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Abstract

We report time-dependent simulations of the evolution of atoms, molecules, and solids in the presence of intense
electromagnetic radiation using the density functional theory. In the case of the ionic degrees of freedom we find that
selective breaking of strong bonds may be possible at off-resonant infrared frequencies by a novel “concerted kick”
mechanism. In the case of the electron response we find the following: free atoms and ions under intense infrared light
respond with high harmonics in the X-ray regime; for a free molecule~Si2!, we predict an unusual third harmonic
response to a UV pulse centered at a frequency equal to the primary electronic excitation of the molecule; for a semi-
conductor~Si!, we find several odd harmonics in response to a continuous wave of subgap infrared radiation. Prospects
for future calculations are discussed.

1. INTRODUCTION

Density functional theory, formulated by Kohn and cowork-
ers in the 1960’s~Hohenberg & Kohn 1964; Kohn & Sham
1965!, has proved to be a very powerful method to treat
ground–state properties of many electron systems, espe-
cially molecules and solids. In this theory the properties of
the system are determined entirely by the ground–state elec-
tron density, which is expressed in terms of one-electron
wave functions that are eigensolutions of an effective one-
electron Hamiltonian. In 1985, Car and Parrinello~1985!
introduced a ground breaking innovation that allows dynam-
ical simulations of the evolution of polyatomic systems. In
these simulations, there are no time-dependent external forces
so that the conditions of validity of the original density func-
tional theory are satisfied. At each time step, the electrons
are maintained in their instantaneous ground state and forces
on the ions are calculated using the Hellmann–Feynman theo-
rem~Payneet al., 1992!.

The presence of an external time-dependent potential, such
as electromagnetic radiation, calls for the time-dependent
density functional theory. A version of such theory was de-
veloped and used in the 1980’s to describe thelinear re-
sponse of the electron system, assuming stationary nuclei
~Stott & Zaremba, 1980; Zangwill & Soven, 1980; Levine
& Soven, 1984!. A generalization of the original density–

functional theory to describe the fullnonlinearresponse of
the electron system was developed by Runge and Gross
~1984!. In this theory, the properties of the system are again
determined by the electron density, which evolves with time.
The density is expressed in terms of one-electron wave func-
tions that satisfy a time-dependent one-electron Schroedinger
equation. If the system is started in its ground state and the
radiation is turned on either in continuous wave or pulse
form, the one-electron wave functions evolve gradually.

The Runge–Gross density functional theory for electrons
can be extended to include the response of the ions to the
external time-dependent electromagnetic field. This is in ef-
fect Car–Parrinello dynamics combined with electron dy-
namics in the presence of external time-dependent fields,
fully nonlinear. The only missing ingredient for such a for-
mulation is a Hellmann–Feynman theorem that allows the
definition of forces in the presence of time-dependent exter-
nal potential. Such a theorem was recently developed by Di
Ventra and Pantelides~2000!.

It is important to note that, unlike other formulations of
the many-electron problem, density functional theory does
not have “excited” one-electron states. The only meaningful
one-electron wave functions are those describing the elec-
trons, in terms of which one constructs the electron density.
Electron excitations manifest themselves through the evo-
lution of the occupied one-electron wave functions. For ex-
ample, at any time step, one can project the instantaneous
wave functions onto the corresponding ground state wave
functions and thus determine what fraction of the total elec-
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tron density is in “excited states.” One can also project the
instantaneous wave functions on the complete one-electron
spectrum of the ground-state effective Hamiltonian.

There have been very few applications of the nonlinear
time-dependent density functional theory to free atoms
~Grosset al., 1996!. Most other nonlinear theoretical calcu-
lations of light interacting with atoms and molecules use the
time-dependent Hartree–Fock formulation or semiempiri-
cal schemes~Kulander, 1991; Bandrauk, 1994; Giusti-Suzor
et al., 1995!. We have launched a systematic development of
computer codes to implement nonlinear time-dependent den-
sity functional theory to atoms, molecules, and solids and
study their response in the presence of intense electromag-
netic radiation. In this paper we report initial representative
results.

