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We use the random-product technique from [5] to study both the steady-state and time-
dependent behavior of a Markovian reentrant-line model, which is a generalization of
the preemptive reentrant-line model studied in the work of Adan and Weiss [2]. Our
results/observations yield additional insight into why the stationary distribution of the
reentrant-line model from [2] exhibits an almost-geometric product-form structure: indeed,
our generalized reentrant-line model, when stable, admits a stationary distribution with a
similar product-form representation as well. Not only that, the Laplace transforms of the
transition functions of our reentrant-line model also have a product-form structure if it is
further assumed that both Buffers 2 and 3 are empty at time zero.
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1. INTRODUCTION

We consider a reentrant-line model consisting of three buffers and two servers. The buffers
are labeled as Buffer 1, Buffer 2, and Buffer 3, and the servers are labeled as Server 1 and
Server 2. We assume there is an infinite supply of jobs present at Buffer 1, while additional
jobs arrive from outside of the system to Buffer 3 in accordance to a homogeneous Poisson
process with rate μ4. Server 2 always stays at Buffer 2 and processes jobs there in a First-
Come-First-Served (FCFS) manner, while Server 1 moves between Buffers 1 and 3, giving
preemptive priority to jobs at Buffer 3: this means that Server 1 always devotes its full
attention to jobs at Buffer 3, in an FCFS manner, whenever any jobs are present there.
Once Buffer 3 empties, Server 1 then devotes its full attention to the infinite pile of jobs at
Buffer 1 until a job arrives to Buffer 3, at which time it immediately stops serving at Buffer
1 to work at Buffer 3, only to resume processing at Buffer 1 whenever Buffer 3 is again
empty. Server 2 serves jobs at Buffer 2 at a rate μ2, while server 1 serves jobs at Buffers 1
and 3 with rates μ1 and μ3, respectively.

Each job found among the infinite pile of jobs at Buffer 1 possesses three i.i.d. unit
exponentially distributed amounts of work to be processed at the three buffers, independent
of all other jobs present, and each job that arrives from outside of the system to Buffer 3
possesses a single amount of work that is unit exponentially distributed, and independent of
everything else. Observe, however, that not all work possessed by a job needs to be processed
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Figure 1. An illustration of our three-buffer, two-server reentrant-line model. Readers
should note that this diagram does not display that jobs leaving Buffer 2 could further
leave the system, and some of these jobs may also take a customer—waiting or in service—at
Buffer 3. The dashed lines represent the ability of Server 1 to move between Buffers 1 and 3,
where the time it takes to move from one buffer to another is assumed to be instantaneous.

in order for it to leave the system. More specifically, whenever a job finishes processing at
Buffer 1, it moves on to Buffer 2, but when a job finishes processing at Buffer 2, it will either
(i) leave the system and take a single job currently either waiting or in service at Buffer
3 (if such a job is present at Buffer 3) with probability α1, (ii) leave the system without
attempting to take a job from Buffer 3 with probability α2, or (iii) move on to Buffer 3 with
probability α3: here α1 + α2 + α3 = 1. As soon as a job at Buffer 3 is processed by Server 1,
it leaves the queueing system. This deletion skill possessed by jobs leaving Buffer 2 makes
this process somewhat reminiscent of the negative customer models studied in Gelenbe [9].
Readers should note that when α1 = α2 = μ4 = 0, our model becomes the reentrant-line
model studied in Adan and Weiss [2]: the reentrant-line model from [2] is also covered in
the recent text of Adan et al. [3]. An illustration of our three-buffer, two-server reentrant-line
model can be found in Figure 1.

The dynamics of this modified reentrant-line model can be fully described by a
continuous-time Markov chain (CTMC) X := {X(t); t ≥ 0} having state space

Z
2
+ := {(i, j) : i, j ∈ {0, 1, 2, 3, . . .}}

where for each real number t ≥ 0, we write X(t) := (X2(t),X3(t)) with Xi(t) representing
the number of jobs present (either waiting or in service) at Buffer i at time t, i = 2, 3.
Figure 2 illustrates, through a transition rate diagram, the structure of the generator (i.e.
transition rate matrix) Q := [q(x, y)](x,y)∈E associated with X.

Our primary goal is to derive computable expressions for the Laplace transform of each
transition function of X, whenever X(0) = (0, 0). More specifically, for each state (i, j) ∈ E,
we seek to derive π(0,0),(i,j), which is well-defined on the set C+ := {α ∈ C : Re(α) > 0}—the
set of complex numbers having positive real part—as

π(0,0),(i,j)(α) :=
∫ ∞

0

e−αtp(0,0),(i,j)(t)dt, α ∈ C+

where for each real number t ≥ 0, the transition function p(0,0),(i,j) : [0,∞) → [0, 1] is defined
for each real t ≥ 0 as

p(0,0),(i,j)(t) = P(X(t) = (i, j) | X(0) = (0, 0)).
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Figure 2. The rate diagram associated with the generator Q of X.

Since throughout this paper our focus will always be on the case where X(0) = (0, 0),
we denote each Laplace transform π(0,0),(i,j) simply as π(i,j). Once these π(i,j) transforms
are known, numerical transform inversion algorithms can be used to numerically compute
each of the corresponding transition functions, and this can give some insight into how
fast the reentrant-line model converges in distribution to its stationary distribution p :=
[p(i,j)](i,j)∈E , whenever p exists. Observe that p(0,0),(i,j) is a transition function, whereas
p(i,j) is an element of p: clearly, since X is irreducible, when p exists we have

p(i,j) = lim
t→∞ p(0,0),(i,j)(t).

Our results contribute to the applied probability literature in the following ways. First,
our analysis of this generalized reentrant-line model provides a new understanding of why
the stationary distribution of the reentrant-line model considered in [2] admits a modified-
geometric product-form structure having computable parameters, and it gives us an idea
of how much we can generalize the transition dynamics of the reentrant-line model without
changing the overall tractability of the stationary distribution p. Second, our techniques
allow us to show that the Laplace transforms of the transition functions of our generalized
reentrant-line model also have a modified-geometric product-form structure that is com-
putable, when we further assume Buffers 2 and 3 are empty at time zero. Finally, this paper
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illustrates another application of the random-product technique introduced in [5] to the
study of the steady-state and/or the time-dependent behavior of continuous-time Markov
chains. This appears to be a new technique, and in future studies of Markov chains, it may
prove to be a key tool in ways that as of now are unknown.

