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Abstract. For every ergodic hyperbolic measure ω of a C1+α diffeomorphism, there
is an ω-full-measure set 3̃ (the union of 3̃l = supp(ω|3l ), the support sets of ω on
each Pesin block 3l , l = 1, 2, . . .) such that every non-empty, compact and connected
subset V ⊆ Closure(Minv(3̃)) coincides with V f (x), where Minv(3̃) denotes the space
of invariant measures supported on 3̃ and V f (x) denotes the accumulation set of time
averages of Dirac measures supported at one orbit of some point x . For each fixed set
V , the points with the above property are dense in the support supp(ω). In particular,
points satisfying V f (x)= Closure(Minv(3̃)) are dense in supp(ω). Moreover, if supp(ω)
is isolated, the points satisfying V f (x)⊇ Closure(Minv(3̃)) form a residual subset of
supp(ω). These extend results of K. Sigmund [On dynamical systems with the specification
property. Trans. Amer. Math. Soc. 190 (1974), 285–299] (see also M. Denker, C.
Grillenberger and K. Sigmund [Ergodic Theory on Compact Spaces (Lecture Notes in
Mathematics, 527). Springer, Berlin, Ch. 21]) from the uniformly hyperbolic case to the
non-uniformly hyperbolic case. As a corollary, irregular+ points form a residual set of
supp(ω).

1. Introduction
Sigmund [11, 12] (see also [4, Ch. 21]) established in the 1970s two approximation
properties for C1 uniformly hyperbolic diffeomorphisms: one is that invariant measures
can be approximated by periodic measures; the other is that every non-empty, compact and
connected subset of the space of invariant measures coincides with the accumulation set of
time averages of Dirac measures supported at one orbit, and such orbits are dense. Similar
discussions for uniformly hyperbolic flows can be found in [3].
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The first approximation property was realized for some C1+α non-uniformly hyperbolic
diffeomorphisms in 2003, when Hirayama [5] proved that periodic measures are dense in
the set of invariant measures supported on a full-measure set which in some sense is very
close to being supp(ω), with respect to a hyperbolic mixing measure. In 2009, Liang et al
[7] replaced the assumption of hyperbolic mixing measure with a more natural and weaker
assumption of hyperbolic ergodic measure and generalized Hirayama’s result. The proofs
in [5, 7] are both based on Katok’s closing and shadowing lemmas of the C1+α Pesin
theory. Moreover, the first approximation property is also valid in the C1 setting with limit
domination by using Liao’s shadowing lemma for quasi-hyperbolic orbit segments [13],
and furthermore is valid for the isolated transitive sets of C1 generic diffeomorphisms [1]
by using Mañé’s closing lemma and a newly introduced notion called the barycenter
property.

The specification property for Axiom A systems ensures the two approximation
properties in [11, 12] (see also [4, Ch. 21]). To achieve the second approximation property,
Sigmund ([12] or [4, Proposition 21.14]) uses the specification property infinitely many
times to find the required orbit: he uses a periodic orbit shadowing finitely many orbit
segments and new orbit segments to constitute a new periodic pseudo-orbit and obtain
a new shadowing periodic orbit, and repeats this process to get a sequence of periodic
orbits by induction, whose accumulation approximates all the given infinitely many orbit
segments.

However, for the non-uniformly hyperbolic case, this process is not applicable: one
can only get some version of specification on 3̃ and, for a given pseudo-orbit consisting
of finitely many orbit segments in 3̃, one cannot guarantee that its shadowing periodic
orbit also stays in 3̃. Thus one cannot connect the shadowing periodic orbit with the new
orbit segments to create a new periodic pseudo-orbit (the assumption of ergodicity only
implies that positive measure sets can be connected by orbit segments) and then Sigmund’s
process stops. In other words, the specification property for finitely many orbit segments
(for uniformly hyperbolic systems, see [11, 12] and [4, Ch. 21]; and for non-uniformly
hyperbolic systems, see [5, 7, 13]), cannot be used infinitely many times (even twice).

Therefore, to deal with the non-uniformly hyperbolic case, we introduce a new
specification property for infinitely many orbit segments (perhaps belonging to different
Pesin blocks) and use it only once to find the required orbit and hence avoid induction.
Remark that the specification introduced in [5, 7, 13] only holds for all orbit segments
whose beginning and ending point are in the same fixed Pesin block, but the specification
in the present paper allows different orbit segment corresponding to different Pesin blocks.
We now begin introducing our results.

Let M be a smooth compact Riemannian manifold. Throughout this paper, we consider
an f ∈ Diff1+α(M) and an ergodic hyperbolic measure ω for f . Let 3=

⋃
∞

l=1 3l be
the Pesin set associated with ω. We denote by ω|3l the conditional measure of ω on
3l . Set 3̃l = supp(ω|3l ) and 3̃=

⋃
∞

l=1 3̃l . Clearly f ±13̃l ⊂ 3̃l+1, and the sub-bundles
E s(x), Eu(x) depend continuously on x ∈ 3̃l . Moreover, 3̃ is f -invariant with ω-full
measure.
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Let M(M) be the set of all probability measures supported on M and Minv( f ) be the
subset consisting of all invariant measures. Let Minv(3̃) denote the space of invariant
measures supported on 3̃. In other words, Minv(3̃)= {ν ∈Minv( f ) | ν(3̃)= 1}.

Remark 1.1. Note that Minv(3̃) is convex but may not be compact. For a better
understanding of the following theorem and corollary, here we construct a compact
connected subset of Minv(3̃). Let ε̄ = (ε1, ε2, . . .) be a non-increasing sequence of
positive real numbers which approach zero. Let

Mε̄ = {ν ∈Minv( f ) : ν(3̃l)≥ 1− εl , l = 1, 2, . . .}.

Since each 3̃l is compact, the map ν→ ν(3̃l) is upper-semicontinuous. Hence, Mε̄ is a
closed convex subset of Minv( f ). This implies that Mε̄ is a compact connected subset of
Minv( f ). Since every ν ∈Mε̄ satisfies ν(3̃)= 1, Mε̄ is a subset of Minv(3̃). Thus, Mε̄

must be a compact connected subset of Minv(3̃).

For any measure ν ∈M(M), we denote by V f (ν) the set of accumulation measures of
time averages

νN
=

1
N

N−1∑
j=0

f j
∗ ν.

Then V f (ν) is a non-empty, closed and connected subset of Minv( f ). And we denote by
V f (x) the set of accumulation measures of time averages

δ(x)N
=

1
N

N−1∑
j=0

δ( f j x),

where δ(x) denotes the Dirac measure at x . We now state our main theorems as follows.

THEOREM 1.2. For every non-empty connected compact set V ⊆ Closure(Minv(3̃)),

there exists a point x ∈ M such that

V = V f (x). (1.1)

Moreover, the set of such x is dense in supp(ω), that is, the closure of this set contains
supp(ω).

Remark 1.3. Pfister and Sullivan [9] introduced in 2007 a weak specification condition
and a weak version of asymptotic h-expansivity, called the g-almost product property and
uniform separation property, respectively. This is one of the recent innovations in the study
of topological dynamics. They proved that if (X, f ) has these two weaker properties, and
if V ⊂Minv(X) is compact and connected, then

htop{x ∈ X | V f (x)= V } = inf
µ∈V

hµ( f ),

where htop is the topological entropy in the sense of Bowen (for non-compact sets). And
if only the g-almost product property is satisfied, then htop{x ∈ X | V f (x)= µ} = hµ( f ).
Under certain assumptions, these are stronger results than the existence of x with V f (x)=
V . We are not sure whether those assumptions apply in the present setting, or whether the
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present proof can be adapted to obtain their stronger results. The main observation is the
difference between their definition in the non-uniform case and our case. Their version
of specification can deal with non-uniform cases and allow the transition time from one
orbit segment to the next to become arbitrarily large as the orbit segments become large,
provided that growth is sub-exponential. However, this is clearly a different notion of
specification than the one in the present paper.

A point x ∈ M is called a generic point for an f -invariant measure ν if, for any
φ ∈ C0(M, R), the limit limn→∞(1/n)

∑n−1
i=0 φ( f i x) exists and is equal to

∫
φ dν. By

Theorem 1.2, the following result holds.

COROLLARY 1.4. Every f -invariant measure supported on 3̃ has generic points and, for
every such measure, the set of generic points is dense in supp(ω).

Remark 1.5. It is known that every ergodic measure has generic points. The heart of the
matter considered in the above corollary is what happens for non-ergodic measures, which
in general need not have generic points.

