

iπ
4(Xα + X−α)

)
= c−1

α .

A standard Cayley transform is a particular case of a generalized Cayley transform
defined by Shelstad (see [Sh1, § 2]), and thus σ(cα)−1cα = c2

α realizes the Weyl reflection
sα with respect to the root α.

It will be useful to reverse the process, and define Cayley transform with respect to real
root. If a is a Cartan subalgebra of g defined over R, and β a real root, we take root vectors
Xβ and X−β in gR such that [Xβ , X−β ] = Hβ and define cβ := exp(iπ/4(Xβ + X−β)).
The root cβ ·β of b := cβ · a is imaginary non-compact and we can make the choices such
that cβ = c−1

α .

7.2. Proof of Lemma 6.7

We need to introduce more material from [KS]. Suppose that θ∗ preserves the pair
(B, T ) of G∗, with T defined over R. Let us denote by R(G∗, T ) the system of roots of T

in G∗, and by Rres(G∗, T ), the set of restricted roots, i.e. the set

{αres = α|(T θ∗ )0 , α ∈ R(G∗, T )}.

There is a partition of Rres(G∗, T ) in three types of restricted roots, denoted R1, R2

and R3 (see [KS, § 1.3]). Notice that, unlike [KS], we do not suppose G∗ to be simply
connected, in particular, T θ∗

does not have to be connected. Notice also that if δ ∈ T (R)
is regular, then A := exp tθ

∗

R
δ is a Cartan subspace of G∗ and that Rres(G∗, T ) is nothing

but the root system of A in G∗.
Let α ∈ R(G∗, T ) ⊂ X∗(T ) and let αˇ ∈ R (̌G∗, T ) ⊂ X∗(T ) be its coroot. Recall that

we have constructed the L-group LG using a splitting splĜ = (B, T , {X}) of Ĝ. This give
an identification T̂ = T . Thus we can consider the restriction of

αˇ ∈ R (̌G∗, T ) = R(Ĝ, T ) ⊂ X∗(T )

to (T θ̂)0. Denoting also by θ̂ the transpose automorphism of X∗(T ), we have

(α )̌res ∈ X∗((T θ̂)0).
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An explicit expression for X∗((T θ̂)0) is X∗((T θ̂)0) = X∗(T )/L, where L is the sublat-
tice of all τ ∈ X∗(T ) with the property that there exists a non-zero integer n such that
nτ ∈ (1 − θ̂)X∗(T ) (see [ABV, Lemma 9.5]). Let us also set

X∗(T )θ̂ := X∗(T )/(1 − θ̂)X∗(T ).

We can also take the coroot of αres,

αres ∈ Rres(G∗, T ) ⊂ X∗((T θ∗
)0), (αres)̌ ∈ X∗((T θ∗

)0) = X∗(T )θ∗
.

At this point it must be clear to the reader that (αres)̌ �= (α )̌res. We have the following
relations between their coroots (see [KS, § 1.3] for notation and proofs of the various
statements):

((αres)̌ )̌ = αres, (7.1)

((α )̌res)̌ =

{
Nα if αres is of type R1 or R3,

2Nα if αres is of type R2.
(7.2)

Suppose that we are in the situation of § 4, i.e. we have a maximal torus TH of H

defined over R, and an admissible embedding

η : TH → Tθ∗ .

We say that α ∈ Rres(G∗, T ) originates in H when it exists a root αH ∈ R(H, TH) such
that αHˇ = (α )̌res.

Notice that αHˇ ∈ R (̌H, TH) ⊂ X∗(TH) � X∗(TH) = X∗((T θ̂)0).
Let γ ∈ TH(R) be G∗-regular, and δ ∈ G∗ such that η(γ) = Nθ∗(δ). Notice that we

changed our notation, because in what follows only G∗ plays a role, and not G itself. Of
course, all previous results apply to the case G = G∗ and this is what we use implicitly
in this paragraph.

