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Abstract

Four bar mechanisms are basic components of many important mechanical devices. The kinematic synthesis of four bar
mechanisms is a difficult design problem. A novel method that combines the genetic programming and decision tree
learning methods is presented. We give a structural description for the class of mechanisms that produce desired
coupler curves. Constructive induction is used to find and characterize feasible regions of the design space. Decision
trees constitute the learning engine, and the new features are created by genetic programming.

Keywords: Decision Trees; Four Bar Mechanism Synthesis; Genetic Programming; Machine Learning

1. INTRODUCTION

A mechanism is defined as an arrangement of machine ele-
ments that produce a specified motion~Sandor & Erdman,
1984!. The synthesis of a mechanism is the process of com-
bining parametric elements into a mechanism that shows
complex behavior. We investigate here a simple, but prac-
tically important, class of mechanisms: four bar mecha-
nisms. The utilization of four bar mechanisms ranges from
a simple device, such as a windshield-wiping mechanism or
a door-closing mechanism to complicated devices, such as
a rock crusher, sewing machine, round baler, or automobile
suspension system~Norton, 1992; Waldron & Kinzel, 1999!.
Figure 1 shows the structure of the four bar mechanism.

From the kinematic point of view, four bar mechanisms
can be designed for path generation, rigid body guidance,
and function generation. The current application is related
to the path generation problem:given certain path frag-
ments, find the mechanism (i.e., its structural parameters)
whose coupler curve contains these fragments. A path frag-
ment is given as an ordered set of points. In the case of path
generation with prescribed timing, there is an input angle

~Fig. 1! associated with each point as well. Because the
path generation problem with more than five points is over-
constrained~Sandor & Erdman, 1984!, the acceptable tol-
erance between the input path fragments and the coupler
curve is also specified.

For path generation with prescribed timing, the classical
analytical approach~Sandor & Erdman, 1984! is limited to
the case of five specified points. Otherwise, there is no
general recipe for choosing the structural parameters for the
mechanism that approximates a given path. Recent work
has been done for finding numerical methods for the gen-
eral case: for example, mechanism synthesis is considered
as a nonlinear programming problem and an exact gradient
method is used for the dimensional synthesis of mecha-
nisms~Mariappan & Krishnamurty, 1996!.

For the situation when more than five points are speci-
fied some variant-based methods have been developed, such
as case-based reasoning~Bose, Gini, & Riley, 1997!: after a
multilevel case retrieval process, adaptation is accom-
plished by simple transformation rules~increasing or de-
creasing the length of one link by a small percent!. However,
the method is applicable only in cases where the coupler
curve contains no crossings or there is a curve in the case
base that is close enough. In another work~Hoeltzel & Chieng,
1990! neural networks are used for learning and synthesiz-
ing mechanisms for coupler curves similar to the ones stored

Reprint requests to: Anikó Ekárt, Computer and Automation Research
Institute, Hungarian Academy of Sciences, PO Box 63, 1518 Budapest,
Hungary. E-mail: ekart@sztaki.hu

Artificial Intelligence for Engineering Design, Analysis and Manufacturing~2003!, 17, 205–220. Printed in the USA.
Copyright © 2003 Cambridge University Press 0890-0604003 $16.00
DOI: 10.10170S0890060403173040

205

https://doi.org/10.1017/S0890060403173040 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060403173040


in the knowledge base. Because the coupler curves are stored
as bitmaps, pattern matching is used for finding similar
curves. Vancsay~2000! uses genetic algorithms for synthe-
sizing a mechanism that generates a given coupler curve in
a constrained environment: the fixed link must be within a
given area, and the link lengths are also limited.

Unlike the previous approaches, we do not generate a
single mechanism but give structural constraints for mech-
anisms whose coupler curves contain the desired path frag-
ments. The mechanisms satisfying these constraints will
meet the input requirements. If there are further restrictions
for the acceptance of a mechanism~such as dimensional
limits of the links!, the structural description should be re-
fined accordingly. In the present paper we explain our ideas
in more detail and extend our previous results~Ekárt, 2001;
Ekárt & Márkus, 1999!.

