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This article questions the rather pessimistic conclusions of Allen and Carroll
[Macroeconomic Dynamics 5 (2001), 255–271] about the ability of consumers to learn the
optimal buffer-stock-based consumption rule. To this end, we develop an agent-based
model in which alternative learning schemes can be compared in terms of the
consumption behavior that they yield. We show that neither purely adaptive learning nor
social learning based on imitation can ensure satisfactory consumption behavior. In
contrast, if the agents can form adaptive expectations, based on an evolving individual
mental model, their behavior becomes much more interesting in terms of its regularity and
its ability to improve performance (which is a clear manifestation of learning). Our results
indicate that assumptions on bounded rationality and on adaptive expectations are
perfectly compatible with sound and realistic economic behavior, which, in some cases,
can even converge to the optimal solution. This framework may therefore be used to
develop macroeconomic models with adaptive dynamics.
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1. INTRODUCTION

Recent developments of the standard approach to individual and aggregate con-
sumption behavior in the last two decades1 have been driven mainly by the quest
for a better matching with the stylized facts observed in this field. In an extensive
set of influential studies provided in this respect, Carroll (1992, 1997, 2001) shows
that an amended version of the life cycle/permanent income hypothesis model is
able to deliver outcomes that are, in a broad sense, consistent with the main features
of the related empirical evidence and, in any case, far more consistent than those
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stemming from the traditional modeling frameworks that have been called upon
before, such as the perfect certainty model with constant relative risk aversion
utility or the certainty equivalent model. In his version of the consumption model,
Carroll shows that, under quite mild conditions—regarding consumer behavior
under uncertainty—the solution to the optimal consumption problem does exhibit
the properties of a “buffer stock” rule, according to which the individual consumer
behaves as if she had a target level for a stock of financial assets in mind, and used
it to smooth her consumption in the face of an uncertain, periodic income stream.2

With this consumption rule at hand, the model is able to explain at least three
empirical puzzles that cannot be solved under the aforementioned alternative, set-
tings: the “consumption/income parallel,” the “consumption/income” divergence,
and the stability of the “household age/wealth profile.”3 Moreover, according to
Carroll, the buffer-stock model provides a reliable framework for formalizing
the Friedmannian conception of the permanent income hypothesis, by explicitly
acknowledging the importance of precautionary saving induced by uncertainty
about future labor income.

One of the main purposes of Carroll’s investigations is to try to reconcile the pre-
dictions of one model of individual consumption behavior based on intertemporal
optimization and rational expectations with what we do observe in terms of actual
consumption and savings patterns. Whether such a framework may plausibly be
assumed to underlie the consumption behavior of real-life consumers remains
an open question, however. As Carroll himself recognizes, “the sophisticated
mathematical apparatus [that is] required to solve [numerically] the optimal con-
sumption problem” [Carroll (2001, p. 41)] seems to act as a sufficient impediment
for considering that consumers could be endowed with such numerical capabilities
in reality. Indeed, despite its intuitive interpretation and heuristic simplicity, the
exact solution to the optimization problem takes the form of a complex nonlinear
consumption rule without any explicit analytical formula. Yet, as Allen and Carroll
show [Allen and Carroll (2001)], this optimal strategy may be approximated by
a linear rule whose adoption generates utility streams that are only slightly lower
than those associated with the exact and fully nonlinear solution. This rule recasts
the nonlinear optimization problem into a two-dimensional framework that has
an intuitive interpretation: the intercept of the rule formula determines the target
wealth and the slope, the speed with which the consumer tries to get back to
the latter when away from it. As such, this rule may in turn provide a plausible
candidate for learning and a relevant basis for testing whether consumers are
able to adopt a nearly optimal (intertemporal) consumption behavior in real life.
Allen and Carroll (2001) address this issue by considering a set of consumers who
engage in a process of trial and error regarding alternative linear consumption
rules, and select them according to their welfare properties. On the basis of their
simulations, they observe that “the simplified linear [nearly optimal] consumption
function is enormously difficult to find by trial and error . . . it takes about a million
“years” of model time to find a reasonably good consumption rule by trial and
error.” Hence, their conclusion: although the “empirical evidence suggests that
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typical households engage in buffer-stock saving behavior,” the “question remains
of how consumers come by their consumption rules.”

In this paper, we reassess the case for learning the linear buffer-stock rule
of Allen and Carroll by considering alternative assumptions about the learning
process followed by consumers. By doing so, we aim to investigate which features
of learning may be key in this context for pushing the consumption behavior close
to the optimal solution. The conclusion of Allen and Carroll seems to indicate
that no matter the length of the trial and the number of repetitions (at least for
plausible values of their combination), one simple (but systematic) exploration of
the strategy space (which obviously includes the linear approximation of the fully
optimal solution) proves to be a rather inefficient process for selecting the relevant
rule. Other forms of learning processes which, in contrast, do embed feedback
from experience to the (dynamic) choice of strategies by the individual consumer
may, however, lead to more efficient results. In the following we will analyze three
of them, which are usually considered in the learning literature: purely individual
adaptive learning based on a combination of discovered strategies and random
experimenting [Arifovic (1994); Vriend (2000); Yildizoglu (2002); Vallée and
Yıldızoğlu (2009)]; social learning based on imitation [Arifovic (1994); Vriend
(2000)]; adaptive individual learning where the strategies are chosen on the basis of
adaptive expectations formed by the agents, as a consequence of their experience
in the economy [Yildizoglu (2001)].

