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The analysis of surface oscillations of liquid drops allows measurements of the surface
tension and viscosity of the liquid. For small oscillations of spherical drops with a
free surface, classical formulae by Rayleigh and Lamb relate these quantities to the
frequency and damping of the oscillations. In many cases, however, the drop’s surface
is covered by a surface film, typically an oxide layer or a surfactant, exhibiting a
rheological behaviour different from the bulk fluid. It is the purpose of this paper
to investigate how such surface properties influence the oscillation spectrum of a
spherical drop. For small bulk shear viscosity, the cases of small, finite and large
surface viscosities are discussed, and the onset of aperiodic motion as a function of
the surface parameters is also derived.
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1. Introduction
Oscillations of drops and bubbles have been a subject of hydrodynamics for more

than 100 years. The first treatment is due to Rayleigh (1879) who considered a force-
free, non-viscous and spherical liquid drop. The Rayleigh frequency, corresponding
to the fivefold degenerate fundamental oscillation mode, is given by

ωR =

√
8γ

ρR3
, (1.1)

where γ is the surface tension, ρ is the density and R is the radius of the drop.
Later, Lamb (1881) generalised Rayleigh’s treatment by considering viscous

drops. While for small viscosity values the oscillation frequency remains essentially
unchanged, the damping of the oscillations is given by Chandrasekhar (1959) and
Reid (1960),

λL =
5ν

R2
, (1.2)

where ν is the bulk shear viscosity.
In the applications discussed below, λL is of the order of 1 s−1, while ωR is of the

order of 50 s−1. Therefore, the ratio λL/ωR is a small quantity, leading to the definition
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Shape oscillations of a liquid drop with surface viscosity 205

of a reciprocal Reynolds number δ,

δ =
ν

R2

√
ρR3

γ
. (1.3)

This parameter characterises the undisturbed system, and we will make use of the
fact that δ � 1 in the following.

Suryanarayana & Bayazitoglu (1991) have developed an improved method to
consider the case of viscous drops for arbitrary δ (1/α2 in their terminology) and
presented implicit solutions for both, frequency and damping of the oscillations.
Depending on the parameters chosen, they find either two complex conjugate periodic
or one aperiodic solution. The critical values of the parameter α2 for the transition
to the aperiodic solutions have been derived already by Chandrasekhar (1961). The
value that corresponds to the fundamental oscillation mode is α2

crit ≈ 3.69.
Apart from the academic interest in this classical case, there is also a practical

interest in studying these oscillations. With the advent of containerless processing
techniques, such as acoustic, aerodynamic, electromagnetic and electrostatic levitation,
the frequency spectrum of levitated liquid drops could be studied, and, initially, the
Rayleigh frequency, (1.1) was used to determine the surface tension γ of the levitated
sample. In these experiments, liquid metallic droplets of a few millimetre in diameter
have been studied. Except for experiments under microgravity conditions (Egry,
Lohöfer & Jacobs 1995), the levitation forces had to be included in the original
treatment. For electromagnetic levitation, this was done by Cummings & Blackburn
(1991), and their correction formula was later verified experimentally (Egry et al. 1993).

By the same token, also the viscosity was determined from the damping of the
surface oscillations through (1.2) in a microgravity experiment (Egry et al. 1998).
Although good agreement with existing data for a Pd–Si alloy was found, this
experiment was later criticised for not taking the surface viscosity into account
(Earnshaw 1998). In fact, later attempts to measure the bulk shear viscosity by the
oscillating drop method yielded generally too high values for the viscosity, the error
being sometimes more than 100 % (Mock 2004; Wunderlich 2008; Egry & Schick
2011). Such discrepancies may be either due to magnetohydrodynamic effects (Bardet
2006), not included in Lamb’s treatment, or to the presence of a surface layer, e.g.
a metal oxide, giving rise to a surface viscosity. Whereas the magnetohydrodynamic
effects can be at least minimised by performing the experiment under microgravity,
an oxide layer can be hardly avoided when dealing with highly reactive liquid metals,
such as, e.g. aluminium. In addition, Earnshaw has argued that even clean liquid
metal surfaces possess an intrinsic surface layer, due to a varying density profile of
the conduction electrons close to the surface.