2. THE DESIGN METHOD

The goal of this work is to provide a description of the
feasible mechanisms that can be exploited by the designers
of mechanisms. In particular, we create the structural de-
scription of the four bar mechanisms that satisfy the input
requirements. That is, given some curve fragments and a
corresponding tolerance, the coupler curve generated by
any acceptable mechanism must be within the given toler-
ance limit from these curve fragments. The admissible mech-
anisms are given by constraints on their structural parameters,
such as
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A mechanism satisfying these constraints can be designated
as a solution for the given family of path generation
problems.

The method consists of the following steps~where steps
2–4 represent the definition of the actual design problem!:

1. creation of a catalogue of four bar mechanisms;

2. specification of input requirements;

3. classification of the elements of the catalogue;

4. generation of the structural description.

The main result is that the design space can be described by
constraints on the structural parameters~a,b,c,d,e,u! of
the mechanisms. For any desired path fragment, we give
the structural description of the mechanisms that produce
coupler curves similar to it. The class of mechanisms that
produce similar coupler curves is given by this structural
description. Hoeltzel and Chieng~1990! make a classifica-
tion of four bar mechanisms based on the form of coupler
curve, but they provide no structural description for the
members of a class.

Our catalogue of four bar mechanisms contains 7276 ele-
ments, and we created it as a computer version of the clas-
sical catalogue of Hrones and Nelson~1951!. Each element
consists of the structural and functional description of a
mechanism. The structural description contains the param-
eters of the mechanism, as shown in Figure 1. The func-
tional description is the coupler curve generated by the
mechanism, and it is recorded as an ordered list of points.
We call mechanism space the universe of four bar mecha-
nisms. The dimensions of this space are the structural pa-
rameters of mechanisms. The elements of the catalogue are
points of the mechanism space, with the structural param-
etersa [ $1.5,2,2.5, . . . ,6.5%, b51,c [ $1.5,2,2.5,3,3.5,4%,
d [ $1.5,2,2.5,3,3.5,4%, e, andu taken for 50 sampled points
on a rectangle attached to the coupler link of the mecha-
nism ~see Fig. 2!. This rectangle extends the coupler linkc
in directions parallel and perpendicular to it with a distance
equal to the length of the input linkb.

In the second step the desired curve fragments are spec-
ified as a list of points and corresponding input angles~i.e.,
our problem is path generation with prescribed timing!, and
the tolerance is also given.

In the classification step the mechanisms are grouped
into two classes: thepositiveclass and thenegativeclass. A

Fig. 1. The four bar mechanism layout. a, the fixed link; b, the input
link; c, the coupler link; d, the follower link; P, the tracer point;a, input
angle.

Fig. 2. The sampled points on the coupler link.

206 A. Ekárt and A. Márkus

https://doi.org/10.1017/S0890060403173040 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060403173040


Fig. 3. Computing the similarity of the coupler curve~for the mechanism witha51.5,b51, c51.5,d51.5,e51.41, andu 5 2.35!
to the desired path fragments. For better intelligibility, timing is not indicated. This mechanism is classified asnegative.
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mechanism is positive if its coupler curve fulfills the input
requirements. The mechanism is negative in the opposite
case.A coupler curve corresponds to the input require-
ments when it can be moved (translated and rotated) so that
its similarity to the desired curve is within the tolerance
limit. Classical methods only compare the coupler curve to
the desired curve without translation and rotation, meaning
that the position of the mechanism in the plane is pre-
defined. We remove this restriction and compute the simi-
larity of two curves after bringing them as close as possible
by translating and rotating one of the curves. We compute
the similarity value of a coupler curve to the desired curve
~fragments! in the following way~as shown in Fig. 3!:

1. To each point of the desired curve we associate a point
of the coupler curve according to the input angle~tim-
ing! corresponding to that point of the desired curve,
that is, we associate a point list from the coupler curve
to the given point list of the desired curve. Generally,
there are several possible matchings.~In Fig. 3 we
show only the best matching for the given example.!

