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Abstract

Four bar mechanisms are basic components of many important mechanical devices. The kinematic synthesis of four bar
mechanisms is a difficult design problem. A novel method that combines the genetic programming and decision tree
learning methods is presented. We give a structural description for the class of mechanisms that produce desired
coupler curves. Constructive induction is used to find and characterize feasible regions of the design space. Decision
trees constitute the learning engine, and the new features are created by genetic programming.
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1. INTRODUCTION (Fig. 1) associated with each point as well. Because the
path generation problem with more than five points is over-
A mechanism is defined as an arrangement of machine eleonstrained Sandor & Erdman, 1994the acceptable tol-
ments that produce a specified moti@andor & Erdman, erance between the input path fragments and the coupler
1984). The synthesis of a mechanism is the process of comeurve is also specified.
bining parametric elements into a mechanism that shows For path generation with prescribed timing, the classical
complex behavior. We investigate here a simple, but pracanalytical approactSandor & Erdman, 1994s limited to
tically important, class of mechanisms: four bar mechathe case of five specified points. Otherwise, there is no
nisms. The utilization of four bar mechanisms ranges fromgeneral recipe for choosing the structural parameters for the
asimple device, such as a windshield-wiping mechanism omechanism that approximates a given path. Recent work
a door-closing mechanism to complicated devices, such asas been done for finding numerical methods for the gen-
arock crusher, sewing machine, round baler, or automobileral case: for example, mechanism synthesis is considered
suspension systefiorton, 1992; Waldron & Kinzel, 1999  as a nonlinear programming problem and an exact gradient
Figure 1 shows the structure of the four bar mechanism. method is used for the dimensional synthesis of mecha-
From the kinematic point of view, four bar mechanismsnisms(Mariappan & Krishnamurty, 1996
can be designed for path generation, rigid body guidance, For the situation when more than five points are speci-
and function generation. The current application is relatedied some variant-based methods have been developed, such
to the path generation problergiven certain path frag- as case-based reasoni@pse, Gini, & Riley, 1997: after a
ments, find the mechanism (i.e., its structural parametersjnultilevel case retrieval process, adaptation is accom-
whose coupler curve contains these fragmefsath frag-  plished by simple transformation rulémcreasing or de-
ment is given as an ordered set of points. In the case of pattreasing the length of one link by a small pergeHbwever,
generation with prescribed timing, there is an input anglehe method is applicable only in cases where the coupler
curve contains no crossings or there is a curve in the case
) R ) basethatis close enough. In another widtkeltzel & Chieng,
Reprint requests to: Aniké Ekart, Computer and Automation Researc

Institute, Hungarian Academy of Sciences, PO Box 63, 1518 Budapeslglggq neura_l networks are used for I_ea_m'ng and synthesiz-
Hungary. E-mail: ekart@sztaki.hu ing mechanisms for coupler curves similar to the ones stored
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Coupler curve The method consists of the following stefghere steps

T 2—4 represent the definition of the actual design probiem

creation of a catalogue of four bar mechanisms;
specification of input requirements;
classification of the elements of the catalogue;

PR

generation of the structural description.

The main result is that the design space can be described by
constraints on the structural parametéasb,c,d, e, #) of
the mechanisms. For any desired path fragment, we give
the structural description of the mechanisms that produce
Fig. 1. The four bar mechanism layout. a, the fixed link; b, the input coupler curves similar to it. The class of mechanisms that
link; c, the coupler link; d, the follower link; P, the tracer point; input produce similar coupler curves is given by this structural
angle. description. Hoeltzel and Chieri@990 make a classifica-
tion of four bar mechanisms based on the form of coupler
curve, but they provide no structural description for the
inthe knowledge base. Because the coupler curves are storgtbmbers of a class.
as bitmaps, pattern matching is used for finding similar - Our catalogue of four bar mechanisms contains 7276 ele-
curves. Vancsay2000 uses genetic algorithms for synthe- ments, and we created it as a computer version of the clas-
sizing a mechanism that generates a given coupler curve igcal catalogue of Hrones and Nels@d®51). Each element
a constrained environment: the fixed link must be within Aconsists of the structural and functional description of a
given area, and the link lengths are also limited. mechanism. The structural description contains the param-
Unlike the previous approaches, we do not generate @ters of the mechanism, as shown in Figure 1. The func-
Single mechanism but give structural constraints for meChtiona| description is the Coup|er curve generated by the
anisms whose coupler curves contain the desired path fragnechanism, and it is recorded as an ordered list of points.
ments. The mechanisms SatiSfying these constraints W|We call mechanism space the universe of four bar mecha-
meet the input requirements. If there are further restrictiongisms. The dimensions of this space are the structural pa-
for the acceptance of a mechanig¢such as dimensional rameters of mechanisms. The elements of the catalogue are
limits of the linkg, the structural description should be re- points of the mechanism space, with the structural param-
fined accordingly. In the present paper we explain our ideagtersa € {1.5,2,2.5...,6.3,b=1,c €{1.5,2,2.5,3,3.54
in more detail and extend our previous resulgart, 2001; e {1.5,2,2.5,3,3.5 ¥ e, ands taken for 50 sampled points