We then have

αH(γ) =

{
Nα(δ) if αres is of type R1 or R3,

(Nα(δ))2 if αres is of type R2.
(7.3)

Let η(A,AH) : A := exp tθ
∗

R
δ → AH = exp(tH)Rγ be an admissible covering. Let δ0 ∈ A

be a θ∗-semi-regular element with respect to the roots ±αres ∈ R(G∗, A) = Rres(G∗, T )
(i.e. det(Id−(Ad δ0 ◦ θ∗)−1)|g±α

C

= 0 and ±αres are the only restricted roots with this
property), and furthermore, suppose that αres originates in H (i.e. (αres)̌ = αHˇ for
some αH ∈ R(H, TH)). Let γ0 = η(A,AH)(δ0) and suppose we are in the situation of
Lemma 6.7, i.e. γ0 is semi-regular with respect to the roots ±αH . The considerations
of [KS, § 1.3] (and (7.3) above) show that we are in one of the following two cases:

(i) αres is of type R1, αH(γ0) = Nα(δ0) = 1;

(ii) αres is of type R2, αH(γ0) = 1 and Nα(δ0) = 1.
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The restriction of Nθ∗ to (T θ∗
)0 defines a transpose map,

N∗ : X(Tθ∗) → X((T θ∗
)0).

For all t ∈ (T θ∗
)0, for all τ ∈ X(Tθ∗),

N∗(τ)(t) = τ(Nθ∗(t)).

In particular, for all t ∈ (T θ∗
)0,

N∗(((α )̌res)̌ )(t) = ((α )̌res)̌ (Nθ∗(t))

=

{
Nα(t) if αres is of type R1,

(Nα(t))2 if αres is of type R2.

Since t ∈ (T θ∗
)0, Nα(t) = α(t)lα , where lα is the multiplicity of the root α. The map

Nθ∗ also defines a map,
N∗ : X∗((T θ∗

)0) → X∗(Tθ∗),

which is the transpose of N∗, and we have

N∗((αres)̌ ) =

{
lα(α )̌res if αres is of type R1,

2lα(α )̌res if αres is of type R2.

Lemma 6.7 is a straightforward consequence of these computations, with mα = lα if αres

is of type R1 and mα = 2lα if αres is of type R2.

7.3. Proof of Lemma 6.6

Suppose we are in the setting of Lemma 6.6 and that A′
H does originates in G(R). We

want to prove that AH also originates in G(R).
Our hypothesis is that there exist a θ∗-stable maximal torus T ′ of G∗ defined over R,

with an admissible embedding η′ : T ′
H → T ′

θ∗ , elements γ ∈ T ′
H , δ∗ ∈ T ′, δ ∈ G(R) and

x ∈ G∗
sc such that δ is θ-regular, η′(γ) = Nθ∗(δ∗), δ∗ = xm(δ)θ∗(x)−1 and

Intx ◦ ψ : T δθ
δ → (T ′)θ∗

is defined over R (see § 4). From these data, we obtained an admissible covering,

η(A′,A′
H) : A′ := exp g

δθ
R δ → A′

H .

Let us denote by βH the real root of R(H, T ′
H) obtained by taking the Cayley transform

cαH
·αH , and by Bres the restricted root of Rres(G∗, T ′) such that (B )̌res = (βH )̌ . Since

η′ is defined over R, Bres takes real values on (T ′)θ∗

0 (R).
Let δ0 ∈ A be such that η(A′,A′

H)(δ0) = γ0 and let δ∗
0 = xm(δ0)θ∗(x)−1. We then have

βH(γ0) = 1 =

{
NB(δ∗

0) if Bres is of type R1,

NB(δ∗
0)2 if Bres is of type R2.
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Thus if Bres is of type R1, NB(δ∗
0) = 1 and δ∗

0 is singular with respect to Bres (case 1).
If Bres is of type R2, NB(δ∗

0) = ±1. If NB(δ∗
0) = 1, then δ∗

0 is singular with respect
to Bres (case 2). If NB(δ∗

0) = −1, let Cres = 2Bres ∈ Rres(G∗, T ). This is a restricted
root of type R3 and NB = NC (see [KS, § 1.3]). Then δ∗

0 is singular with respect to Cres

(case 3). If Bres is of type R3, let Cres = 1
2Bres ∈ Rres(G∗, T ). This is a restricted root of

type R2 and NB = NC. We have then NC(δ∗
0) = NB(δ∗

0) = 1 and δ∗
0 is singular with

respect to Cres (case 4).
In cases 1 and 2, we set Bres = Cres. Let us denote by β the transport of Cres to R(G, A′)

by Intx ◦ ψ. This is a real root of R(G, A′). We take the standard Cayley transform cβ

with respect to β and δ0 and define aC = cβ · a′
C
, a = aC ∩ gR.