In a Baire space, a set is residual if it contains a countable intersection of dense open
sets. A point x ∈ M is said to have maximal oscillation if

V f (x)⊇ Closure(Minv(3̃)).

We can deduce from Theorem 1.2 that the points having maximal oscillation are dense in
supp(ω). As an extension to Theorem 1.2, we go on to prove that they form a residual
subset of supp(ω).

In the next two theorems, we show two generic results provided that supp(ω) is isolated.
3 is called isolated if there is some neighborhood U of 3 in M such that

3=
⋂
k∈Z

f k(U ).

The isolated property condition is necessary even for uniformly hyperbolic systems. Note
that for the non-uniformly hyperbolic systems studied here, the shadowing points need not
stay in the support of ω. But they will remain in the support if the isolation property
is satisfied. Hence the residual set must be contained in supp(ω) (in [4, 11, 12] the
specification is considered for a hyperbolic basic set which is naturally isolated or for a
compact invariant set in which the shadowing point still remains). This is important to
avoid the residual set becoming empty. For example, if M = Sn and supp(ω)= Sn−1, it is
easy to see that Bn = {x ∈ M : 0< d(x, supp(ω)) < 1/n} are open subsets of M and are
dense in supp(ω), but

⋂
n≥1 Bn is empty.

THEOREM 1.6. Suppose that the support set supp(ω) is isolated (or supp(ω)= M). Then
the set of points in supp(ω) having maximal oscillation is residual in supp(ω).

Remark 1.7. Note that in the definition of maximal oscillation, we only require that V f (x)
contains the whole closure of Minv(3̃) rather than the equality. On the other hand, there
exists at most one subset V ⊆ Closure(Minv(3̃)) such that points satisfying equality (1.1)
form a residual set. In other words, for any two distinct non-empty connected subsets V1
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and V2, at least one of the corresponding sets of points satisfying equality (1.1) cannot
be a residual set. Otherwise, notice that the intersection of these two residual sets is also
residual so that it is still non-empty. Hence, there exists some point such that the collection
of weak* limits of Dirac measures along its orbit is equal to two different sets V1 and V2.
This is a contradiction. Thus, the set in Theorem 1.6 is residual, while this is not true for
the sets in Theorem 1.2. However, if Closure(Minv(3̃))=Minv(supp(ω)), then points
satisfying the equality V f (x)=Minv(supp(ω)) form a residual set in supp(ω).

A point is said to be an irregular+ point if there is a continuous function φ ∈ C0(M, R)
such that the limit

lim
n→∞

1
n

n−1∑
i=0

φ( f i x)

does not exist. As an application of Theorems 1.2 and 1.6, we have the following result.

THEOREM 1.8. If Closure(Minv(3̃)) is non-trivial (i.e., contains at least one measure
different from ω), then the set of all irregular+ points is dense in supp(ω). Furthermore, if
supp(ω) is isolated (or supp(ω)= M), then irregular+ points are residual in supp(ω).

We remark that results similar to Theorems 1.6 and 1.8 can be derived for C1 generic
diffeomorphisms on isolated transitive sets by using the barycenter property introduced
in [1] and the density of periodic measures among invariant measures proved in [14].

For any hyperbolic set, note that Katok’s shadowing lemma (see Lemma 2.2 below)
holds for all points in this set (here, all Pesin blocks are equal to this hyperbolic
set). And transitivity can replace ergodicity to get the corresponding specification (see
Definition 3.1). Thus, for a uniformly hyperbolic system, if it is supported on one basic
set, all our results in this paper are valid, since the hyperbolic basic set is always isolated
(and transitive), which implies that the shadowing point can still be in the basic set. In other
words, our proofs in the present paper can be another different method to prove the related
results in [4, 11]. Moreover, we remark that Theorem 1.2 and Corollary 1.4 are still true for
any transitive (not necessarily isolated) uniformly hyperbolic sets by our proofs. However,
conversely, the proofs in [4, 11] fail to derive these without the isolation assumption, since
they require the shadowing point always to stay in the given hyperbolic set.

This paper is organized as follows. In §2, we recall the definition of the Pesin set and
Katok’s shadowing lemma. In §3, we develop a new specification property and verify that
( f, ω) admits this property. In §4, we prove three propositions describing the feature of
an invariant measure by the time average along some orbit segments. In §5 we use the
results in §§3 and 4 to prove Theorem 1.2, and then in §6 we use Theorem 1.2 to prove
Theorems 1.6 and 1.8.

2. Preliminaries
In this section we recall the definition of the Pesin set and some preliminary lemmas.

2.1. Pesin set [6, 10]. Given λ, µ� ε > 0, and for all k ∈ Z+, we define 3k =3k(λ,

µ; ε) to be all points x ∈ M for which there is a splitting TOrb(x)M = E s
Orb(x) ⊕ Eu

Orb(x) on
the orbit Orb(x) with the invariant property Dx f m(E s

x )= E s
f m x and Dx f m(Eu

x )= Eu
f m x

satisfying:
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(a) ‖D f n
|Es

f m x
‖ ≤ eεke−(λ−ε)neε|m|, for all m ∈ Z, n ≥ 1;

(b) ‖D f −n
|Eu

f m x
‖ ≤ eεke−(µ−ε)neε|m|, for all m ∈ Z, n ≥ 1;

(c) tan(6 (E s
f m x , Eu

f m x ))≥ e−εke−ε|m|, for all m ∈ Z.

We set 3=3(λ, µ; ε)=
⋃
+∞

k=1 3k and call 3 a Pesin set (see [10, p. 64] or [6, p. 146]).
The hyperbolicity requirement of (a), (b) and (c) implies that for every point in a Pesin

set, its corresponding invariant splitting is unique, exactly similar to the Axiom A case. It
is obvious that if ε1 < ε2 then 3(λ, µ; ε1)⊆3(λ, µ; ε2).

According to the Oseledec theorem [8], ω has s (s ≤ d = dim M) non-zero Lyapunov
exponents

λ1 < · · ·< λr < 0< λr+1 < · · ·< λs

with associated Oseledec splitting

Tx M = E1
x ⊕ · · · ⊕ E s

x , x ∈ O(ω),

where we recall that O(ω) denotes an Oseledec basin of ω. If we denote by λ the
absolute value of the largest negative Lyapunov exponent λr and by µ the smallest positive
Lyapunov exponent λr+1 and set E s

x = E1
x ⊕ · · · ⊕ Er

x , Eu
x = Er+1

x ⊕ · · · ⊕ E s
x , then we

get a Pesin set 3=3(λ, µ; ε) for a small ε. We call it the Pesin set associated with ω.
It follows (see, for example, [10, Proposition 4.2]) that ω(3\O(ω))+ ω(O(ω)\3)= 0.
We remark that, by the Oseledec theorem, at each point x ∈ O(ω) there is a splitting
Tx M = E s

x ⊕ Eu
x with the invariant property Dx f m(E s

x )= E s
f m x and Dx f m(Eu

x )= Eu
f m x .

The following statements are elementary:
(P1) 31 ⊆32 ⊆33 ⊆ · · · ;
(P2) f (3k)⊆3k+1, f −1(3k)⊆3k+1;
(P3) 3k is compact for all k ≥ 1;
(P4) for all k ≥ 1 the splitting x→ Eu

x ⊕ E s
x depends continuously on x ∈3k .

2.2. Shadowing lemma. Let {δk}
+∞

k=1 be a sequence of positive real numbers. Let
{xn}

+∞

n=−∞ be a sequence of points in 3=3(λ, µ; ε) for which there exists a sequence
{sn}
+∞

n=−∞ of positive integers satisfying:
(a) xn ∈3sn , for all n ∈ Z;
(b) |sn − sn−1| ≤ 1, for all n ∈ Z;
(c) d( f xn, xn+1)≤ δsn , for all n ∈ Z;
then we call {xn}

+∞

n=−∞ a {δk}
+∞

k=1 pseudo-orbit. Given η > 0, a point x ∈ M is an η-
shadowing point for the {δk}

+∞

k=1 pseudo-orbit if d( f n x, xn)≤ ηεsn , for all n ∈ Z, where
εk = e−εk and ε is the number from Pesin set 3=3(λ, µ; ε).

Remark 2.1. Here εk is slightly different from the number in [6, 10], where εk = ε0e−εk,
where ε0 is a constant only dependent on the system of f . But it is easy to see that we can
eliminate ε0 by small modification. This allows our paper to be more transparent as well
as easing the exposition.