The first mechanism relies on the adaptation of agents’ behavior through both
random experimenting and combining already discovered strategies. Arifovic
(1994) provides one of the first analyses of this approach in an economic context.
What is modeled here is the capacity of the agents to refine a population of strate-
gies as a consequence of the performance they obtain with these strategies in their
environment, as well as their capacity to adapt their strategies to the evolution
of this environment, in a dynamic context. The formalization of this approach
usually corresponds to a particular adaptation of the genetic algorithms (GA)
introduced by Holland (1992). Many applications of this approach in economics
take the form of a social learning process, combining random experimentation by
individual agents with imitation of strategies between agents. The originality of our
approach is the adoption of a framework that includes purely individual learning
in the first place. We nevertheless also analyze the potential role of the social
dimension of learning, by introducing an imitation process between agents. This
social dimension corresponds to the second mechanism we analyze. Hence, we
echo the suggestion of Allen and Carroll according to which “there may be more
hope of consumers finding reasonably good rules in a ‘social learning’ context in
which one can benefit from the experience of others” [Allen and Carroll (2001)].
Moreover, Vriend (2000) indicates that social and individual learning can yield
very contrasted results [see also Vallée and Yıldızoğlu (2009)].

With the third learning scheme, we introduce a richer framework that aims
to overcome the main shortcoming of the preceding schemes: the absence of
forward-looking behavior by the agents. Looking forward is important when the
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agents compare different strategies, before choosing one of them for the current
period. If they do not form any expectations, they can only base that decision on
the performance that they have observed in the past. And, to this end, they can
only compare the strategies they have actually used in the past (and, moreover, in
specific economic contexts). To assess the potential performance of these strategies
in the current context (which can be completely new to them), or to assess how
the strategies they have recently discovered would perform, even if they have
not yet used them, they must be able to generalize from past observations. Such
generalization requires that the agents develop a representation of their environ-
ment and the connection between their decisions and performance. With rational
expectations, agents are assumed to know and use the real model of the economy,
whereas in a purely adaptive context this assumption is not relevant. In this respect,
the approach we introduce is original, because it adopts a framework in which the
agents are able to build a representation of their environment [a mental model,
Holland et al. (1989)], but only on the basis of their past experience. Moreover,
this representation evolves as a consequence of this experience.

To analyze the ability of consumers to learn through these mechanisms, we
develop a simple computational agent-based model (ABM) directly inspired by
the original setup of Allen and Carroll (2001). First, we introduce in this model
adaptive learning without expectations, including also a social component that we
modulate through a dedicated parameter. In a second stage, learning with adaptive
expectations is introduced by endowing each consumer with an artificial neural
network (ANN) that captures her mental model of the economy. To our knowledge,
this is the first article that considers such a learning process in this setup.4

Two articles tackling the same question as ours may be contrasted with the
approach adopted here. They are both based on a specific scheme of learning:
reinforcement learning. Reinforcement learning corresponds to the selection of
an action rule in a set of rules, with a probability that increases with the relative
success observed in the past for each rule [Sutton and Barto (1998)]. Howitt
and Özak (2009) consider such a reinforcement learning process and show that
consumers can discover optimal consumption strategies. But to obtain this result,
they need to enhance reinforcement learning with a very sophisticated adjust-
ment mechanism. This latter feature is rather difficult to accept under bounded
rationality assumptions, even if the complete learning process is parsimonious in
terms of information used by the consumer. Lettau and Uhlig (1999) introduce a
much simpler learning framework: a classifier system reduced to its reinforcement
learning component. In this setting, agents choose, in each period, the consump-
tion strategy that has obtained the highest average performance in the past. They
observe that this mechanism introduces a bias in favor of strategies that yield high
performance in periods with high incomes. These strategies are adopted instead of
the optimal one, which is introduced into the population from the start. However,
the authors disregard the most interesting dimension of classifier systems [Holland
and Miller (1991); Holland et al. (1989)], their ability to generalize using a flexible
correspondence between the states of the environment and the chosen strategies.
It ensues that Lettau and Uhlig use a reinforcement mechanism that is exclusively
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dependent on the past performance of the strategies. In contrast, we aim to build
a framework that is perfectly compatible with bounded rationality, and in which
agents can form adaptive expectations by generalizing from their past experience.

In what follows, we proceed through numerical simulations, and analyze our
results through standard statistical and econometric methods. Another innovation
of this article is the methodology used to conduct the sensitivity analysis in these
simulations. Instead of the commonly used Monte Carlo approach, we adopt a
design of experiments (DOE) method based on nearly orthogonal Latin hypercubes
(NOLH). This method is very promising in simulation studies, because it allows
the exploration of the parameter space in a very parsimonious way. The structure
of the ABM and our methodology are presented in dedicated sections.

Two main insights may be drawn from our analysis. First, the social dimension
of learning does not appear to significantly improve the ability of consumers to
discover (and adopt) nearly optimal consumption behavior. Endowing the con-
sumer with the capacity to imitate the best strategy that has been used in the
previous period adds only marginally to the performance associated with a purely
individual learning scheme. This result suggests that sharing rules corresponding
to different contexts (in terms of income and wealth) does not yield more efficient
learning when consumers face heterogeneous income shocks. Therefore, contrary
to what Allen and Carroll (2001) expect,5 the social learning process may not lead,
in such an environment, to quicker convergence onto the optimal strategy.

What seems crucial (and this is the second insight) for learning better consump-
tion rules is the ability of consumers to build, with the help of their experience,
structured representations of their environment. Assuming the existence of such
mental representations ensures a much better outcome in terms of convergence
toward the optimal rule than what would obtain when the strategy space was ex-
plored in an unstructured manner, through random experimenting and some simple
combination of already discovered strategies. Moreover, giving to the consumer
the ability to look forward over several periods using this representations (i.e., to
form expectations about the intertemporal consequences of her current decisions),
enhances the convergence process.

Finally, our results show that the genuinely adaptive learning process that we
have considered yields rather realistic behavior for the agents (stability of behavior
and increasing performance over time). In the simple setup of Allen and Carroll
(2001), we further observe that such a process may even converge toward the op-
timal solution, without assuming that the consumers possess rational expectations
beforehand. This feature looks promising for studying adaptive macroeconomic
dynamics with learning agents.

We proceed as follows. The next section introduces the original setting of
Allen and Carroll (2001) and the buffer-stock rule for consumption, as well as
the numerical experiments carried out by these authors. The learning mechanisms
explored in our article are presented in the third section. We first quickly present
learning without expectations and follow with a more detailed presentation of
learning with adaptive expectations. Our simulation protocol and methods of
analysis are introduced in the fourth section. Our results are discussed in the fifth
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section. We first show that purely adaptive individual and social learning do not
yield satisfactory consumption behaviours. Only a learning process directed by
adaptive expectations gives rise to economically sound consumption behavior. The
last section concludes and discusses our results.

