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Abstract

This paper studies the joint tail asymptotics of extrema of the multi-dimensional
Gaussian process over random intervals defined as P(u) := P{∩n

i=1( supt∈[0,Ti] (Xi(t)+
cit)> aiu)}, u→∞, where Xi(t), t≥ 0, i= 1, 2, . . . , n, are independent centered
Gaussian processes with stationary increments, T = (T1, . . . , Tn) is a regularly varying
random vector with positive components, which is independent of the Gaussian pro-
cesses, and ci ∈R, ai > 0, i= 1, 2, . . . , n. Our result shows that the structure of the
asymptotics of P(u) is determined by the signs of the drifts ci. We also discuss a relevant
multi-dimensional regenerative model and derive the corresponding ruin probability.
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1. Introduction

Let X(t), t≥ 0, be an almost surely (a.s.) continuous centered Gaussian process with station-
ary increments and X(0)= 0. Motivated by its applications to the hybrid fluid and ruin models,
the seminal paper [18] derived the exact tail asymptotics of

P

{
sup

t∈[0,T ]
X(t)> u

}
, u→∞, (1.1)

with T being a regularly varying random variable independent of the Gaussian process X. Since
then, the study of the tail asymptotics of supremum on random interval has attracted substantial
interest in the literature. We refer to [1], [2], [3], [10], [11], and [36] for various extensions to
general (non-centered) Gaussian or Gaussian-related processes. In these contributions, various
different tail distributions for T have been discussed, and it has been shown that the vari-
ability of T influences the form of the asymptotics of (1.1), leading to qualitatively different
structures.

The primary aim of this paper is to analyse the asymptotics of a multi-dimensional coun-
terpart of (1.1). More precisely, consider a multi-dimensional centered Gaussian process

X(t)= (X1(t), X2(t), . . . , Xn(t)), t≥ 0, (1.2)
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with independent coordinates, each Xi(t), t≥ 0, has stationary increments, a.s. continuous sam-
ple paths and Xi(0)= 0, and let T = (T1, . . . , Tn) be a regularly varying random vector with
positive components, which is independent of the multi-dimensional Gaussian process X in
(1.2) (we use X for short). We are interested in the exact asymptotics of

P(u) := P

{
∩n

i=1

(
sup

t∈[0,Ti]
(Xi(t)+ cit)> aiu

)}
, u→∞, (1.3)

where ci ∈R, ai > 0, i= 1, 2, . . . , n.
Extremal analysis of multi-dimensional Gaussian processes has been an active research

area in recent years; see [5], [12], [13], [15], [17], and [29], and references therein. Most of
these contributions discuss the asymptotic behaviour of the probability that X (possibly with
trend) enters an upper orthant over a finite-time or infinite-time interval; this problem is also
connected with the conjunction problem for Gaussian processes first studied by Worsley and
Friston [38]. Investigations of the joint tail asymptotics of multiple extrema as defined in (1.3)
are known to be more challenging. The current literature has only focused on the case with
deterministic times T1 = · · · = Tn and some additional assumptions on the correlation structure
of the Xi. In [17] and [31] large deviation type results are obtained, and more recently in [14]
and [16] exact asymptotics are obtained for correlated two-dimensional Brownian motion. It
is worth mentioning that a large deviation result for the multivariate maxima of a discrete
Gaussian model has been discussed recently in [37].

In order to avoid more technical difficulties, the coordinates of the multi-dimensional
Gaussian process X in (1.2) are assumed to be independent. The dependence among the
extrema in (1.3) is driven by the structure of the multivariate regularly varying T . Interestingly,
we observe in Theorem 3.1 that the form of the asymptotics of (1.3) is determined by the signs
of the drifts ci.

Apart from its theoretical interest, the motivation to analyse the asymptotic properties of
P(u) is related to numerous applications in modern multi-dimensional risk theory, financial
mathematics, or fluid queueing networks. For example, we consider an insurance company
that runs n lines of business. The surplus process of the ith business line can be modelled by a
time-changed Gaussian process

Ri(t)= aiu+ ciYi(t)− Xi(Yi(t)), t≥ 0,

where aiu> 0 is the initial capital (considered as a proportion of u allocated to the ith business
line, with

∑n
i=1 ai = 1), ci > 0 is the net premium rate, Xi(t), t≥ 0, is the net loss process, and

Yi(t), t≥ 0, is a positive increasing function modelling the so-called ‘operational time’ for the
ith business line. We refer to [4, 23] and [11], respectively, for detailed discussions of multi-
dimensional risk models and time-changed risk models. Of interest in risk theory is the study
of the probability of ruin of all the business lines within some finite (deterministic) time T > 0,
defined by

ϕ(u) := P

{
∩n

i=1

(
inf

t∈[0,T]
Ri(t)< 0

)}
= P

{
∩n

i=1

(
sup

t∈[0,T]
(Xi(Yi(t))+ ciYi(t))> aiu

)}
.

If additionally all the operational time processes Yi(t), t≥ 0, have a.s. continuous sample paths,
then we have ϕ(u)= P(u) with T = Y(T), and thus the derived result can be used to estimate
this ruin probability. Note that the dependence among different business lines is introduced
by the dependence among the operational time processes Yi. As a simple example we can
consider Yi(t)=�it, t≥ 0, with �= (�1, . . . , �n) being a multivariate regularly varying
random vector. Additionally, multi-dimensional time-changed (or subordinate) Gaussian
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processes have recently been proved to be good candidates for modelling the log-return
processes of multiple assets; see e.g. [6], [25], and [26]. As the joint distribution of extrema
of asset returns is important in finance problems (e.g. [20]), we expect the results obtained for
(1.3) might also be interesting in financial mathematics.

As a relevant application, we shall discuss a multi-dimensional regenerative model, which
is motivated by its relevance to risk models and fluid queueing models. Essentially, the multi-
dimensional regenerative process is a process with a random alternating environment, where
an independent multi-dimensional fractional Brownian motion (fBm) with trend is assigned
at each environment alternating time. We refer to Section 4 for more details. By analysing a
related multi-dimensional perturbed random walk, we obtain in Theorem 4.1 the ruin proba-
bility of the multi-dimensional regenerative model. This generalizes some of the results in [28]
and [40] to the multi-dimensional setting. Note in passing that some related stochastic models
with random sampling or resetting have been discussed in the recent literature; see e.g. [9],
[24], and [32].

Organization of the rest of the paper. In Section 2 we introduce some notation, recall
the definition of multivariate regular variation, and present some preliminary results on
the extremes of one-dimensional Gaussian processes. The result for (1.3) is displayed in
Section 3, and the ruin probability of the multi-dimensional regenerative model is discussed
in Section 4. The proofs are relegated to Sections 5 and 6. Some useful results on multivariate
regular variation are discussed in the Appendix.

2. Notation and preliminaries

We shall use some standard notation that is common when dealing with vectors. All the
operations on vectors are meant componentwise. For instance, for any given x= (x1, . . . , xn) ∈
R

n and y= (y1, . . . , yn) ∈Rn, we write xy= (x1y1, . . . , xnyn), and write x> y if and only
if xi > yi for all 1≤ i≤ n. Furthermore, for two positive functions f , h and some u0 ∈
[−∞,∞], write f (u) � h(u) or h(u) � f (u) if lim supu→u0

f (u)/h(u)≤ 1, write h(u)∼ f (u) if
limu→u0 f (u)/h(u)= 1, write f (u)= o(h(u)) if limu→u0 f (u)/h(u)= 0, and write f (u)
 h(u) if

f (u)/h(u) is bounded from both below and above for all sufficiently large u. Moreover, Z1
D= Z2

means that Z1 and Z2 have the same distribution.
Next, let us recall the definition and some implications of multivariate regular variation.