LEMMA 2.2. (Shadowing lemma [10, Theorem 5.1]) Let f : M→ M be a C1+α

diffeomorphism, with a non-empty Pesin set3=3(λ, µ; ε) and fixed parameters, λ, µ�
ε > 0. For any η > 0 there exists a sequence {δk}

+∞

k=1 such that for any {δk}
+∞

k=1 pseudo-orbit
there exists a unique η-shadowing point.
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3. Specification property for non-uniformly hyperbolic systems
In this section, we formulate and prove a new version of the specification property that
applies to non-uniformly hyperbolic systems as below. The classical specification property
allows arbitrary orbit segments to be glued together in uniformly bounded time. In the new
version, the connecting time is allowed to depend on which Pesin block 3k each segment
begins and ends in.

Definition 3.1. Let X be a compact metric space and f : X→ X be a continuous map. We
say that f has specification relative to a sequence of increasing sets {1k}k∈N and a number
ε > 0 if, for every η > 0, there exist integers {Mk,l = Mk,l(η)}k,l∈N such that the following
is true.

Given any collection of finite or infinite orbit segments 0 := {{ f i (xs)}
ns
i=0}s∈[a,b]∩Z,

where a < b ∈ Z ∪ {±∞} and ns ∈ N, if {ks}s∈[a,b]∩Z are such that xs, f ns (xs) ∈1ks

for every s ∈ [a, b] ∩ Z, then there exist a shadowing point z ∈ M and natural numbers
{cs}s∈[a−1,b]∩Z such that:
(1) 0≤ cs+1 − cs − ns+1 ≤ Mks ,ks+1 for every s ∈ [a − 1, b − 1] ∩ Z;
(2) d( f cs−1+ j (z), f j (xs)) < ηe−εks for all 0≤ j < ns and s ∈ [a, b] ∩ Z; and
(3) z is periodic with period cb − ca−1 whenever a and b are finite.

Remark 3.2. In our use of this new version of specification, we will take the sets {1k}k∈N
to be the Pesin blocks {3̃k}k∈N introduced in §1 and take ε to be the parameter in the
Pesin set 3(λ, µ; ε). The notion of the Pesin set is the core of the formulation of this new
version since it requires some kind of hyperbolicity to realize specification, for example,
the shadowing or mixing property. A Pesin set allows certain non-uniform hyperbolicity
but it depends on the point in a way that does not admit uniform errors of the pseudo-orbit in
the shadowing lemma. However, this is enough to possess the above specification property
which considers both the desired closeness of the shadowing orbit to the pseudo-orbit
segments and the Pesin set in which the pseudo-orbit lies. In other words, this specification
property allows us to glue trajectories together, in such a way that the gluing time depends
only on which 3k the trajectories start and end in.

Remark 3.3. For any homeomorphism f : X→ X on a compact metric space preserving
an ergodic measure ω, if ( f, ω) has the specification property defined as above, analogous
arguments and results as in Theorem 1.2 and Corollary 1.4 are adaptable. However, the
residual results may not be true.

In the following, we prove that the above new specification property applies to
C1+α non-uniformly hyperbolic systems, which will play a crucial role in the proof of
Theorem 1.2.

THEOREM 3.4. Let f be a C1+α diffeomorphism of a smooth compact manifold M with
an ergodic hyperbolic measure ω and let {3k(λ, µ; ε)}k≥1 be the associated Pesin blocks.
Let

3̃k = supp(ω|3k (λ,µ;ε)).

Then ( f, ω) has specification relative to the sets {3̃k}k≥1 and the number ε.
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Remark 3.5. The consequence of Theorem 3.4 in [7] or Hirayama’s definition in [5] for
the specification property is a particular case of the above theorem. More precisely, they
considered finitely many orbit segments and required all the beginning and ending points
of these segments to be in the same fixed block 3̃k .

Proof of Theorem 3.4. For any η > 0, by Lemma 2.2 there exists a sequence {δk}
+∞

k=1 such
that for any {δk}

+∞

k=1 pseudo-orbit there exists a unique η-shadowing point.
Let k∗ be big enough such that ω(3̃k) > 0 for all k ≥ k∗. For every k ≥ k∗, take and

fix for 3̃k a finite cover αk = {V k
1 , V k

2 , . . . , V k
rk
} by non-empty open balls V k

i in M such

that diam(U k
i ) < δk+1 and ω(U k

i ) > 0 where U k
i = V k

i ∩ 3̃k, i = 1, 2, . . . , rk . Since ω is
f -ergodic, by the Birkhoff ergodic theorem we have

lim
n→+∞

1
n

n−1∑
h=0

ω( f −h(U l
i ) ∩U k

j )= ω(U
l
i )ω(U

k
j ) > 0, (3.1)

for all k, l ≥ k∗, for all 1≤ i ≤ rl , 1≤ j ≤ rk . Then take

X k,l
i, j =min{h ∈ N | h ≥ 1+ |k − l|, ω( f −h(U l

i ) ∩U k
j ) > 0}. (3.2)

By (3.1), 1+ |k − l| ≤ X k,l
i, j <+∞. Let

Mk,l = max
1≤i≤rk ,1≤ j≤rl

X k,l
i, j .

Remark 3.6. If y ∈3k, f n(y) ∈3l for some n ≥ 1+ |k − l|, then for s j (y) :=min{k +
j, l + n − j} ( j = 0, . . . , n) we have f j (y) ∈3s j (y) and |s j (y)− s j−1(y)| ≤ 1 ( j =
1, . . . , n). More precisely, the fact that f ±1(3k)⊂3k+1 and y ∈3k, f n(y) ∈3l implies
that

f j (y)= f j−n( f n(y)) ∈3k+ j ∩3l+n− j =3min{k+ j,l+n− j}, 0≤ j ≤ n.

In particular, we remark that s0(y)= k, sn(y)= l.

We now consider a collection of orbit segments 0 := {{ f i (xs)}
ns
i=0}s∈[a,b]∩Z, where

a < b ∈ Z ∪ {±∞} and ns ∈ N, such that xs, f ns (xs) ∈ 3̃ks for every a ≤ s ≤ b. For each
s ∈ Z, we take and fix two integers a(s) and b(s) so that

xs ∈U ks
a(s), f ns xs ∈U ks

b(s).

Take ys ∈U ks
b(s) by (3.2) such that f X

ks , ks+1
a(s+1),b(s) ys ∈U ks+1

a(s+1) for s ∈ Z. Thus we get a {δk}
+∞

k=1
pseudo-orbit in the Pesin set 3:

9 := · · · { f t (x1)}
n1−1
t=0 ∪ { f t (y1)}

X
k1,k2
a(2),b(1)−1

t=0 ∪ { f t (x2)}
n2−1
t=0 ∪ { f t (y2)}

X
k2,k3
a(3),b(2)−1

t=0 ∪ · · · .

More precisely, note that

xs, f ns (xs) ∈ 3̃ks ⊆3ks , ys ∈ 3̃ks ⊆3ks and f X
ks ,ks+1
a(s+1),b(s) ys ∈ 3̃ks+1 ⊆3ks+1 .

By Remark 3.6, every pair of adjacent points in the pseudo-orbit 9 constructed above
are in the same Pesin blocks or adjacent ones (see conditions (a) and (b) in §2.2) since
1+ |k − l| ≤ X k, l

i, j <+∞. From the choice of ys ,

d( f ns (xs), ys) < δks+1, d( f X
ks ,ks+1
a(s+1),b(s)(ys), xs+1) < δks+1+1 for all s ∈ Z.

So 9 is indeed a {δk}
+∞

k=1 pseudo-orbit in Pesin set 3.
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Hence by Lemma 2.2 there exists an η-shadowing point z ∈ M such that

d( f cs−1+ j (z), f j (xs)) < ηεks
= ηe−εks for all j = 0, 1, . . . , ns − 1, s ∈ Z,

where

cs =



0 for s = 0,
s−1∑
j=0

[n j + X
k j ,k j+1
a( j+1),b( j)] for s > 0,

−

−1∑
j=s

[n j + X
k j ,k j+1
a( j+1),b( j)] for s < 0.

This concludes the proof. 2

4. Characterizing invariant measures by (finite) orbit segments
It is well known that for ergodic systems the time average is the same for almost all initial
points and coincides with the space average due to the Birkhoff ergodic theorem. However,
it is not true for general measure-preserving systems (for example, the measure supported
on two periodic orbits). Inspired by the ergodic decomposition theorem, we prove in the
following that the space average can be approximated by the time average along finitely
many orbit segments (not a true orbit).

Given a finite subset F ⊆ C0(M, R), we denote

‖F‖ =max{‖ξ‖ : ξ ∈ F}.