2. MAIN RESULTS

Our approach towards deriving a computable expression for each Laplace transform π(i,j)

consists of making use of the random-product technique. In order to use this technique, we
must select another CTMC {X̃(t); t ≥ 0} having the same state space E as {X(t); t ≥ 0},
but with a generator Q̃ that satisfies two properties: (i) q̃(x, x) = q(x, x) for each x ∈ E,
and (ii) for any pair of distinct states x, y ∈ E, q̃(x, y) > 0 if and only if q(y, x) > 0. Further
associated with {X̃(t); t ≥ 0} is its embedded DTMC {X̃n}n≥0, where X̃0 := X̃(0), and for
each integer n ≥ 1, X̃n represents the state of X̃ immediately after its nth state transition.

Given both {X̃(t); t ≥ 0} and {X̃n}n≥0, we introduce a collection of functions
{wi,j}(i,j)∈E defined on C+ ∪ {0}, where w(0,0)(α) := 1 for α ∈ C+ ∪ {0}, and for each state
(i, j) �= (0, 0),

w(i,j)(α) := E(i,j)

⎡
⎣1(η̃(0,0) <∞)e−ατ̃(0,0)

η̃(0,0)∏
�=1

q(X̃�, X̃�−1)
q̃(X̃�−1, X̃�)

⎤
⎦ , α ∈ C+ ∪ {0} (1)

where the hitting times η̃(0,0) and τ̃(0,0) are defined as

η̃(0,0) := inf{n ≥ 1 : X̃n = (0, 0)}, τ̃(0,0) := inf{t ≥ 0 : X̃(t−) �= X̃(t) = (0, 0)}

and where in (1), E(i,j)[·] represents a conditional expectation, conditional on the event
X̃0 = (i, j), and P(i,j)(·) is its corresponding conditional probability. We could have omitted
the indicator function 1(η̃(0,0) <∞) from our definition of (1) when α ∈ C+, due to the fact
that under P(i,j), we have e−ατ̃(0,0) = 0 on the event {η̃(0,0) = ∞} when α ∈ C+.

It has been shown in [5]—see also [7] for a proper extension to the complex plane—that
for each state (i, j) ∈ E,

π(i,j)(α) = π(0,0)(α)w(i,j)(α), α ∈ C+. (2)

In particular, we may also say that when the stationary distribution p of X exists, its
elements can be expressed as follows: given Q̃, we have for each state (i, j) ∈ E that

p(i,j) = p(0,0)w(i,j)(0) (3)

Note that (3) is a consequence of (2), since

p(i,j) = lim
α↓0

απ(i,j)(α) = lim
α↓0

απ(0,0)(α)w(i,j)(α) = p(0,0)w(i,j)(0).

We focus primarily on deriving the Laplace transforms π(i,j), for i, j ≥ 0, but a quick com-
parison between (2) and (3) reveals that similar expressions can be derived for each element
of p as well. In fact, the w(i,j)(0) terms themselves can reveal whether or not state (0, 0) is
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positive recurrent, due to (see [5])∑
(i,j)∈E

w(i,j)(0) = q((0, 0))E(0,0)

[
τ(0,0)

]
, (4)

where τ(0,0) := inf{t ≥ 0 : X(t−) �= X(t) = (0, 0)} denotes the first time {X(t); t ≥ 0}
returns to state (0, 0). The expectation found on the right-hand side of (4) denotes a con-
ditional expectation, conditional on X(0) = (0, 0). We will always use the notation Ex to
denote conditional expectation, when we condition on X(0) = x or X̃(0) = x: while this
is a somewhat sloppy practice to follow, readers should be able to infer from the form of
the random element within such a given conditional expectation precisely which type of
conditional expectation is being used. Readers interested in seeing other recent applications
of the random product technique are referred to [8,13].

We are now ready to state the main result of this paper, but before doing so, we first
need to introduce a few additional sets and functions, as well as additional notation. Given
integers i, j, k ∈ {1, 2, 3, 4}, let μij = μi + μj , and let μijk := μi + μj + μk. Let D(0, 1) :=
{z ∈ C : |z| ≤ 1} denote the closed unit disk in C centered at the origin, and define C

0
+ :=

C+ ∪ {0}. Next, define the functions β : C
0
+ → C, φ : C

0
+ ×D(0, 1) → C, and ψ : C

0
+ → C

as

β(α) := w(1,0)(α) = E(1,0)

⎡
⎣1(η̃(0,0) <∞)e−ατ̃(0,0)

η̃(0,0)∏
�=1

q(X̃�, X̃�−1)
q̃(X̃�−1, X̃�)

⎤
⎦ , (5)

φ(α, z) :=
(μ234 + α− α2μ2z) ±

√
(μ234 + α− α2μ2z)2 − 4(μ3 + α1μ2z)(μ4 + α3μ2z)

2(μ3 + α1μ2z)
,

(6)

where the ± symbol is replaced with either plus or minus in order to ensure that |φ(α, z)| <
1—we will see in the Appendix that there is only one way to choose the sign when α ∈ C+

and z ∈ C satisfies |z| < 1—and

ψ(α) :=
(μ3 + μ4 + α) − √

(μ3 + μ4 + α)2 − 4μ3μ4

2μ4
. (7)

Notice that ψ is only well-defined for the case where μ4 > 0.
Both β and φ will be described further later in this paper, but readers should recognize

that ψ is just the Laplace–Stieltjes transform of the busy period of an M/M/1 queue
having arrival rate μ4 and service rate μ3. From these functions, we construct the functions
Γ0 : C

0
+ → C, Γ1 : C

0
+ → C, and Γ2 : C

0
+ → C, defined as

Γ0(α) :=
μ2

μ3

ψ(α)β(α)(α3 + α2φ(α, β(α)) + α1φ(α, β(α))2)
(ρψ(α) − φ(α, β(α)))(1 − ψ(α)φ(α, β(α)))

,

Γ1(α) :=
μ2β(α)

μ4(1 − ρψ(α)2)
[α3 + α2φ(α, β(α)) + α1φ(α, β(α))2],

and

Γ2(α) :=
μ2β(α)[α3 + α2φ(α, β(α)) + α1φ(α, β(α))2]

μ3(1 − φ(α, β(α))) + α
.