We refer to [21], [22], and [34] for more detailed discussions. Let R
n
0 =R

n \ {0} with R=
R∪ {−∞,∞}. An R

n-valued random vector X is said to be regularly varying if there exists a
non-null Radon measure ν on the Borel σ -field B(R

n
0) with ν(R

n \Rn)= 0 such that

P{x−1X ∈ ·}
P{|X|> x}

v→ ν( · ), x→∞.

Here |·| is any norm in R
n and

v→ refers to vague convergence on B(R
n
0). It is known that ν

necessarily satisfies the homogeneity property ν(sK)= s−αν(K), s> 0, for some α > 0 and any
Borel set K in B(R

n
0). In what follows, we say that such a defined X is regularly varying with

index α and limiting measure ν. An implication of the homogeneity property of ν is that all the
rectangle sets of the form [a, b]= {x : a≤ x≤ b} in R

n
0 are ν-continuity sets. Furthermore, we

find that |X| is regularly varying at infinity with index α, i.e. P{|X|> x} ∼ x−αL(x), x→∞,
with some slowly varying function L(x). Some useful results on multivariate regular variation
are discussed in the Appendix.
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In what follows, we review some results on the extremes of one-dimensional Gaussian pro-
cess with negative drift derived in [19]. Let X(t), t≥ 0, be an a.s. continuous centered Gaussian
process with stationary increments and X(0)= 0, and let c> 0 be some constant. We shall
present the exact asymptotics of

ψ(u) := P

{
sup
t≥0

(X(t)− ct)> u

}
, u→∞.

Below are some assumptions that the variance function σ 2(t)=Var (X(t)) might satisfy:

C1 σ is continuous on [0,∞) and ultimately strictly increasing;

C2 σ is regularly varying at infinity with index H for some H ∈ (0, 1);

C3 σ is regularly varying at 0 with index λ for some λ ∈ (0, 1);

C4 σ 2 is ultimately twice continuously differentiable and its first derivative σ̇ 2 and second
derivative σ̈ 2 are both ultimately monotone.

Note that in the above σ̇ 2 and σ̈ 2 denote the first and second derivative of σ 2, not the square
of the derivatives of σ . Henceforth, provided it exists, we let←−σ denote an asymptotic inverse
near infinity or zero of σ ; recall that it is (asymptotically uniquely) defined by ←−σ (σ (t))∼
σ (←−σ (t))∼ t. It depends on the context whether←−σ is an asymptotic inverse near zero or infinity.

One known example that satisfies the assumptions C1–C4 is the fBm {BH(t), t≥ 0}
with Hurst index H ∈ (0, 1), i.e. an H-self-similar centered Gaussian process with stationary
increments and covariance function given by

Cov (BH(t), BH(s))= 1

2
(|t|2H + |s|2H − |t− s|2H), t, s≥ 0.

We introduce the following notation:

CH,λ1,λ2 =
√

21−1/λ2πλ1

(
1

H

)1/λ2
(

H

1−H

)λ1+H−1/2+(1/λ2)(1−H)

.

For an a.s. continuous centered Gaussian process Z(t), t≥ 0, with stationary increments and
variance function σ 2

Z , we define the generalized Pickands constant

HZ = lim
T→∞

1

T
E

{
exp

(
sup

t∈[0,T]
(
√

2Z(t)− σ 2
Z (t))

)}
provided both the expectation and the limit exist. When Z = BH , the constant HBH is the well-
known Pickands constant; see [30]. For convenience, sometimes we also write Hσ 2

Z
for HZ . In

the following we let 
( · ) denote the survival function of the N(0,1) distribution. It is known
that


(u)= 1√
2π

∫ ∞
u

e−x2/2 dx ∼ 1√
2πu

e−u2/2, u→∞. (2.1)

The following result is derived in Proposition 2 of [19] (here we consider a particular trend
function φ(t)= ct, t≥ 0).

Proposition 2.1. Let X(t), t≥ 0, be an a.s. continuous centered Gaussian process with sta-
tionary increments and X(0)= 0. Suppose that C1–C4 hold. We have the following, as
u→∞.
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(i) If σ 2(u)/u→∞, then

ψ(u)∼HBH CH,1,H

(
1−H

H

)
c1−Hσ (u)
←−σ (σ 2(u)/u)




(
inf
t≥0

u(1+ t)

σ (ut/c)

)
.

(ii) If σ 2(u)/u→ G ∈ (0,∞), then

ψ(u)∼H(2c2/G2)σ 2

( √
2/π

c1+HH

)
σ (u)


(
inf
t≥0

u(1+ t)

σ (ut/c)

)
.

(iii) If σ 2(u)/u→ 0, then (here we need regularity of σ and its inverse at 0)

ψ(u)∼HBλCH,1,λ

(
1−H

H

)H/λ c−1−H+2H/λσ (u)
←−σ (σ 2(u)/u)




(
inf
t≥0

u(1+ t)

σ (ut/c)

)
.

As a special case of the Proposition 2.1 we have the following result (see [19, Corollary 1]
or [23]). This will be useful in the proofs below.

Corollary 2.1. If X(t)= BH(t), t≥ 0, the fBm with index H ∈ (0, 1), then as u→∞

P

{
sup
t≥0

(BH(t)− ct)> u

}
∼KHHBH uH+1/H−2


(
cHu1−H

HH(1−H)1−H

)
,

with constant

KH = 21/2−1/(2H)
√
π√

H(1−H)

(
cH

HH(1−H)1−H

)1/H−1

.

3. Main results

Without loss of generality, we assume that in (1.3) there are n− coordinates with negative
drift, n0 coordinates without drift, and n+ coordinates with positive drift, that is,

ci < 0, i= 1, . . . , n−,
ci = 0, i= n− + 1, . . . , n− + n0,

ci > 0, i= n− + n0 + 1, . . . , n,

where 0≤ n−, n0, n+ ≤ n such that n− + n0 + n+ = n. We impose the following assump-
tions on the standard deviation functions σi(t)=√Var(Xi(t)) of the Gaussian processes Xi(t),
i= 1, . . . , n.

Assumption I. For i= 1, . . . , n−, σi(t) satisfies the assumptions C1–C4 with the parame-
ters involved indexed by i. For i= n− + 1, . . . , n− + n0, σi(t) satisfies the assumptions C1–
C3 with the parameters involved indexed by i. For i= n− + n0 + 1, . . . , n, σi(t) satisfies the
assumptions C1– C2 with the parameters involved indexed by i.

Denote

ξi := sup
t∈[0,1]

BHi (t), t∗i =
Hi

1−Hi
. (3.1)
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Given a Radon measure ν, define

ν̃(K) =: E{ν(ξ−1/HK)}, K ∈B([0,∞]n \ {0}), (3.2)

where
ξ−1/HK = {(ξ−1/H1

1 d1, . . . , ξ
−1/Hn
n dn), (d1, . . . , dn) ∈K}.

Further, note that for i= 1, . . . , n− (where ci < 0), the asymptotic formula, as u→∞, of

ψi(u)= P

{
sup
t≥0

(Xi(t)+ cit)> u

}
(3.3)

is available from Proposition 2.1 under Assumption I.
Below is the principal result of this paper.

Theorem 3.1. Suppose that X(t), t≥ 0, satisfies Assumption I, and T is a regularly vary-
ing random vector with index α and limiting measure ν, and is independent of X. Further
assume, without loss of generality, that there are m(≤ n0) positive constants ki such that←−σi (u)∼ ki

←−σ n−+1(u) for i= n− + 1, . . . , n− +m and←−σi (u)= o(←−σ n−+1(u)) for i= n− +m+
1, . . . , n− + n0. With the convention

∏0
i=1 = 1, we have the following.

(i) If n0 > 0, then, as u→∞,

P(u)∼ ν̃((ka
1/Hn−+1

0 ,∞])
P{|T |>←−σ n−+1(u)}

n−∏
i=1

ψi(aiu),

where ν̃ and ψi are defined in (3.2) and (3.3), respectively, and

ka
1/Hn−+1

0 = (0, . . . , 0, kn−+1a
1/Hn−+1

n−+1 , . . . , kn−+ma
1/Hn−+1
n−+m , 0, . . . , 0).