We also need to use the standard Cayley transform cCres with respect to the root Cres of
the Cartan subalgebra (t′)θ∗ ⊂ gδ∗

0θ∗
. Let u := cCres · (t′)θ∗

. This is a abelian subalgebra
of g, composed of semi-simple elements, and containing regular ones. Let t := Cent(g, u).
This is a θ∗-stable Cartan subalgebra. We denote by T its centralizer.

Notice that Intx ◦ ψ|aC
is not necessary defined over R, but reduction to the SL(2)

case shows that there exists t ∈ (T θ∗
)0 such that

Int tx ◦ ψ : aC → t
θ∗

is defined over R and the following commutative diagram:

a′
C

Ad x◦ψ−−−−−→ (t′)θ∗

�cβ

�cCres

aC

Ad tx◦ψ−−−−−→ tθ
∗

Since cCres ∈ Gδ∗
0θ∗

, we have θ∗(cCres) = (δ∗
0)−1cCresδ

∗
0 , and, for all t ∈ T ′,

θ∗(cCrestc
−1
Cres

) = (δ∗
0)−1cCresδ

∗
0t(δ∗

0)−1c−1
Cres

δ∗
0 = cCrestc

−1
Cres

.

Thus Ad cCres maps (1 − θ∗)T ′ onto (1 − θ∗)T and induces a map c̄Cres : T ′
θ∗ → Tθ∗ . We

define η by the following commutative diagram:

T ′
H

η′

−−−−→ T ′
θ∗

Nθ∗←−−−− (T ′)θ∗

0�cβ

�c̄Cres

�cCres

TH
η−−−−→ Tθ∗

Nθ∗←−−−− (T θ∗
)0

It remains now only to check that η is defined over R to complete the proof of Lemma 6.6.
For all γ ∈ TH , we have

σG∗(η(γ)) = σG∗(Int c̄Cres ◦ η′ ◦ Int c−1
βH

(γ))

= Int(σG∗(c̄Cres))(σG∗(η′(Int c−1
Cres

(γ))))

= Int c̄−1
Cres

(η′(σH(Int c−1
βH

(γ))))
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= Int c̄−1
Cres

◦ η′ ◦ Int cβH
(σH(γ))

= Int c̄Cres ◦ sCres(η
′(sβH

(Int cβH
(σH(γ)))))

= Int c̄Cres ◦ η′ ◦ Int cβH
(σH(γ))

= η(σH(γ)).

Thus we have constructed an admissible embedding η : TH → Tθ∗ and this finishes the
proof of Lemma 6.6.

7.4. Proof of Lemma 6.8

Suppose that T ′
H(R) does originates in G(R). Then it is clear from the constructions

of § 7.3 that there exists an admissible covering,

η(A′,A′
H) : A′ = exp a

′
Rδ0 → A′

H = exp t
′
Rγ0,

with η(A′,A′
H)(δ0) = γ0 and we can make the choices such that δ0 is one of the δ0

i . Since

[gδ0θ
R , gδ0θ

R ] � sl(2, R),

δ0 is not in Aθ-In-reg, which is what we wish to show.

8. Proof of Proposition 6.5 and Lemma 6.9

8.1.

Let us fix δ ∈ Aθ-reg, γ1 = η(U,V1)(δ) and X ∈ aR as in the proposition. We have

∆̃U ((expX)δ) = ∆(η(U,V1)((expX)δ), (exp X)δ)

= ∆(η(U,V1)((expX)δ), (exp X)δ; γ1, δ)∆(γ1, δ)

= ∆((η(U,V1)(exp X))γ1, (exp X)δ; γ1, δ)∆(γ1, δ),

where ∆(·, ·; ·, ·) is the canonically defined relative transfer factor of [KS]. It is this
relative transfer factor we will examine, and since δ, γ1 are fixed, as well as η(U,V1) and
Tθ∗ � TH , we will denote simply by

∆(X) = ∆((η(U,V1)(exp X))γ1, (exp X)δ; γ1, δ).