Input angle

Ekart & Markus, 1999 on a rectangle attached to the coupler link of the mecha-
nism(see Fig. 2 This rectangle extends the coupler liok
> THE DESIGN METHOD in directions parallel and perpendicular to it with a distance

equal to the length of the input lintk
The goal of this work is to provide a description of the |n the second step the desired curve fragments are spec-
feasible mechanisms that can be exploited by the designefsed as a list of points and corresponding input angies,
of mechanisms. In particular, we create the structural deour problem is path generation with prescribed timjrand
scription of the four bar mechanisms that satisfy the inputhe tolerance is also given.
requirements. That is, given some curve fragments and a In the classification step the mechanisms are grouped

corresponding tolerance, the coupler curve generated biyito two classes: thpositiveclass and theegativeclass. A
any acceptable mechanism must be within the given toler-

ance limit from these curve fragments. The admissible mech-
anisms are given by constraints on their structural parameters,

such as D P S VS S
e [ ]
—Cc0osH +cosh > 6 or
b [ ]
c d sing
-——-+—=-0.3. 4 3
b b 1.4

A mechanism satisfying these constraints can be designated \
as a solution for the given family of path generation

problems. Fig. 2. The sampled points on the coupler link.
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Fig. 3. Computing the similarity of the coupler cur¢i®r the mechanism wita =1.5,b =

to the desired path fragments. For better intelligibility, timing is not indicated. This
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mechanism is positive if its coupler curve fulfills the input needed a method allowing other partitions that could create
requirements. The mechanism is negative in the oppositdescriptions corresponding to as many elements of the pos-
case.A coupler curve corresponds to the input require- itive class as possible, regardless of whether they were sit-
ments when it can be moved (translated and rotated) so thatated in a convex region of the space. Genetic programming
its similarity to the desired curve is within the tolerance was our next choice. Unfortunately, in most of the cases the
limit. Classical methods only compare the coupler curve talescriptions produced by genetic programming were not
the desired curve without translation and rotation, meanin@ccurate enough. Two types of errors were encountered: too
that the position of the mechanism in the plane is pre-many members of the negative class were classified as pos-
defined. We remove this restriction and compute the simiitive and some members of the positive class were classi-
larity of two curves after bringing them as close as possibldied as negative. In this way the frontiers of the feasible
by translating and rotating one of the curves. We computeegions of the mechanism space were misrepresented. Be-
the similarity value of a coupler curve to the desired curvecause decision tree induction is very fast and accurate when
(fragments in the following way(as shown in Fig. B presented with the appropriate attributes and genetic pro-
gramming is a plausible tool for creating new attributes, we
1. To each point of the desired curve we associate a poirdecided to apply constructive inductiéWnek & Michal-

of the coupler curve according to the inputan@ie-  ski, 1994. This step is discussed in detail in the next section.
ing) corresponding to that point of the desired curve,

thatis, we associate a point list from the coupler curve
to the given point list of the desired curve. Generally,3. CREATING THE STRUCTURAL
there are several possible matchings. Fig. 3 we DESCRIPTION

show only the best matching for the given example. _ o
2. We calculate the similarity value for each such possi-(_3_E"ne_"ra"Ing the des_crlptlon of one class can be seen as par-
ble matching: titioning the space into two regions: positive and negative.