Our first result shows how to write each Laplace transform π(i,j)—for i ≥ 1, j ≥ 0—in
terms of the Laplace transform π(0,0) times a product of geometric terms.
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Theorem 2.1: For each integer i ≥ 1, and each integer j ≥ 0, we have

π(i,j)(α) = π(0,0)(α)β(α)iφ(α, β(α))j , α ∈ C
0
+

where β(α) is a root of the polynomial g : C → C, defined as

g(x) = α1μ2x
4

+ [−2(1 − α3)μ2(μ124 + α) + (μ124 + α)α2μ2

+ (1 − α3)μ2(μ234 + α) + α3μ2μ3 + α1μ2μ4]x3

+
[
(μ124 + α)2 + 2μ1μ2(1 − α3) − (μ124 + α)(μ234 + α) − α2μ1μ2 + μ3μ4

]
x2

+ [−2μ1(μ124 + α) + μ1(μ234 + α)]x+ μ2
1. (8)

The next three results address how to compute π(0,j)(α) for each integer j ≥ 0, but
three different cases need to be considered separately in order to carry out the calculations.
Theorem 2.2 considers the case where μ4 > 0, and where α ∈ C

0
+ satisfies φ(α, β(α)) �=

ρψ(α).

Theorem 2.2: Suppose μ4 > 0, and α ∈ C+ satisfies φ(α, β(α)) �= ρψ(α). Then the Laplace
transforms π(0,j), for j ≥ 0 are as follows. First, for α ∈ C+,

π(0,0)(α) =
1

αC(α)
, (9)

where

C(α) = 1 + (1 + Γ0(α))
[

ρψ(α)
1 − ρψ(α)

]
− Γ0(α)

[
φ(α, β(α))

1 − φ(α, β(α))

]

+
β(α)

(1 − β(α))(1 − φ(α, β(α)))
. (10)

Furthermore, for each integer j ≥ 1, we have for α ∈ C+ that

π(0,j)(α) =
1

αC(α)
[
(1 + Γ0(α))(ρψ(α))j − Γ0(α)φ(α, β(α))j

]
. (11)

Our next result considers the case where μ4 > 0, and where α satisfies φ(α, β(α)) =
ρψ(α).

Theorem 2.3: Suppose μ4 > 0, and φ(α, β(α)) = ρψ(α). Then the Laplace transforms
π(0,j), j ≥ 0 are as follows. First, for α ∈ C+

π(0,0)(α) =
1

αC(α)
, (12)

where

C(α) = 1 +
[

ρψ(α)
1 − ρψ(α)

]
+ Γ1(α)

(
φ(α, β(α))

1 − φ(α, β(α))

)2

+
β(α)

(1 − β(α))(1 − φ(α, β(α)))
. (13)

Furthermore, for each integer j ≥ 1, we have for α ∈ C+ that

π(0,j)(α) =
1

αC(α)

[
(ρψ(α))j + Γ1(α)

(
j − 1

1

)
φ(α, β(α))j

]
. (14)
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The Laplace transforms π(0,j), for j ≥ 0, change in form slightly when μ4 = 0.

Theorem 2.4: Suppose now that μ4 = 0. Then the Laplace transforms π(0,j), for j ≥ 0, are
as follows: for α ∈ C+,

π(0,0)(α) =
1

αC(α)
, (15)

where

C(α) = 1 + Γ2(α)
1

1 − φ(α, β(α))
+

β(α)
(1 − β(α))(1 − φ(α, β(α)))

. (16)

Furthermore, for each integer j ≥ 1, we have for α ∈ C+ that

π(0,j)(α) =
1

αC(α)
Γ2(α)φ(α, β(α))j−1. (17)

In the next section, we will describe a procedure for determining which root of g
corresponds to β(α), as this is a somewhat nontrivial problem. Fortunately, numerical exper-
iments indicate that this procedure appears to always yield a unique root, as well as correct
Laplace transform values: we verified this numerically in R for various cases using both
simulation, and the numerical transform inversion algorithm of Abate and Whitt [1].

3. PROOF OF THEOREMS 2.1–2.4

Our ability to simplify each Laplace transform π(i,j) depends heavily on our ability to
simplify each function w(i,j), and these functions are expressed in terms of expected values
of random functions of the CTMC {X̃(t); t ≥ 0} having generator Q. In order to simplify
these w(i,j) terms, we must first choose a proper generator matrix Q̃. First, we define the
interior transitions of Q̃ as follows: for i, j ≥ 1, define

q̃((i, j), (i, j − 1)) = q((i, j − 1), (i, j)) = μ4,

q̃((i, j), (i, j + 1)) = q((i, j + 1), (i, j)) = μ3q̃((i, j), (i+ 1, j − 1))

= q((i+ 1, j − 1), (i, j)) = α3μ2,

q̃((i, j), (i+ 1, j)) = q((i+ 1, j), (i, j)) = α2μ2

and

q̃((i, j), (i+ 1, j + 1)) = q((i+ 1, j + 1), (i, j)) = α1μ2.

We chose to define these transition rates from interior states in this way so that each
transition made by X̃ from an interior state contributes the value of one to the random
product, which makes the random products found within each w(i,j) term easier to study:
this will be clearer in our derivations.

The next step involves defining the transition rates made by X̃ from the set
{(1, 0), (2, 0), (3, 0), . . .}. For each integer i ≥ 0, we set

q̃((i, 0), (i− 1, 0)) = q̃((i, 0), (i+ 1, 0)) = q̃((i, 0), (i, 1)) = q̃((i, 0), (i+ 1, 1)) = μ124/4.

Choosing this uniform transition structure is really not a crucial step, we mainly need to
choose these transition rates so that X̃ has a homogeneous transition structure among the
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transition rates corresponding to transitions from states in the set {(i, j) : i ≥ 1, j ≥ 0}:
more specifically, these transition rates do not depend on i, for i ≥ 1. We refrain from
choosing specific transition rates within Q̃ from states of the form (0, j), j ≥ 0, as these will
not be needed in our derivation: the reader will understand why this is the case as he/she
reads through the arguments in this section.