2. THE ORIGINAL PROBLEM

Following Allen and Carroll (2001), let us consider the intertemporal consumption
problem of an individual agent. The consumer aims to maximize discounted utility
flows from consumption over the remainder of a (possibly infinite) lifetime,

max
{Cs }∞t

Et

[ ∞∑
s = t

βs−t u(Cs)

]
, (1)

in a setting characterized by the equations

As = Xs − Cs, (2)

Xs+1 = Rs+1 · As + Ys+1, (3)

Cs ≤ Xs ∀s, (4)

and where the variables are β, time discount factor; Xs , resources available for
consumption (“cash on hand”); As , assets after all actions have been taken in
period s; Cs , consumption in period s; Rs , interest factor (1 + r) from period
s − 1 to s; u(C), utility derived from consumption; Ys , noncapital income in
period s.

Allen and Carroll (2001) adopt some more specific assumptions with respect to
this general setting. First, they specify the utility function as u(C) ≡ C1−ρ/(1−ρ),
with ρ = 3, implying that

u (C) = − 1

2C2
< 0, C �= 0. (5)

Furthermore, they set R = 1 and β = 0.95. Finally, they consider a three-point
distribution for income:

Y 0.7 1 1.3
Probability 0.2 0.6 0.2

with E[Y ] = 1.

In this framework, Carroll (2004) shows that C∗(Xt ) may be rewritten6 as
C∗(Xt ) = 1 + f (Xt − X

∗
) for some functional form f (.) with specific properties

(but no analytical expression), and with X
∗

a target level for cash on hand (which
is assumed to be larger than 1 for the latter expression to be valid).7 Then a linear
(Taylor) expansion of C∗ (Xt ) can be obtained around the point Xt = X

∗
, and is

written as8

C∗ (Xt ) � 1 + γ ∗ · (Xt − X
∗
).
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This expression gives the linear “optimal” buffer-stock rule. Allen and Carroll
then consider the family of functions Cθ(Xt) that are indexed by θ ≡ {γθ ,Xθ }
and written as

Cθ(Xt) =
{

1 + γθ (X − Xθ) if γθ (X − Xθ) ≤ Xθ

X if γθ (X − Xθ) > Xθ .
(6)

Each consumption strategy of the agent can then be represented by a vector:
θ = (γθ ,Xθ). By construction, when θ = θ∗ ≡ (γ ∗, X

∗
), Cθ∗

(Xt) corresponds
to the Taylor approximation of C∗(Xt ) around Xt = X

∗
.

In their numerical analysis, Allen and Carroll (2001) adopt the following search
space of consumption strategies:

γ ∈ [0.05, 1] ,�γ = 0.05,

X ∈ [1, 2.9] ,�X = 0.1.

This setup corresponds to 20 steps for each component, generating a complete
strategy space of 400 combinations to explore. Let � be the complete set of these
strategies.

Given the steps used for constructing the search space, the element of � that is
the closest to the optimal strategy is

θ∗ = (γ ∗, X
∗
) = (0.25, 1.2), (7)

⇒ C∗ (X) = 1 + 0.25 (X − 1.2) . (8)

Allen and Carroll (2001) test whether consumers can discover this optimal
strategy through a systematic exploration of the strategy space and an estimation
of their infinite-horizon utility flow. Each consumer tests all the possible 400
strategies by using each of them to decide on her consumption during n periods,
starting with a given initial cash on hand S0. In order to estimate the expected
utility flow over all possible random income flows, this n-period consumption
process is repeated m times. The strategy that gives the highest estimate for the
utility flow is then selected by each consumer. Allen and Carroll use the numerical
approximation of the value function to evaluate the distance to the optimal value
flow observed with this best strategy, and they call this distance the sacrifice value.
They consider this process for 1,000 consumers for each combination (S0, n,m)

and compute the average sacrifice value over this population to assess how close
this process can get to the optimal utility for the corresponding combination.
They show that a sufficiently small sacrifice can only be obtained for a very large
number of consumption decisions (in the most extreme case, n = 50, m = 200,
each consumer taking 10,000 effective consumption decisions with each strategy).

Their results indicate that it is not easy for individual consumers to get suffi-
ciently close to the infinite horizon optimum without explicitly solving the full
optimization problem, even if one assumes that they use the more parsimonious
buffer-stock rule:
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· · · even when the goal is to learn only this simple approximation, pure trial-and-
error learning requires an enormous amount of experience to allow consumers to
distinguish good rules from bad ones—far more experience than any one consumer
would have over the course of a single lifetime. [Allen and Carroll (2001, p. 268)]

The aim of the following sections is to show that alternative learning schemes
could yield more interesting outcomes.

3. THREE LEARNING SCHEMES

We now present three different learning schemes that we analyze in the context of
the buffer-stock model. The first learning scheme we study is a simple one, based
on random experimenting by the agents and the combination of already discovered
strategies. We also allow for a possibility of imitation of the strategies between
consumers (see the next paragraph).

3.1. Purely Adaptive Learning without Expectations

The economy is composed of n consumers, each using an evolving population
�i ⊂ � of m strategies of type θ = (γ,X). In the initial period, these strategies
are randomly drawn from �, each with a random fitness f ∈ [0, 1].

In each period, each consumer either imitates the behavior of another consumer
or uses the strategy for which the highest performance (fitness) has been observed
in the past (this maximal fitness is just random in the initial period). This perfor-
mance is computed using the utility obtained with this strategy, the last time the
consumer used it:

f (θ) = exp(u(C(θ)). (9)

When the consumer uses a strategy in a period, she updates its fitness using the
utility obtained with that strategy.

Moreover, every GArate period, each consumer revises her strategy population
through the following three steps:

(1) Reconducting the strategies for the next experimentation period, through a roulette
wheel based on the relative performance of the strategies: this selection operator
creates a new population of strategies, where the probability of each strategy to be
reproduced is proportional to its relative performance (fl/

∑
j fj ).