It is, therefore, the aim of the present paper to quantify the effect of a surface layer
on the damped oscillations of a liquid drop. This problem has been addressed before
for a liquid–liquid interface, i.e. when the liquid drop is immersed into another, host,
liquid by Miller & Scriven (1968), Lu & Apfel (1991) as well as Sparling & Sedlak
(1989), and for a liquid–gas interface by Tian, Holt & Apfel (1995). Whereas Miller’s,
Lu’s and Apfel’s works are analytical solutions for limiting cases, Sparling and Sedlak
present a numerical solution in more general cases.

In this paper, we concentrate on the liquid–gas interface and extend previous works
by deriving analytical expressions for small, finite and large surface viscosities. In
particular, we show that finite surface viscosities can suppress surface oscillations,
leading to aperiodic solutions, even in the case of small bulk shear viscosity.
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206 D. V. Lyubimov, V. V. Konovalov, T. P. Lyubimova and I. Egry

We obtain our results through systematic perturbation theory in powers of the
surface viscosity. This is in contrast to the method applied by Miller & Scriven (1968)
who treated the surface as inextensible in their approximation. Simular theories were
built by Lu & Apfel (1991) for the liquid–liquid interface and Tian et al. (1995) for the
liquid–gas interface. Their approaches to construct the perturbation theory weren’t
sufficiently systematic in our opinion. The former tended to reduce the analysis to
the case of inextensible or having no shear interface. The latter didn’t specify directly
the conditions when simplified expressions for the corrections can be given. We try to
avoid both these shortages in our theory.

In the next chapter, we will state the problem in mathematical terms by introducing
the surface viscosity tensor into the stress balance equation of the surface. Then,
we will derive the dispersion relation for the complex eigenfrequency and discuss in
particular the case when the bulk shear viscosity is small and the surface viscosity
dominates. Finally, we will make some concluding remarks.

2. Statement of the problem. Equations and boundary conditions
2.1. Equations. Perturbation modes

Consider a spherical equilibrium drop of a liquid with a surfactant adsorbed in the
surface layer, performing small-amplitude free capillary oscillations.

The liquid is assumed viscous and incompressible. The velocity field u is described
by the linearized Navier–Stokes equation,

∂u
∂t

= − 1

ρ
∇p + ν�u (2.1)

and the continuity equation

∇u = 0. (2.2)

The origin of the spherical coordinates {r, ϑ, φ} is located in the centre of the drop.
In spherical coordinates, (2.2) allows us to distinguish between two types of

perturbations: meridional perturbation with the following velocity components (see,
for example, Chandrasekhar 1961):

ur =
l(l + 1)

r2
T (r)Y m

l (ϑ, φ) exp(iΩlt) + c.c., (2.3)

uϑ =
1

r

dT

dr

∂

∂ϑ
Y m

l (ϑ, φ) exp(iΩlt) + c.c., (2.4)

uφ =
1

r sin ϑ

dT

dr

∂

∂φ
Y m

l (ϑ, φ) exp(iΩlt) + c.c.; (2.5)

and azimuthal perturbation with the following velocity components:

ur = 0, (2.6)

uϑ =
S(r)

r sinϑ

∂

∂φ
Y m

l (ϑ, φ) exp(iΩlt) + c.c., (2.7)

uφ = −S(r)

r

∂

∂ϑ
Y m

l (ϑ, φ) exp(iΩlt) + c.c.. (2.8)

Here Y m
l (ϑ, φ) is a spherical harmonic, T (r) and S(r) are functions of the radial

coordinate r , Ωl is the natural frequency of the l-th free oscillation mode of the drop
and c.c. means complex conjugate.
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Shape oscillations of a liquid drop with surface viscosity 207

As stated previously (Prosperetti 1980), only perturbations of the meridional type
are related to oscillations of the drop shape. Perturbations of the azimuthal type are
related to shear waves when different layers of the liquid rotate about their centres.
Since there is no restoring force for this kind of motion, it is natural to expect
that these modes will be aperiodically damped. It will be shown below that small
perturbations of the azimuthal type do not cause redistribution of the surfactant in
the film. The perturbations are aperiodically damped by viscous dissipation in the
liquid and in the surfactant film. In what follows, our primary concern is with the
perturbations of the meridional type.

The pressure perturbation, created by the fluid flow corresponding to (2.1) and
(2.2), satisfies the Laplace equation �p = 0. The solution satisfying the boundedness
condition at the drop centre is written as

p = ΠrlY m
l (ϑ, φ) exp(iΩlt) + c.c.. (2.9)

The velocity fields defined by (2.3)–(2.5) satisfy identically the continuity
equation (2.2).