8.2.

The first assertion of Proposition 6.5 (i) is obvious and the second is established
in [Sh6], with an explicit determination of the λ appearing in Proposition 6.5 (i). Let us
now prove the rest of (i). From the definition of transfer factors, we see that the obstruc-
tion to extend ∆̃U to a smooth function on U comes from the ∆2 term. More precisely,
there might be an obstruction at the point (expX)δ if

(i) Nα((expX∗)δ∗) = 1 with α orbit of the first kind;

(ii) Nα((expX∗)δ∗) = ±1 with α orbit of the second kind;

(iii) Nα((expX∗)δ∗) = −1 with α orbit of the third kind.

So ∆̃ extends to a smooth function on Uθ-I-reg.
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8.3.

Let us recall some notation from Proposition 6.5. Let δ0 ∈ U be a θ-semi-regular ele-
ment such that the roots ±α of a in gδ0θ are imaginary. If γ0

1 = η(U,V1)(δ
0) is semi-regular,

that means that the transport of α to tθ
∗

by Intx ◦ ψ is not of one of the type above, so
∆̃U has a smooth continuation at δ0. This can be rewritten

lim
ν→0+

∆(γν
1 , δν) = lim

ν→0−
∆(γν

1 , δν),

proving the corresponding assertions in (iii) and (v). If γ0
1 is regular, we are in the opposite

situation, and the transport of α to tθ
∗

by Intx◦ψ (denoted by βres) is of one of the type
above. Suppose that it is of the first kind, i.e. Nα(δ0,∗) = 1, with α an orbit of type R1

not from H. The obstruction to the smoothness of ∆̃U at δ0 comes from the factor

χβres(Nβ(δν,∗) − 1)

and it is easy to see that

lim
ν→0+

χβres(Nβ(δν,∗ − 1)) = − lim
ν→0−

χβres(Nβ(δν,∗ − 1)).

We can make similar computation in the two remaining case and conclude that

lim
ν→0+

∆(γν
1 , δν) = − lim

ν→0−
∆(γν

1 , δν),

proving the assertions in (ii) and (iv).

8.4.

For the remaining assertions of Proposition 6.5, we need to compare

∆(γν
1 , δν) and ∆(γν

1 , δ−ν).

By [KS, Theorem 5.1.D], the quotient of these two terms is given by the quantity

〈inv(δν , δ−ν), κδν 〉.

Let wα be an element in Gδ0θ
sc realizing the Weyl group reflection sα. We have

wαδνθ(wα)−1 = δ−ν .

Thus the hypercocycle

inv(δν , δ−ν) ∈ H1(Γ, T sc
δν

(1−θδν
)π−−−−−−→ Vδν )

is given by the pair (σG(wα)w−1
α , 1). We transport this by Intx ◦ ψ to an element of

(yσ, 1) of H1(Γ, T sc (1−θ∗)π−−−−−→ V ) (recall that Intx ◦ ψ transports Tδν to T over R and
transports θδν

to θ∗).
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Let us recall some properties of the pairing in hypercohomology. From [KS, end
of § A.1], we extract two relevant portions of exact sequences,

· · · → H1(Γ, Ker(1 − θ∗)) i′
−→ H1(Γ, T sc (1−θ∗)π−−−−−→ V )

j′

−→ H0(Γ, coker(1 − θ∗)) → · · · ,

· · · → H1(WR, Ker(1 − θ̂)) î′
−→ H1(WR, V̂

1−θ̂−−→ T̂ ad)
ĵ′

−→ H0(WR, coker(1 − θ̂)) → · · · .