(2) Combining the already discovered strategies (crossover): with a probability pC, each
strategy in the population can have the chance of being combined with another,
randomly drawn, strategy. If strategies θi and θj are chosen, they are replaced with
two new strategies: θk = (γi, Xj ) and θl = (γj ,Xi).

(3) Random experimenting (mutation): independently from the crossover, with a proba-
bility pm, each strategy can see one of its components (Xj or γj ) modified by drawing
a new value from the corresponding strategy space.

https://doi.org/10.1017/S1365100512000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100512000582


LEARNING OPTIMAL CONSUMPTION BEHAVIOR 735

1. (B) create n consumers, each consumer i using a population �i ⊂ � of m

strategies of type θil = (γil , Xil)l=1...m

2. (B) randomly draw the initial strategy population of each consumer and the
corresponding fitness values

3. (B) draw randomly an element of �i as the initial strategy of the consumer
4. (B) compute the consumption of each consumer with this strategy given the

common initial resources X0 ∈ {0, 1, 2, 3}
C0 = min

{
1 + γ0

(
X0 − X0

)
, X0

}
5. (B) compute the initial utility of each consumer u0 = U(C0)

6. (S) compute the consumption level and the utility performance that the con-
sumer would have attained using the optimal strategy θ∗

C∗
0 = min

{
1 + γ ∗

(
X0 − X

∗)
, X0

}
, u∗

0 = U (C∗)

7. (S) compute the distances to these optimal levels with the following indicators:

�Z ≡ Z∗ − Z, Z = X, γ, C, X, u

8. (B) compute the new cash on hand of the consumer X1 = X0 −C0 and (S) that
which would have resulted from the use of the optimal strategy X∗

1 = X0 −C∗
0

9. (S) compute other individual and global indicators
10. for t ≤ T (T is the length of each run),

(a) (B) draw a new income for each consumer and compute the new cash
in hand Xt = Xt−1 − Ct−1 + Yt and (S) the corresponding optimal flow
X∗

t = Xt−1 − C∗
t−1 + Yt

(b) (B) select a strategy for each consumer:
i. with a probability pI the consumer imitates the best strategy observed

in t − 1, in the population of agents, and the imitated strategy replaces
the strategy with the lowest fitness

ii. with a probability (1 − pI) the consumer uses the best strategy in �i

(c) execute steps (4) − (9) using the selected strategy and Xt

(d) (B) if t mod GARate = 0, the strategy population is updated using selec-
tion, crossover, mutation operators

FIGURE 1. Pseudo code of the learning-without-expectations model. We distinguish compu-
tations related to the behavior of agents (B) from the computation of statistics or indicators
for analysis (S).

In each period, we measure the distance between the observed consumption and
corresponding utility levels on the one hand, and the optimal values we would
observe with the behavior given by equation (7), on the other hand (see Section 4.2
for more details on these indicators).

The complete structure of the model (its pseudo code) is given in Figure 1.
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3.2. Social Dimension of Learning: Imitating Successful Consumers

With a probability pI each consumer can imitate the strategy used in the preceding
period by the consumer who has obtained the highest utility. Allen and Carroll
evoke a potentially positive role for social learning in the search for the optimal
consumption strategy. Imitation is indeed the simplest way of introducing the
diffusion of good strategies within the population of consumers.

We will analyze together the outcomes related to those two learning processes.

3.3. Learning with Adaptive Expectations

The previous learning schemes are based on the use of the discovered best strategy
by the consumer. She chooses a particular strategy on the basis of the performance
observed the last time she used this strategy, even if this performance was ob-
tained under specific circumstances (resulting mainly from past income shocks
and consumption decisions). But this is not necessarily a very relevant basis for
assessing the performance of a strategy under current conditions. In other words,
these learning schemes are purely adaptive, and the decisions are not based on the
projection of past performances on the future circumstances. Such a projection
would require a capacity of the agents to generalize or form expectations. This
generalization would in turn entail that the agent develops a representation of her
environment [mental model, Holland et al. (1989)]. We consider now consumers
who are able to develop such a representation as a result of their past experience.

The mental model of each agent summarizes the state of the agent’s knowledge
and evolves as a consequence of evolution of this knowledge. It guides the decision
process because it enables the agent to test the connections between the alternative
choices and their consequences. The presence of such an internal model can reflect
the intentionality of decisions. Obviously, in this context, the concept of “model”
must be understood in a very loose sense. More than a mathematical construc-
tion, it consists in a representation of the agent’s perception of the environment:
“In . . . situations [that are not sufficiently simple as to be transparent to the human
mind], we must expect that the mind will use such imperfect information as it
has, will simplify and represent the situation as it can, and make such calculations
as are within its powers” [Simon (1976, p. 144)]. These calculations are “as if”
experiments that enable agents to evaluate the possible consequences of their de-
cisions. In other words, before making a decision, the agent simulates the potential
outcomes of different decisions by using her internal model. The output of these
simulations provides the expectations of the agent. The agent makes a decision on
the basis of these expectations. This decision yields an effective outcome, which
can be compared with the expected one resulting from the simulations. Discrepan-
cies between those outcomes may lead to an update of the mental model. Hence,
we have a dynamic structure that evolves as depicted in Figure 2 [Yildizoglu
(2001)].
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Simulations Decision Internal model 

Effective 
Result of the 

decision 

If  Result  differs from 
Simulations

Update model 

FIGURE 2. Dynamics of the mental model of the agents.

Although this line of thought is quite obvious, its integration into economic
models is problematic. This is why purely adaptive models (see the preceding
section) generally neglect the dynamic process of expectation formation. This
representation of learning, as the product of an evolutionary algorithm, does enable
the elaboration of better decision rules, but only through trial and error. In this
case, the agent can only judge decisions that have been used before. In contrast,
the vision based on the dynamics of the internal model admits that agents can
have a relatively precise (if not perfect) perception of the value of their decisions,
even if they have never been made before. This is made possible by means of
simulations using the internal model.