Substituting (2.3)–(2.5) and (2.9) into (2.1), we obtain the equation for T (r),

d2T

dr2
− l(l + 1)

r2
T − iΩl

ν
T =

1

l + 1

Π

ρν
rl+1. (2.10)

The solution of this equation satisfying the boundedness condition at the drop centre
is

T = Ar
jl(xr/R)

jl(x)
+

i

l + 1

Π

ρΩl

rl+1, (2.11)

where x =
√

−iΩl/νR and jl(x) is the spherical Bessel function of the first kind of lth
order.

Here A and Π , as well as Φ and Λ below, are perturbation amplitudes.

2.2. Boundary conditions

Now consider the boundary conditions on the free surface of the drop. The surface
shape is given by the equation

f (r, ϑ, φ, t) = r − R − ε(ϑ, φ, t) = 0, (2.12)

where ε(ϑ, φ, t) describes a small deviation from the equilibrium position.
The free surface of the drop satisfies the kinematic condition,

∂f

∂t
+ u∇f = 0. (2.13)

At the drop surface, adsorption leads to the formation of a high-concentration
surfactant layer, which has an equilibrium distribution of the surfactant. The
disturbance of equilibrium initiates the processes of surfactant redistribution. The
equation of mass conservation for the surfactant can be written as (Stone 1990)

∂Γ

∂t
+ ∇(s)(Γ u(s)) + Γ Hun = Ds�

(s)Γ, (2.14)

where Γ is the space and time dependent surface concentration of a surfactant, Ds

is the coefficient of the surface diffusion, un and u(s) are the velocity components
normal and tangential to the surface, ∇(s) and �(s) are the analogues to the gradient
and Laplace operators with respect to the surface coordinates and H is the mean
curvature.
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In this study, no consideration is given to the processes of surfactant transfer
between the liquid and its surface layer, namely bulk diffusion and adsorption. Such
assumption is legitimate because in the limit of small bulk dissipation, both viscous
and diffusion, the influence of these processes on the natural frequencies is apparently
small, even smaller than the influence of viscous dissipation. For the same reason, we
further neglect the surface diffusion of the surfactant and assume that Ds = 0.

The distribution of the surfactant in the film is given as

Γ = Γ0 + Γ ′(ϑ, φ, t), (2.15)

where Γ0 is the value of the surface concentration of a surfactant in equilibrium,
Γ ′(ϑ, φ, t) is a small deviation of the surfactant concentration from the equilibrium
value.

As ∇(s)u(s) = 0 and un =0 for perturbations of the azimuthal type (2.6)–(2.8) and
(2.14) conserve the surface concentration of a surfactant in equilibrium. Redistribution
of the surfactant in the film due to convective transfer and compression–extension of
the interface is absent and Γ ≡ Γ0.

The condition of stress balance at the liquid surface under the assumption of
negligible thickness of the surfactant film is given by (see, for example, Bratukhin
1994)

Γ
∂uj

∂t
+ Γ

(
u(s)∇(s)

)
uj = −pnj + σjknk + ∇(s)

k σ
(s)
jk − ∇(s)

j γ + γHnj . (2.16)

This expression involves, in addition to the normal viscosity tensor σjk , the surface

viscosity tensor σ
(s)
jk , for which the indices j and k can run through the values only

along the coordinates of the plane tangential to the interface; γ is the surface tension,
n is the unit vector normal to the surface. Inertia of the surfactant, defined by the
left-hand side of (2.16), is inessential and is neglected in the following.

The surface viscosity tensor σ
(s)
jk in (2.16) is derived from general mathematical

considerations: linearity with respect to the derivatives of the velocity components
tangential to the interface along the coordinates of the plane tangential to the
interface, and invariance under surface rotation. This tensor was first introduced by
Scriven (1960) and is written as

σ (s) = (ηd − ηs)
(
∇(s)u(s)

)
· I(s) + ηs

[(
∇(s)u(s)

)
· I(s) + I(s) ·

(
∇(s)u(s)

)T]
. (2.17)

Here I(s) = I − (nn) (where I is the unit tensor) is the surface tensor projecting any
vector onto the interface, the tensor (∇(s)u(s))T is conjugate to the tensor (∇(s)u(s)),
ηs and ηd are the shear and dilation surface viscosities, respectively.