Our justification of Theorems 2.1–2.4 proceeds in the following manner. Step one is to
show that for each integer i ≥ 0, and each α ∈ C+, that

π(i,0)(α) = π(0,0)(α)β(α)i.

In Step two, we show that given any integers i, j ≥ 1, we have that for each α ∈ C+,

π(i,j)(α) = π(0,0)(α)β(α)iφ(α, β(α))j .

Step three consists of showing that β(α) is a root of the polynomial defined in (8): these
three steps establish the validity of Theorem 2.1.

The next step is to express, for each integer j ≥ 1 and each α ∈ C+, the Laplace trans-
form values π(0,j)(α) in terms of β(α), for each of the three cases addressed by Theorems
2.2–2.4. Once all of these expressions have been calculated, we can, for each α ∈ C+, com-
pute the normalization terms C(α) appearing in Theorems 2.2–2.4, and we conclude by
explaining how to compute the remaining unknown β(α) term numerically.

3.1. Derivation of π(i,0)(α), for i ≥ 0

Our first task is, for each integer i ≥ 1 and each α ∈ C+, to express π(i,0)(α) in terms of
π(0,0)(α) and β(α), and this can be achieved by writing w(i,0)(α) in terms of β(α) when
i ≥ 1. Due to the spatially homogeneous structure possessed by both Q and Q̃ among
transitions from any states within the set {(i, j); i ≥ 1, j ≥ 0}, combined with the fact that
q((i, 0), (i+ 1, 0)) = q((0, 0), (1, 0)) for each integer i ≥ 0, observe that for each integer i ≥ 1
and each α ∈ C+, the law (i.e. the distribution) of the random variable

1(η̃(i−1,0) <∞)e−ατ̃(i−1,0)

η̃(i−1,0)∏
�=1

q(X̃�, X̃�−1)
q̃(X̃�−1, X̃�)

under the probability measure P(i,0)—which denotes a conditional probability, conditional
on X̃0 = (i, 0)—is the same as the law of the random variable

1(η̃(0,0) <∞)e−ατ̃(0,0)

η̃(0,0)∏
�=1

q(X̃�, X̃�−1)
q̃(X̃�−1, X̃�)

under the probability measure P(1,0). Furthermore, any feasible path X̃ takes from state
(i, 0) to state (0, 0) must first eventually reach state (i− 1, 0), then eventually (i− 2, 0),
and so on, before reaching state (1, 0), then eventually state (0, 0). By the strong Markov
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property applied to the stopping time τ̃(i−1,0), we find

w(i,0)(α) = E(i,0)

[[
1(η̃(0,0) <∞)e−α(τ(0,0)−τ(i−1,0))

η̃(0,0)∏
�=η̃(i−1,0)+1

q(X̃�, X̃�−1)
q̃(X̃�−1, X̃�)

]

× 1(η̃(i−1,0) <∞)e−ατ̃(i−1,0)

η̃(i−1,0)∏
�=1

q(X̃�, X̃�−1)
q̃(X̃�−1, X̃�)

]

= β(α)E(i−1,0)

⎡
⎣1(η̃(0,0) <∞)e−ατ̃(0,0)

η̃(0,0)∏
�=1

q(X̃�, X̃�−1)
q̃(X̃�−1, X̃�)

⎤
⎦

= w(i−1,0)(α)β(α).

Repeated applications of this formula show, since w(0,0)(α) = 1, that for each integer i ≥ 1,

w(i,0)(α) = β(α)i,

which implies π(i,0)(α) = π(0,0)(α)β(α)i.

3.2. Derivation of π(i,j)(α), for i, j ≥ 1

Fix two integers i, j ∈ {1, 2, 3, . . .}, where possibly i = j, and define the hitting-time random
variables

η̃(·,0) := inf{n ≥ 1 : X̃n ∈ {(1, 0), (2, 0), (3, 0), . . .}},
τ̃(·,0) := inf{t ≥ 0 : X̃(t) ∈ {(1, 0), (2, 0), (3, 0), . . .}}.

Then for each α ∈ C+, w(i,j)(α) can be expressed as

E(i,j)

⎡
⎣1(η̃(·,0) <∞)

⎡
⎣e−ατ̃(·,0)

η̃(·,0)∏
�=1

q(X̃�, X̃�−1)
q̃(X̃�−1, X̃�)

⎤
⎦1(η̃(0,0) − η̃(·,0) <∞)

×
⎡
⎣e−α(τ̃(0,0)−τ̃(·,0))

η̃(0,0)∏
�=η̃(·,0)+1

q(X̃�, X̃�−1)
q̃(X̃�−1, X̃�)

⎤
⎦

⎤
⎦ .

Next, observe that due to the way we chose transition rates of Q̃ corresponding to
transitions from states within the set {(i, j); i ≥ 1, j ≥ 1}, on the set {η̃(·,0) <∞}, we have

η̃(·,0)∏
�=1

q(X̃�, X̃�−1)
q̃(X̃�−1, X̃�)

= 1

with probability one under the measure P(i,j). This then gives

w(i,j)(α) = E(i,j)

[
1(η̃(·,0) <∞)e−ατ̃(·,0)

⎡
⎣1(η̃(0,0) − η̃(·,0) <∞)e−α(τ̃(0,0)−τ̃(·,0))

η̃(0,0)∏
�=η̃(·,0)+1

q(X̃�, X̃�−1)
q̃(X̃�−1, X̃�)

⎤
⎦

⎤
⎦ . (18)
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The next step is to keep track of how X̃ first reaches the set {(1, 0), (2, 0), (3, 0),
(4, 0), . . .}, given X̃(0) = (i, j). Define the random variable Ñ(·,0) so that it satisfies

X̃(τ̃(·,0)) = (Ñ(·,0), 0).