o ) . The generated description corresponds to the positive re-
a. We translate and rotate the point list obtained in

) . ~'''gion, and no element situated in the negative region satis-
step 1 so that the associated points of the desweaes this description.
curve and the coupler curve get as close as possi-
ble (this is equivalent to translating and rotating
the entire coupler curve, but we consider only thez 1. pecision tree learning
point list because these points are needed for the

comparison Decision tree induction is a commonly used method for
b. We compute the distances of the associated poirfoncept learningQuinlan, 1993. The input data are a set
pairs. of examples of the concept to be learned. An example con-

ists of a set of attributes and belongs to a class. When
uilding up the tree and selecting the next attribute to be
} ) ~ tested at a certain node, the information dasmcomputed
3. We select the matching with the smallest similarity fo; each candidate attribute. Then, the attribute with the
value and designate this value as the similarity of the,ggt gain is selected.
coupler curve and the desired curve. If this similarity o studying the power of decision trees in our problem,
value is within the tolerance limit, then all the points \ye ysed the C4.5 systef@uinlan, 1993. Each example is
of the coupler curve selected in step 1 are close enoug§ mechanism, having its structural parameters as attributes
to the desired curve, and thus, the mechanism belongsgng the classification computed in the previous giem,
to the positive class. Otherwise, the mechanism is clasyositive or negative Because the attributes have continu-
sified as negative, like the example shown in Figure 3.5ys numeric values, at each decision node the cases are
. . . . separated into two groups according to whether the value of
The key issue is the generation of the structural descrlpt-he tested attribute is less or greater than a threshold alue.

tion of the positive class. The structural description consists, simple decision tree is shown in Figure 4. Case studies
of a set of constraints for the structural parameters. Th%re presented in Section 4 '

description can be written as a disjunctive normal form
formula. Two machine learning methods have been ap
plied: decision tree inductiotby the C4.5 program; Quin-
lan, 1993 and genetic programming.

Decision tree induction was effective in the cases where
the elements of the positive class were situated in a convex The information gain is defined as the increase in information content

region of the mechanism space and the mechanism spa«‘é’ée” the set of examples is partitioned in subsets according to some
criterion, such as a value of an attribute.

could be partitioned by planes parallel to the axes. HOW-""2|, s case the information gain is computed for several candidate
ever, it produced too many errors in the other cases. Wenreshold values.

c. We assign the maximum of these distances as %
similarity value for the given matching.

A typical example of where C4.5 produced many errors
is shown in Figure 5. The attributés=1,d = 3,e=1.41,
andé = 2.36 and the distribution of positive and negative
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Genetic algorithmgGoldberg, 1989 transpose the no-
tions of natural evolution to the world of computers and
imitate natural evolution. In Nature new organisms adapted
to their environment develop through evolution. Genetic
algorithmsevolvesolutions to the given problem in a sim-
ilar way. They maintain a collection of solutions, which is
a population of individuals. The individuals are repre-
sented by chromosomes composedeies Genetic algo-
rithms operate on the chromosomes, which represent the
inheritable properties of the individuals. By analogy with
Nature, through selection the fit individualpotential so-

lutions to the problemlive to reproduce, but the weak

Fig. 4. Example decision tree.

less-fit individuals die off. New individuals are created

from one or two parents by mutation and crossover, respec-
tively. They replace old individuals in the population, and

examples in the mechanism space over coordiratesic
are indicated. For this cross section, the decision tree pr
duced by C4.5 misclassifies 3 of the 30 examples. The ex-
planation is that this plane could not be partitioned by straigh
lines parallel to the axes of the coordinate system. Thus
using the original attributes C4.5 could not produce an ex-
act classification. If the attributes were transformed, a bet-
ter partition of the plane could be found. An exact description
(as drawn in Fig. b of the positive region of the plane
found by our program is

(a—1.55(2.31/c +1.56—a) > 0. 1.