PROPOSITION 4.1. Suppose that f : X→ X is a homeomorphism on a compact metric
space and ν is an f -invariant measure. Then for any number γ > 0, any finite subset F ⊆
C0(M, R) and any set 1⊆ X with ν(1) > (1+ (γ /16‖F‖))−1, there is a measurable
partition {R j }

b
j=1 of 1 (b ∈ Z), such that, for any x j ∈ R j , there exists a positive integer

T such that, for any integers T j ≥ T (1≤ j ≤ b) and any ξ ∈ F,∣∣∣∣∫ ξ(x) dν −
b∑

j=1

θ j
1
T j

T j−1∑
h=0

ξ( f h(x j ))

∣∣∣∣< γ,
for any θ j > 0 satisfying∣∣∣∣θ j −

ν(R j )

ν(1)

∣∣∣∣< γ

2b‖F‖
, 1≤ j ≤ b and

b∑
j=1

θ j = 1.

Proof. Let

Q( f )=

{
x ∈ M

∣∣∣∣ the limit lim
n→+∞

1
n

n−1∑
i=0

ξ( f i x) exists, ∀ξ ∈ C0(M, R)
}
.

For any ξ ∈ C0(M, R) and x ∈ Q( f ), we denote the limit limn→+∞(1/n)
∑n−1

i=0 ξ( f i x)
by ξ∗(x). From the Birkhoff ergodic theorem∫

ξ(x) dω =
∫
ξ∗(x) dω and ω(Q( f ))= 1 for all ω ∈Minv( f ), ξ ∈ C0(M, R).
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Let

A = A(F)= sup{|ξ∗(x)| | x ∈ Q( f ), ξ ∈ F}.

Denote by [a] the largest integer not exceeding a. For j=1, . . . , [(32A‖F‖)/(γ ‖ξ‖)]+1,
ξ ∈ F, set

Q j (ξ)=

{
x ∈ Q( f )

∣∣∣∣−A +
( j − 1)γ
16‖F‖

‖ξ‖ ≤ ξ∗(x) <−A +
jγ

16‖F‖
‖ξ‖

}
.

Let

B =
∨
ξ∈F

{Q1(ξ), . . . , Q[(32A‖F‖)/(γ ‖ξ‖)]+1(ξ)},

where α ∨ β = {Ai ∩ B j | Ai ∈ α, B j ∈ β}, for partitions α = {Ai }, β = {B j }. Then B =
{R j }

b
j=1 is a partition of Q( f ). Hence, the positive-measure sets in {R j ∩1}

b
j=1 form a

partition of 1. For simplicity, we still denote this partition by B = {R j }
b
j=1. Then by the

definition of B and Q j (ξ) above, for every ξ ∈ F ,∣∣∣∣∫
1

ξ∗(x) dν −
b∑

j=1

θ jξ
∗(x j )

∣∣∣∣
≤

∣∣∣∣∫
1

ξ∗(x) dν −
b∑

j=1

ν(R j )

ν(1)
ξ∗(x j )

∣∣∣∣+ ∣∣∣∣ b∑
j=1

ν(R j )

ν(1)
ξ∗(x j )−

b∑
j=1

θ jξ
∗(x j )

∣∣∣∣
≤

∣∣∣∣∫
1

ξ∗(x) dν −
b∑

j=1

ν(R j )ξ
∗(x j )

∣∣∣∣+ ∣∣∣∣ b∑
j=1

ν(R j )ξ
∗(x j )−

b∑
j=1

ν(R j )

ν(1)
ξ∗(x j )

∣∣∣∣
+

∣∣∣∣ b∑
j=1

(
ν(R j )

ν(1)
− θ j

)
ξ∗(x j )

∣∣∣∣
≤

b∑
j=1

ν(R j ) max
y∈R j
|ξ∗(y)− ξ∗(x j )| +

∣∣∣∣ b∑
j=1

ν(R j )ξ
∗(x j )

∣∣∣∣ · ( 1
ν(1)

− 1
)

+
γ

2b‖F‖

b∑
j=1

|ξ∗(x j )|

≤
1

8‖F‖
· γ ‖ξ‖ ·

b∑
j=1

ν(R j )+ A ·
b∑

j=1

ν(R j ) ·
γ

16‖F‖
+

γ A

2‖F‖

≤
1

8‖F‖
· γ ‖ξ‖ +

γ A

16‖F‖
+

γ A

2‖F‖
≤

11γ
16

.

For the last inequality, note that A ≤ ‖F‖.

On the other hand, we shall take T large enough such that, for all T j ≥ T and ξ ∈ F ,∣∣∣∣∣∣ξ∗(x j )−
1
T j

T j−1∑
h=0

ξ( f h(x j ))

∣∣∣∣∣∣< γ

16
for all j = 1, 2, . . . , b.
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Thus, for every ξ ∈ F, we can deduce that∣∣∣∣∫
1

ξ∗(x) dν −
b∑

j=1

θ j
1
T j

T j−1∑
h=0

ξ( f h(x j ))

∣∣∣∣
≤

∣∣∣∣∫
1

ξ∗(x) dν −
b∑

j=1

θ jξ
∗(x j )

∣∣∣∣
+

∣∣∣∣ b∑
j=1

θ jξ
∗(x j )−

b∑
j=1

θ j
1
T j

T j−1∑
h=0

ξ( f h(x j ))

∣∣∣∣
≤

11γ
16
+

∣∣∣∣ b∑
j=1

θ j

(
ξ∗(x j )−

1
T j

T j−1∑
h=0

ξ( f h(x j ))

)∣∣∣∣
≤

11γ
16
+

b∑
j=1

θ j
γ

16
=

3γ
4
.

Note that

ν(1) >

(
1+

γ

16‖F‖

)−1

> 1−
γ

16‖F‖
.

Hence,∣∣∣∣∫
M
ξ(x) dν −

b∑
j=1

θ j
1
T j

T j−1∑
h=0

ξ( f h(x j ))

∣∣∣∣
=

∣∣∣∣∫
M
ξ∗(x) dν −

b∑
j=1

θ j
1
T j

T j−1∑
h=0

ξ( f h(x j ))

∣∣∣∣
≤

∣∣∣∣∫
M
ξ∗(x) dν −

∫
1

ξ∗(x) dν

∣∣∣∣+ ∣∣∣∣∫
1

ξ∗(x) dν −
b∑

j=1

θ j
1
T j

T j−1∑
h=0

ξ( f h(x j ))

∣∣∣∣
≤ ‖ξ∗‖ · (1− ν(1))+

3γ
4

≤ A
γ

16‖F‖
+

3γ
4
< γ. 2

The following lemma is a generalization of [7, Lemma 3.7].

LEMMA 4.2. Let f : X→ X be a homeomorphism of a compact metric space preserving
an invariant measure ω. Let 0 j ⊂ X be finitely many measurable sets with ω(0 j ) > 0 and,
for x ∈ 0 j , let

S(x, 0 j ) := {r ∈ N | f r x ∈ 0 j },

j = 1, . . . , k. Take 0< γ < 1, 0< β ≤ 1 and T ≥ 1. Then there exist sets 0̃ j ⊂ 0 j with
ω(0̃ j )= ω(0 j ) such that, for any x j ∈ 0̃ j ( j = 1, . . . , k), there exist n1, n2, . . . , nk with
n j ∈ S(x j , 0 j ) such that n j ≥ T and

0<
θ1|n1 − n j | + · · · + θ j−1|n j−1 − n j | + θ j+1|n j+1 − n j | + · · · + θk |nk − n j |∑k

i=1 θi ni
< γ
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holds for any j = 1, . . . , k and for all θ j > 0 satisfying

min1≤i≤k{θi }

max1≤i≤k{θi }
≥ β,

k∑
i=1

θi = 1.

Proof. The statement of [7, Lemma 3.7] is just the particular case of β = 1 (i.e., θ j = 1/k).
Though [7, Lemma 3.7] assumes that ω is ergodic, from its proof in [7] one does not need
any ergodicity since the main technique is [2, Lemma 3.12] whose statement just assumes
that ω is invariant. Here we use this particular case and the following estimate to conclude
the proof.