The standard way of formalizing such a model is to rely upon the subjective
probabilities approach of Savage. In this case, the internal model of the agent
corresponds to a set of conditional probability distributions. The update of this
model can be imagined through successive least-squares estimates or applications
of Bayes’s rule. The Bayesian approach has the advantage of not assuming any
particular structure for the internal model. But it is very demanding in terms of
agents’ rationality. Moreover, “there is substantial evidence that Bayes’ theorem
lacks empirical relevance and hence its procedural justification is weak” [Salmon
(1995, p. 245)].

Recursive least-squares estimates have been used, in this perspective, albeit
at the aggregate level, by the recent macroeconomic learning literature [Evans
and Honkapohja (2001)]. However, this method relies upon a specific functional
structure for the internal model. We adopt, here, a more flexible tool. Our approach
is independent of the structure and the parameterization of the internal model,
incorporating only its most primitive dimensions: its existence and its influence
on the decisions of agents. In this respect, an artificial neural network (ANN) is
a good candidate for representing the role of the internal model, and its adaptive
nature. With only minimal structural assumptions, namely the list of endogenous
and explicative variables, and the structure of the hidden layer, it can represent the
fact that the agent adjusts the internal model to the flow of experience. For many
practical problems, even a very simple feedforward ANN with one hidden layer of
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aij

O

H j
bj

I i

γl

X l

FIGURE 3. A feedforward ANN with one hidden layer.

a few hidden nodes gives quite robust results [see Masters (1993) for a discussion
of properties of ANNs].

Another potentially interesting modeling approach is learning classifier systems
(LCSs). A complete LCS, combining a generalization capability with a reinforce-
ment learning mechanism [such as the XCS developed by Wilson (1995)], could
model context-dependent choice of strategies by agents. One of the authors has
already tested this approach in modeling industrial dynamics. The main limit of
this approach, in the context of our discussion, is the fact that expectations included
in the rules of the XCS are necessarily implicit, and it is impossible to separate
them from the actions. The use of a mental model represented by an ANN allows
such a separation. Moreover, the behavior modeled using this representation seems
more realistic (exhibiting some inertia, but also, performance increasing in time).9

More particularly, an ANN provides a time-varying flexible functional form
that delivers an approximation of the connections between the inputs and the
output of the internal model. This approximation is obtained by the calibration
of the parameters of the ANN (aij and bj in Figure 3) according to the series
of input and output data submitted to the ANN in successive training periods.
To train the ANN, the complete past history of inputs and outputs can be used,
or only observations for a given number of past periods (windowSize). In each
training period (an epoch), a number of passes (numEpoch) through the ANN are
executed in order to correct the error observed between the observed outputs and
the predicted ones. Each pass adjusts the parameters aij , bj in order to correct a
fraction learnRate of the residual error. This repetitive adjustment process aims
to minimize the prediction errors of the ANN, indicating better adaptation of the
ANN to the environment.

Parameters aij , bj reflect the intensity of the connections in the network. A
better approximation can be achieved through the introduction of hidden nodes
in the network, that is, nodes that represent unobserved state variables or, more
particularly, the unobserved variables of the internal model of the agent. ANN
thus covers a wide range of models from the simplest linear one where there is no
hidden layers, to the increasingly sophisticated ones where the number of hidden
nodes (numHidden) increases. This number can even be used to represent the
complexity of the agent’s internal model.
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In our case consumers are placed in a very simple context. They can observe
two contextual variables: their cash on hand and income. Their strategies have
two components: θ = (γ,X). These four elements naturally constitute the inputs
of their model. The strategy component of the inputs is used by them to compare
different potential strategies on the basis of the expected utility flows they can
yield (hence the unique output of the mental model). This comparison serves as a
basis for selecting the consumption strategy that will be used in the current period,
after observation of the corresponding income.

More particularly, at each period t , each consumer uses the ANN as follows. At
the beginning of the period, she compares strategies on the basis of the expected
utility flow resulting from them. She feeds the ANN with the state of the environ-
ment and the components of each strategy, and observes the utility flow predicted
by the ANN:

Ue
t =

τ = forwardLook∑
τ=0

βτue
t+τ . (10)

This utility flow depends on the horizon that is considered by the consumer. This
horizon is characterized by the parameter forwardLook. If forwardLook = 0, the
consumer is only interested in her immediate utility (she is myopic); otherwise
she tries to take into account the future utility impact of her current consumption
strategy. She adopts the strategy that yields the highest expected utility flow.

At the end of period t , she acquires a new observation point (Xt , Yt , γt , Xt ; ut ),
and she can adjust her mental model by training it, using data for the last period
for which she now has a complete set of observations. If the consumer is only
interested in the expectation of the current utility (ue

t ), each period’s observations
can be used to train the ANN before its use in the following period. If the consumer
is less myopic, forwardLook observations of the output are necessary to train the
ANN in each period. To this aim, in period t , the consumer can compute the
difference (error) between, on the one hand, the expectations formed and used in
period t0(= t−forwardLook), and on the other hand, the forwardLook observations
of utility between t0 and t (because ut is necessary to compute the complete utility
flow that has resulted from the strategy used in period t0). Then she trains the
ANN using the following supplementary inputs and output:

(
Xt−forwardLook, Yt−forwardLook, γt−forwardLook, Xt−forwardLook

)

→ Ut−forwardLook =
τ=forwardLook∑

τ=0

βτut−forwardLook+τ . (11)

As a consequence, in our model, the role of forwardLook is twofold: on one
hand, a longer horizon yields less myopic decisions; on the other, it imposes on
the agent the use of a more out-of-date mental model for forming expectations.