The boundary conditions, linearly approximated in perturbation amplitude, are
applied to the undisturbed drop surface. Then, from (2.12)–(2.17), we obtain the
relations fulfilled at r = R,

∂ε

∂t
− ur = 0, (2.18)

−p + 2ρν
∂ur

∂r
+ 2ηd

1

r2

(
∂uϑ

∂ϑ
+ uϑctgϑ +

1

sin ϑ

∂uφ

∂φ
+ 2ur

)
+ Γ ′ ∂γ

∂Γ

2

r

− γ0

1

r2

(
2ε +

∂2ε

∂ϑ2
+ ctgϑ

∂ε

∂ϑ
+

1

sin2 ϑ

∂2ε

∂φ2

)
= 0, (2.19)
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ρν

(
1

r

∂ur

∂ϑ
+

∂uϑ

∂r
− uϑ

r

)
− (ηs + ηd)

1

r2

∂

∂ϑ

(
∂uϑ

∂ϑ
+ uϑctgϑ +

1

sin ϑ

∂uφ

∂φ

)

− 2ηs

uϑ

r2
− 2ηd

1

r2

∂ur

∂ϑ
− ∂γ

∂Γ

1

r

∂Γ ′

∂ϑ
= 0, (2.20)

∂Γ ′

∂t
+ Γ0

1

r

(
∂uϑ

∂ϑ
+ uϑctgϑ +

1

sinϑ

∂uφ

∂φ

)
+ 2Γ0

ur

r
= 0. (2.21)

Here γ0 is the surface tension when the surfactant has its equilibrium distribution,
not to be confused with the surface tension of the pure system, γpure , without
surfactant. It can be calculated from the Langmuir adsorption isotherm by the
(Szyszkowski 1908; Belton 1976) equation,

γ0 = γpure − R̄TΓ0 ln(1 + Ka), (2.22)

where R̄ is the gas constant, T is the absolute temperature, K is the adsorption
coefficient and a is the activity of the surface active species.

It should also be noted that a variation in surface coverage, as defined in (2.15),
leads, through the Belton equation, (2.22), to a variation of the surface tension along
the surface. As is well known, this leads to Marangoni convection, which is neglected
here as a second-order effect.

3. Results and discussion
3.1. The dispersion relation for eigenfrequencies

For perturbations of the meridional type, the deformation of the shape of the drop
surface and the deviation of the surface concentration of a surfactant from its
equilibrium value are, in linear approximation, given by

ε = ΦY m
l (ϑ, φ) exp(iΩlt) + c.c., (3.1)

Γ ′ = ΛY m
l (ϑ, φ) exp(iΩlt) + c.c.. (3.2)

Substituting (2.3)–(2.5), (2.9), (2.11), (3.1) and (3.2) into (2.18)–(2.21), we can derive
an equation for the amplitudes of the perturbations (some obvious transformations
have been done to remove the amplitude Λ from the consideration). It reads in
dimensionless variables

l(l + 1)A + l
i

θl

Π − iθlΦ = 0, (3.3)

2l(l + 1)H2Q(x)A +

[
2l(l − 1)H2

i

θl

− 1

]
Π + (l − 1)(l + 2)Φ = 0, (3.4)

[iθl + MQ(x) + 2(l − 1)(l + 2)H1]A + (M + 2lH2)
i

θl

Π = 0. (3.5)

Here,

M = l(l + 1)(H1 − H2) − 2H1, H1 = δ + hs, H2 = δ − hd + k
i

θl

; (3.6)

Q(x) = l − 1 − xjl+1(x)

jl(x)
. (3.7)
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To reduce the problem to non-dimensional form, we have chosen the equilibrium
radius of the drop R for the unit of length, and, for the unit of time the

quantity τ =
√

ρR3/γ0, which is essentially the inverse of the Rayleigh frequency,
(1.1). Then, the units of the perturbation amplitudes are expressed as follows:
[A] = R2τ , [Π] = ρ/τ 2Rl−2 and [Φ] = R. Further, we use the same notation for the
dimensionless amplitudes as for the dimensional ones. We have also introduced the
following additional dimensionless parameters: θl = Ωlτ is the natural frequency of
the oscillations of the drop, δ = ντ/R2 is the inverse Reynolds number, as defined in
(1.3); x =

√
−iθl/δ, hs = ηsτ/R3 and hd = ηdτ/R3 are the parameters of the shear and

dilatation surface viscosities, respectively.
The dimensionless parameter k = (∂γ /∂Γ )Γ0/γ0 is the parameter of the surfactant

effect on the surface tension. By definition, k � 0; it is related to the Gibbs elasticity
E by E = −kγ0, therefore, k is also the parameter of Gibbs elasticity. The Belton
equation (2.22) gives

k =
1

1 − γpure

R̄TΓ0 ln(1 + Ka)

=
γ0 − γpure

γ0

. (3.8)

As can be seen, the absolute value of k increases when the surface tension decreases
by the influence of surfactant.