By the particular case of [7, Lemma 3.7] we can take T j (required above) such that

|T1 − T j | + · · · + |T j−1 − T j | + |T j+1 − T j | + · · · + |Tb − T j |∑b
i=1 Ti

∣∣∣∣≤ βγ.
Then for all θ j > 0 satisfying

min1≤i≤k{θi }

max1≤i≤k{θi }
≥ β,

k∑
j=1

θ j = 1,

∣∣∣∣θ1(T1 − T j )+ · · · + θ j−1(T j−1 − T j )+ θ j+1(T j+1 − T j )+ · · · + θb(Tb − T j )∑b
i=1 θi Ti

∣∣∣∣
≤

max1≤i≤b{θi }

min1≤i≤b{θi }
·
|T1 − T j | + · · · + |T j−1 − T j | + |T j+1 − T j | + · · · + |Tb − T j |∑b

i=1 Ti

∣∣∣∣
< β−1βγ = γ. 2

The Poincaré recurrence theorem states that for a set with positive measure, almost all
points in this set will return to it, after a sufficiently long time. Such points are called
recurrence points and the Poincaré recurrence time is the length of time elapsed until the
recurrence. The set 0̃ j in Lemma 4.2 is in fact the subset of recurrent points in 0 j .

PROPOSITION 4.3. Suppose that f : X→ X is a homeomorphism on a compact metric
space and ν is an f -invariant measure. Then for any number γ > 0, any finite subset F ⊆
C0(M, R) and any set 1⊆ X with ν(1) > (1+ (γ /32‖F‖))−1, there is a measurable
partition {R j }

b
j=1 of 1 (b ∈ Z) such that, for any positive integer T and any recurrence

points x j ∈ R j , there exist recurrence times T j ≥ T (1≤ j ≤ b) satisfying, for every ξ ∈ F,∣∣∣∣∫ ξ(x) dν −
1∑b

j=1 θ j T j

b∑
j=1

θ j

T j−1∑
h=0

ξ( f h(x j ))

∣∣∣∣< γ,
for any θ j > 0 satisfying∣∣∣∣θ j −

ν(R j )

ν(1)

∣∣∣∣<min
{

γ

4b‖F‖
,

1
2

ν(R j )

ν(1)

}
, 1≤ j ≤ b and

b∑
j=1

θ j = 1.
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Proof. Since

ν(1) >

(
1+

γ

32‖F‖

)−1

=

(
1+

(γ /2)
16‖F‖

)−1

,

we can take a partition {R j }
b
j=1 as in Proposition 4.1, just replacing γ with γ /2. Take

β :=
min1≤i≤b{(1/2)(ν(R j )/ν(1))}

max1≤i≤b{(3/2)(ν(R j )/ν(1))}
> 0.

By Poincaré’s recurrence lemma, ν-almost every point in R j is a recurrence point. We
consider recurrence points x j ∈ R j ( j = 1, . . . , b). By the finiteness of F and Lemma 4.2,
for any T > 0 we can choose integers T j ≥ T such that f T j (x j ) ∈ R j ( j = 1, . . . , b) and∣∣∣∣θ1(T1 − T j )+ · · · + θ j−1(T j−1 − T j )+ θ j+1(T j+1 − T j )+ · · · + θb(Tb − T j )∑b

i=1 θi Ti

∣∣∣∣
<

γ

32‖F‖

for all θ j > 0 satisfying∣∣∣∣θ j −
ν(R j )

ν(1)

∣∣∣∣<min
{

γ

4b‖F‖
,

1
2

ν(R j )

ν(1)

}
, 1≤ j ≤ b and

b∑
j=1

θ j = 1.

In the process we use the inequality

min1≤i≤b{θi }

max1≤i≤b{θi }
≥

min1≤i≤b{(1/2)(ν(R j )/ν(1))}

max1≤i≤b{(3/2)(ν(R j )/ν(1))}
= β.

Thus, for every ξ ∈ F ,∣∣∣∣ b∑
j=1

θ j
1
T j

T j−1∑
h=0

ξ( f h(x j ))−
1∑b

i=1 θi Ti

b∑
j=1

θ j

T j−1∑
h=0

ξ( f h(x j ))

∣∣∣∣
=

∣∣∣∣ b∑
j=1

θ j

(θ1 + · · · + θb)

1
T j

T j−1∑
h=0

ξ( f h(x j ))−

b∑
j=1

θ j

θ1T1 + · · · + θbTb

T j−1∑
h=0

ξ( f h(x j ))

∣∣∣∣
=

∣∣∣∣ b∑
j=1

θ j
θ1(T1 − T j )+ · · · + θ j−1(T j−1 − T j )+ θ j+1(T j+1 − T j )+ · · · + θb(Tb − T j )∑b

i=1 θi Ti

·
1
T j

T j−1∑
h=0

ξ( f h(x j ))

∣∣∣∣
≤

∣∣∣∣ b∑
j=1

θ j
θ1(T1 − T j )+ · · · θ j−1(T j−1 − T j )+ θ j+1(T j+1 − T j )+ · · · θb(Tb − T j )∑b

i=1 θi Ti

∣∣∣∣ · ‖ξ‖
≤

b∑
j=1

θ j

∣∣∣∣ θ1(T1 − T j )+ · · · θ j−1(T j−1 − T j )+ θ j+1(T j+1 − T j )+ · · · θb(Tb − T j )∑b
i=1 θi Ti

∣∣∣∣ · ‖ξ‖
≤

b∑
j=1

θ j
γ

32‖F‖
‖ξ‖ ≤

γ

32
. (4.3)

Note that

ν(1) >

(
1+

γ

32‖F‖

)−1

> 1−
γ

32‖F‖
.
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Combining with Proposition 4.1 and inequality (4.3), one deduces that, for every ξ ∈ F ,∣∣∣∣∫
M
ξ(x) dν −

1∑b
i=1 θi Ti

b∑
j=1

θ j

T j−1∑
h=0

ξ( f h(x j ))

∣∣∣∣
≤

∣∣∣∣∫
M
ξ(x) dν −

b∑
j=1

θ j
1
T j

T j−1∑
h=0

ξ( f h(x j ))

∣∣∣∣
+

∣∣∣∣ b∑
j=1

θ j
1
T j

T j−1∑
h=0

ξ( f h(x j ))−
1∑b

i=1 θi Ti

b∑
j=1

θ j

T j−1∑
h=0

ξ( f h(x j ))

∣∣∣∣
≤
γ

2
+
γ

32
< γ,

and the proof is complete. 2

Remark 4.4. Through the proof of the previous proposition, one can obtain that the
conclusion is suitable for any finer partition of {R j }

b
j=1, which will be used in the proof of

the next proposition.

The previous two propositions are stated in a general setting and considering
homeomorphisms on a compact space with an f -invariant measure. In the following
result we go back to focus on an f -invariant measure ν supported on 3̃ with respect to
an f ∈ Diff1+α(M) and an ergodic hyperbolic measure ω for f .

PROPOSITION 4.5. Let ν be an f -invariant measure supported on 3̃. Then for
any number ζ > 0 and any finite subset F ⊆ C0(M, R), there is a number kν ∈ Z+
such that, for any numbers δ > 0 and T > 0, there exist positive numbers {n j }

c
j=1

with n j > T and orbit segments {z j , f z j , . . . , f n j−1z j }
c
j=1 with z j , f n j z j ∈ 3̃kν and

d( f n j z j , z( j+1) mod c) < δ, j = 1, . . . , c, satisfying, for all ξ ∈ F,∣∣∣∣∫ ξ(x) dν −
1∑c

j=1 n j

c∑
j=1

n j−1∑
h=0

ξ( f h(z j ))

∣∣∣∣< ζ.
Proof. Take kν large such that

ν(3̃kν ) >

(
1+

ζ

32‖F‖

)−1

.

Applying Proposition 4.3 with 1= 3̃kν and γ = ζ and Remark 4.4, we can obtain a
finite partition {R j }

b
j=1 of 3̃kν with diamR j < δ and recurrence points x j ∈ R j with large

recurrence times T j > T , j = 1, . . . , b, satisfying, for all ξ ∈ F ,∣∣∣∣∫ ξ(x) dν −
1∑b

j=1 θ j T j

b∑
j=1

θ j

T j−1∑
h=0

ξ( f h(x j ))

∣∣∣∣< ζ, (4.4)

for any θ j > 0 satisfying

k∑
j=1

θ j = 1 and

∣∣∣∣θ j −
ν(R j )

ν(3̃kν )

∣∣∣∣<min
{

ζ

4b‖F‖
,

1
2

ν(R j )

ν(1)

}
, 1≤ j ≤ b.
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Recall that ω is ergodic and thus, for any 1≤ j ≤ b, there is an integer X j ≥ T such that

f X j R j ∩ R j+1 6= ∅, 1≤ j < b,

and
f Xb Rb ∩ R1 6= ∅.