The pseudo code of the model is summarized in Figure 4.
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1. (B) create n consumers, each consumer i using a population �i ⊂ � of m

strategies of type θil = (γil , Xil)l=1...m;
2. (B) γ and X belong to the original strategy space of Allen and Carroll (2001)
3. (B) randomly draw the initial strategy population of each consumer
4. (B) randomly initialize the ANN of each consumer
5. (B) draw randomly an element of �i as the initial strategy of the consumer
6. (B) compute the consumption of each consumer with this strategy given the

common initial resources X0 ∈ {0, 1, 2, 3}
C0 = min

{
1 + γ0

(
X0 − X0

)
, X0

}
7. (B) compute the initial utility of each consumer u0 = U(C0)

8. (S) compute the behavior and performance that the consumer would have
using the optimal strategy θ∗

C∗
0 = min

{
1 + γ ∗

(
X0 − X

∗)
, X0

}
, u∗

0 = U (C∗)

9. (S) compute the distances to the optimal behavior and results

�Z ≡ Z∗ − Z, Z = X, γ,C, X, u

10. (S) compute other individual and global indicators
11. (B) compute the new cash on hand of the consumer X1 = X0 − C0 and (S)

the one she would have using the optimal strategy X∗
1 = X0 − C∗

0

12. for t ≤ T (T is the length of each run),
(a) (B) draw a new income for each consumer and compute the new cash

in hand Xt = Xt−1 − Ct−1 + Yt and (S) the corresponding optimal flow
X∗

t = Xt−1 − C∗
t−1 + Yt

(b) (B) selection of the strategy:
i. with a probability pI the consumer imitates the best strategy observed

in t −1, in the population of agents, and the imitated strategy replaces
the strategy with the lowest fitness

ii. with a probability (1 − pI ) and if t > forwardLook the consumer
chooses a new strategy from her strategy population using her expec-
tations given by her mental model; if t ≤ forwardLook, consumers
chooses randomly a strategy �it

(c) execute steps (6) − (10) using the selected strategy and Xt

(d) (B) if t > forwardLook, train the ANN with the observation correspond-
ing to the period t − forwardLook, using windowSize past observations

(e) (B) if t mod GARate = 0, the strategy population is updated using se-
lection, crossover, mutation operators and the expected fitness of the
elements of the new population is updated using the actual state of the
ANN

(f) (S) compute individual and global indicators

FIGURE 4. Pseudo code of the learning with expectations model. We distinguish computa-
tions related to the behavior of agents (B) from computations of statistics or indicators for
analysis (S)
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In each period, the training (step 12.d) is done using only windowSize past
observations of the input (including effectively used pairs (X, γ )) and out-
put (utility flow) vector. The most recent observations come from the period
(t − forwardLook). When forming expectations to select strategies (steps 12.b and
12.e), the agent only updates the expected performance of consumption strategies
that are currently available in his or her strategy population of size m = 40. These
are the only strategies that are visible to the agent at this period.

As we have noted, several parameters condition the learning capacity of the
ANN: the number of hidden nodes (numHidden); the data window used for
the training (windowSize); the error correction rate in each epoch of training
(learnRate); the number of passes used in each training epoch (numEpoch). Con-
sequently, we use the standard back–propagation of errors to train the ANN. The
names and explored values of these parameters are given in the Appendix. Except
in extreme cases (when windowSize is low, for example: 50), their values do not
play a major role in our results.

4. SIMULATION PROTOCOL AND METHODS OF ANALYSIS

4.1. Experimentation Protocol

Large sampling methods such as Monte Carlo simulations come at a computational
cost if there are numerous parameters with large experiment domains.

We would indeed need to implement a very large number of simulations to
obtain a representative sample of all parameter configurations. In this context,
a design of experiments (DOE) approach10 allows us to minimize the sample
size under a constraint of representativeness. This method provides a sample,
namely a design, of the whole set of parameter (or factor) values. The chosen
configurations are called design points. Some properties of the design are useful.
Uniform designs [see, for example, Fang et al. (2000)], such as Latin hypercubes,
typically have good space-filling properties; i.e. they correctly cover the whole
parameter space.11 Moreover, Latin hypercubes ensure that linear effects of the
factors are noncorrelated, and they are widely used in computer simulations [Ye
(1998); Butler (2001)]. Nevertheless, this orthogonality comes at the cost of de-
teriorated space-filling properties. Accordingly, Cioppa (2002) proposes a nearly
orthogonal (NOLH) design that offers an efficient trade-off between orthogonality
and space-filling properties [see also Kleijnen et al. (2005); Cioppa and Lucas
(2007)].

For each version of the model, we use the same NOLH design to sample the
parameter space using Sanchez (2005). Up to 11 factors, the resulting NOLH
design provides 33 design points [see Sanchez (2005) for further details, and
Table A.1 in the Appendix for the values of the parameters used in the experiments].
We launch 20 replications of each experiment, with a duration of T = 1,250
period, in order to take into account the diversity of the random draws. This setup
corresponds to 660 runs in total and we sample the results every 50 periods during
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each run. We have n = 20 consumers and each consumer is given a strategy
population of size m = 20.

4.2. Indicators and Analysis of Results

The main indicators that we use in the analysis are dedicated to measuring the
distance to optimal behavior and performance, as indicated in step 9 of Figure 4:

sumDistCons = ∑i=n
i=1 |C∗

i − Ci |,
sumDistUtility = ∑i=n

i=1 |U ∗
i − Ui |,

sumDistGamma = ∑i=n
i=1 |γ ∗ − γi |,

sumDistX = ∑i=n
i=1 |X∗ − Xi |.

(12)

Using absolute values gives a full assessment of the distance, because we
eliminate all possible compensation between the distances of the consumers.
We also consider the variances of these absolute distances, in order to check if
individual consumers’ behavior converges. We use simple time plots and boxplots
to study the evolution of these distances in time and their distributions between
different configurations. Boxplots give the four quartiles of the distribution, and
the median corresponds to the middle bar. We use R-project [R Development Core
Team (2003)] and the ggplot2 library [Wickham (2009)] to conduct this analysis.

5. RESULTS

5.1. Individual Learning

Figure 5 shows that the agents are able to learn the optimal consumption levels
somewhat, and we observe that the variance of the consumption levels is also
decreasing in time. But their performance in terms of utility is not satisfactory
at all. Even in the latest periods, they remain collectively far from the optimum
and a very high discrepancy exists between their individual performances. Figure 6
shows that even if they are able to converge toward X

∗
, the distance to γ ∗ increases

and remains high until the end of the simulations. Basing the selection of the
consumption strategy to be used only on past individual performance is not able
to really structure the learning of the agents. This type of learning is not able to
discover strategies specifically adapted to the current consumption context of the
agent.