2. We calculate the similarity value for each such possi-
ble matching:

a. We translate and rotate the point list obtained in
step 1 so that the associated points of the desired
curve and the coupler curve get as close as possi-
ble ~this is equivalent to translating and rotating
the entire coupler curve, but we consider only the
point list because these points are needed for the
comparison!.

b. We compute the distances of the associated point
pairs.

c. We assign the maximum of these distances as a
similarity value for the given matching.

3. We select the matching with the smallest similarity
value and designate this value as the similarity of the
coupler curve and the desired curve. If this similarity
value is within the tolerance limit, then all the points
of the coupler curve selected in step 1 are close enough
to the desired curve, and thus, the mechanism belongs
to the positive class. Otherwise, the mechanism is clas-
sified as negative, like the example shown in Figure 3.

The key issue is the generation of the structural descrip-
tion of the positive class. The structural description consists
of a set of constraints for the structural parameters. The
description can be written as a disjunctive normal form
formula. Two machine learning methods have been ap-
plied: decision tree induction~by the C4.5 program; Quin-
lan, 1993! and genetic programming.

Decision tree induction was effective in the cases where
the elements of the positive class were situated in a convex
region of the mechanism space and the mechanism space
could be partitioned by planes parallel to the axes. How-
ever, it produced too many errors in the other cases. We

needed a method allowing other partitions that could create
descriptions corresponding to as many elements of the pos-
itive class as possible, regardless of whether they were sit-
uated in a convex region of the space. Genetic programming
was our next choice. Unfortunately, in most of the cases the
descriptions produced by genetic programming were not
accurate enough. Two types of errors were encountered: too
many members of the negative class were classified as pos-
itive and some members of the positive class were classi-
fied as negative. In this way the frontiers of the feasible
regions of the mechanism space were misrepresented. Be-
cause decision tree induction is very fast and accurate when
presented with the appropriate attributes and genetic pro-
gramming is a plausible tool for creating new attributes, we
decided to apply constructive induction~Wnek & Michal-
ski, 1994!. This step is discussed in detail in the next section.

3. CREATING THE STRUCTURAL
DESCRIPTION

Generating the description of one class can be seen as par-
titioning the space into two regions: positive and negative.
The generated description corresponds to the positive re-
gion, and no element situated in the negative region satis-
fies this description.

3.1. Decision tree learning

Decision tree induction is a commonly used method for
concept learning~Quinlan, 1993!. The input data are a set
of examples of the concept to be learned. An example con-
sists of a set of attributes and belongs to a class. When
building up the tree and selecting the next attribute to be
tested at a certain node, the information gain1 is computed
for each candidate attribute. Then, the attribute with the
best gain is selected.

For studying the power of decision trees in our problem,
we used the C4.5 system~Quinlan, 1993!. Each example is
a mechanism, having its structural parameters as attributes
and the classification computed in the previous step~i.e.,
positive or negative!. Because the attributes have continu-
ous numeric values, at each decision node the cases are
separated into two groups according to whether the value of
the tested attribute is less or greater than a threshold value.2

A simple decision tree is shown in Figure 4. Case studies
are presented in Section 4.

A typical example of where C4.5 produced many errors
is shown in Figure 5. The attributesb 5 1, d 5 3, e5 1.41,
andu 5 2.36 and the distribution of positive and negative

1The information gain is defined as the increase in information content
when the set of examples is partitioned in subsets according to some
criterion, such as a value of an attribute.

2In this case the information gain is computed for several candidate
threshold values.