Then the right-hand side of (18) can be further simplified as follows:

E(i,j)

⎡
⎣1(η̃(·,0) <∞)e−ατ̃(·,0)

⎡
⎣1(η̃(0,0) − η̃(·,0) <∞)e−α(τ̃(0,0)−τ̃(·,0))

η̃(0,0)∏
�=η̃(·,0)+1

q(X̃�, X̃�−1)
q̃(X̃�−1, X̃�)

⎤
⎦

⎤
⎦

= E(i,j)

[
1(η̃(·,0) <∞)e−ατ̃(·,0)β(α)Ñ(·,0)

]
= β(α)iφ(α, β(α))j ,

where the first equality follows from conditioning on the history of X̃ up to the stopping
time τ̃(·,0) and applying the strong Markov property: more particularly,

E

⎡
⎣1(η̃(0,0) − η̃(·,0) <∞)e−α(τ(0,0)−τ(·,0))

η̃(0,0)∏
�=η̃(·,0)+1

q(X̃�, X̃�−1)
q̃(X̃�−1, X̃�)

| F̃τ̃(·,0)

⎤
⎦ = β(α)Ñ(·,0)

where {F̃t}t≥0 is the filtration induced by {X̃(t); t ≥ 0}, F̃∞ :=
∨

t≥0 F̃t, and

F̃τ̃(·,0) := {A ∈ F∞ : A ∩ {τ̃(·,0) ≤ t} ∈ Ft ∀ t ≥ 0}.

Readers should recall that F̃τ̃(·,0) is the σ-field that represents the history of {X̃(t); t ≥ 0}
up to the stopping time τ̃(·,0). Finally, the second equality stems from (τ̃(·,0), Ñ(·,0)) having a
tractable joint Laplace–Stieltjes transform φ defined in (6), which we derive in the Appendix.

3.3. Showing β(α) is a root of g

It remains to compute β(α), for α ∈ C
0
+. Starting with the definition of β(α), and applying

the first-step analysis gives

β(α) = E(1,0)

⎡
⎣1(η̃(0,0) <∞)e−ατ̃(0,0)

η̃(0,0)∏
�=1

q(X̃�, X̃�−1)
q̃(X̃�−1, X̃�)

⎤
⎦

=
μ1

μ1 + μ2 + μ4 + α
+

(1 − α3)μ2

μ1 + μ2 + μ4 + α
β(α)2 +

μ3

μ1 + μ2 + μ4 + α
β(α)φ(α, β(α))

+
α1μ2

μ1 + μ2 + μ4 + α
β(α)2φ(α, β(α)).

Further multiplying both sides by μ124 + α gives

(μ124 + α)β(α) = μ1 + (1 − α3)μ2β(α)2 + μ3β(α)φ(α, β(α)) + α1μ2β(α)2φ(α, β(α))

or, equivalently,

(μ124 + α)β(α) − μ1 − (1 − α3)μ2β(α)2 = [μ3β(α) + α1μ2β(α)2]φ(α, β(α)). (19)
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To simplify (19) further, we need to plug in our derived expression for φ(α, β(α)), and then
isolate the square root term. Doing so yields

2
[
(μ124 + α)β(α) − (1 − α3)μ2β(α)2 − μ1

] − β(α)(μ234 + α− α2μ2β(α))

= ±β(α)
√

(μ234 + α− α2μ2β(α))2 − 4(μ3 + α1μ2β(α))(μ4 + α3μ2β(α)) (20)

and after squaring both sides of (20) to eliminate the square root term and simplifying
further, we find

4
[
(μ124 + α)β(α) − (1 − α3)μ2β(α)2 − μ1

]2
− 4

[
(μ124 + α)β(α) − (1 − α3)μ2β(α)2 − μ1

]
β(α) [μ234 + α− α2μ2β(α)]

= −4β(α)2 [μ3 + α1μ2β(α)] [μ4 + α3μ2β(α)] , (21)

which establishes that β(α) is the root of an at-most fourth-degree polynomial. Finally, after
applying some tedious algebra to further simplify (21), we conclude that β(α) is a root of
the fourth-degree polynomial g defined in (8). These observations prove Theorem 2.1.

3.4. Derivation of π(0,j), for j ≥ 1

The next step is, for each j ≥ 1 and each α ∈ C+, to express π(0,j)(α) in terms of π(0,0)(α)
and β(α), meaning we must write w(0,j)(α) in terms of β(α). The approach we use to
simplify w(0,j)(α) is a slight extension of the CAP method recently introduced in [6]. This
slight extension of the CAP method was also recently used in [14], within the context of
analyzing the time-dependent behavior of the 2-class M/M/c preemptive priority queueing
system.

Fix a subset A of E, and define the hitting times η̃A and τ̃A, where

η̃A := inf{n ≥ 1 : Xn ∈ A}

represents the index corresponding to the first transition time into the set A, and

τ̃A := inf{t ≥ 0 : X(t−) �= X(t) ∈ A}

represents the actual time at which this transition takes place.
Our method for computing each w(0,j)(α) term requires us to choose the set A as

A := {(0, 0)} ∪ {(i, j) : i ≥ 1, j ≥ 0}. Given a fixed integer j ≥ 1, observe that under P(0,j),
summing over all ways at which the process X̃ can first reach the set A from state (0, j)
yields, after repeatedly applying the Strong Markov property at the stopping time τ̃A, the
equality

w(0,j)(α) = E(0,j)

[
1(X̃η̃A

= (0, 0))e−ατ̃A

η̃A∏
�=1

q(X̃�, X̃�−1)
q̃(X̃�−1, X̃�)

]

+
∞∑

k=0

E(0,j)

[
1(X̃η̃A

= (1, k))e−ατ̃A

η̃A∏
�=1

q(X̃�, X̃�−1)
q̃(X̃�−1, X̃�)

]
w(1,k)(α). (22)

In order to simplify the right-hand side of (22) further, it will be helpful to have a
general result that allows us to pass back and forth between X and X̃. This result is not
formally stated in any previously written papers that feature the random-product technique,
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although it is really not a new result since it follows from a straightforward use of ideas
found in the papers [5,7,10,11]. We omit its proof.

Theorem 3.1: Let A be a subset of E. Then for each state x ∈ A, and each state y ∈ Ac,
we have for each α ∈ C+ that

(q(x) + α)Ex

[∫ τA

0

e−αt1(X(t) = y)dt
]

= Ey

[
1(η̃A <∞)1(X̃η̃A

= x)e−ατ̃A

η̃A∏
�=1

q(X̃�, X̃�−1)
q̃(X̃�−1, X̃�)

]
(23)

where τA := inf{t ≥ 0 : X(t−) �= X(t) ∈ A}.