Overcoming this difficulty by creating new attributes is

the subject of Section 3.3. >

3.2. Genetic programming

As an alternative, we also generated structural descrip- 3.
tions of mechanism classes by using genetic programming
(Cramer, 1985; Koza, 1992

¢ X positive
® negative

4 + e o o o 4
35 1 e o o

3+ ¢ o o
25 + ®

2 4
LS 7 was

1 f t t t t t t } }

1 15 2 25 3 35 4 45 5 55 a

Fig. 5. The cross section of the mechanism space.
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they are usually similar to their parents. In other words, in
a new generation individuals will appear who resemble the
C}it individuals from the previous generation. The individ-
yals survive if they are fitted to the given environment.
Genetic programming is an extension to genetic algo-
fithms in which the structures undergoing adaptation are
not strings but are hierarchical computer programs of dy-
namically varying size and shape.

Genetic programming systems generally use the follow-
ing algorithm:

Generate an initial population of individual programs
consisting of random compositions of functions and
terminals from a given function and terminal set.

. Execute each program of the population on the so-

called fitness cases and assign it a fitness value based
on the fithess measure.

Create a new population of individuals by selection,
transmission, and variation from the current popula-
tion. Selection is based on fitness; the better perform-
ing individuals are more likely to be selected than the
others. Individuals and parts of selected individuals
are transmitted to the new population via reproduc-
tion and crossover, respectively. Variation is achieved
through mutation.

. Iterate through steps 2—3 until the termination crite-

rion is satisfied. The fittest individual that appeared in
any generation is designated as the result of genetic
programming.

We used the genetic programming paradigm with the set-
ting shown in Table 1. We mostly employed parameter val-
ues considered typical for function regression problems.
Because the number of fitness cases to be evaly@&th

more than two orders of magnitude larger than the

usual number of fitness cas€&s0), we restricted the num-

ber of individuals producetbopulation size and maximum
number of generationsn order to obtain results in reason-
able time.
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Table 1. Genetic programming parameter setting

Objective Evolve the structural description of the four bar mechanisms
contained in the positive class

Terminal set a,c,d, e sin(f),coq0),? real numberss [—10,10

Function set +, =, %,/

Fitness cases The mechanisms of the catalogue

Population size 50

Crossover probability 90%

Mutation probability 10%

Selection method Tournament selection, size 10

Termination criterion None

Maximum number of generations 50

Maximum depth of tree after crossover 20

Initialization method Ramped half and half

“Becauseb = 1 for all the examples, here we uaefor the ratio of the fixed link to the input link, and
similarly, for any other link we use the ratio of that link to the input link. In this way, the genetic programs are
valid dimensionless expressions.

The search space is a 6-dimensional cube corresponding We represented a genetic program as a tree with a fixed
to the parameters of the four bar mechanisms. Here, theumber of branches where each branch represented an in-
goal of genetic programming is to find descriptions for theequality on the structural parameters of the mechanisms.
positive region of the space. Usually the positive example§he genetic program was then evaluated as the union of the
are not situated in a convex region of the search space anidequalities contained in its branches. An example tree with
often no linear delimiters exist between positive and negathree branches is shown in Figure 6, where a branch
tive regions, as shown in the 2-dimensional cross section df(a, c,d, e, 6) represents the inequalifya, c,d, e 6) > 0.

Figure 5. As we wanted to obtain comprehensible descriptions, we

Initially we defined a genetic program as an inequality limited the number of inequalities so that the complexity of
on the structural parameters to be satisfied by some feasihe results would be comparable to the complexity of deci-
ble mechanisms and possibly no infeasible mechanisnsion trees. The fixed number of inequalities might seem
For instance, a possible inequalityagb sin(#) —1.2> 0.  restrictive, but in reality it allows for both larger and smaller
This condition is satisfied by all the mechanisms with numbers of inequalities. A larger number of inequalities
a=2,b=1,and 0.79= 6 = 2.35; but only some of these occurs when some of the inequalities correspond to sets of
mechanisms are feasible. In order to be feasible, a meclinequalities, for examplg,a + ¢ — 3)(c — d) > 0 is the
anism must satisfy a set of such inequalities. sameasi+c—3>0andc—d>0ora+c—3<0and

Fig. 6. Example genetic program with three branches.
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Parent 1 Parent 2.

Fig. 7. Crossover of two genetic programs.

¢ — d < 0. A smaller number of inequalities occurs when the fitness cases, and its fitness value was computed as
some of the branches of the genetic program represent irfiellows:
equalities that are always trjsuch asa +1 — a > 0).