Take y j ∈ R j so that f X j y j ∈ R j+1, 1≤ j < b, and f Xb yb ∈ R1.
For ζ, F and b, there exists S ∈ N such that, for any integer s > S, we have

0< 1/s <min
{

ζ

4b‖F‖
,

1
2

ν(R j )

ν(1)

}
.

Then there exist integers s̄1, s̄2, . . . , s̄b satisfying

s̄ j

s
≤
ν(R j )

ν(3̃kν )
≤

s̄ j + 1

s
.

It follows from taking s j = s̄ j or s̄ j + 1 that

s =
b∑

j=1

s j and

∣∣∣∣ ν(R j )

ν(3̃kν )
−

s j

s

∣∣∣∣≤ 1
s
<min

{
ζ

4b‖F‖
,

1
2

ν(R j )

ν(1)

}
.

Taking T j large enough such that
∑b

j=1 X j �
∑b

j=1 s j T j ,∣∣∣∣ 1∑b
j=1(s j T j + X j )

b∑
j=1

(
s j

T j−1∑
h=0

ξ( f h(x j ))+

X j−1∑
h=0

ξ( f h(y j ))

)

−
1∑b

j=1 s j T j

b∑
j=1

s j

T j∑
h=0

ξ( f h(x j ))

∣∣∣∣< ζ.
Let θ j = s j/s. Observe that the definition of θ j yields

∑k
j=1 θ j = 1. The above inequality

and inequality (4.4) imply that∣∣∣∣∫ ξ(x) dν −
1∑b

j=1(s j T j + X j )

b∑
j=1

(
s j

T j−1∑
h=0

ξ( f h(x j ))+

X j−1∑
h=0

ξ( f h(y j ))

)∣∣∣∣< 3ζ.

(4.5)
Let

z1 = · · · = zs1 = x1, zs1+1 = y1,

zs1+2 = · · · = zs1+s2+1 = x2, zs1+s2+2 = y2,

· · ·

z∑ j
h=1 sh+ j+1

= · · · = z∑ j+1
h=1 sh+ j

= x j+1,

z∑ j+1
h=1 sh+ j+1

= y j+1,

· · ·

z∑b−1
h=1 sh+b = · · · = z∑b

h=1 sh+b−1 = xb,

z∑b
h=1 sh+b = yb.
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FIGURE 1. Schematic for choice of periodic pseudo-orbit (here [x, f T x]s indicates that the number of loops on
x is s).

These {z j }

∑b
h=1 sh+b

j=1 are the points we want in the proposition by the previous
evaluation (4.5) with

c =
b∑

h=1

sh + b

and
n∑l−1

h=1 sh+t = Tl , n∑l
h=1 sh+l = Xl ,

for 1≤ l ≤ b, l ≤ t ≤ sl − 1 (see Figure 1 for more explanation). 2

5. Proof of Theorem 1.2
In this section, we prove Theorem 1.2 by using the specification property developed in §3
and Proposition 4.5 in §4.

Proof of Theorem 1.2. If {ϕ j }
∞

j=1 is a dense subset of C0(M, R), then

d̃(ν, m)=
∞∑
j=1

|
∫
ϕ j dν −

∫
ϕ j dm|

2 j‖ϕ j‖

is a metric on M(M) giving the weak∗ topology (see, for example, [15]). It is well known
that Minv( f ) is a compact metric subspace of M(M). For any non-empty connected
compact set V ⊆ Closure(Minv(3̃)), there exists a sequence of open balls Bn in Minv( f )
with radius ζn in the metric d̃ such that the following hold:
(a) Bn ∩ Bn+1 ∩ V 6= ∅;
(b)

⋂
∞

N=1
⋃

n≥N Bn = V ;
(c) limn→+∞ ζn = 0.
Since Bn is open, by (a) we can take Yn ∈ Bn ∩Minv(3̃). Note that Yn is in Minv(3̃) and
thus satisfies Yn(3̃)= 1.
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Remark 5.1. In [12] or [4, Proposition 21.14], Sigmund assumes that Yn is an atomic
measure and thus its information can be characterized by its support (periodic orbit). Hence
it remains to deal with these periodic orbits by means of the specification property for
Axiom A systems. But for our case we cannot directly take Yn as an atomic measure.
The main observation is that the support of these periodic measures may not be contained
in 3̃, and therefore the specification property as in Theorem 3.4 becomes invalid. So
we just emphasize that Yn must be in V and thus satisfies Yn(3̃)= 1. This allows us to
choose pseudo-orbits in 3̃ whose information can characterize that of Yn and for which the
specification property is valid.

Take a finite set Fn = {ϕ j }
n
j=1 ⊆ {ϕ j }

∞

j=1. Let x∗ ∈ 3̃ be given. Fix δ∗ > 0 and let U0

be the open ball of radius δ∗ around x∗ and let k0 be large enough such that x∗ ∈3k0 . We
have to show that there exists an x ∈U0 such that V = V f (x). We divide the following
proof into four steps.
Step 1. An estimation of Yn (n ≥ 1) via a single pseudo-orbit.

Fix 0< η ≤ δ∗. Fix n ∈ N. For ζn, Fn , by Proposition 4.5 we choose kn = k(Yn)

such that, for any T > 0, there exist orbit segments {zn
j , f zn

j , . . . , f pn, j−1zn
j }

cn
j=1 with

pn, j > T and zn
j , f pn, j zn

j ∈ 3̃kn , satisfying∣∣∣∣∫ ξ(x) dYn −
1∑cn

j=1 pn, j

cn∑
j=1

pn, j−1∑
h=0

ξ( f h(zn
j ))

∣∣∣∣< ζn for all ξ ∈ Fn . (5.6)

Moreover, we can take kn < kn+1 for all n. Let Mn = Mkn−1,kn (η) and Ln = Mkn ,kn (η) be
numbers defined as in Theorem 3.4, and, for every n, take the above number T to be 2n Ln .

Remark 5.2. Note that if we use Katok’s shadowing lemma (Lemma 2.2) and its corollary
(Theorem 3.4) simultaneously, then we can choose {δk}

+∞

k=1 such that the shadowing
property holds. This can furthermore guarantee that d( f pn, j zn

j , zn
j+1) < δkn+1 ( j =

1, . . . , cn − 1) when we use Proposition 4.5 for δ = δkn+1 . In other words, for any fixed
n, these orbit segments {zn

j , f zn
j , . . . , f pn, j−1zn

j }
cn
j=1 form a ‘periodic’ pseudo-orbit. This

implies that we do not need the numbers Ln and the corresponding parts in the following
steps (see Figure 2 for a rough idea: the thick line denotes and contains the pseudo-orbit
of {zn

j , f zn
j , . . . , f pn, j−1zn

j } and the thin line denotes and contains the shadowing orbit
of x̂). But here we want to give a proof just using the newly introduced specification of
Theorem 3.4 (which verifies our Remark 3.3) allowing some time lag for the shadowing
between f pn, j zn

j and zn
j+1 (see Figure 3).

Step 2. Finding a point x̂ ∈U0 tracing this pseudo-orbit.
Denote pn =

∑cn
j=1 pn, j + cn Ln . Define

ā0 = b̄0 = 0,

ā1 = b̄0 + M1, b̄1 = ā1 + 2(ā1 + M2 + p2)p1,

ā2 = b̄1 + M2, b̄1 = ā1 + 22(ā2 + M3 + p3)p2,

· · ·

ān = b̄n−1 + Mn, b̄n = ān + 2n(ān + Mn+1 + pn+1)pn,

· · · .
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A   periodic
pseudo-orbit
with period pn

A  periodic  pseudo-orbit with period pn+1

repeat it
mn times in
the construction
of the final
pseudo-orbit

repeat it mn+1 times in the construction of the final
pseudo-orbit

z z

z z

z

z z

z z

z z

z

z z

z

z

FIGURE 2. Schematic for choice of x̂ to shadow pseudo-orbit by shadowing.