(ii) If n0 = 0, then, as u→∞,

P(u)∼ ν((a1,∞]) P{|T |> u}
n−∏
i=1

ψi(aiu),

where a1 = (t∗1/|c1| . . . , t∗n−/|cn−|, an−+1/cn−+1, . . . , an/cn).

Remark 3.1. As a special case, we can obtain from Theorem 3.1 some results for the one-
dimensional model. Specifically, let c> 0 be some constant; then, as u→∞,

P

{
sup

t∈[0,T ]
X(t)> u

}
∼E

{(
sup

t∈[0,1]
BH(t)

)α/H}
P{T >←−σ (u)} (3.4)

P

{
sup

t∈[0,T ]
(X(t)− ct)> u

}
∼ (c(1−H)/H)αP{T > u}ψ(u), (3.5)

P

{
sup

t∈[0,T ]
(X(t)+ ct)> u

}
∼ cαP{T > u}. (3.6)
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Note that (3.4) is derived in Theorem 2.1 of [18], (3.5) is discussed in [11] only for the
fBm case. The result in (3.6) seems to be new.

We conclude this section with an interesting example of multi-dimensional subordinate
Brownian motion; see e.g. [26].

Example 3.1. For each i= 0, 1, . . . , n, let {Si(t), t≥ 0} be an independent αi-stable subordi-

nator with αi ∈ (0, 1), i.e. Si(t)
D= Sαi (t

1/αi , 1, 0), where Sα(σ, β, d) denotes a stable random
variable with stability index α, scale parameter σ , skewness parameter β, and drift parameter
d. It is known (e.g. [35, Property 1.2.15]) that for any fixed constant T > 0,

P{Si(T)> t} ∼ Cαi,T t−αi , t→∞,
with

Cαi,T =
T

�(1− αi) cos (παi/2)
.

Assume α0 <αi, for all i= 1, 2, . . . , n. Define an n-dimensional subordinator as

Y(t) := (S0(t)+ S1(t), . . . , S0(t)+ Sn(t)), t≥ 0.

We consider an n-dimensional subordinate Brownian motion with drift defined as

X(t)= (B1(Y1(t))+ c1Y1(t), . . . , Bn(Yn(t))+ cnYn(t)), t≥ 0,

where Bi(t), t≥ 0, i= 1, . . . , n, are independent standard Brownian motions that are indepen-
dent of Y and ci ∈R. For any ai > 0, i= 1, 2, . . . , n, T > 0 and u> 0, define

PB(u) := P

{
∩n

i=1

(
sup

t∈[0,T]
(Bi(Yi(t))+ ciYi(t))> aiu

)}
.

For illustrative purposes and to avoid further technicalities, we only consider the case where all
ci in the above have the same sign. As an application of Theorem 3.1, we obtain the asymptotic
behaviour of PB(u), u→∞, as follows.

(i) If ci > 0 for all i= 1, . . . , n, then PB(u)∼Cα0,T ( maxn
i=1 (ai/ci)u)−α0 .

(ii) If ci = 0 for all i= 1, . . . , n, then PB(u)
 u−2α0 .

(iii) If ci < 0 and the density function of Si(T) is ultimately monotone for all i= 0, 1, . . . , n,
then ln PB(u)∼ 2

∑n
i=1 (aici)u.

The proof of the above is displayed in Section 5.

4. Ruin probability of a multi-dimensional regenerative model

As it is known in the literature that the maximum of random processes over a random
interval is relevant to the regenerated models (e.g. [28], [40]), this section is focused on a
multi-dimensional regenerative model that is motivated by its applications in queueing the-
ory and ruin theory. More precisely, there are four elements in this model: two sequences
of strictly positive random variables, {Ti : i≥ 1} and {Si : i≥ 1}, and two sequences of n-
dimensional processes, {{X(i)(t), t≥ 0} : i≥ 1} and {{Y(i)(t), t≥ 0} : i≥ 1}, where X(i)(t)=
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(X(i)
1 (t), . . . , X(i)

n (t)) and Y(i)(t)= (Y (i)
1 (t), . . . , Y (i)

n (t)). We assume that the above four elements
are mutually independent. Here Ti, Si are two successive times representing the random length
of the alternating environment (called T-stage and S-stage), and we assume a T-stage starts at
time 0. The model grows according to {X(i)(t), t≥ 0} during the ith T-stage and according to
{Y(i)(t), t≥ 0} during the ith S-stage.

Based on the above, we define an alternating renewal process with renewal epochs

0= V0 < V1 < V2 < V3 < · · ·
with Vi = (T1 + S1)+ · · · + (Ti + Si), which is the ith environment cycle time. Then the
resulting n-dimensional process Z(t)= (Z1(t), . . . , Zn(t)) is defined as

Z(t) :=
{

Z(Vi)+X(i+1)(t− Vi) if Vi < t≤ Vi + Ti+1,

Z(Vi)+X(i+1)(Ti+1)+ Y(i+1)(t− Vi − Ti+1) if Vi + Ti+1 < t≤ Vi+1.

Note that this is a multi-dimensional regenerative process with regeneration epochs Vi, i≥ 1.
This is a generalization of the one-dimensional model discussed in [24].

We assume that {{X(i)(t), t≥ 0} : i≥ 1} and {{Y(i)(t), t≥ 0} : i≥ 1} are independent sam-
ples of {X(t), t≥ 0} and {Y(t), t≥ 0}, respectively, where

Xj(t)= BHj (t)+ pjt, t≥ 0, 1≤ j≤ n,

Yj(t)= B̃H̃j
(t)− qjt, t≥ 0, 1≤ j≤ n,

with all the fBms BHj , B̃H̃j
being mutually independent and pj, qj > 0, 1≤ j≤ n. Suppose that

(Ti, Si), i≥ 1 are independent samples of (T , S) and T is regularly varying with index λ> 1.
We further assume that

P{S> x} = o(P{T > x}), pjE{T}< qjE{S}<∞, 1≤ j≤ n. (4.1)

For notational simplicity we shall restrict ourselves to the two-dimensional case. The gen-
eral n-dimensional problem can be analysed similarly. Thus, for the rest of this section and
related proofs in Section 6, all vectors (or multi-dimensional processes) are considered to be
two-dimensional ones.

We are interested in the asymptotics of the following tail probability:

Q(u) := P

{
∃n≥ 1: sup

t∈[Vn−1,Vn]
Z1(t)> a1u, sup

s∈[Vn−1,Vn]
Z2(s)> a2u

}
, u→∞,

with a1, a2 > 0. In the fluid queueing context, Q(u) can be interpreted as the probability that
both buffers overflow in some environment cycle. In the insurance context, Q(u) can be inter-
preted as the probability that in some business cycle the two lines of business of the insurer
are both ruined (not necessarily at the same time). Similar one-dimensional models have been
discussed in the literature; see e.g. [4], [28], and [40].

We introduce the following notation:

U(n) = (U(n)
1 ,U(n)

2 ) := Z(Vn)− Z(Vn−1), n≥ 1, U(0) = 0, (4.2)

M(n) = (M(n)
1 ,M(n)

2 ) :=
(

sup
t∈[Vn−1,Vn)

Z1(t)− Z1(Vn−1), sup
s∈[Vn−1,Vn)

Z2(s)− Z2(Vn−1)

)
, n≥ 1.

(4.3)
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Then we have

Q(u)= P

{
∃n≥ 1:

n∑
i=1

U(i−1)
1 +M(n)

1 > a1u,
n∑

i=1

U(i−1)
2 +M(n)

2 > a2u

}
.

Note that U(n), n≥ 1 and M(n), n≥ 1 are both (independent and identically distributed)
sequences. By the second assumption in (4.1) we have

E{U(1)} = (p1E{T} − q1E{S}, p2E{T} − q2E{S}) =: − c< 0, (4.4)

which ensures that the event in the above probability is a rare event for large u, i.e. Q(u)→ 0,
as u→∞.