We used both crossover and mutation as genetic opera-
tors. The offspring of the crossover were obtained from the
two parents by selecting one subtree of each parent and
exchanging these subtrees, as shown in Figdrevé.used
point mutation, that is one node of the tree was randomly fitness=
selected and mutated. In the case of internal nodes, muta-
tion consisted of randomly changing the function repre- o ] )
sented by the nodesee Fig. 8z In the case of leaf nodes, where erfi) is the error of the genetic program for fitness

mutation was different for terminals representing the struc@Sei, classi) is the class rating of the mechanism con-

tural parameters of mechanisms and real constants. A struf@inedin _thg fitness casd fo_r neg_ative and 1 for posi_ti\)e
tural parameter was mutated to another structural paramet&tP_classi) is the class rating given by the genetic pro-

and a constant was mutated by changing its vakee 9ram, and\is the number of fitness cases.
Fig. 8. Thus, a 100% fit individual is an expression correspond-

The fitness cases were the mechanisms of the catd?d {0 SOme positive examples and no negative example. An
logue given by their structural parameters and class ratin§xPression satisfied by some positive and some negative
(positive or negative The genetic program was run on examples pannot make the dlgtmctlon between thg positive

and negative examples, and it is therefore penalized by a
worse fitness value.

SWe illustrate the genetic operators on individuals corresponding to 1 N€ descriptions found by genetic pro_gr_amming were
one inequality each:(a,c,d, e, #) > 0 for expressiori(a,c,d,e,6). less accurate than the decision trees. This is partly due to

1 ifclasqi)=0andgp_clags) = 1,
0 otherwise;

err(i) = {

0 if Vigp_classi) =0,

1 N
1- =D err(i) otherwise,
[\
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(a) function (b) terminal

Fig. 8. Mutation of a genetic program.

the limitations of the resourcegs.e., population size and In other words, decision tredsr any learning algorithm
generation numbegrand partly due to the difficulty of the can perform better if presented with more useful attributes.
problem. Recent results on problem difficulty for genetic New attributes could be generated lagical expressions
programming suggest that the real numbers that are enover the original attribute§Matheus & Rendell, 1989;
ployed could also influence performari@aida etal., 2001  Pagallo, 1989 Because the original attributéthe struc-
Careful fine-tuning of the real numbers might lead to moretural parameters of mechanisjrere numerical values, a
accurate results. straightforward method is the generationasithmetic ex-
pressionover the original attribute@Bloedorn & Michal-

ski, 1998.

Having in mind the definition for usefulness, we used
When both previous methods are applied alone, they ha@4.5 as the learning engine for the constructive induction
some shortcomings, hence the idea to apply them togethe?nd applied genetic programming for attrib(feature gen-
Genetic programming can take a |0ng time to converge t@ration. The new scheme for generating the description is
acceptable solutions and also needs parameter fine-tuninghown in Figure 9.

Decision tree learning is fast and more accurate but not Thus, genetic programming proposes new attributes, and
always able to separate the two classes because the strife4.5 uses them in addition to the original ones. The genetic
tural attributes presented to it are not the most relevanprograms are arithmetic expressions of the original attributes.
ones. There are several notions of relevance, but let us cod-he fithess measure is modified in order to include both
siderincremental usefulnesgm Blum and Langley1997): kinds of errors: misclassification of positive cases and mis-

classification of negative cases. The error of the genetic

Given a sample of dat§ a learning algorithni., and a  Program was computed as:

feature seh, featurey; is incrementally useful to L with

respect taA if the accuracy of the hypothesis that L pro- { n ifclasgi) =0 and gp_clags) = 1,

err(i) =

3.3. Constructive induction

duces using the feature st} U A is better than the p ifclasgi) =1 and gp_clags) =0,
accuracy achieved using just the feature/fset 0 otherwise.
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Decision tree
learning

New
features

needed?

Decision tree
transformation
into rules

yes Feature

generation

Fig. 9. Constructive induction.

We experimented with different values foandp (p>>n
orn>> p), because we wanted to find good descriptions forFigure 10.
both the positive and the negative examples. By obtaining a By creating the new features at the construction of nodes
good description of the negative examples and presentingn the decision tree, we obtained more accurate descriptions.