In the very first application~Ferconiet al., 1999!, we stud-
ied the effect of intense infrared light on a molecule~HCN!
with a large gap between the highest occupied molecular
orbital ~HOMO! and the lowest unoccupied molecular or-
bital ~LUMO! so that electronic excitations would require
a high-order multiphoton process. We could then use an
adiabatic approximation whereby we could maintain the elec-
trons in their instantaneous ground state. In this approxima-
tion, time-dependent density functional theory reduces to
the conventional ground-state density functional theory ex-
cept for the fact that the external potential is time-dependent.
We will give a brief account of these results in Section 2.

We have since developed a fully time-dependent code and
have studied the response of the electron systems in free
atoms, molecules, and solids. We describe the initial results
in Section 3. We summarize and discuss future prospects in
Section 4.

2. SELECTIVE BOND BREAKING

Infrared light couples with the vibrational modes of a mol-
ecule. It is reasonable to expect, therefore, that intense in-
frared light at a frequency that is resonant with the vibrational
stretch mode of a particular bond might selectively break
that bond. Such an effect would have important implications
for selective, nonthermal processing. Unfortunately, exper-
iments aiming to demonstrate selective bond-breaking over
the years have failed to demonstrate selectivity. It seems that
the weaker bonds break first, even if one targets the stretch
modes of the strong bonds. The phenomenon has been at-
tributed to rapid distribution of the absorbed energy to the
entire molecule as if it had been supplied by thermal means.

Earlier theoretical work on the dynamics of molecules
has been based mostly on potential energy surfaces of either
the ground or excited configurations and on empirical mod-
els of how the electrical dipole of the molecule depends on
interatomic distances in the absence of radiation~ Heather &
Metiu, 1984; Kulander, 1991; Bandrauk 1994; Botinaet al.,
1995; Giusti-Suzoret al., 1995!. Such assumptions are ex-
pected to be valid for weak or moderate field intensities, but
should break down for higher intensities when the electron

density and bonding potentials are altered significantly by
the time-dependent radiation field.

Our calculations employed a supercell, placing a mol-
ecule in a box with periodic boundary conditions. The ex-
ternal field is effectively constant over the supercell so that
the corresponding potential is linear inx. We used a periodic
saw-tooth potential with the correct linear behavior in the
region of the molecule. The effect of the extraneous “teeth”
at the box boundaries was carefully monitored and con-
trolled. We used Vanderbilt’s ultrasoft pseudopotentials, a
plane-wave basis set with an energy cutoff of 25 Ry and
conjugate gradients for the determination of the instanta-
neous ground-state electron density~Car & Parrinello, 1985;
Payneet al., 1992!.

For moderate electric fields, the molecule vibrates in lin-
ear response, following the field. For intense fields, how-
ever, the response is highly nonlinear. It is shown in Figure 1
at two different frequencies:~a! resonant with the stretch
mode of the strong C–N bond and~b! an off-resonant fre-

Fig. 1. Variation of the C-N bond length~solid! and the C-H bond length
~dashed! in an HCN molecule in the presence of high-intensity infrared
light a! at the frequency of the C-N bond, b! at an off-resonance frequency.

558 J.J. Vicente Alvarez et al.

https://doi.org/10.1017/S0263034600183296 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034600183296


quency. We note that the phases of the C–H and C–N vibra-
tions are not correlated. At the resonant frequency, the C–N
amplitude rises quickly to a large value and remains fairly
constant, following a nearly harmonic pattern. A break of
the C–N bond does not, therefore, appear likely. At the same
time, the C–H motion is not harmonic and has a relatively
small amplitude. Overall, the system is not absorbing en-
ergy monotonically as it does in the weak-field case. Exam-
ination of the electron density of the molecule revealed that
it changes significantly so that the effective “spring con-
stant” varies with time. The ground-state normal modes are
no longer relevant at intense radiation fields.

The response of the molecule at the nonresonant fre-
quency~56.76 THz! reveals no harmonic behavior for either
the C–H or the C–N motions. Again energy is not absorbed
monotonically. A break occurs after about 140 fs. The break
is shown in an expanded scale in Figure 2. Careful exami-
nation of the relative motions just before the break reveals
that the N atom is rebounding from its closest proximity to
the C atom while the H atom is rebounding from its farthest
distance from the C atom. We called the process a “concert-
ed kick”: as the N atom is moving away from the C atom, the
H atom is giving it a kick from the back side. Unfortunately
the length of the computations does not allow systematic
studies of the effect to extract a rate. We therefore present
this result as a possible mechanism for selective bond
breaking.