Applying now Theorem 3.1 to each expectation within (22) yields, for each α ∈ C+,

w(0,j)(α) = (q((0, 0)) + α)E(0,0)

[∫ τA

0

e−αt1(X(t) = (0, j))dt
]

+
∞∑

k=0

w(1,k)(α)(q((1, k)) + α)E(1,k)

[∫ τA

0

e−αt1(X(t) = (0, j))dt
]
. (24)

Readers should note that (24) could have also been derived from a formula found at the
top of page 124 of Latouche and Ramaswami [12].

Each of the unknown expectations found in (24) can be further simplified by applying,
to each term, a first-step analysis argument, a change-of-variable argument, and the strong
Markov property, here

(q((0, 0)) + α)E(0,0)

[∫ τA

0

e−αt1(X(t) = (0, j))dt
]

= q((0, 0), (0, 1))E(0,1)[∫ τA

0

e−αt1(X(t) = (0, j))dt
]

(q((1, 0)) + α)E(1,0)

[∫ τA

0

e−αt1(X(t) = (0, j))dt
]

= q((1, 0), (0, 1))E(0,1)

[∫ τA

0

e−αt1(X(t) = (0, j))dt
]

q((1, 1)) + α)E(1,1)

[∫ τA

0

e−αt1(X(t) = (0, j))dt
]

= q((1, 1), (0, 1))E(0,1)

[∫ τA

0

e−αt1(X(t) = (0, j))dt
]

+ q((1, 1), (0, 2))E(0,2)

[∫ τA

0

e−αt1(X(t) = (0, j))dt
]
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and for each k ≥ 2,

(q((1, k)) + α)E(1,k)

[∫ τA

0

e−αt1(X(t) = (0, j))dt
]

= q((1, k), (0, k − 1))E(0,k−1)

[∫ τA

0

e−αt1(X(t) = (0, j))dt
]

+ q((1, k), (0, k))E(0,k)

[∫ τA

0

e−αt1(X(t) = (0, j))dt
]

+ q((1, k), (0, k + 1))E(0,k+1)

[∫ τA

0

e−αt1(X(t) = (0, j))dt
]
.

Plugging these observations into (24) and further simplifying gives

w(0,j)(α) = μ4E(0,1)

[∫ τA

0

e−αt1(X(t) = (0, j))dt
]

+
∞∑

�=1

w(1,�−1)(α)α3μ2E(0,�)

[∫ τA

0

e−αt1(X(t) = (0, j))dt
]

+
∞∑

�=1

w(1,�)(α)α2μ2E(0,�)

[∫ τA

0

e−αt1(X(t) = (0, j))dt
]

+
∞∑

�=1

w(1,�+1)(α)α1μ2E(0,�)

[∫ τA

0

e−αt1(X(t) = (0, j))dt
]
. (25)

It remains to simplify the expectations found in (25).

Proposition 3.1: Let �, j be two positive integers, and suppose α ∈ C+. When μ4 > 0, the
following statements are true.

(i) For �, j satisfying 1 ≤ � < j,

E(0,�)

[∫ τA

0

e−αt1(X(t) = (0, j))dt
]

= Ω(α)(ρψ(α))j−�(1 − (ρψ(α)2)�) (26)

where

Ω(α) :=
ρψ(α)

μ4(1 − ρψ(α)2)
.

Similarly, (ii) for �, j satisfying � ≥ j,

E(0,�)

[∫ τA

0

e−αt1(X(t) = (0, j))dt
]

= Ω(α)ψ(α)�−j(1 − (ρψ(α)2)j). (27)

If instead μ4 = 0, the following statements are true: (i) for 1 ≤ � < j,

E(0,�)

[∫ τA

0

e−αt1(X(t) = (0, j))dt
]

= 0. (28)

Similarly, (ii) for � ≥ j,

E(0,�)

[∫ τA

0

e−αt1(X(t) = (0, j))dt
]

=
1

μ3 + α

(
μ3

μ3 + α

)�−j

. (29)
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Proof: Both statements (26) and (27) have been established in [14]. Statements (28)
and (29) have been proven in the Appendix of [6] for the case where α ≥ 0, but similar
expressions still hold for α ∈ C

0
+ as well: we leave it to the reader to fill in the details. �

We are now ready to calculate each w(0,j)(α) term. Suppose first that μ4 > 0: applying
both (26) and (27) to (25) gives

w(0,j)(α) = (ρψ(α))j + Ω(α)μ2β(α)
(
α3φ(α, β(α))−1 + α2 + α1φ(α, β(α))

)
(30)

×
⎡
⎣ j−1∑

�=1

φ(α, β(α))�(ρψ(α))j−�(1 − (ρψ(α)2)�)

+
∞∑

�=j

φ(α, β(α))�ψ(α)�−j(1 − (ρψ(α)2)j)

⎤
⎦ .

The key to simplifying (30) further is to consider separately the case where α ∈ C
0
+ sat-

isfies ρψ(α) �= φ(α, β(α)), as well as the case where ρψ(α) = φ(α, β(α)). Assume first that
φ(α, β(α)) �= ρψ(α), then

j−1∑
�=1

φ(α, β(α))�(ρψ(α))j−�(1 − (ρψ(α)2)�) +
∞∑

�=j

φ(α, β(α))�ψ(α)�−j(1 − (ρψ(α)2)j)

=
(ρψ(α))jφ(α, β(α)) − ρψ(α)φ(α, β(α))j

ρψ(α) − φ(α, β(α))

−
[
(ρψ(α))jρψ(α)2φ(α, β(α)) − ρψ(α)(ρψ(α)2φ(α, β(α)))j

ρψ(α) − ρψ(α)2φ(α, β(α))

]

+
φ(α, β(α))j(1 − (ρψ(α)2)j)

1 − ψ(α)φ(α, β(α))

=
[

φ(α, β(α))(1 − ρψ(α)2)
(ρψ(α) − φ(α, β(α)))(1 − ψ(α)φ(α, β(α)))

]
(ρψ(α))j

−
[

φ(α, β(α))(1 − ρψ(α)2)
(ρψ(α) − φ(α, β(α)))(1 − ψ(α)φ(α, β(α)))