208 A. Ekárt and A. Márkus

https://doi.org/10.1017/S0890060403173040 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060403173040


examples in the mechanism space over coordinatesa andc
are indicated. For this cross section, the decision tree pro-
duced by C4.5 misclassifies 3 of the 30 examples. The ex-
planation is that this plane could not be partitioned by straight
lines parallel to the axes of the coordinate system. Thus,
using the original attributes C4.5 could not produce an ex-
act classification. If the attributes were transformed, a bet-
ter partition of the plane could be found. An exact description
~as drawn in Fig. 5! of the positive region of the plane
found by our program is

~a 2 1.55!~2.310c 1 1.562 a! . 0.

Overcoming this difficulty by creating new attributes is
the subject of Section 3.3.

3.2. Genetic programming

As an alternative, we also generated structural descrip-
tions of mechanism classes by using genetic programming
~Cramer, 1985; Koza, 1992!.

Genetic algorithms~Goldberg, 1989! transpose the no-
tions of natural evolution to the world of computers and
imitate natural evolution. In Nature new organisms adapted
to their environment develop through evolution. Genetic
algorithmsevolvesolutions to the given problem in a sim-
ilar way. They maintain a collection of solutions, which is
a population of individuals. The individuals are repre-
sented by chromosomes composed ofgenes. Genetic algo-
rithms operate on the chromosomes, which represent the
inheritable properties of the individuals. By analogy with
Nature, through selection the fit individuals~potential so-
lutions to the problem! live to reproduce, but the weak
less-fit individuals die off. New individuals are created
from one or two parents by mutation and crossover, respec-
tively. They replace old individuals in the population, and
they are usually similar to their parents. In other words, in
a new generation individuals will appear who resemble the
fit individuals from the previous generation. The individ-
uals survive if they are fitted to the given environment.

Genetic programming is an extension to genetic algo-
rithms in which the structures undergoing adaptation are
not strings but are hierarchical computer programs of dy-
namically varying size and shape.

Genetic programming systems generally use the follow-
ing algorithm:

1. Generate an initial population of individual programs
consisting of random compositions of functions and
terminals from a given function and terminal set.

2. Execute each program of the population on the so-
called fitness cases and assign it a fitness value based
on the fitness measure.

3. Create a new population of individuals by selection,
transmission, and variation from the current popula-
tion. Selection is based on fitness; the better perform-
ing individuals are more likely to be selected than the
others. Individuals and parts of selected individuals
are transmitted to the new population via reproduc-
tion and crossover, respectively. Variation is achieved
through mutation.

4. Iterate through steps 2–3 until the termination crite-
rion is satisfied. The fittest individual that appeared in
any generation is designated as the result of genetic
programming.

We used the genetic programming paradigm with the set-
ting shown in Table 1. We mostly employed parameter val-
ues considered typical for function regression problems.
Because the number of fitness cases to be evaluated~7276!
was more than two orders of magnitude larger than the
usual number of fitness cases~50!, we restricted the num-
ber of individuals produced~population size and maximum
number of generations! in order to obtain results in reason-
able time.

Fig. 4. Example decision tree.

Fig. 5. The cross section of the mechanism space.
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The search space is a 6-dimensional cube corresponding
to the parameters of the four bar mechanisms. Here, the
goal of genetic programming is to find descriptions for the
positive region of the space. Usually the positive examples
are not situated in a convex region of the search space and
often no linear delimiters exist between positive and nega-
tive regions, as shown in the 2-dimensional cross section of
Figure 5.

Initially we defined a genetic program as an inequality
on the structural parameters to be satisfied by some feasi-
ble mechanisms and possibly no infeasible mechanism.
For instance, a possible inequality isa0b sin~u! 2 1.2. 0.
This condition is satisfied by all the mechanisms with
a $ 2, b 5 1, and 0.79# u # 2.35; but only some of these
mechanisms are feasible. In order to be feasible, a mech-
anism must satisfy a set of such inequalities.

We represented a genetic program as a tree with a fixed
number of branches where each branch represented an in-
equality on the structural parameters of the mechanisms.
The genetic program was then evaluated as the union of the
inequalities contained in its branches. An example tree with
three branches is shown in Figure 6, where a branch
f ~a,c,d,e,u! represents the inequalityf ~a,c,d,e,u! . 0.