Now Ker(1 − θ∗) = (T sc)θ∗
, coker(1− θ̂) = (T ad)θ̂ and the transport yσ of σG(wα)w−1

α

by Intx ◦ ψ defines a cocycle in H1(Γ, (T sc)θ∗
). Furthermore, i′(yσ) = (yσ, 1), and, by

the compatibility of the pairing with the above exact sequences (see [KS, (A.3.13)]), we
get

〈inv(δν , δ−ν), κδν 〉 = 〈yσ, ĵ′(b−1
T , s)〉 = 〈yσ, s〉,

where the pairing on the right-hand side is the Tate–Nakayama pairing between
H1(Γ, (T sc)θ∗

) and H0(WR, (T ad)θ̂). Notice that since we take invariants in Gsc, (T sc)θ∗

is connected. The properties of this pairing are well known (see [Sh3] for instance), and
〈yσ, s〉 = 1 if γ0 is singular in HR, and 〈yσ, s〉 = −1 if γ0 is regular in HR.

8.5. About Lemma 6.9

Suppose that we are in the situation of the lemma. Recall the complete set of admissible
coverings {η(Ai,AH)}i∈I . Let i ∈ I1 ∪ I2. Then δ0

i is semi-regular with respect to a non-
compact imaginary root αi of ai in g. This root originates from a root αH of tH in h.
Consider the Cayley transforms cαi : ai → a′

i and cαH
: tH → t′H . From the constructions

of § 7.3, it is clear that we have an admissible covering

η(A′
i,A

′
H) : A′

i = exp a
′
i,Rδ0

i → A′
H = exp t

′
H,Rγ0.

If i ∈ I2, let η̄(A′
i,A

′
H) be the admissible covering obtained as above from η̄(Ai,AH)

instead of η(Ai,AH). It is easy to check that η̄(A′
i,A

′
H) and η(A′

i,A
′
H) are equivalent, i.e. they

are θ-conjugate by an element of GR (the computations essentially take place, modulo
centre, in a copy of SL2). It is also straightforward to check that if i, j ∈ I1 ∪ I ′

2, then
η̄(A′

i,A
′
H) is equivalent to η̄(A′

j ,A′
H) if and only if i = j.

Now suppose that η(A′,A′
H) : exp a′

R
δ0 → A′

H = exp tHγ0 is an admissible covering of
A′

H , where γ0 is semi-regular with respect to a real root αH . Then the constructions can
be inverted, using inverse Cayley transforms. Thus we obtain an admissible covering

η(A,A′
H) : A = exp aRδ0 → AH = exp tH,Rγ0,

which has to be equivalent to one of the η(Ai,AH). Then η(A′,A′
H) is equivalent to η(A′

i,A
′
H).

This proves the first assertion of the lemma.

8.6.

The second assertion of the lemma will be a consequence of the results in [Sh6]. Let
us write ∆ and ∆′ for ∆̃Ui and ∆̃U ′

i
, with ∆ = ∆1∆2∆3 and ∆′ = ∆′

1∆
′
2∆

′
3. Adapting

the proof of Theorem 6.1.1 in [Sh5] to the twisted case, we obtain that

∆3(δ0
i ) = ∆′

3(δ
0
i ),
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and thus
lim
ν→0

∆2∆3(δν
i ) = ±∆′

2∆
′
3(δ

0
i ).

The factor ∆1 is tailored exactly to get the sign right. To show this, we need to extend
the results about descent for transfer factors of [LS2] to the present setting of twisted
endoscopy.

8.7.

For the last assertion of the lemma, we start by noticing that it is enough to prove
that

cαi(vi) = v′
i.

This is because λ ∈ a∗ and λ′ ∈ (a′)∗ correspond to elements µ∗ ∈ t∗H and (µ′)∗ ∈ (t′H)∗,
which are both the restriction of the same element in h∗. What remains is straightforward.

8.8.

For the convenience of the reader and for references, we recall once more what is left
to get a complete proof of the transfer.

(i) From Proposition 6.5 (see the notation there), let δ ∈ Aθ-reg. Then there exists
λ ∈ a∗ and c ∈ C such that

∆̃U ((expX)δ) = ceλ(X)

for all X ∈ aR such that (expX)δ ∈ Uθ-reg. We need also an explicit determination
of this λ in terms of endoscopic data.

(ii) From Lemma 6.9, limν→0 ∆̃Ui(δ
ν
i ) = ∆̃U ′

i
(δ0

i ).
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[Art] J. Arthur, Unipotent automorphic representations: conjectures, in Orbites unipotentes
et représentations, II, Groupes p-adique et réels, Astérisque 171 (1989), 13–71.
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