It is noted that our question now becomes an exit problem of a two-dimensional perturbed
random walk. The exit problems of a multi-dimensional random walk have been discussed in
many papers, e.g. [21]. However, as far as we know, the multi-dimensional perturbed random
walk has not been discussed in the existing literature.

Since T is regularly varying with index λ> 1, we have that

T̃ := (p1T, p2T) (4.5)

is regularly varying with index λ and some limiting measure μ (whose form depends on the
norm | · | that is chosen). We now present the main result of this section, leaving its proof to
Section 6.

Theorem 4.1. Under the above assumptions on regenerative model Z(t), t≥ 0, we have that,
as u→∞,

Q(u)∼ uP{|̃T|> u}
∫ ∞

0
μ((vc+ a,∞]) dv,

where c and T̃ are given by (4.4) and (4.5), respectively.

Remark 4.1. Consider |·| to be the L1-norm in Theorem 4.1. We have

μ([a,∞])= ((p1 + p2) max (a1/p1, a2/p2))−λ,

and thus, as u→∞,

Q(u)∼ uP{T > u}
∫ ∞

0
max ((a1 + c1v)/p1, (a2 + c2v)/p2)−λ dv.

5. Proof of main results

This section is devoted to the proof of Theorem 3.1, followed by a proof of Example 3.1.
First we give a result in line with Proposition 2.1. Note that in the proof of the main results

in [19], the minimum point t∗u of the function

fu(t) := u(1+ t)

σ (ut/c)
, t≥ 0,

plays an important role. It has been discussed therein that t∗u converges, as u→∞, to t∗ :=
H/(1−H), which is the unique minimum point of limu→∞ fu(t)σ (u)/u= (1+ t)/(t/c)H , t≥ 0.
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In this sense, t∗u is asymptotically unique. We have the following corollary of [19], which is
useful for the proofs below.

Lemma 5.1. Let X(t), t≥ 0, be an a.s. continuous centered Gaussian process with stationary
increments and X(0)= 0. Suppose that C1–C4 hold. For any fixed 0< ε < t∗/c, we have, as
u→∞,

P

{
sup

t∈[0,(t∗/c+ε)u]
(X(t)− ct)> u

}
∼ψ(u),

with ψ(u) the same as in Proposition 2.1. Furthermore, for any γ > 0 we have

lim
u→∞

P{supt∈[0,(t∗/c−ε)u] (X(t)− ct)> u}
ψ(u)u−γ

= 0.

Proof. Note that

P

{
sup

t∈[0,(t∗/c+ε)u]
(X(t)− ct)> u

}
= P

{
sup

t∈[0,(t∗+cε)]

X(ut/c)

1+ t
> u

}
.

The first claim follows from [19], as the main interval that determines the asymptotics is
in[0, (t∗ + cε)] (see Lemma 7 and the comments in Section 2.1 therein). Similarly, we have

P

{
sup

t∈[0,(t∗/c−ε)u]
(X(t)− ct)> u

}
= P

{
sup

t∈[0,(t∗−cε)]

X(ut/c)

1+ t
> u

}
.

Since t∗u is asymptotically unique and limu→∞ t∗u = t∗, we can show that, for all u large,

inf
t∈[0,(t∗−cε)]

fu(t)≥ ρfu(t∗u)= ρ inf
t≥0

fu(t)

for some ρ > 1. Thus, by arguments similar to those in the proof of Lemma 7 of [19] using the
Borel inequality, we conclude the second claim. �

The following lemma is crucial for the proof of Theorem 3.1.

Lemma 5.2. Let Xi(t), t≥ 0, i= 1, 2, . . . , n0(< n) be independent centered Gaussian pro-
cesses with stationary increments, and let T be an independent regularly varying random
vector with index α and limiting measure ν. Suppose that all of σi(t), i= 1, 2, . . . , n0 satisfy
the assumptions C1–C3 with the parameters involved indexed by i, which further satisfy that←−σi (u)∼ ki

←−σ1 (u) for some positive constants ki, i= 1, 2, . . . ,m≤ n0 and←−σj (u)= o(←−σ1 (u)) for
all j=m+ 1, . . . , n0. Then, for any increasing to infinity functions hi(u), n0 + 1≤ i≤ n such
that hi(u)= o(←−σ1 (u)), n0 + 1≤ i≤ n, and any ai > 0,

P

{
∩n0

i=1

(
sup

t∈[0,Ti]
Xi(t)> aiu

)
,∩n

i=n0+1(Ti > hi(u))

}
∼ ν̃((ka1/H

m,0 ,∞
])
P{|T |>←−σ1 (u)},

where ν̃ is defined in (3.2) and ka1/H
m,0 = (k1a1/H1

1 , . . . , kma1/Hm
m , 0 . . . , 0) with H1 =H2 =

· · · =Hm.

Proof. We use an argument similar to that in the proof of Theorem 2.1 of [18] to verify our
conclusion. For notational convenience, denote

H(u) =: P

{
∩n0

i=1

(
sup

t∈[0,Ti]
Xi(t)> aiu

)
,∩n

i=n0+1(Ti > hi(u))

}
.
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We first give an asymptotically lower bound for H(u). Let G(x)= P{T ≤ x} be the distribution
function of T . Note that, for any constants r and R such that 0< r< R,

H(u)≥ P

{
∩n0

i=1

(
sup

t∈[0,Ti]
Xi(t)> aiu

)
,∩m

i=1(r←−σ1 (u)≤ Ti ≤ R←−σ1 (u)),∩n
i=m+1(Ti > r←−σ1 (u))

}
=

∮
[r,R]m×(r,∞)n−m

P

{
∩n0

i=1

(
sup

t∈[0,←−σ1 (u)ti]
Xi(t)> aiu

)}
dG(←−σ1 (u)t1, . . . ,

←−σ1 (u)tn)

=
∮

[r,R]m×(r,∞)n−m

n0∏
i=1

P

{
sup

s∈[0,1]
Xu,ti

i (s)> aiui(ti)

}
dG(←−σ1 (u)t1, . . . ,

←−σ1 (u)tn)

holds for sufficiently large u, where

Xu,ti
i (s) =:

Xi(
←−σ1 (u)tis)

σi(
←−σ1 (u)ti)

, ui(ti) =:
u

σi(
←−σ1 (u)ti)

,

s ∈ [0, 1], (t1, t2, . . . , tn0 ) ∈ [r, R]m × (r,∞)n0−m.

By Lemma 5.2 of [18], we know that, as u→∞, the processes Xu,ti
i (s) converge weakly

in C([0,1]) to BHi (s), uniformly in ti ∈ (r,∞), for i= 1, 2, . . . , n0. Further, according to the
assumptions on σi(t), Theorems 1.5.2 and 1.5.6 of [8], we find that as u→∞, ui(ti) converges
to kHi

i t−Hi
i uniformly in ti ∈ [r, R], for i= 1, 2, . . . ,m, and ui(ti) converges to 0 uniformly in

ti ∈ [r,∞), for i=m+ 1, . . . , n0. Then, by the continuous mapping theorem and recalling that
ξi defined in (3.1) is a continuous random variable (e.g. [39]), we get

H(u) �
∮

[r,R]m×(r,∞)n−m

m∏
i=1

P

{
sup

s∈[0,1]
BHi (s)> aik

Hi
i t−Hi

i

}
dG(←−σ1 (u)t1, . . . ,

←−σ1 (u)tn) (5.1)

= P
{∩m

i=1

(
ξ

1/Hi
i Ti > kia

1/Hi
i
←−σ1 (u)

)
,∩m

i=1(r←−σ1 (u)≤ Ti ≤ R←−σ1 (u)),∩n
i=m+1(Ti > r←−σ1 (u))

}
= J1(u)− J2(u),

where

J1(u) =: P
{∩m

i=1

(
ξ

1/Hi
i Ti > kia

1/Hi
i
←−σ1 (u)

)
,∩n

i=m+1(Ti > r←−σ1 (u))
}
,

J2(u) =: P
{∩m

i=1

(
ξ

1/Hi
i Ti > kia

1/Hi
i
←−σ1 (u)

)
,

∩n
i=m+1 (Ti > r←−σ1 (u)),∪m

i=1((Ti < r←−σ1 (u))∪ (Ti > R←−σ1 (u)))
}
.