The system (3.3)–(3.5), written for the amplitudes A, Π and Φ , has non-trivial
solutions only when its determinant is equal to zero. From this condition, one obtains
the frequencies as eigenvalues. The frequency mode with meridional number l exhibits
an 2l + 1-fold degeneracy in the azimuthal number m.

3.2. The limit of small bulk shear viscosity

The limit of small bulk shear viscosity, commonly encountered in practice, is associated
with the capillary number δ tending to zero. In this case, Q(x) tends to its asymptotic
value.

If iθl is a negative real quantity, corresponding to aperiodic damping, we obtain
the asymptotic estimate for Q(x),

lim
x−l→∞

Q(x) → l − 1 + x ctg
(
x − l

π

2

)
, (3.9)

which, obviously, is large for almost all combinations of parameters x and l.
If, on the other hand, iθl is not a negative real quantity, we obtain for large negative

values of the imaginary part of the argument,

lim
Im x+l→−∞

Q(x) → ix. (3.10)

We next define the principal part of the natural frequency of the free capillary
oscillations of the drop, θl0, and a small correction to this part, θl1, caused by viscous
dissipation in the liquid, and the influence of the surfactant film. Note that for certain
cases discussed below the dissipation influence can occur already in the leading order.

3.2.1. Weak dissipation case

Now we consider the case of weak dissipation when its effect to the drop capillary
oscillations is expressed by a small correction. Then the principal part of the natural
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frequency θl0 is

θl0 =
√

l(l − 1)(l + 2), (3.11)

which corresponds to the Rayleigh frequency, for l =2, (1.1).
General expression for the correction θ21 to the Rayleigh frequency has been given

by Apfel and coworkers (Tian et al. 1995; Tian, Holt & Apfel 1997), allowing for
different types of surfactant transfer between the liquid volume and the surface
layer. Their correction can be rewritten in our terms, (neglecting the transport of the
surfactant between the bulk of fluid and the surface layer and the diffusion of the
surfactant in the layer) in the form,

θ21 =
√

2
12βs i −

[
1 + 16(81/4

√
i/δ − 3i)βs

]
P

1 +
(
81/4

√
i/δ − 3i

)
(3P i + 4βs)

, (3.12)

where

P =
k

4
+ 2βd i, βs = (δ + hs)/

√
8, βd = (δ − hd)/

√
8. (3.13)

This result has been obtained with the assumption that δ � 1, and the correction,
caused by viscous dissipation in the liquid and the influence of the surfactant film, is
small with respect to the Rayleigh frequency.

The expression (3.12) can be reduced by removing some minor terms from its
numerator and denominator without precision loss in the leading order. The reduced
expression for the correction has the form,

θ21 =
5δi + 6hs i −

(√
2 + 85/4hs

√
i/δ

)
q

1 + 81/4
√

i/δ
(
3qi +

√
2hs

) , (3.14)

where

q =
k

4
− hd√

2
i. (3.15)

Apparently, the general expression for θl1 must have the same structure as the
correction (3.14). The dilatation surface viscosity hd and the Gibbs elasticity k must
act together with the combination (hd − ki/θl0) originating in the leading order from
the combination H2 in (3.4) and (3.5). It allows us to specify the conditions when
simplified expressions for the corrections can be given. Each factor (the bulk shear
viscosity, the surface viscosities and the Gibbs elasticity) has a separate contribution
to these expressions presented below for arbitrary l.