As we wanted to obtain comprehensible descriptions, we
limited the number of inequalities so that the complexity of
the results would be comparable to the complexity of deci-
sion trees. The fixed number of inequalities might seem
restrictive, but in reality it allows for both larger and smaller
numbers of inequalities. A larger number of inequalities
occurs when some of the inequalities correspond to sets of
inequalities, for example,~a 1 c 2 3!~c 2 d! . 0 is the
same asa 1 c 2 3 . 0 andc 2 d . 0 or a 1 c 2 3 , 0 and

Table 1. Genetic programming parameter setting

Objective Evolve the structural description of the four bar mechanisms
contained in the positive class

Terminal set a,c,d,e,sin~u!,cos~u!,a real numbers[ @210,10#
Function set 1, 2, *, 0
Fitness cases The mechanisms of the catalogue
Population size 50
Crossover probability 90%
Mutation probability 10%
Selection method Tournament selection, size 10
Termination criterion None
Maximum number of generations 50
Maximum depth of tree after crossover 20
Initialization method Ramped half and half

aBecauseb 5 1 for all the examples, here we usea for the ratio of the fixed link to the input link, and
similarly, for any other link we use the ratio of that link to the input link. In this way, the genetic programs are
valid dimensionless expressions.

Fig. 6. Example genetic program with three branches.
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c 2 d , 0. A smaller number of inequalities occurs when
some of the branches of the genetic program represent in-
equalities that are always true~such asa 1 1 2 a . 0!.

We used both crossover and mutation as genetic opera-
tors. The offspring of the crossover were obtained from the
two parents by selecting one subtree of each parent and
exchanging these subtrees, as shown in Figure 7.3 We used
point mutation, that is one node of the tree was randomly
selected and mutated. In the case of internal nodes, muta-
tion consisted of randomly changing the function repre-
sented by the node~see Fig. 8a!. In the case of leaf nodes,
mutation was different for terminals representing the struc-
tural parameters of mechanisms and real constants. A struc-
tural parameter was mutated to another structural parameter,
and a constant was mutated by changing its value~see
Fig. 8b!.

The fitness cases were the mechanisms of the cata-
logue given by their structural parameters and class rating
~positive or negative!. The genetic program was run on

the fitness cases, and its fitness value was computed as
follows:

err~i ! 5 H 1 if class~i ! 5 0 and gp_class~i ! 5 1,
0 otherwise;

fitness5 H 0 if ; i gp_class~i ! 5 0,

12
1

N (
i51

N

err~i ! otherwise,

where err~i ! is the error of the genetic program for fitness
casei , class~i ! is the class rating of the mechanism con-
tained in the fitness case~0 for negative and 1 for positive!,
gp_class~i ! is the class rating given by the genetic pro-
gram, andN is the number of fitness cases.

Thus, a 100% fit individual is an expression correspond-
ing to some positive examples and no negative example. An
expression satisfied by some positive and some negative
examples cannot make the distinction between the positive
and negative examples, and it is therefore penalized by a
worse fitness value.

The descriptions found by genetic programming were
less accurate than the decision trees. This is partly due to

3We illustrate the genetic operators on individuals corresponding to
one inequality each:f ~a,c,d,e, u! . 0 for expressionf ~a,c,d,e, u!.

Fig. 7. Crossover of two genetic programs.
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the limitations of the resources~i.e., population size and
generation number! and partly due to the difficulty of the
problem. Recent results on problem difficulty for genetic
programming suggest that the real numbers that are em-
ployed could also influence performance~Daida et al., 2001!.
Careful fine-tuning of the real numbers might lead to more
accurate results.