Putting η= (ξ1/H1
1 , . . . , ξ

1/Hm
m , 1, . . . , 1), then by Lemma A.2 and the continuity of the

limiting measure ν̂ defined therein, we have

lim
r→0

lim
u→∞

J1(u)

P{|T |>←−σ1 (u)} = ν̃
((

ka1/H
m,0 ,∞

])
. (5.2)

Furthermore,

J2(u)≤
m∑

i=1

(
P
{
ξ

1/Hi
i Ti > kia

1/Hi
i
←−σ1 (u), Ti < r←−σ1 (u)

}+ P{Ti > R←−σ1 (u)}).
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Then, by the fact that |T | is regularly varying with index α, and using the same arguments as
in the proof of Theorem 2.1 of [18] (see the asymptotic for integral I4 and (5.14) therein), we
conclude that

lim
r→0,R→∞ lim sup

u→∞
J2(u)

P{|T |>←−σ1 (u)} = 0,

which combined with (5.1) and (5.2) yields

lim
r→0,R→∞ lim inf

u→∞
H(u)

P{|T |>←−σ1 (u)} ≥ ν̃
((

ka1/H
m,0 ,∞

])
. (5.3)

Next we give an asymptotic upper bound for H(u). Note that

H(u)≤ P

{
∩m

i=1

(
sup

t∈[0,Ti]
Xi(t)> aiu

)}
= P

{
∩m

i=1

(
sup

t∈[0,Ti]
Xi(t)> aiu

)
,∩m

i=1(r←−σ1 (u)≤ Ti ≤ R←−σ1 (u))

}
+ P

{
∩m

i=1

(
sup

t∈[0,Ti]
Xi(t)> aiu

)
,∪m

i=1((Ti < r←−σ1 (u))∪ (Ti > R←−σ1 (u)))

}
=: J3(u)+ J4(u).

By the same reasoning as that used in the deduction for (5.2), we can show that

lim
r→0,R→∞ lim sup

u→∞
J3(u)

P{|T |>←−σ1 (u)} ≤ ν̃
((

ka1/H
m,0 ,∞

])
. (5.4)

Moreover,

J4(u)≤
m∑

i=1

(
P

{
sup

t∈[0,Ti]
Xi(t)> aiu, Ti < r←−σ1 (u)

}
+ P{Ti > R←−σ1 (u)}

)
.

Thus, by the same arguments as in the proof of Theorem 2.1 of [18] (see the asymptotics for
integrals I1, I2, I4 therein), we conclude that

lim
r→0,R→∞ lim sup

u→∞
J4(u)

P{|T |>←−σ1 (u)} = 0,

which together with (5.4) implies that

lim
r→0,R→∞ lim sup

u→∞
H(u)

P{|T |>←−σ1 (u)} ≤ ν̃
((

ka1/H
m,0 ,∞

])
. (5.5)

Notice that by the assumptions on {←−σi (u)}mi=1, we in fact have H1 =H2 = · · · =Hm.
Consequently, combining (5.3) and (5.5) we complete the proof. �
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Proof of Theorem 3.1. In the following we use the convention that ∩0
i=1 =�, the sample

space. We first verify the claim for case (i), n0 > 0. For arbitrarily small ε > 0, we have

P(u)≥ P

{
∩n−

i=1

(
sup

t∈[0,Ti]
(Xi(t)+ cit)> aiu, Ti > (t∗i /|ci| + ε)u

)
,∩n−+n0

i=n−+1

(
sup

t∈[0,Ti]
Xi(t)> aiu

)
,

∩n
i=n−+n0+1

(
sup

t∈[0,Ti]
(Xi(t)+ cit)> aiu, Ti >

ai + ε
ci

u

)}
≥ P

{
∩n−

i=1

(
sup

t∈[0,(t∗i /|ci|+ε)u]
(Xi(t)+ cit)> aiu, Ti > (t∗i /|ci| + ε)u

)
,

∩n−+n0
i=n−+1

(
sup

t∈[0,Ti]
Xi(t)> aiu

)
,∩n

i=n−+n0+1

(
Xi

(
ai + ε

ci
u

)
>−εu, Ti >

ai + ε
ci

u

)}
=Q1(u)×Q2(u)×Q3(u),

where

Q1(u) := P

{
∩n−

i=1

(
sup

t∈[0,(t∗i /|ci|+ε)u]
Xi(t)+ cit> aiu

)}
Q2(u) := P

{
∩n−

i=1(Ti > (t∗i /|ci| + ε)u),

∩n−+n0
i=n−+1

(
sup

t∈[0,Ti]
Xi(t)> aiu

)
,∩n

i=n−+n0+1

(
Ti >

ai + ε
ci

u

)}
,

Q3(u) :=
n∏

i=n−+n0+1

P

{
Ni >

−εu
σi(

ai+ε
ci

u)

}
→ 1, u→∞,

with Ni, i= n− + n0 + 1, . . . , n being standard normally distributed random variables. By
Lemma 5.1, we know, as u→∞, that

Q1(u)∼
n−∏
i=1

ψi(aiu).

Further, according to the assumptions on σi and Lemma 5.2, we get

lim
ε→0

lim
u→∞

Q2(u)

P{|T |>←−σ n−+1(u)} = ν̃
((

ka
1/Hn−+1

0 ,∞])
,

and thus

P(u) � ν̃
((

ka
1/Hn−+1

0 ,∞])
P{|T |>←−σ n−+1(u)}

n−∏
i=1

ψi(aiu), u→∞.

Similarly, we can show that

P(u)≤ P

{
∩n−

i=1

(
sup

t∈[0,∞)
Xi(t)+ cit> aiu

)
,∩n−+n0

i=n−+1

(
sup

t∈[0,Ti]
Xi(t)> aiu

)}

∼ ν̃
((

ka
1/Hn−+1

0 ,∞])
P{|T |>←−σ n−+1(u)}

n−∏
i=1

ψi(aiu), u→∞.

This completes the proof of case (i).
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Next we consider case (ii), n0 = 0. Similarly to case (i) we have, for any small ε > 0,

P(u)≥ P

{
∩n−

i=1

(
sup

t∈[0,(t∗i /|ci|+ε)u]
(Xi(t)+ cit)> aiu, Ti > (t∗i /|ci| + ε)u

)
,

∩n
i=n−+1

(
Xi

(
ai + ε

ci
u

)
>−εu, Ti >

ai + ε
ci

u

)}
=Q1(u)×Q3(u)×Q4(u),

where

Q4(u) := P

{
∩n−

i=1(Ti > (t∗i /|ci| + ε)u),∩n
i=n−+1

(
Ti >

ai + ε
ci

u

)}
.

By Lemma A.1, we know that

lim
ε→0

lim
u→∞

Q4(u)

P{|T |> u} = ν(a1,∞],

and thus

P(u) � ν(a1,∞] P{|T |> u}
n−∏
i=1

ψi(aiu), u→∞.

For the upper bound, we have for any small ε > 0

P(u)≤ I1(u)+ I2(u),

with

I1(u) := P

{
∩n−

i=1

(
sup

t∈[0,Ti]
Xi(t)+ cit> aiu

)
,

∩n−
i=1 (Ti > (t∗i /|ci| − ε)u),∩n

i=n−+1

(
sup

t∈[0,Ti]
Xi(t)+ ciTi > aiu

)}
,

I2(u) := P

{
∩n−

i=1

(
sup

t∈[0,Ti]
Xi(t)+ cit> aiu

)
,

∪n−
i=1 (Ti ≤ (t∗i /|ci| − ε)u),∩n

i=n−+1

(
sup

t∈[0,Ti]
Xi(t)+ ciTi > aiu

)}
.