5.2. Social Dimension of Learning

Different social learning profiles are pooled together in the preceding results. If
we distinguish configurations where imitation is frequent from the ones where
it is rarer, we can observe the role played by social learning. Figure 7 distin-
guishes results in different configurations according to the corresponding intervals
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FIGURE 5. Individual learning and convergence to the optimal strategy (average of each
indicator, in each period, over all experiments and all runs).
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FIGURE 6. Learning without expectations: convergence in time on optimal consumption, but
not really on its components (average of each indicator, in each period, over all experiments
and all runs).
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FIGURE 7. Individual learning and the role of imitation (distribution of sumDistCons over
the corresponding experiments and all runs, for t > T/2).
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FIGURE 8. Role of imitation regarding utility sacrifice (distribution of sumDistUtility over
the corresponding experiments and all runs, for t > T/2).

of pI values. It exhibits an intermediate range of imitation probability that min-
imizes the total distance to optimal consumption levels. Figure 8 confirms this
result from the point of view of the total utility sacrifice: it is minimal for the same
configurations, pI ∈ (0.19, 0.22], but still remains high. As with the selection
of strategies on the basis of past individual performance, guiding this choice by
the past performance of other individuals does not correctly take into account the
current context, and yields relatively mediocre performance. Sharing these past
experiences is not really able to correctly guide the learning process either.
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FIGURE 9. Learning with expectations (average of each indicator, in each period, over all
experiments and all runs).

5.3. Individual Learning with Expectations

In contrast with the preceding outcomes, learning with expectations corresponds to
a continuous improvement in the performance of the consumers. Figure 9 shows
that the total distance to optimal consumption and to optimal level of utility
decreases in time, as well as the distance between consumers. These results can
clearly be distinguished from the ones obtained earlier. Forming adaptive expec-
tations allows consumers to better discover consumption strategies that improve
their utility.

We should also remark that a total distance of 2 corresponds to an average
individual distance of 0.1 from the optimal consumption level for each consumer.
This is a remarkable performance if we consider that these consumers are not
supposed to solve an infinite-horizon optimization problem.
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sumDistCons

Periods

su
m

D
is

tC
on

s

2.0

2.5

3.0

3.5

4.0

4.5

●

●

●

●

●

●
●

●

● ●
●

● ●

● ●
● ●

● ● ● ● ●
● ● ●

●●

●

●
●●

●●

● ●●
●

●●●●● ●●

●● ●
●● ●●

●●● ●● ●●●●● ●● ●●●
● ●● ●

200 400 600 800 1000 1200

sumDistX

Periods
su

m
D

is
tX

6

8

10

12

14

16

●

●

●

●

●

●

●

●
●

●
●

●
●

● ● ● ●
● ●

● ● ● ● ●
●

●●

●●

●

●

●

●●
●●

●●
●

●●●●●
●

●● ● ●●●●● ●●
●● ●

●● ● ●● ●● ●●
●●

200 400 600 800 1000 1200

sumDistGamma

Periods

su
m

D
is

tG
am

m
a

8.5

9.0

9.5

●

●

● ●

● ●

● ●

● ●
●

●
●

●

●
●

●
●

● ●

●
●

●
●

●

●●

●

●●

● ●●

● ●●
●

●●
●

●●

●
●●

●
●●

● ●●

●
●●●

●
●●

●

200 400 600 800 1000 1200

FIGURE 10. Learning with expectations: convergence in time on the optimal consumption
strategy and its components (average of each indicator, in each period, over all experiments
and all runs).
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FIGURE 11. Learning with expectations and looking forward (distribution of sumDistCons
over the corresponding experiments and all runs, for t > T/2).

Moreover, Figure 10 shows that they can now better converge toward the optimal
consumption strategy θ∗, even if, again, discovering γ ∗ is more difficult for them.

The role of forward looking can also be analyzed from the same point of view.
First, Figure 11 shows that, even with myopic forward looking (forwardLook = 0),
the total distance to optimal consumption is significantly lower than the one
observed with the previous learning schemes. Second, giving the consumer
the ability to look forward over several periods (forwardLook > 0) enhances
the convergence process. We indeed observe in the graphic an intermediate zone
where the distance is minimal, but, from forwardLook = 8 on, it begins to increase
again. With a long horizon, the agent uses a more out-of-date mental model to
form his or her expectations. As a consequence, looking very far is not necessarily
preferable with this adaptive behavior. Figure 12 confirms these results in terms
of utility sacrifice.
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FIGURE 12. Learning with expectations and looking forward: utility sacrifice (distribution
of sumDistUtility over the corresponding experiments and all runs, for t > T/2).

6. CONCLUSION

In this article, we developed a computational agent-based model (ABM) to re-
assess the case for learning regarding the linear buffer-stock rule of Allen and
Carroll (2001), by considering alternative assumptions about the learning process
of consumers. By doing so, we try to investigate which features of learning may
be key in this context for pushing the consumption behavior close to the optimal
solution obtained in a rational expectations intertemporal setting.

In this ABM, we consider three learning mechanisms: purely adaptive learning
based on random experiment and combinations of already discovered consump-
tion strategies; social learning based on imitation of strategies between consumers;
adaptive learning guided by adaptive expectations. The first two mechanisms are
modeled using a framework similar to genetic algorithms. The last mechanism
combines this kind of learning with adaptive expectations formed by the agents
on the basis of their mental models of the economy. These mental models are
represented as a personal artificial neural network used by each consumer to
build a representation of the economy from her experience in this economy. We
show that only the last approach yields economically sound consumption behav-
ior. Consumers develop consumption behavior preserved from unrealistic erratic
fluctuations (a common shortcoming of purely adaptive learning schemes), while
attaining performances that increase in time. This corresponds to the emergence
of effective learning on their side. The ability to look forward helps them in this
process and an intermediate expectation horizon yields the best results. We should
nevertheless notice that such performance is only obtained after 1,000 periods.
Even if the total number of experiments used in our case is smaller than the one
adopted by Allen and Carroll, it remains quite significant. In-line learning by an
ANN appears to be quite demanding in terms of experimentation by the con-
sumer. However, our results show that the use of a mental model to represent the
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forward-looking dimension of agents’ learning is probably the correct way of
modeling adaptive behavior, even if we need yet to invent more frugal, and hence
more realistic, ways to represent the mental model and its adaptation.