We were able to address the validity of the adiabatic ap-
proximation by using fully time-dependent codes which we
will describe in more detail in the next section. In Figure 3
we show the response of the electron system of HCN at the
equilibrium bond length at two different intensities: corre-
sponding to a field amplitude of 2V0Å and 4V0Å. The latter
is the intensity at which the C–N bond break occurred. We
see that at the lower intensity some structure develops at

about 120 fs. At the higher intensity the superposed struc-
ture develops much earlier. Careful analysis of the structure
and convergence tests reveal that it corresponds to high har-
monics. It constitutes a small effect on the overall response
of the molecule suggesting that the adiabatic approximation
is in fact valid. We will discuss the high-harmonic response
further in the next section.

3. NONLINEAR ELECTRON RESPONSE

We have implemented time-dependent density functional
theory~Runge & Gross, 1984! in a general code that is ca-
pable of handling the effect of an external time-dependent
potential~e.g. electromagnetic radiation! for an atom, mol-
ecule, or solid. The core of the program is the time-dependent
Schroedinger equation

i
]Fa~x, t !

]t
5 H~t !Fa~x, t ! ~1!

where we use atomic units andH~t ! 5 H0~t ! 1 HI ~t !. Here,
H0~t ! is the standard effective one-electron Hamiltonian of
density functional theory except that the electron density
r~r, t ! is now time-dependent. By using the local-density

Fig. 2. Expanded version of Fig. 1b showing the break of the C-N bond
that occurs at about 140 fs.

Fig. 3. Variation of the electrical dipole of HCN in the presence of intense
infrared light with the nuclei held frozen at the equilibrium positions a! at
4 V0Aand b! 8 V0A. The high-frequency structure is high-harmonic response.
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approximation for the exchange-correlation potential with a
time-dependent density we are adopting an adiabatic approxi-
mation. TheHI ~t ! is the interaction term which, in the di-
pole approximation for electromagnetic radiation, is normally
given by the Lorentz gauge, namely,

V~x, t ! 5 2x{E0sinvt. ~2!

This form can be used for atoms and molecules in a large
supercell with periodic conditions. It produces a saw-tooth
function but the atom or molecule is in the linear region.
This approach was used successfully in the calculations dis-
cussed in the previous sections and in calculations of elec-
tron response in atoms and molecules to be discussed below.
For solids, this form cannot be used. We, therefore, adopted
an alternative gauge where the scalar potential is zero and
the electric field is given in terms of the vector potential
~Coulomb gauge!, namely

E~x! 5 2
1

c

]A

]t
. ~3!

As is standard in density functional theory, the electron
density is given by

r~x, t ! 5 (
a5occ.

6Fa~x, t !62 ~4!

whereocc. stands for “occupied wave functions.” It should
be emphasized that this theory has only occupied one-electron
wave functions and that “excitations” occur as the occupied
wave functions evolve.

The time-stepping of Eq.~1! is done by applying the
evolution operatorU~t, t 1 dt ! to the one-electron wave
functions:

Fa~t 1 dt ! 5 U~t, t 1 dt !Fa~t !

5 Tt expF2iE
t

t1dt

dt 'H~t ' !GFa~t ! ~5!

whereTt is the time-order operator anddt is the time step.
For numerical calculations, we express the evolution oper-
ator in terms of a power series expansion, namely,

U~t, t 1 dt ! 5 (
n50

N ~2i !n

n!
H n~t !dt n. ~6!

The time stepdt and the cutoffN are chosen to ensure con-
vergence. We found typical values ofN to be;12 anddt ;5
1024 fs. Convergence is monitored through the norm of the
wave function.

Initial calculations of nonlinear response of electrons to
electromagnetic radiation were carried out for atoms, mol-
ecules, and solids without allowing the nuclei to move. The
results of these calculations follow.