If hs � 1, hd ∼ 1 or |k|/θl0 ∼ 1, the imaginary part of the correction θl1 corresponding
to the damping decrement is

Im θl1 =
1

2
√

2

[l(l − 1)(l + 2)]1/4(l − 1)2

l + 1

√
δ +

2(l − 1)(l + 2)

(l + 1)
hs, (3.16)

and the real part of the correction corresponding to the frequency shift is

Re θl1 = − 1

2
√

2

[l(l − 1)(l + 2)]1/4(l − 1)2

l + 1

√
δ. (3.17)

In the limit of vanishing hs , the solutions (3.16) and (3.17) reduce to Miller–Scriven
result (Miller & Scriven 1968) for a liquid drop of small bulk shear viscosity covered
by an inextensible film. The inclusion of the shear surface viscosity leads to an
increase of the imaginary part of the natural frequency but does not affect its real
part. The dilatation surface viscosity, hd , does not enter the leading correction to the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

76
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2011.76


212 D. V. Lyubimov, V. V. Konovalov, T. P. Lyubimova and I. Egry

natural frequency. Note, as mentioned by Tian et al. (1995), the dilatational surface
viscosity is usually much larger than the shear surface viscosity (ηd 
 ηs) for a soluble
surfactant (they can be compatible for insoluble surfactants).

Rewriting (3.16) for vanishing hs and for l =2, we obtain, in physical quantities,
the Miller–Scriven damping constant λMS ,

λMS =
1

6

(
2γR

ρ

)1/4

ν1/2

R2
. (3.18)

Equation (3.18) has been written in a form to resemble the classical result of Lamb,
(1.2). Note the different dependencies on the material properties, namely surface
tension, density and viscosity.

If hs ∼ 1, hd � 1 and |k|/θl0 � 1, the corrections to the undamped periodic mode
are given by

Im θl1 =
1

2
√

2
[l(l − 1)(l + 2)]1/4(l + 1)

√
δ + 2lhd, (3.19)

Re θl1 = − 1

2
√

2
[l(l − 1)(l + 2)]1/4(l + 1)

√
δ − 2

√
l

(l − 1)(l + 2)
k. (3.20)

Rewriting (3.19) for vanishing hd and k and for l =2, we obtain, in physical
quantities, some damping constant λ1,

λ1 =
3

2

(
2γR

ρ

)1/4

ν1/2

R2
, (3.21)

which is nine times higher than the Miller–Scriven damping constant (3.18).
If, hs , hd and |k|/θl0 are small in comparison to

√
δ then the corrections to the

eigenfrequency have the form,

Im θl1 = 1
2

[
2(2l + 1)(l − 1)δ + (l2 − 1)(l + 2)hs + l(l − 1)2hd

]
, (3.22)

Re θl1 = −1

2

√
l(l − 1)3

l + 2
k. (3.23)

These equations are also a generalisation of Lamb’s result, (1.2), but, in contrast to
(3.16), they converge to the classical limit for hs → 0, hd → 0 and k → 0.

Let us discuss (3.22) in some more detail. As can be seen, the different contributions
to the imaginary part of the frequency by the bulk and surface viscosities scale
differently with respect to l. Therefore, if one can measure the damping of the
l =2, 3, 4 modes, one obtains three equations for the three unknowns δ, hs and hd ,
and all viscosities can be determined. On the other hand, if one considers (3.22) for
l =2, one obtains, in physical quantities,

Im θ21 =
5τ

R2

(
ν +

6ηs + ηd

5R

)
, (3.24)

which allows one to define an effective viscosity,

νeff = ν +
6ηs + ηd

5R
. (3.25)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

76
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2011.76


Shape oscillations of a liquid drop with surface viscosity 213

In this case, measurement of the damping constant for spheres of different radius R

allows us to disentangle the contributions of the bulk and surface viscosities.
As can be seen from (3.16) and (3.19), the contribution to the damping rate due

to bulk shear viscosity can be proportional to the square root of viscosity in the
presence of a surfactant, whereas in its absence (1.2) is linear in the viscosity. Thus,
the very presence of the surfactant film can increase the damping effect of bulk
viscosity. Such increase in viscous dissipation has been reported before (Levich 1962;
Miller & Scriven 1968; Tian et al. 1995). It is related to a change in the character of
the boundary layer caused by a different boundary condition on the balance of the
tangential stresses in the presence of a surfactant. The factor controlling such change
for the fundamental oscillation mode, l = 2, is the combination (3qi +

√
2hs) from

(3.14). The criterion for the transition to the linear damping rate is |3qi+
√

2hs | �
√

δ.

One can formulate the general criterion for arbitrary l as hs �
√

δ, hd �
√

δ and
|k|/θl0 �

√
δ.