Overall, these results look promising in the perspective of building macroeco-
nomic models based on adaptive learning dynamics. Agent-based modeling would
be a natural framework for such investigations, as it would make possible under-
standing the aggregate outcomes resulting from coordination problems between
agents endowed with bounded rationality. For example, the authors are developing
an ABM inspired by the canonical NK model, in order to analyze the effects of
different monetary rules à la Taylor with learning agents.

NOTES

1. See Deaton (1991, 1992) for an overview of the state of the art at the beginning of the nineties.
2. See Carroll (1997) for a thorough examination of those properties and Carroll (2001) for a

didactic presentation and comparative analysis.
3. See Carroll (1997) for a detailed documentation of those puzzles.
4. See Yildizoglu (2001) for an example of this approach in industrial economics.
5. Carroll is, however, skeptical about the added value of considering social learning with respect to

the problem at hand: “even the social learning model will probably take considerable time to converge
on optimal behavior, so this model provides no reason to suppose that consumers will react optimally
in the short or medium run to the introduction of new elements into their environment” [Carroll (2001,
p. 42)].

6. This equivalence is only valid under the impatience condition Rβ1/ρ < G, with G the income
growth factor. In this case we assume G = 1, and the condition is satisfied.

7. This target level is a key element of the buffer-stock savings model of Carroll. The proof of its
existence is set up in Carroll (1997).

8. By construction, γ ∗ ≡ f ′(0).
9. See http://yildizoglu.info/essid/learnapplet/index.html for a Java applet that can be used to

simulate firm behavior resulting from different learning mechanisms.
10. See for example Goupy and Creighton (2007) for a pedagogical statement. This method is

widely used in areas such as industry, chemistry, computer science, and biology. To our knowledge,
Happe (2005) and Oeffner (2008) are the only applications to an economic-agent-based model.

11. They also respect the noncollapsing criterion, which ensures that each point is uniquely tested.
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APPENDIX: MODEL PARAMETERS AND
SIMULATION EXPERIMENTS

Table A.1 gives the values of the parameters explored in the simulations. These values have
been generated using Sanchez (2005). For other parameters, we have adopted the following
assumptions:

n = 20: number of consumers;
m = 40: number of elements in the strategy population of each agent;
T = 1250 : number of simulation periods in each run;
β = 0.95;
ρ = 3;
windowSize = 150: the training of the ANN uses observations from the last 150 periods;
u (c ≤ 0.01) ≡ −5000: truncation of utility computation, in order to avoid buffer
overflow problems resulting from the utility function adopted by Allen and Carroll
(2001).
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TABLE A.1. Experiments

Parameter

initialWealth probCrossOver probMutate probImitate forwardLook gaRate numeEpoch learnRate nbHidden

Min 0 0.05 0.05 0.05 0 1 20 0.01 2
Max 3 0.4 0.4 0.3 12 10 50 0.1 6

Experiment
0 3 0.08 0.2 0.1 11 7 41 0.05 6
1 3 0.4 0.09 0.14 6 3 43 0.04 6
2 3 0.2 0.37 0.09 0 6 42 0.01 3
3 2 0.36 0.4 0.15 11 2 44 0.02 4
4 3 0.06 0.21 0.1 8 7 32 0.06 2
5 3 0.38 0.16 0.12 5 3 25 0.09 2
6 2 0.21 0.39 0.11 0 7 31 0.09 6
7 2 0.29 0.38 0.14 11 3 27 0.1 4
8 2 0.14 0.13 0.18 9 4 20 0.03 4
9 2 0.28 0.15 0.22 3 6 23 0.04 5
10 2 0.13 0.31 0.29 4 2 24 0.02 4
11 2 0.3 0.28 0.28 9 10 34 0.05 3
12 2 0.1 0.12 0.19 7 2 49 0.08 3
13 3 0.26 0.18 0.27 2 6 48 0.07 3
14 2 0.12 0.35 0.28 5 1 40 0.08 5
15 2 0.27 0.26 0.3 10 9 37 0.07 5
16 2 0.23 0.23 0.18 6 6 35 0.06 4
17 0 0.37 0.25 0.25 2 4 29 0.06 2
18 0 0.05 0.36 0.21 6 8 28 0.07 2
19 0 0.25 0.08 0.26 12 5 28 0.1 5
20 1 0.09 0.05 0.2 1 9 26 0.09 4

https://doi.org/10.1017/S1365100512000582 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1365100512000582


752
M

U
R

AT
Y

ILD
IZ

O
Ğ
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TABLE A.1. (Continued.)

Parameter

initialWealth probCrossOver probMutate probImitate forwardLook gaRate numeEpoch learnRate nbHidden

21 0 0.39 0.24 0.25 4 4 38 0.05 6
22 0 0.07 0.29 0.23 7 8 45 0.02 6
23 1 0.24 0.06 0.24 12 4 39 0.02 3
24 1 0.16 0.07 0.21 1 8 43 0.01 4
25 1 0.31 0.32 0.17 3 7 50 0.08 4
26 1 0.17 0.3 0.13 9 5 47 0.07 3
27 1 0.32 0.14 0.06 8 9 46 0.09 5
28 1 0.15 0.17 0.07 3 1 36 0.06 5
29 1 0.35 0.33 0.16 5 9 21 0.03 5
30 0 0.19 0.27 0.08 10 5 22 0.04 5
31 1 0.33 0.1 0.07 8 10 30 0.03 3
32 1 0.18 0.19 0.05 2 2 33 0.04 3
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