repeat it
mn times in
the construction
of the final
pseudo-orbit

A pseudo-orbit
consisting of no more
than pn points

A pseudo-orbit consisting
of no more than pn+1 points
repeat it mn+1 times in the 
construction of the final pseudo -orbit

z z

z z
z z

z z

z z

z z
z z

z z

FIGURE 3. Schematic for choice of x̂ to shadow pseudo-orbit by specification.
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Using the specification of Theorem 3.4, we can find a point x̂ ∈3, δ∗-close to x∗, which
η-shadows each orbit segment {zn

j , . . . , f pn, j−1(zn
j )}, j = 1, 2, . . . , cn , mn = 2n(ān +

Mn+1 + pn+1) times for all n and runs from a neighborhood of f pn, j zn
j to that of zn

j+1
with a time lag of no more than Ln (here for convenience we assume that the time lag
from a neighborhood of f pn, j zn

j to that of zn
j+1 is exactly Ln since in this way we have

enlarged the error made by the time lag to its maximum) and from a neighborhood of
f pn,cn zn

cn
to that of zn+1

1 with a time lag of no more than Mn+1. Note that if the time lag
from a neighborhood of f pn, j zn

j to that of zn
j+1 is much smaller, the estimation will be

much easier as can be seen in the calculation below. So for convenience and to avoid using
too many new symbols, here we assume the worst case where all these time lags are the
same and are equal to the maximum. Then there exist two increasing sequences of integers
{an}, {bn} with

a0 = b0 = 0,

bn = an + mn pn and an − bn−1 ≤ Mn,

such that
d( f h x̂, f (h−an) mod pn−

∑ j−1
i=1 pn,i−( j−1)Ln zn

j ) < ηe−εkn , (5.7)

for all an ≤ h ≤ bn satisfying

j−1∑
i=1

pn,i + ( j − 1)Ln < (h − an) mod pn ≤

j∑
i=1

pn,i + ( j − 1)Ln,

1≤ j ≤ cn, n ∈ N.

Remark 5.3. Note that an ≤ ān , bn ≤ b̄n and

bn − an = b̄n − ān = mn pn, an − bn−1 ≤ ān − b̄n−1 = Mn .

So as n→+∞, bn and an+1 become much larger than an, Mn+1, pn and pn+1 since
mn→+∞. And by the definition of mn , one can obtain that

an � mn

cn∑
j=1

pn, j and Mn+1� mn

cn∑
j=1

pn, j .

The original technique for Axiom A systems in [12] and [4, Proposition 21.14] is not
suitable for non-uniformly hyperbolic ones. Sigmund [4, 12] uses the specification
property to build inductively a sequence of periodic orbits such that the nth orbit shadows
both the (n − 1)th orbit and the support of the nth center. In this process the support of
the centers and these shadowing periodic orbits are always in the hyperbolic set such that
the specification property can be used iteratively. Finally, these periodic orbits converge to
one orbit of some point x̂ . However, for the non-uniform hyperbolic case, Sigmund’s idea
encounters a difficulty. That is, the specification property cannot be used more than once,
since we cannot predetermine the Pesin block in which the shadowing periodic orbits stay.
Therefore, to deal with non-uniformly hyperbolic cases, we introduce a new specification
property, inspired by Katok’s shadowing lemma. More precisely, we construct a pseudo-
orbit consisting of infinitely many orbit segments and use Katok’s shadowing lemma once
and for all to find the required x̂ as shown in (5.7) and hence avoid induction.
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Step 3. Verifying V ⊆ V f (x̂).
Let ν ∈ V be given. By (b) and (c) there exists an increasing sequence nk ↑∞ such that

Ynk → ν. (5.8)

Let ξ ∈ {ϕ j }
∞

j=1 =
⋃

n≥1 Fn be given. Then there is an integer nξ > 0 such that ξ ∈ Fn , for
any n ≥ nξ . Denote by wξ (γ ) the oscillation

max{‖ξ(y)− ξ(z)‖ | d(y, z)≤ γ }

and by νn the measure δ∗(x̂)bn . Thus∫
ξ dνn =

1
bn

bn−1∑
j=0

ξ( f j x̂). (5.9)

Remark that if A is a finite subset of N,∣∣∣∣ 1
#A

∑
j∈A

ϕ( f j x)−
1

max A + 1

max A∑
j=0

ϕ( f j x)

∣∣∣∣≤ 2(max A + 1− #A)

#A
‖ϕ‖ (5.10)

for any x ∈ M and ϕ ∈ C0(M, R), where #A denotes the cardinality of the set A.
Inequality (5.10), with

An =

mn⋃
r=1

cn⋃
j=1

[
an + (r − 1)pn +

j−1∑
i=1

pn,i + ( j − 1)Ln, an + (r − 1)pn

+

j∑
i=1

pn,i + ( j − 1)Ln

]
,

implies that ∣∣∣∣ 1

mn
∑cn

j=1 pn, j

∑
j∈An

ξ( f j x̂)−
1
bn

bn−1∑
j=0

ξ( f j x̂)

∣∣∣∣
≤

2(bn − mn
∑cn

j=1 pn, j )

mn
∑cn

j=1 pn, j
‖ξ‖ for all n ≥ nξ . (5.11)

On the other hand, combining inequalities (5.6) and (5.7), one can obtain that∣∣∣∣∫ ξ dYn −
1

mn
∑cn

j=1 pn, j

∑
j∈An

ξ( f j x̂)

∣∣∣∣≤ ζn + wξ (ηe−εkn ) for all n ≥ nξ . (5.12)

Note that

2(bn − mn
∑cn

j=1 pn, j )

mn
∑cn

j=1 pn, j
=

2(an + cnmn Ln)

mn
∑cn

j=1 pn, j

=
2an

mn
∑cn

j=1 pn, j
+

2cn Ln∑cn
j=1 pn, j

→ 0 as n→∞ (5.13)
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due to Remark 5.3 and the choice of the segments {zn
j , . . . , f pn, j−1(zn

j )} and ζn→ 0 and

wξ (ηe−εkn )→ 0 since kn→+∞, as n→∞. It can be deduced by (5.9), (5.11) and (5.12)
that ∣∣∣∣∫ ξ dνn −

∫
ξ dYn

∣∣∣∣≤ ζn + wξ (ηe−εkn )

+
2(bn − mn

∑cn
j=1 pn, j )

mn
∑cn

j=1 pn, j
‖ξ‖→ 0 as n→∞.

Hence, together with (5.8), it implies that νnk → ν and thus ν ∈ V f (x̂). Therefore, V ⊆
V f (x̂).

Step 4. Verifying V f (x̂)⊆ V .

Let ν ∈ V f (x̂) be given. There exists a sequence nk ↑∞ such that νnk → ν. Let γ > 0
and ξ ∈ {ϕ j }

∞

j=1 =
⋃

n≥1 Fn be given. For fixed nk , let i = i(nk) be the largest integer such
that bi−1 ≤ nk . Let nk (and hence i) be so large that

wξ (2−i+1) < wξ (2−i+2) <
γ

4
.

Let α = 1 if bi−1 ≤ nk ≤ ai . Otherwise ai < nk ≤ bi . Write A = Ai−1 ∪ (Ai ∩ [ai , nk))

and define

α = (#Ai−1)(#A)−1.

We divide the proof into two cases.

Case 1. nk = ai + rk pi +
∑tk−1

j=1 pi, j + (tk − 2)L i + lk with 0≤ lk < L i , 0≤ rk < mi

and 0≤ tk < ci .

Recall that ∫
ξ dνn =

1
n

n−1∑
j=0

ξ( f j x̂) for all n ∈ N.

Note that, in this case, max A + 1= nk − lk . Using inequality (5.10) again, with A as
above, we obtain∣∣∣∣∫ ξ dνnk−lk −

1
#A

( ∑
j∈Ai−1

ξ( f j x̂)+
∑

j∈Ai∩[ai ,nk )

ξ( f j x̂)

)∣∣∣∣
≤ 2(nk − lk − #A)(#A)−1

‖ξ‖

≤ 2
(

ai−1

mi−1
∑ci−1

j=1 pi−1, j
+

mi−1ci−1L i−1

mi−1
∑ci−1

j=1 pi−1, j
+

Mi

mi−1
∑ci−1

j=1 pi−1, j

+
rkci L i

rk
∑ci−1

j=1 pi, j

+
(tk − 2)L i∑tk−1

j=1 pi, j

)
‖ξ‖

≤ γ ‖ξ‖ (5.14)

provided the nk are large enough, due to Remark 5.3.
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Note that∣∣∣∣∫ ξ dνnk −

∫
ξ dνnk−lk

∣∣∣∣
=

∣∣∣∣ 1
nk

nk−1∑
j=0

ξ( f j x̂)−
1

nk − lk

nk−lk−1∑
j=0

ξ( f j x̂)

∣∣∣∣
=

1
nk(nk − lk)

∣∣∣∣(−lk)
nk−lk−1∑

j=0

ξ( f j x̂)+ (nk − lk)
nk−1∑

j=nk−lk

ξ( f j x̂)