It follows that

I1(u)≤ P

{
∩n−

i=1

(
sup

t∈[0,∞)
Xi(t)+ cit> aiu

)
,

∩n−
i=1 (Ti > (t∗i /|ci| − ε)u),∩n

i=n−+1

(
sup

t∈[0,Ti]
Xi(t)+ ciTi > aiu

)}

=
n−∏
i=1

ψi(aiu) P

{
∩n−

i=1(Ti > (t∗i /|ci| − ε)u),∩n
i=n−+1

(
sup

t∈[0,Ti]
Xi(t)+ ciTi > aiu

)}
.
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Next, for the small chosen ε > 0 we have

P

{
∩n−

i=1(Ti > (t∗i /|ci| − ε)u),∩n
i=n−+1

(
sup

t∈[0,Ti]
Xi(t)+ ciTi > aiu

)}
= P

{
∩n−

i=1(Ti > (t∗i /|ci| − ε)u),∩n
i=n−+1

(
sup

t∈[0,Ti]
Xi(t)+ ciTi > aiu, sup

t∈[0,Ti]
Xi(t)≤ εu

)}
+ P

{
∩n−

i=1(Ti > (t∗i /|ci| − ε)u),

∩n
i=n−+1

(
sup

t∈[0,Ti]
Xi(t)+ ciTi > aiu

)
,∪n

i=n−+1

(
sup

t∈[0,Ti]
Xi(t)> εu

)}

≤ P{∩n−
i=1(Ti > (t∗i /|ci| − ε)u),∩n

i=n−+1(ciTi > (ai − ε)u)} +
n∑

i=n−+1

P

{
sup

t∈[0,Ti]
Xi(t)> εu

}
.

Furthermore, it follows from Theorem 2.1 of [18] that, for any i= n− + 1, . . . , n,

P

{
sup

t∈[0,Ti]
Xi(t)> εu

}
∼Ci(ε) P{Ti >

←−σi (u)}, u→∞,

with some constant Ci(ε)> 0. This implies that

n∑
i=n−+1

P

{
sup

t∈[0,Ti]
Xi(t)> εu

}
= o(P{|T |> u}), u→∞.

Consequently, applying Lemma A.1 and letting ε→ 0, we can obtain the required asymptotic
upper bound if we can further show that

lim
u→∞

I2(u)∏n−
i=1 ψi(aiu) P{|T |> u} = 0. (5.6)

Indeed, we have

I2(u)≤
n−∑
i=1

P

{
∩n−

j=1

(
sup

t∈[0,Tj]
Xj(t)+ cjt> aju

)
, Ti ≤ (t∗i /|ci| − ε)u

}

≤
n−∑
i=1

n−∏
j=1
j �=i

ψj(aju) P

{
sup

t∈[0,(t∗i /|ci|−ε)u]
Xi(t)+ cit> aiu

}
. (5.7)

Furthermore, by Lemma 5.1 we have that for any γ > 0

lim
u→∞

P{supt∈[0,(t∗i /|ci|−ε)u] Xi(t)+ cit> aiu}
ψi(aiu)u−γ

= 0, i= 1, 2, . . . , n−,

which together with (5.7) implies (5.6). This completes the proof. �
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Proof of Example 3.1. The proof is based on the following obvious bounds:

PL(u) := P{∩n
i=1((Bi(Yi(T))+ ciYi(T))> aiu)}

≤ PB(u)

≤ P

{
∩n

i=1

(
sup

t∈[0,Yi(T)]
(Bi(t)+ cit)> aiu

)}
=: PU(u).

Since α0 <minn
i=1 αi, by Lemma A.3 we have that Y(T) is a multivariate regularly vary-

ing random vector with index α0 and the same limiting measure ν as that of S0(T) :=
(S0(T), . . . , S0(T)) ∈Rn, and further

P{|Y(T)|> x} ∼ P{|S0(T)|> x}, x→∞.

The asymptotics of PU(u) can be obtained by applying Theorem 3.1. Below we focus on PL(u).
First, consider case (i), where ci > 0 for all i= 1, . . . , n. We have

PL(u)= P{∩n
i=1((Bi(1)

√
Yi(T)+ ciYi(T))> aiu)}.

Thus, by Lemma A.3 we obtain

PL(u)∼ P{∩n
i=1(ciS0(T)> aiu)} ∼Cα0,T

(
n

max
i=1

(ai/ci)u
)−α0

, u→∞,

which is the same as the asymptotic upper bound obtained by using Theorem 3.1(ii).
Next, consider case (ii), where ci = 0 for all i= 1, . . . , n. We have

PL(u)= P{∩n
i=1(Bi(1)

√
Yi(T)> aiu)} = 1

2n
P{∩n

i=1(Bi(1)2Yi(T)> (aiu)2)}.

Thus, by Lemma A.2, we obtain

PL(u)
 u−2α0 , u→∞,
which is the same as the asymptotic upper bound obtained by using Theorem 3.1(i).

Finally, consider case (iii), where ci < 0 for all i= 1, . . . , n. We have

PL(u)≥ P{∩n
i=1(Bi(Yi(T))+ ciYi(T)> aiu, Yi(T) ∈ [aiu/|ci| −√u, aiu/|ci| +√u])}

≥
n∏

i=1

(
min

t∈[aiu/|ci|−√u,aiu/|ci|+√u]
P{B1(t)+ cit> aiu}

)
× P{∩n

i=1(Yi(T) ∈ [aiu/|ci| −√u, aiu/|ci| +√u])}.
Recalling (2.1), we derive that

min
t∈[aiu/|ci|−√u,aiu/|ci|+√u]

P{B1(t)+ cit> aiu}

= min
t∈[ai/|ci|−1/

√
u,ai/|ci|+1/

√
u]

P{B1(1)> (ai − cit)
√

u/
√

t}

� Constant · 1√
u

e2aiciu+o(u), u→∞.
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Furthermore,

P{∩n
i=1

(
Yi(T) ∈ [aiu/|ci| −√u, aiu/|ci| +√u]

)}
≥

n∏
i=0

P{Si(T) ∈ [aiu/|2ci| −√u/2, aiu/|2ci| +√u/2]}. (5.8)

Due to the assumptions on the density functions of Si(T), i= 0, 1, . . . , n, by the Monotone
Density Theorem (see e.g. [27]), we know that (5.8) is asymptotically larger than Cu−β for
some constants C, β > 0. Therefore

ln PL(u) � 2
n∑

i=1

(aici)u, u→∞.

The same asymptotic upper bound can be obtained by the fact that

P

{
sup
t>0

(Bi(t)+ cit)> aiu

}
= e2aiciu for ci < 0.

This completes the proof. �

6. Proof of Theorem 4.1

We first show one lemma that is crucial for the proof of Theorem 4.1.

Lemma 6.1. Let U(1), M(1), and T̃ be given by (4.2), (4.3), and (4.5) respectively. Then U(1)

and M(1) are both regularly varying with the same index λ and limiting measure μ as that of
T̃. Moreover,

P{|U(1)|> x} ∼ P{|M(1)|> x} ∼ P{|̃T|> x}, x→∞.

Proof. First note that, by self-similarity of fBms,

U(1) = (X(1)
1 (T1)+ Y (1)

1 (S1), X(1)
2 (T1)+ Y (1)

2 (S1))
D= (˜T+ Z1 + Z2 + Z3),

where

Z1 = (BH1 (1)TH1 , BH2 (1)TH2 ), Z2 = (̃BH̃1
(1)SH̃1 , B̃H̃2

(1)SH̃2 ), Z3 = (− q1S,−q2S).

Since every two norms on Rd are equivalent, then by the fact that Hi, H̃i < 1 for i= 1, 2 and
(4.1), we have

max (P{|(TH1, TH2 )|> x}, P{|(SH̃1 , SH̃2 )|> x}, P{|Z3|> x})= o(P{|̃T|> x}), x→∞.