Decision tree generation

Create a node

Call GP for attribute generation

Append the new attribute to
the list of existing attributes

Select attribute/threshold value

with greatest information gain

Splitting
acceptable?

yes

Create the decision trees

corresponding to subtrees
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the attribute to C4.5, we expected C4.5 to eliminate many
negative examples at the beginning. The rest of parameter
settings for genetic programming are the same as described
in Section 3.2.

Initially, we generated the new features separately from
decision tree construction, as shown in Figure 9. The new
features created by genetic programming tended to cover
as many positive examples as possible. However, when
constructing the decision tree, at each node it is sufficient
that the chosen feature describe the examples to be classi-
fied at that nodeThere is no need for a general feature.

If we had found such a general feature, we would not
have needed to use decision tree induction at all. Thus,
in order to get new features corresponding to each node
of the decision tree, we introduced the attribute generator
at the level of node creation in the decision tree builder.
We modified the fithess measure for the genetic programs
to make it the information gaiftas defined by Quinlan,
1993 of the feature represented by a genetic program. The
decision tree induction step is modified as shown in

The node is a leaf

Fig. 10. Decision tree construction.
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3.4. Training data preselection based on the preselected examples are significantly smaller

The generation of the structural description based on al"flnd therefore more comprehensible for humans.

available mechanisms can be very slow. The process can be

made considerably faster if only a small number of exam-y4 ExpPERIMENTS

ples are used instead of the whole catalogue of mecha-

nisms. The obtained descriptions can then be tested on the this section two design cases are discussed in detail. We

whole catalogue. chose circular and linear path fragments, because these are
In order to obtain sufficiently accurate descriptions, thevery important fragments of the paths needed in practical

relevantexamples have to be selected for generating thenechanism design. Thus far, approximate circle tracing

description(i.e., fortraining). Because only a few mecha- mechanisms have been synthesized through laborious com-

nisms belong to the positive class and the majority belongutation algorithms. Only the recent results of Ceccarelli

to the negative class, we included all the positive exampleand Vinciguerrg 2000 allow their efficient synthesis. Ap-

in the training set. We wanted to differentiate between theproximate straight lines are required in the case of level

two classes, so we selected the negative examples that wdrdfing cranes used on many docks to load and unload cargo

in the neighborhood of the positive examplésd similar  (Waldron & Kinzel, 1999. Another application of straight

values of attributes In Figure 11 we show two possible line generating mechanisms is in strip chart recorders. In

training sets of different sizes for the example presented imddition, a linear path fragment followed by a circular one

Section 3.1. is required in the film-advance mechanism of any movie
The algorithm for selecting the training data is the cameraChironis, 1991; Norton, 1992; Sandor & Erdman,
following: 1984, as shown in Figure 12.
For the circular path fragmefiig. 13 we found a 100%
for all positive exampleg correct description by using just decision trees, so that no
includee in the training set other method could perform better. In the second case the
leta,,...,a, be the attribute values for exampe description given by decision trees had errors; thus, con-
for all attributesi € {1,2,...n} structive induction was needed.
for all negative exampleg’ The desired curve fragments for the two case studies are
letal,...,a, be the attribute values for exampmé  given in Figures 13 and 14. The path fragment is given as
includee’ in the training set if it has an ordered list of pointgthe ordering is reflected in the
the same attribute valueg = a numbering of points
forallj={1,...,n}, j#Ii In the first case(see Fig. 13 the mechanism space
and a value for attribute/ was divided into positive and negative classes and then
in the neighborhood dd;: |a/ — a;| < ¢ C4.5 was applied. The produced decision tree is shown in

Figure 15a. At each leaf node the predicted class of the
The size of the training set can be controlled throughcorresponding cases is given as negative or positive class.
parametek. In our experience, a reduction of the training The tree classifies all the cases correctly, so that for ev-
set to 15% of the catalogue is possible and the results are efry example presented to it the real class is the same as the
acceptable accuracy. In addition, the descriptions generatgatedicted class. The production rules can be derived from it

Film
O O O O
O O O
o O
O

| | ) !
T T T T

1 15 2 253 35 4 45 5 55

Fig. 11. The preselection of training data. Fig. 12. The film-advance mechanism of a movie camera.
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Fig. 13. The first desired path fragment.

by reading the paths from the root to the leaves. In Fig
ure 15b we show only the rules for the positive class, be
cause any example that satisfies neither of these rules

negative.