3.1. Atoms

We studied rare-gas atoms in pulsed intense infrared light.
In Figure 4 we show the electrical dipole of an Ar atom in a
pulse of two different intensities, corresponding toE054
and 8 eV0Å. In the weaker intensity, the dipole follows the
electric field halfway through the pulse~linear regime! and
then starts exhibiting higher harmonics. In the higher inten-
sity, the higher harmonics appear earlier. In Figure 5, we
show the Fourier transform of the electrical dipole~power
spectrum! showing the frequencies contained in the response.
We see a sequence of odd harmonics with diminishing con-
tribution. The calculation does not include spontaneous emis-
sion, but classical electrodynamics tells us that oscillating
charges will emit electromagnetic radiation at the frequency
of oscillation. The calculations, therefore, show that the atom
will emit light in a large number of odd harmonics, as ob-
served experimentally~Schnüreret al., 1997!. In Figure 6,
we show the actual power output relative to the input power,
showing that the emission intensity drops quite slowly as a
function of frequency. The rate of intensity drop-off is a func-
tion of the intensity of the pulse. These results are consistent
with experimental observations of X-ray emission.

In the simulations we did not record any ionization events.
We have not pursued investigations of ionization because of
limitations of density functional theory. We investigated the
accuracy of the numerical calculations for the harmonic re-
sponse and have shown that the calculations can be ex-
tremely accurate if the time step and convergence are tight
enough. In Figure 7 we show the response of a Be11 ion
~equivalent to a He atom! to a continuous-wave infrared light.
The odd harmonics are seen to be extremely well defined
and sharp. The even harmonics are zero. In the pulsed light
of Figures 4–6, the harmonics are broadened by the fact that
there is a spectrum of frequencies that are present in the
pulse and in the response.

Fig. 4. Response of the electron system in an Ar atom under a pulse of
infrared light at two different intensities.
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3.2. Molecules

In the case of infrared light in atoms and molecules pre-
sented in the previous sections~Figs. 3–7!, we found that
both pulses and continuous waves produced high harmonic
response. In the case of UV light on molecules, continuous
waves produced a rather undramatic response. Fascinating
behavior was observed, however, in the case of a short Gauss-
ian pulse~40 fs! on a Si2 molecule at the frequency of the
lowest electronic excitation~0.58593 1015 Hz!. Figure 8a
shows the input pulse and Fig. 8b shows the response. It is
clear that in the first half of the pulse the electrons follow the
external field. Shortly after the half-way point of the pulse is
reached, the electrons burst into a highly nonlinear mode
oscillating at the third harmonic. We are not aware of exper-
iments along these lines, but clearly such systems show enor-
mous promise for nonlinear optical studies and possible
applications.

3.3. Solids

So far we have applied the method to test the nonlinear re-
sponse of a pure Si crystal. We found that the intensity of the
pulse must be kept low to get numerically stable results. We
only have an initial calculation shown in Figure 9 demon-
strating the appearance of several odd harmonics at an input
intensity of 0.01 eV0Å. Only the odd harmonics ought to be
present because the perfect crystal is centrosymmetric. The
weak second harmonic appearing in the spectrum is a mea-
sure of numerical accuracy that needs to be eliminated by
decreasing the time step and increasing other convergence
cutoffs. It is clear that the technique is powerful and can
produce second-harmonic response from interfaces that break
the symmetry. Second harmonic generation is a powerful
experimental probe of buried interfaces~Wanget al., 1998!,
but theory so far has relied on model calculations. Calcula-
tions using the present method are very promising but also
computationally extremely demanding for large supercells
needed to study interfaces.

4. FUTURE PROSPECTS

We have presented initial results of a long-term project to
compute the nonlinear response of atoms, molecules, and
solids using the time-dependent density functional theory.
So far we have studied ionic response in molecules in the
adiabatic approximation~no electronic excitations! and the
nonlinear response of the electron systems in atoms, mol-
ecules, and solids while keeping the ions in the ground state
positions. The codes have since been extended to include
simultaneous ionic motions and electronic response. There
is a wide range of problems that can be studied, for example,
the nonlinear response of electronic systems, light-induced

Fig. 5. Power spectra corresponding to Fig. 4.

Fig. 6. Power output relative to power input for the Ar case of Figs. 4
and 5.

Fig. 7. Power spectrum of the response of a Be11 ion to an intense infrared
light showing the odd high harmonics.
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bond breaking in molecules and crystal surfaces with ad-
atoms, and ablation. These are phenomena that have been
studied extensively experimentally but theoretical work so
far has been limited to semiempirical models.
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