∣∣∣∣
≤

lk
nk
‖ξ‖ +

lk
nk
‖ξ‖

≤
2L i

nk
‖ξ‖

≤ γ ‖ξ‖ (5.15)

provided the nk are large enough.
Case 2. nk = ai + rk mod pi +

∑tk−1
j=1 pi, j + (tk − 1)L i + lk with 0≤ lk < pi,tk < pi ,

0≤ rk < mi and 0≤ tk < ci .
In this case max A + 1= nk − lk − L i . Using inequality (5.10) again, with A as above,

we obtain two inequalities analogous to (5.14) and (5.15):∣∣∣∣∫ ξ dνnk−lk−L i −
1

#A

( ∑
j∈Ai−1

ξ( f j x̂)+
∑

j∈Ai∩[ai ,nk )

ξ( f j x̂)

)∣∣∣∣≤ γ ‖ξ‖ (5.14′)

and ∣∣∣∣∫ ξ dνnk −

∫
ξ dνnk−lk−L i

∣∣∣∣≤ γ ‖ξ‖ (5.15′)

provided the nk are large enough, due to Remark 5.3.
Then combining (5.14) with inequality (5.15) or (5.14′) with (5.15′),∣∣∣∣∫ ξ dνnk −−

1
#A

( ∑
j∈Ai−1

ξ( f j x̂)+
∑

j∈Ai∩[ai ,nk )

ξ( f j x̂)

)∣∣∣∣≤ 2γ ‖ξ‖.

This implies that∣∣∣∣∫ ξ dνnk −

[
α

1
#Ai−1

∑
j∈Ai−1

ξ( f j x̂)+ (1− α)
1

#A − #Ai−1

∑
j∈Ai∩[ai ,nk )

ξ( f j x̂)

]∣∣∣∣
≤ 2γ ‖ξ‖.

Remark 5.4. In [4, Proposition 21.14], Sigmund defined

a0 = b0 = 0

and
ai = bi−1 + Mi , bi = ai + 2i (ai + Mi+1)pi , i ∈ N.

It is obvious that these bi−1 and ai were chosen independent of pi . Here, in our definition
(before (5.7)), bi−1 and ai are chosen much larger not only than ai−1, Mi , pi−1 but also
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than pi . This is one of the important differences with respect to Sigmund’s proof. In fact,
step 4 in Sigmund’s proof only holds for some special cases since he assumes that

nk − ai = mpi .

The remainder lk is not greater than pi . However, in his proof, the period pi may not be
small compared to the lag bi−1 − ai−1, and hence lk may not be small enough with respect
to bi−1 − ai−1, which is necessary to the proof as shown in the above inequality (5.15).

Set
ρnk = αYi−1 + (1− α)Yi .

Using inequality (5.12), ∣∣∣∣∫ ξ dνnk −

∫
ξ dρnk

∣∣∣∣≤ 3γ ‖ξ‖

for k large enough such that nk � nξ (defined below (5.8)). Thus ρnk has the same limit as
νnk , that is, ν.

On the other hand, the limit of ρnk has to be in V , since

d̃(ρnk , V )≤ d̃(ρnk , Yi )≤ d̃(Yi−1, Yi )≤ 2ζi−1 + 2ζi

and ζi ↓ 0. Hence, ν ∈ V .
The arbitrariness of x∗ ∈ 3̃ and δ∗ implies the density of x̂ in 3̃. Note that 3̃⊆ supp(ω)

and ω(3̃)= 1, and ω is an ergodic measure. All these conditions ensure that Closure(3̃)=
supp(ω). Hence, such x̂ are dense in supp(ω). This concludes the proof. 2

6. Proof of Theorem 1.6 and 1.8
In this section, we use Theorem 1.2 (or Corollary 1.4) to prove Theorem 1.6 and then use
Theorem 1.6 to prove Theorem 1.8.

Proof of Theorem 1.6. Note that if supp(ω) is isolated, then the orbit of the chosen point
x̂ in Theorem 1.2 is in supp(ω) provided that δ∗ is small enough, since 3̃⊆ supp(ω) and
the orbit of x̂ is δ∗ close to a {δk}-pseudo-orbit contained completely in 3̃ (containing the
inverse orbit of x∗) by using Katok’s shadowing lemma and the argument in the proof of
Theorem 3.4. So for any ν ∈ Closure(Minv(3̃)), its generic points of Corollary 1.4 can
be chosen in supp(ω) and dense in supp(ω). However, we remark that if we only use the
specification of Definition 3.1, we cannot guarantee that the orbit of the chosen point x̂
can be totally in a small neighborhood of supp(ω) since we cannot control the iterates of x̂
running from a neighborhood of f pn,cn zn

cn
to that of zn+1

1 with a time lag of no more than
Mn+1 (see Step 2).

We now show that the set of points in supp(ω)with maximal oscillation contains a dense
Gδ-set. The proof is not difficult and is analogous to [4, Proof of Proposition 21.18].

Since supp(ω) is always compact, M(supp(ω)) is compact and convex. Thus we can
find open balls Bn , Cn in M(supp(ω)) such that:
(a) Bn ⊂ Closure(Bn)⊂ Cn ;
(b) diam Cn→ 0;
(c) Bn ∩ Closure(Minv(3̃)) 6= ∅;
(d) each point of Closure(Minv(3̃)) lies in infinitely many Bn .
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Put
P(Cn)= {x ∈ supp(ω) | V f (x) ∩ Cn 6= ∅} for all n ∈ Z+.

It can be verified that the set of points with maximal oscillation is just
⋂

n≥1 P(Cn). Note
that

P(Cn) ⊇ {x ∈ supp(ω) | ∀N0 ∈ Z+, ∃N > N0 with δ(x)N
∈ Bn}

⊇

∞⋂
N0=1

⋃
N>N0

{x ∈ supp(ω) | δ(x)N
∈ Bn}.

Since x→ δ(x)N is continuous (for fixed N ), the sets
⋃

N>N0
{x ∈ supp(ω) | δ(x)N

∈ Bn}

are open. Since Bn ∩ Closure(Minv(3̃)) 6= ∅, these sets are also dense, as shown in the
first paragraph above. Hence,

⋂
n≥1 P(Cn) contains a dense Gδ-set. 2

Proof of Theorem 1.8. Let x be a point having maximal oscillation. By assumption there
exist at least two invariant measures µ1 6= µ2 ∈ V f (x). So there is a continuous function φ
such that ∫

φ dµ1 6=

∫
φ dµ2. (6.16)

Due to the definition of V f (x), there are two sequences of integers nk, mk→+∞ such
that

δnk (x)→ µ1, δmk (x)→ µ2.

These imply that

lim
k→+∞

1
nk

nk−1∑
j=0

φ( f j x)=
∫
φ dµ1 and lim

k→+∞

1
mk

mk−1∑
j=0

φ( f j x)=
∫
φ dµ2.

Combining these equalities with (6.16), we can deduce that

lim
k→+∞

1
nk

nk−1∑
j=0

φ( f j x)=
∫
φ dµ1 6=

∫
φ dµ2 = lim

k→+∞

1
mk

mk−1∑
j=0

φ( f j x)

does not exist. 2

Acknowledgements. The authors wish to thank the whole seminar of dynamical systems
in Peking University and the referee for his constructive suggestions and careful reading.
Liang is supported by the National Natural Science Foundation of China (# 10901167
and # 10671006). Sun is supported by the National Natural Science Foundation of China
(# 10671006, # 10831003) and the National Basic Research Program of China (973
Program, # 2006CB805903). Tian is the corresponding author and supported by CAPES.

REFERENCES

[1] F. Abdenur, C. Bonatti and S. Crovisier. Non-uniform hyperbolicity of C1-generic diffeomorphisms.
Israel J. Math. to appear.

[2] J. Bochi. Genericity of zero Lyapunov exponents. Ergod. Th. & Dynam. Sys. 22 (2002), 1667–1696.
[3] R. Bowen. Periodic orbits for hyperbolic flows. Amer. J. Math. 94 (1972), 1–30.

https://doi.org/10.1017/S0143385711000940 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385711000940


584 C. Liang et al

[4] M. Denker, C. Grillenberger and K. Sigmund. Ergodic Theory on Compact Spaces (Lecture Notes in
Mathematics, 527). Springer, Berlin.

[5] M. Hirayama. Periodic probability measures are dense in the set of invariant measures. Discrete Contin.
Dyn. Syst. 9 (2003), 1185–1192.

[6] A. Katok. Liapunov exponents, entropy and periodic orbits for diffeomorphisms. Publ. Math. Inst. Hautes
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