For the same problem, the best descriptiohthe posi-
tive examplegproduced by genetic programming is shown

in Figure 16.
y
T1
e 104
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o119
e 126
1 0133 1 x
e 137
e 141
e 144
e 148
ﬂlSl
e 158
1.1 @166
e 169
e 180

Fig. 14. The second desired path fragment.
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Table 2. The new attributes proposed by GP
Attribute Expression Type Fitness G
1 sind — 0.7 p 87.2 6
2 e—a+1 p 61.3 1
3 d/cosh n 76.4 2
4 c—-a—e— p 89.0 5

(1+ e)cosh

5 a/2.3—5.2/sinf n 97.0 2
6 8.7sind — 4.48 n 84.7 1
7 cosd n 76.4 9
8 e—a n 80.5 3

We tried out different numbers of branches for the ge-
netic trees. According to our observations, with fewer
branches more accurate descriptions were found in fewer
generations, hence the idea of applying genetic program-
ming for attribute generation in constructive induction.

The second desired path is a straight line approximated
by the ordered point list of Figure 14. In this case, C4.5
produced a decision tree of size 47 containing 11 errors
(i.e., misclassified casgsOur next step was the separate
generation of new attributes by genetic programming, as
shown in Figure 9.

'S Some of the attributes proposed by genetic programming
are presented in Table 2. The third colufiype) specifies
whether the attribute corresponds to the positive or the neg-
ative class. The last colum(®) represents the generation
when the attribute emerged. The best decision tree had 41
nodes and misclassified six cases.

The next step was the introduction of the attribute gen-
erator at the level of node creation in the decision {sa®
Fig. 10. Table 3 summarizes the results of 10 runs. The
size of a decision tree is given as the number of nodes, and
the errors are the misclassified cases. The number of new

Table 3. The results of 10 runs of the program

Decision Tree New Features

Ave. Usage
No. Size Errors No. Compl. (%)
1 37 4 10 28 66.7
2 39 4 9 58 78.9
3 41 5 9 37 45
4 41 5 10 39 55
5 45 6 6 86 34.8
6 33 5 8 45 68.75
7 41 6 10 33 50
8 31 6 4 11 33.3
9 33 5 11 36 75
10 45 7 9 21 50
Ave. 39 5 9 37 55.7
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e > 0.33 : -

e <= 0.33

| theta <= 1.46 : -

| theta > 1.46 :

| | c <= 1.5 -

| | c > 1.5

| | | a> 2.5 +

| | | a <= 2.5 :

| | | | c <= 3 +

| | I | c > 3 -
(a) The output of C4.5.

1: e<0.33andf > 1.46andc > 1.5anda > 2.5
2: e<0.33and® > 1.46andc > 1.5anda < 2.5andc < 3

(b) The rules for the feasible mechanisms.

Fig. 15. (a) The decision tree produced by C4.5 fer) negative or+) positive classes arth) the rules corresponding to the positive
class.

features actually used and their average complexity ar&his structural description can be seen in Figure 17. Amech-
shown. The complexity of a feature is the number of nodesnism that satisfies one of the three constraint sets in Fig-
in its tree representatidie.g., the complexity of the second ure 17b is a feasible straight line generating mechanism.
attribute from Table 2 is 6 By new feature usage, we mean Table 4 summarizes the best results for this mechanism.
the percentage of decision nodes in the tree where a new

feature was selected.

Up to this point, learning has been performed on thes' DISCUSSION
whole catalogue. In order to reduce CPU time require-Let us revisit the example problem presented in Figure 14.
ments, we introduce an additional training data selectiorThe coupler curves of the corresponding mechani@hret
step in our algorithm presented in Sectiofb2tween steps belong to the catalogli@re presented in Figure 18. There
3 and 4. are several different types of curves that all contain the