Thus the claim for U(1) follows directly by Lemma A.3.
Next, note that

M(1) D=
(

sup
0≤t≤T+S

(X1(t)I(0≤t<T) + (X1(T)+ Y1(t− T))I(T≤t<T+S)),

sup
0≤t≤T+S

(X2(t)I(0≤t<T) + (X2(T)+ Y2(t− T))I(T≤t<T+S))

)
=: M,
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then
M≥ (X1(T), X2(T))

D= T̃+ Z1

and

M≤
(

sup
0≤t≤T

BH1 (t)+ p1T + sup
t≥0

Y1(t), sup
0≤t≤T

BH2 (t)+ p2T + sup
t≥0

Y2(t)

)
D=

(
ξ1TH1 + sup

t≥0
Y1(t), ξ2TH2 + sup

t≥0
Y2(t)

)
+ T̃,

with ξi defined in (3.1). By Corollary 2.1 we know that P{supt≥0 Yi(t)> x} = o(P{T > x}) as
x→∞. Therefore the claim for M(1) is a direct consequence of Lemmas A.3 and A.4. This
completes the proof. �

Proof of Theorem 4.1. First, note that, for any a, c> 0, by the homogeneity property of μ,∫ ∞
0

μ((vc+ a,∞]) dv≤μ((a,∞])

+
∫ ∞

1
v−λμ((c+ a/v,∞]) dv≤μ((a,∞])+ 1

λ− 1
μ((c,∞]). (6.1)

For simplicity we denote W(n) := ∑n
i=1 U(i). We consider the lower bound, for which we adopt

a standard technique of ‘one big jump’ (see [28]). Informally speaking, we choose an event on
which W(n−1) +M(n), n≥ 1, behaves in a typical way up to some time k for which M(k+1) is
large. Let δ, ε be small positive numbers. By the Weak Law of Large Numbers, we can choose
large K =Kε,δ so that

P{W(n) >−n(1+ ε)c−K1}> 1− δ, n= 1, 2, . . . .

For any u> 0, we have

Q(u)= P{∃n≥ 1: W(n−1) +M(n) > au}
= P{M(1) > au} +

∑
k≥1

P{∩k
n=1(W(n−1) +M(n) �> au),W(k) +M(k+1) > au}

≥ P{M(1) > au} +
∑
k≥1

P

{
∩k

n=1(W(n−1) +M(n) �> au),W(k) >−k(1+ ε)c−K1,

M(k+1) > au+ k(1+ ε)c+K1
}

≥ P{M(1) > a u}
+

∑
k≥1

(1− δ− P{∪k
n=1(W(n−1) +M(n) > au)}) P{M(k+1) > au+ k(1+ ε)c+K1}

≥ (1− δ −Q(u))
∑
k≥0

P{M(1) > au+ k(1+ ε)c+K1}

≥ (1− δ−Q(u))

1+ ε
∫ ∞

0
P{M(1) > au+ vc+K1} dv.

For u sufficiently large that εu>K, we have

Q(u)≥ (1− δ−Q(u))

1+ ε
∫ ∞

0
P{M(1) > (a+ ε1)u+ vc} dv.
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Rearranging the above inequality and using a change of variable, we obtain

Q(u)≥ (1− δ)u ∫∞
0 P{M(1) > u(a+ ε1+ vc)} dv

1+ ε+ ∫∞
0 P{M(1) > (a+ ε1)u+ vc} dv

,

and thus by Lemma 6.1 and Fatou’s lemma,

lim inf
u→∞

Q(u)

uP{|̃T|> u} ≥
1− δ
1+ ε

∫ ∞
0

μ((a+ ε1+ vc,∞]) dv.

Since ε and δ are arbitrary, and by (6.1) the integration on the right-hand side is finite, taking
ε→ 0, δ→ 0 and applying the dominated convergence theorem yields

lim inf
u→∞

Q(u)

uP{|̃T|> u} ≥
∫ ∞

0
μ((a+ vc,∞]) dv.

Next we consider the asymptotic upper bound. Let y1, y2 > 0 be given. We shall construct an

auxiliary random walk W̃
(n)

, n≥ 0, with W̃
(0) = 0 and W̃

(n) =∑n
i=1 Ũ

(i)
, n≥ 1, where Ũ

(n) =
(Ũ(n)

1 , Ũ(n)
2 ) is given by

Ũ(n)
i =

⎧⎪⎨⎪⎩
M(n)

i if M(n)
i > y1,

U(n)
i if −y2 <U(n)

i ≤M(n)
i ≤ y1,

−y2 if M(n)
i ≤ y1,U(n)

i ≤−y2,

i= 1, 2.

Obviously, W(n) ≤ W̃
(n)

for any n≥ 1. Furthermore, one can show that

M(n)
i ≤ Ũ(n)

i + (y1 + y2).

Then
W(n−1) +M(n) ≤ W̃

(n) + (y1 + y2)1, n≥ 1.

Thus, for any ε > 0 and sufficiently large u,

Q(u)≤ P{∃n≥ 1: W̃
(n)
> au− (y1 + y2)1}

≤ P{∃n≥ 1: W̃
(n)
> (a− ε1)u}.

Define cy1,y2 =−E{Ũ(1)}. Since limy1,y2→∞ cy1,y2 = c, we have that for any y1, y2 large enough

cy1,y2 > 0. It follows from Lemmas 6.1 and A.4 that for any y1, y2 > 0, Ũ
(1)

is regularly vary-

ing with index λ and limiting measure μ, and P{|Ũ(1)|> u} ∼ P{|̃T|> u} as u→∞. Then,
applying Theorem 3.1 and Remark 3.2 of [21], we obtain that

P{∃n≥ 1: W̃
(n)
> (a− ε1)u} ∼ uP{|Ũ(1)|> u}

∫ ∞
0

μ((cy1,y2v+ a− ε1,∞]) dv

∼ uP{|̃T|> u}
∫ ∞

0
μ((cy1,y2 v+ a− ε1,∞]) dv.

Consequently, the claimed asymptotic upper bound is obtained by letting ε→ 0, y1, y2→∞.
The proof is complete. �
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Appendix A. Auxiliary results

This section includes some results on the regularly varying random vectors.

Lemma A.1. Let T > 0 be a regularly varying random vector with index α and limiting mea-
sure ν, and let xi(u), 1≤ i≤ n be increasing (to infinity) functions such that for some 1≤m≤ n,
x1(u)∼ · · · ∼ xm(u), and xj(u)= o(x1(u)) for all j=m+ 1, . . . , n. Then, for any a> 0,

P{∩n
i=1(Ti > aixi(u))} ∼ P{∩m

i=1(Ti > aix1(u))} ∼ ν([am,0,∞]) P{|T |> x1(u)}
holds as u→∞, with am,0 = (a1, . . . , am, 0, . . . , 0).

Proof. Obviously, for any small enough ε > 0 we find that when u is sufficiently large

P{∩n
i=1(Ti > aixi(u))} ≤ P{∩m

i=1(Ti > (ai − ε)x1(u)),∩n
i=m+1(Ti > 0)}

∼ ν([a−ε,∞]) P{|T |> x1(u)},
where a−ε = (a1 − ε, . . . , am − ε, 0, . . . , 0), and

P{∩n
i=1(Ti > aixi(u))} ≥ P{∩m

i=1(Ti > (ai + ε)x1(u)),∩n
i=m+1(Ti > ai(εx1(u)))}

∼ ν([aε+,∞]) P{|T |> x1(u)}
with aε+ = (a1 + ε, . . . , am + ε, am+1ε, . . . , anε). Letting ε→ 0, the claim follows by the
continuity of ν([aε±,∞]) in ε. The proof is complete. �
Lemma A.2. Let T , ai, xi(u), and am,0 be the same as in Lemma A.1. Further, con-
sider η= (η1, . . . , ηn) to be a non-negative random vector independent of T such that
max1≤i≤n E{ηα+δi }<∞ for some δ > 0. Then

P{∩n
i=1(Tiηi > aixi(u))} ∼ P{∩m

i=1(Tiηi > aix1(u))} ∼ ν̂([am,0,∞]) P{|T |> x1(u)}

holds as u→∞, where ν̂(K)=E{ν(η−1K)}, with η−1K = {(η−1
1 b1, . . . , η

−1
n bn),

(b1, . . . , bn) ∈K} for any K ∈B([0,∞]n \ {0}).
Proof. It follows directly from Lemma 4.6 of [22] (see also Proposition A.1 of [7]) that the

second asymptotic equivalence holds. The first claim follows from the same arguments as in
Lemma A.1.