3.2.2. Significant dissipation case

Now we consider in detail the case when one or two of the surface viscosities is no
longer a small quantity, which can cause significant dissipation already in the leading
order. If hs ∼ 1 or hd ∼ 1, the leading order of the natural frequency is defined by

(aθl0 − 1)
[
θ2
l0 − l(l − 1)(l + 2)

]
+ bθ2

l0 + cθl0 = 0, (3.26)

where

a =
l(l + 1)(hs + hd) − 2hs

l(l + 1)k
i, b =

4(l − 1)(l + 2)

(l + 1)

hshd

k
, c =

4(l − 1)(l + 2)hs

(l + 1)
i,

(3.27)
which reduces to a real cubic equation for iθl0.

As stated before, k � 0. In this case, for hs > 0 and hd > 0, the Hurwitz-criterion
(Korn & Korn 1968) shows that all roots of (3.26) for iθl0 have negative real parts
corresponding to damped oscillations.

Equation (3.26) for iθl0 has either one real and two complex conjugate roots or
three real roots. This corresponds either to one aperiodic and one periodic mode, or
three different aperiodic modes of drop oscillations (one aperiodic solution relates
to the Gibbs elasticity (Tian et al. 1995) and vanishes for k =0 and there are one
periodic or two aperiodic solutions in this case). The regions of the parameters hs

and hd , where the above solutions exist, are shown in figure 1.
The real and imaginary parts of the solutions to (3.26), θl0, are shown for l = 2, 3, 4

and k = −1 in figures 2 and 3, as functions of hs and hd , respectively. Note a slight
effect of the meridional number l to the solution associated with the Gibbs elasticity
(the lower curves in figures 2(a) and 3(a).

The transition to aperiodic solutions resulting from the action of the surface
viscosities takes place at some curve connecting the shear and dilatational surface
viscosities. It turns out that this transition is possible only in the presence of both
viscosities and cannot occur if one of the surface viscosities is small (with the exception
of the case of large negative values of the Gibbs elasticity to be discussed below).

From figures 1(a), 2(a) and 3(a), it can be seen that the onset of the overdamped
regime is different for the surface viscosity as compared to the bulk shear viscosity
(Prosperetti 1980). As the meridional number l increases, the region with aperiodic
modes is reduced in contrast to the case of the bulk shear viscosity. But this is not
accompanied by a decrease of the damping rate, which, of course, increases with
increasing meridional number.
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Figure 1. The regions of the parameters hs and hd for which, at small bulk shear viscosity,
there exist either three aperiodic modes (shaded region) or one aperiodic and one periodic
mode (unshaded region) of the solutions to (3.26). (a) k = −1. 1: l = 2; 2: l = 3; 3: l =4;
4: l = 5. (b) l = 2. 1: k = 0; 2: k = −0.5; 3: k = −1; 4: k = −2. The arrowed dash lines present
the asymptote locations to the shaded regions.
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Figure 2. The imaginary (a) and real (b) parts of the solutions to (3.26) as function of the
parameter hs in the case of small bulk and finite surface viscosities. For the plot, hd = 2 and
k = −1 were chosen. The solid, dash and dash-dotted line present the solution calculated for
l = 2, 3, 4, respectively.

As can be seen from figure 2, the decrement increases with the shear surface
viscosity in general; upon further increase, the periodic decay is replaced by the
aperiodic decay mode. This scenario, however, is not the only one possible. For large
negative values of the Gibbs elasticity coefficient (k < −8), the damping rate decreases
with increasing shear surface viscosity. In this special case, the transition to aperiodic
damping occurs in other domains of the parameter space, different from those shown
in figure 1, and is possible for arbitrary values of the dilatational surface viscosity.
Under such circumstances, there is an alternation of modes with increasing shear
surface viscosity: the periodic decay regime is first replaced by aperiodic decay, which
then goes back to the regime of periodic decay. Note, however, that the realization
of this particular case is hardly possible in practice, where the absolute value of k is
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Figure 3. The imaginary (a) and real (b) parts of the solutions to (3.26) as function of the
parameter hd in the case of small bulk and finite surface viscosities. For the plot, hs = 2 and
k = −1 were chosen. The solid, dash and dash-dotted line present the solution calculated for
l =2, 3, 4, respectively.

usually of the order of unity. For this reason, in the present work, such case is not
considered in detail.