Because the number of positive examples is much lesstraight line within the given tolerance. As a matter of fact,
than the number of negative examples and omitting some dhe mechanisms that generate these curves differ from each
them could result in losing important data that are not samether in many ways: the length of links, the position and
pled elsewhere, we include all the positive examples in th@rientation of the fixed link, and the input angle correspond-
training set. We select the relevant negative examples as thieg to any selected point of the straight line. For example,
neighbors of positive examples in the mechanism sfase let us consider two distinct curves and the corresponding
described in Section 3)4The rest of the negative examples mechanisms that generate these curves, as shown in Fig-
are put in the test data set. By this preselection we reducere 19. The graphics are drawn to the same scale. We rep-
the size of the training set to 983 elements and reduce theesented the mechanisittsgether with their coupler curye
CPU time requirements by 85% at the cost of worse soluin two positions: the start and the terminal position of the
tion accuracy. The best tree has 21 nodes, misclassifies eighenerated straight line. The input link is the emphasized
training examples, but correctly classifies all the test datalink, and it is rotated in the direction indicated by the arrow.

( AND
(> (- (/ sin(theta) 6.4 )
( * ( * e sin(theta) ) sin(theta) ) ) 0 )
( > ( - sin(theta) cos(theta) ) 0 )
(> (/ (/ ¢ sin(theta) ) ( -—ac) ) 0)
(> (- (/0.3 sin(theta) ) (+ae) ) 0))

Fig. 16. The best description created by GP.
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(a) The decision tree.

gm =ecosf+cosf — 5.1

_ 1.54a
9P2 = 38sin01053

gps =ecos —a+2.9
1: #<2ande > 4.5anda < 1.5andgp; > 0.9

_ c
aps = ala+sinf—ce)

2

# > 2andgp, < 1.4andgp; < 0.3andgpy < 0.7

— sinf - _ g — sinfitc
gps = = + sinf —a — 25

3: 0> 2andgps > 1.4and gp; > —0.05and

e>13andgps < —0.3 gpe = —d+ 5{1.149
(b) The structural description. (c) The GP attributes.

Fig. 17. The description of the straight line generating mechanisms.

For better distinction, instead of drawing the fixed link, we In many cases the mechanism is a part of a complex
show just its joints, using the black disks. system and must fit in a predefined area. That is, the mech-
This depiction is clear evidence of the fact that the com-anism must remain within the predefined area during path
mon features of such different mechanistbelonging to  generation. In addition, the position and orientation of the
the same clagsare not obvious, and therefore discoveringfixed link might also be constrained. The mechanism of
these common features is not an easy task. Then again, tiségure 19a could be preferred to the mechanism of Fig-
knowledge of such featurgshe structural description in ure 19b from the point of view of fitting in a predefined
our terminology could be very helpful for the engineer area.
involved in mechanism design. The choice of one or another mechanism from a class is
left to the designer. The class is defined by the structural
description and not the enumeration of the acceptable ele-
ments of the catalogue. The catalogue consists of points of

Table 4. The best decision trees for the different methods the mechanism space and therefore the found structural de-
scription applies not only to its elements but also to the

New Features Decision Tree mechanism space.

Method No. Usagé%) Size Errors

C4.5 0 0 47 11 6. CONCLUSIONS

Separate GP 8 60 41 6

GP at node level 10 66.7 37 4 We combined decision tree learning with genetic program-

Train data presel. 6 60 21 8

ming to solve a difficult mechanism design problem. In-
stead of finding a single four bar mechanism that generates
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Class Test Quit ' I

Fig. 18. The coupler curves of the straight line generating mechanisms.

a given path, we developed the structural description of theeduce CPU time we introduced a training data preselection
feasible regions of the design space. In simpler tasks decstep, which also resulted in more comprehensible descrip-
sion trees performed well, but in most cases constructivéions being generated.

induction was needed. First, the new attributes were gener-
ated by genetic programming and then presented to the de-
cision tree learner C4.5. Second, we introduced the attribu eCK'\IOWLEDGMENTS

generator at the level of decision nodes in the tree, so thatart of this work was completed while the first autiarE.) was

for each node the attribute with the highest informationa lecturer at the School of Computer Science, University of Bir-
gain could be created and selected properly. In order teingham, Birmingham, UK.
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@) a=3b=1c=25d=4,e=224,0 = 0.46. M) a=15b=1,c=4,d=4,e=5026=0.1.

Fig. 19. Straight line generating mechanisms in two positions-) start and—) terminal.
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