]
φ(α, β(α))j

Plugging this expression into (30) and performing some algebra finally yields

w(0,j)(α) = (ρψ(α))j + Γ0(α)(ρψ(α))j − Γ0(α)φ(α, β(α))j

or, equivalently,

π(0,j)(α) = π(0,0)(α)
[
(ρψ(α))j + Γ0(α)(ρψ(α))j − Γ0(α)φ(α, β(α))j

]

which establishes (11).
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In the case where ρψ(α) = φ(α, β(α)), we instead find that

j−1∑
�=1

φ(α, β(α))�(ρψ(α))j−�(1 − (ρψ(α)2)�) +
∞∑

�=j

φ(α, β(α))�ψ(α)�−j(1 − (ρψ(α)2)j)

= φ(α, β(α))j

j−1∑
�=1

(1 − (ρψ(α)2)�) + φ(α, β(α))j(1 − (ρψ(α)2)j)
∞∑

�=j

(φ(α, β(α))ψ(α))�−j

=
(
j − 1

1

)
φ(α, β(α))j −

[
1 − (ρψ(α)2)j

1 − ρψ(α)2

]
φ(α, β(α))j

+
[

1
1 − φ(α, β(α))ψ(α)

]
φ(α, β(α))j −

[
1

1 − φ(α, β(α))ψ(α)

]
(ρψ(α)2φ(α, β(α)))j

=
(
j − 1

1

)
φ(α, β(α))j

since, under the assumption φ(α, β(α)) = ρψ(α),

1
1 − ρψ(α)2

− 1
1 − ψ(α)φ(α, β(α))

= 0.

This in turn yields

w(0,j)(α) = (ρψ(α))j +
[
Ω(α)μ2β(α)

(
α3φ(α, β(α))−1 + α2

+ α1φ(α, β(α)))]
(
j − 1

1

)
φ(α, β(α))j

or

w(0,j)(α) = (ρψ(α))j + Γ1(α)
(
j − 1

1

)
φ(α, β(α))j

proving (14).
It remains to determine w(0,j)(α) for the case where μ4 = 0. Plugging both (29) and

(28) into (30) give

w(0,j)(α) =
∞∑

�=1

w(1,�−1)(α)α3μ2E(0,�)

[∫ τA

0

e−αt1(X(t) = (0, j))dt
]

+
∞∑

�=1

w(1,�)(α)α2μ2E(0,�)

[∫ τA

0

e−αt1(X(t) = (0, j))dt
]

+
∞∑

�=1

w(1,�+1)(α)α1μ2E(0,�)

[∫ τA

0

e−αt1(X(t) = (0, j))dt
]

=
μ2β(α)
μ3 + α

[
α3 + α2φ(α, β(α)) + α1φ(α, β(α))2

]
φ(α, β(α))j−1

×
∞∑

�=j

(
μ3φ(α, β(α))

μ3 + α

)�−j
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=
[
μ2β(α)[α3 + α2φ(α, β(α)) + α1φ(α, β(α))2]

μ3(1 − φ(α, β(α))) + α

]
φ(α, β(α))j−1

= Γ2(α)φ(α, β(α))j−1.

This establishes (17).

3.5. Computing π(0,0)(α)

It is now easy, for each α ∈ C+, to express each Laplace transform value π(0,0)(α) in terms
of β(α). Observe that {X(t); t ≥ 0} is a regular CTMC, meaning that with probability one,
the number of state transitions it can take in the interval [0, t] must be finite. This of course
implies that X(t) ∈ E with probability one, and as a consequence, for each α ∈ C+,

∑
(i,j)∈E

π(i,j)(α) =
∑

(i,j)∈E

∫ ∞

0

e−αt
P(X(t) = (i, j) | X(0) = 0, 0)dt =

∫ ∞

0

e−αtdt =
1
α
.

This in turn implies

π(0,0)(α) =
1

αC(α)
,

where

C(α) :=
∑

(i,j)∈E

w(i,j)(α). (31)

Expression (31) makes it easy to calculate C(α), but the form of C(α) will change
depending on both μ4 and α. In the case, where μ4 > 0 and α ∈ C+ satisfies φ(α, β(α)) �=
ρψ(α), we get

C(α) = 1 +
∞∑

j=1

(ρψ(α))j + Γ0(α)
∞∑

j=1

(ρψ(α))j − Γ0(α)
∞∑

j=1

φ(α, β(α))j

= +
∞∑

i=1

∞∑
j=0

β(α)iφ(α, β(α))j

= 1 + (1 + Γ0(α))
ρψ(α)

1 − ρψ(α)
− Γ0(α)

φ(α, β(α))
1 − φ(α, β(α))

+
β(α)

(1 − β(α))(1 − φ(α, β(α)))

which establishes (10), and furthermore Theorem 2.2. Similar arguments can be used to
prove statements (13) and (16), and furthermore Theorems 2.3 and 2.4.

3.6. Calculating β(α) numerically

The last step in computing β(α) numerically involves correctly selecting the root of g that
corresponds to β(α), when α ∈ C+. One way to select this root is to make use of the fact
that β(α) must satisfy

|β(α)| ≤ β(Re(α)) < 1

so if g, with α replaced by Re(α), has only one real root r0 in (0, 1)—which must be
β(Re(α))—and only one root r of g satisfies |r| ≤ r0, then r must be β(α). Numerical
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Figure 3. The graph on the left shows how the mean number of customers present at
Buffer 2 grows as t increases. Similarly, the graph on the right indicates how the mean
number of customers present at Buffer 3 grows as t increases. Here μ1 = 4, μ2 = μ3 = 1,
and α3 = 1.

Figure 4. Graph of the mean number of customers at Buffers 2 and 3, respectively, as a
function of t. Here μ1 = 2, μ2 = 1.5, μ3 = 3, and α3 = 1.

experiments seem to indicate that this procedure always correctly points out a single candi-
date root for β(α), but we do not have a proof that shows there is always exactly one root
satisfying this criterion.

Our transform expressions can be used, in conjunction with the numerical transform
inversion algorithm of [1] to numerically compute many time-dependent performance mea-
sures associated with our reentrant-line model. These graphs were created using R: readers
interested in running further numerical experiments may download from http://bfralix.
people.clemson.edu/preprints.htm the R code used and written by the author.

The parameter choices we used to create Figures 3 and 4 were made so that comparisons
could be made to the values found in Tables 2 and 3 on page 182 of [2]. In both cases, we
found that the time-dependent means converge to their corresponding steady-state mean
values, which were also calculated in [2]. Similar graphs may be generated for each transition
function as well.