3.2.3. Special cases

Here we consider some special cases of (3.26) when one of the parameters hs , hd

and |k| tends to infinity.
If hs → ∞, the solutions are given by

θ2
l0 − 4lhd iθl0 + 4lk − l(l − 1)(l + 2) = 0, (3.28)

and one aperiodic mode is degenerate. Obviously, this is the mode related to the
Gibbs elasticity. The transition between the aperiodic and periodic modes is defined
by the threshold value of hd ,

hd thr =

√
(l − 1)(l + 2) − 4k

4l
. (3.29)

If hd → ∞, the solutions are given by

θ2
l0 − 4(l − 1)(l + 2)hs

(l + 1)
iθl0 − l(l − 1)(l + 2) = 0. (3.30)

The aperiodic mode related to the Gibbs elasticity is degenerate and the transition
between the case of one periodic mode and two aperiodic modes is defined by the
threshold value of hs ,

hs thr =

√
l(l + 1)2

4(l − 1)(l + 2)
. (3.31)

The threshold values (3.29) and (3.31) define the asymptotes for the boundaries of
the system parameter regions with different mode types, as shown in figure 1.

If k → −∞, the solutions are given by (3.30), as for the case hd → ∞. In addition, a
damped aperiodic mode related to the Gibbs elasticity exists,

θl0 = − l(l + 1)k

l(l + 1)(hs + hd) − 2hs

i. (3.32)
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The transition to the parameter region, when only aperiodic modes exist, is defined by
the threshold value (3.31). Note, the transition to aperiodic solutions can be carried
out with an arbitrary dilatation viscosity. However, the threshold for the shear surface
viscosity does not disappear in this case.

4. Conclusion
In the present work, the influence of a surfactant adsorbed in the surface layer of

a liquid on free capillary oscillations of the spherical liquid drop has been considered
in the limit of small bulk shear viscosity. In contrast to the previous works, we obtain
our results through systematic perturbation theory in powers of the surface viscosity.

First the case of weak dissipation has been considered when the effect of the bulk
shear viscosity, the shear and dilatation surface viscosities and the Gibbs elasticity to
the drop capillary oscillations is expressed by a small correction. The conditions have
been specified when simplified expressions for the correction can be given. Each factor
(the bulk shear viscosity, the surface viscosities and the Gibbs elasticity) has a separate
contribution to these expressions. The corresponding expressions are presented.

It is well known that the very presence of the surfactant film can increase the
damping effect of bulk viscosity. The contribution to the damping rate due to bulk
shear viscosity can be proportional to the square root of viscosity in the presence
of a surfactant, whereas in its absence or insufficient is linear in the viscosity. In
the present work, a criterion has been presented about value orders of the surface
viscosities and the Gibbs elasticity to save the linear contribution to damping rate.

In the limit of finite surface viscosity, which can cause significant dissipation already
in the leading order, an equation that determines the leading order of the oscillation
frequencies has been obtained. The parameter space has areas where there are periodic
and aperiodic solutions, or three different aperiodic solutions. Note that one of the
aperiodic solutions exists whenever the Gibbs elasticity is different from zero (Tian
et al. 1995).

In the case of the small or finite Gibbs elasticity, the transition to aperiodic solutions
is determined by the combined action of the shear and dilatation surface viscosities
and is impossible, if one of the surface viscosities is small.

A difference exists between the surface viscosity effect to a transition to an
overdamped regime, where only aperiodic solutions exist, from the similar effect
of the bulk shear viscosity. As the meridional number increases, as the region with
aperiodic modes is reduced that is opposite to the effect of the bulk shear viscosity.
But it is not accompanied by decreasing of the damping rate, which increases when
the meridional number increases.

If the Gibbs elasticity has a large negative value, then the transition to aperiodic
solutions can be carried out with an arbitrary dilatation viscosity, but the threshold
for the shear surface viscosity does not disappear in this case.
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Lösungen von Fettsäuren. Z. Phys. Chem. 64, 385–414.

Tian, Y., Holt, R. G. & Apfel, R. E. 1995 Investigations of liquid surface rheology of surfactant
solutions by droplet shape oscillations: Theory. Phys. Fluid. 7, 2938–2949.

Tian, Y., Holt, R. G. & Apfel, R. E. 1997 Investigations of liquid surface rheology of surfactant
solutions by droplet shape oscillations: Experiment. J. Colloid Interface Sci. 187, 1–10.

Wunderlich, R. 2008 Surface tension and viscosity of industrial Ti-Alloys measured by the
oscillating drop method on board parabolic flights. High Temp. Mat. Process 27, 401–412.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

76
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2011.76