Lemma A.3. Assume X ∈Rn is regularly varying with index α and limiting measure μ, and
A is a random n× d matrix independent of random vector Y ∈Rd. If 0<E{‖A‖α+δ}<∞ for
some δ > 0, with ‖·‖ some matrix norm and

P{|Y|> x} = o(P{|X|> x}), x→∞, (A.1)

then X+AY is regularly varying with index α and limiting measure μ, and

P{|X+AY|> x} ∼ P{|X|> x}, x→∞.

Proof. By Lemma 3.12 of [22], it suffices to show that

P{|AY|> x} = o(P{|X|> x}), x→∞. (A.2)
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Defining g(x)= x(α+δ/2)/(α+δ), x≥ 0, we have

P{|AY|> x} ≤ P{‖A‖|Y|> x} ≤
∫ g(x)

0
P{|Y|> x/t} P{‖A‖ ∈ dt} + P{‖A‖> g(x)}. (A.3)

Due to (A.1), for arbitrary ε > 0,∫ g(x)

0
P{|Y|> x/t} P{‖A‖ ∈ dt} ≤ ε

∫ g(x)

0
P{|X|> x/t} P{‖A‖ ∈ dt}

holds for large enough x. Furthermore, by Potter’s theorem (see e.g. Theorem 1.5.6 of [8]), we
have

P{|X|> x/t}
P{|X|> x} ≤ I(t≤1) + 2tα+δI(1<t≤g(x)), t ∈ (0, g(x))

for sufficiently large x, and thus, by the dominated convergence theorem,

lim
x→∞

∫ g(x)

0

P{|Y|> x/t}
P{|X|> x} P{‖A‖ ∈ dt}

≤ lim
x→∞

∫ g(x)

0

εP{|X|> x/t}
P{|X|> x} P{‖A‖ ∈ dt} = εE{‖A‖α}. (A.4)

Moreover, Markov’s inequality implies that

lim
x→∞

P{‖A‖> g(x)}
P{|X|> x} ≤ lim

x→∞
E{‖A‖α+δ}

g(x)α+δ P{|X|> x} = 0. (A.5)

Therefore claim (A.2) follows from (A.3)–(A.5) and the arbitrariness of ε. This completes the
proof. �
Lemma A.4. Assume X, Y ∈Rn are regularly varying with the same index α and the same
limiting measure μ. Moreover, if X≥ Y and P{|X|> x} ∼ P{|Y|> x} as x→∞, then for
any random vector Z satisfying X≥ Z≥ Y, Z is regularly varying with index α and limiting
measure μ, and P{|Z|> x} ∼ P{|X|> x} as x→∞.

Proof. We only prove the claim for n= 2; a similar argument can be used to verify the claim
for n≥ 3. For any x> 0, define a measure μx as

μx(A) =:
P{x−1Z ∈ A}
P{|X|> x} , A ∈B(R

2
0).

We shall show that

μx
v−→μ, x→∞. (A.6)

Given that the above is established, by letting A= {x : |x|> 1} (which is relatively compact and
satisfies μ(∂A)= 0), we have μx(A)→μ(A)= 1 as x→∞ and thus P{|Z|> x} ∼ P{|X|> x}.
Furthermore, by replacing the denominator in the definition ofμx with P{|Z|> x}, we conclude
that

P{x−1Z ∈ ·}
P{|Z|> x}

v−→μ( · ), x→∞,
showing that Z is regularly varying with index α and limiting measure μ.
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Now it remains to prove (A.6). To this end, we define a set D consisting of all sets in R
2
0

that are of the following form:

(a) (a1,∞]× [a2,∞], a1 > 0, a2 ∈R,
(b) [−∞, a1]× (a2,∞], a1 ∈R, a2 > 0,

(c) [−∞, a1)× [−∞, a2], a1 < 0, a2 ∈R,
(d) [a1,∞]× [−∞, a2), a1 ∈R, a2 < 0.

Note that every A ∈D is relatively compact and satisfies μ(∂A)= 0. We first show that

lim
x→∞μx(A)=μ(A) for all A ∈D. (A.7)

If A= (a1,∞]× (a2,∞] or A= (a1,∞]× [a2,∞] with ai ∈R and at least one ai > 0, i=
1, 2, or A=R× (a2,∞] with some a2 > 0, by the order relations of X, Y, Z, we have, for any
x> 0,

P{x−1Y ∈ A}
P{|X|> x} ≤μx(A)≤ P{x−1X ∈ A}

P{|X|> x} . (A.8)

Letting x→∞, using the regularity properties as supposed for X and Y, and then appealing
to Proposition 3.12(ii) of [33], we verify (A.7) for case (a). If A= [−∞, a1]× (a2,∞] with
some a1 ∈R, a2 > 0, then we have

μx(A)=μx(R× (a2,∞])−μx((a1,∞]× (a2,∞]),

and thus, by the convergence in case (a),

lim
x→∞μx(A)=μ(R× (a2,∞])−μ((a1,∞]× (a2,∞])=μ(A),

this validates (A.7) for case (b). If A= [−∞, a1)× [−∞, a2] or A= [−∞, a1)× [−∞, a2)
with ai ∈R and at least one ai < 0, i= 1, 2, or A=R× [−∞, a2) with some a2 < 0, then we
get a similar formula to (A.8) with the reverse inequalities. If A= [a1,∞]× [−∞, a2) with
some a1 ∈R, a2 < 0, then

μx(A)=μx(R× [−∞, a2))−μx([−∞, a1)× [−∞, a2)).

Therefore, similarly to the proof for cases (a) and (b), one can establish (A.7) for cases (c)
and (d).

Next, let f defined on R
2
0 be any positive, continuous function with compact support. We

see that the support of f is contained in [a, b]c for some a< 0< b. Note that

[a, b]c = (b1,∞]× [a2,∞]∪ [−∞, b1]× (b2,∞]∪ [−∞, a1)× [−∞, b2]∪ [a1,∞]

× [−∞, a2)

=:
4⋃

i=1

Ai,

where the Ai are sets of the form (a)–(d) respectively, and thus (A.7) holds for these Ai.
Therefore

sup
x>0

μx(f )≤ sup
z∈R2

0

f (z) · sup
x>0

μx([a, b]c)≤ sup
z∈R2

0

f (z) ·
4∑

i=1

sup
x>0

μx(Ai)<∞,
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which by Proposition 3.16 of [33] implies that {μx}x>0 is a vaguely relatively compact subset of

the metric space consisting of all the non-negative Radon measures on (R
2
0,B(R

2
0)). If μ0 and

μ0
′ are two subsequential vague limits of {μx}x>0 as x→∞, then by (A.7) we have μ0(A)=

μ0
′(A) for any A ∈D. Since any rectangle in R

2
0 can be obtained from a finite number of

sets in D by operating union, intersection, difference, or complementary, and these rectangles

constitute a π -system and generate the σ -field B(R
2
0), we getμ0 =μ0

′ on B(R
2
0). Consequently

(A.6) is valid and thus the proof is complete. �
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[17] DȨBICKI, K., KOSIŃSKI, K., MANDJES, M. AND ROLSKI, T. (2010). Extremes of multi-dimensional Gaussian
processes. Stoch. Process. Appl. 120, 2289–2301.
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