The polynomial g simplifies in interesting ways whenever α = 0, as the next corollary
illustrates. Keep in mind that β(0) must be a root in the interval [0, 1], since β(α) ∈ (0, 1)
whenever α > 0, and β(0) = limα↓0 β(α) by the monotone convergence theorem.
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Corollary 3.1: When α = 0, the polynomial g has a root at 1, and g can be factored as

g(x) = (x− 1)p(x),

where
p(x) = α1μ

2
2x

3 + μ2[μ3 − μ1(2α1 + α2)]x2 + μ1(μ124 − μ3)x− μ2
1.

Proof: This is an immediate consequence of the form of the polynomial g under these
additional assumptions and follows from simple algebra. �

We conclude this section by further studying the polynomial p for the case where α1 =
α2 = μ4 = 0. In this case, p is simply the quadratic polynomial

p(x) = μ2μ3x
2 + μ1(μ1 + μ2 − μ3)x− μ2

1,

which must have two real roots, one positive and one negative. The only non-negative root
of this polynomial is

−μ1(μ1 + μ2 − μ3) + μ1

√
(μ1 + μ2 − μ3)2 + 4μ2μ3

2μ2μ3

and this is the only possible value for β(0). A small amount of algebra shows that indeed,

−μ1(μ1 + μ2 − μ3) + μ1

√
(μ1 + μ2 − μ3)2 + 4μ2μ3

2μ2μ3

=
μ1

μ2

[
−μ1 − μ2 + μ3 +

√
(μ1 + μ2 + μ3)2 − 4μ1μ3

2μ3

]
,

which is the corresponding geometric parameter found in Theorem 3.1 of [2].
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APPENDIX A

Here we state and prove a result that is needed in our derivations and calculations. Suppose
{Y (t); t ≥ 0} is a CTMC on the state space E = {(i, j) : i, j = 0, 1, 2, . . .} having generator QY :=
[qY (x, y)]x,y∈E . Here the states (0, 0), (1, 0), (2, 0), . . . are all absorbing states, with the remaining
states having the following transition structure: for i, j = 1, 2, 3, . . .,

qY ((i, j), (i, j + 1)) = μ3, qY ((i, j), (i + 1, j − 1)) = α3μ2, qY ((i, j), (i + 1, j)) = α2μ2

qY ((i, j), (i + 1, j + 1)) = α1μ2, qY ((i, j), (i, j − 1)) = μ4.

Our goal is to derive the joint Laplace–Stieltjes transform of τY and NY , where

τY := inf{t ≥ 0 : Y (t−) �= Y (t) ∈ {(0, 0), (1, 0), (2, 0), . . .}

is the amount of time it takes Y to reach an absorbing state, and NY is a random variable satisfying
X(τY ) = (NY , 0), in that (NY , 0) denotes the absorbing state reached by Y when τY is finite. Here
the random vector (τY , NY ) will play the role of the random vector (τ̃(·,0), Ñ(·,0)) in the study of
our reentrant-line model.

Our first lemma reveals a fairly obvious property of the joint LST of τY and NY , given
Y (0) = (i, j), for i ≥ 0, j ≥ 1.

Lemma A.1: For α ∈ C+, z ∈ D(0, 1), we have

E(0,j)

[
e−ατY zNY

]
= φ(α, z)j

where

φ(α, z) := E(0,1)

[
e−ατY zNY

]
.

Moreover, we also have

E(i,j)

[
e−ατY zNY

]
= zi

E(0,j)

[
e−ατY zNY

]
= zi

E(0,1)

[
e−ατY zNY

]j
.

Proof: The first statement can be verified through repeated use of the strong Markov property.
The second statement follows as a consequence of the homogeneous structure of QY on the set of
all nonabsorbing states. �
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Our next result addresses the problem of computing φ(α, z), when α ∈ C
0
+ and z ∈ C satisfies

|z| < 1.

Theorem A.1: The quantity φ(α, z) is the unique solution of the equation

(μ3 + α1μ2z)φ(α, z)2 − (μ234 + α − α2μ2z)φ(α, z) + (μ4 + α3μ2z) = 0

that is contained in the open disk {z ∈ C : |z| < 1}. Furthermore, in the case where z ∈ (0, 1], and
α ≥ 0, we have

φ(α, z) =
(μ234 + α − α2μ2z) −

√
(μ234 + α − α2μ2z)2 − 4(μ3 + α1μ2z)(μ4 + α3μ2z)

2(μ3 + α1μ2z)
.

Proof: Using the first-step analysis, we have

φ(α, z) =
μ4

μ234 + α
+

μ3

μ234 + α
φ(α, z)2 +

α3μ2

μ234 + α
z +

α2μ2

μ234 + α
zφ(α, z) +

α1μ2

μ234 + α
zφ(α, z)2.

Multiplying both sides of this equality by μ234 + α and collecting terms reveals that

(μ3 + α1μ2z)φ(α, z)2 − (μ234 + α − α2μ2z)φ(α, z) + (μ4 + α3μ2z) = 0,

thus implying that φ(α, z) is a root of a quadratic polynomial.
We next show that this quadratic polynomial has exactly one root within the unit circle

whenever α ∈ C+, and z ∈ C satisfies |z| < 1. Fix such an α and z, and define the polynomials f
and g as

f(x) = −(μ2 + μ3 + μ4 + α − α2μ2z)x, g(x) = (μ3 + α1μ2z)x2 + (μ4 + α3μ2z).

One can show that when x ∈ C satisfies |x| = 1, then |g(x)| < |f(x)|. Then since f has exactly one
root inside the unit circle, we can conclude through an application of Rouché’s Theorem (see e.g.
page 294 of [4]) that the polynomial f + g has exactly one root inside the unit circle as well.

Furthermore, since for each fixed z ∈ (0, 1], φ(·, z) is both continuous and decreasing on [0,∞),
it must be the case that when α ≥ 0, and z ∈ (0, 1],

φ(α, z) =
(μ234 + α − α2μ2z) −

√
(μ234 + α − α2μ2z)2 − 4(μ3 + α1μ2z)(μ4 + α3μ2z)

2(μ3 + α1μ2z)
.

�
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