3.3. Constructive induction

When both previous methods are applied alone, they had
some shortcomings, hence the idea to apply them together.
Genetic programming can take a long time to converge to
acceptable solutions and also needs parameter fine-tuning.
Decision tree learning is fast and more accurate but not
always able to separate the two classes because the struc-
tural attributes presented to it are not the most relevant
ones. There are several notions of relevance, but let us con-
siderincremental usefulnessfrom Blum and Langley~1997!:

Given a sample of dataS, a learning algorithmL, and a
feature setA, featurexi is incrementally useful to L with
respect toA if the accuracy of the hypothesis that L pro-
duces using the feature set$xi % ø A is better than the
accuracy achieved using just the feature setA.

In other words, decision trees~or any learning algorithm!
can perform better if presented with more useful attributes.
New attributes could be generated aslogical expressions
over the original attributes~Matheus & Rendell, 1989;
Pagallo, 1989!. Because the original attributes~the struc-
tural parameters of mechanisms! are numerical values, a
straightforward method is the generation ofarithmetic ex-
pressionsover the original attributes~Bloedorn & Michal-
ski, 1998!.

Having in mind the definition for usefulness, we used
C4.5 as the learning engine for the constructive induction
and applied genetic programming for attribute~feature! gen-
eration. The new scheme for generating the description is
shown in Figure 9.

Thus, genetic programming proposes new attributes, and
C4.5 uses them in addition to the original ones. The genetic
programs are arithmetic expressions of the original attributes.
The fitness measure is modified in order to include both
kinds of errors: misclassification of positive cases and mis-
classification of negative cases. The error of the genetic
program was computed as:

err~i ! 5 H n if class~i ! 5 0 and gp_class~i ! 5 1,
p if class~i ! 5 1 and gp_class~i ! 5 0,
0 otherwise.

Fig. 8. Mutation of a genetic program.
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We experimented with different values forn andp ~ p .. n
or n .. p!, because we wanted to find good descriptions for
both the positive and the negative examples. By obtaining a
good description of the negative examples and presenting

the attribute to C4.5, we expected C4.5 to eliminate many
negative examples at the beginning. The rest of parameter
settings for genetic programming are the same as described
in Section 3.2.

Initially, we generated the new features separately from
decision tree construction, as shown in Figure 9. The new
features created by genetic programming tended to cover
as many positive examples as possible. However, when
constructing the decision tree, at each node it is sufficient
that the chosen feature describe the examples to be classi-
fied at that node.There is no need for a general feature.
If we had found such a general feature, we would not
have needed to use decision tree induction at all. Thus,
in order to get new features corresponding to each node
of the decision tree, we introduced the attribute generator
at the level of node creation in the decision tree builder.
We modified the fitness measure for the genetic programs
to make it the information gain~as defined by Quinlan,
1993! of the feature represented by a genetic program. The
decision tree induction step is modified as shown in
Figure 10.

By creating the new features at the construction of nodes
in the decision tree, we obtained more accurate descriptions.

Fig. 9. Constructive induction.

Fig. 10. Decision tree construction.
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3.4. Training data preselection

The generation of the structural description based on all
available mechanisms can be very slow. The process can be
made considerably faster if only a small number of exam-
ples are used instead of the whole catalogue of mecha-
nisms. The obtained descriptions can then be tested on the
whole catalogue.

In order to obtain sufficiently accurate descriptions, the
relevantexamples have to be selected for generating the
description~i.e., for training!. Because only a few mecha-
nisms belong to the positive class and the majority belong
to the negative class, we included all the positive examples
in the training set. We wanted to differentiate between the
two classes, so we selected the negative examples that were
in the neighborhood of the positive examples~had similar
values of attributes!. In Figure 11 we show two possible
training sets of different sizes for the example presented in
Section 3.1.

The algorithm for selecting the training data is the
following:

for all positive examplese
includee in the training set
let a1, . . . ,an be the attribute values for examplee
for all attributesi [ $1,2, . . . ,n%

for all negative examplese'

let a1
' , . . . ,an

' be the attribute values for examplee'

includee' in the training set if it has
the same attribute valuesaj

' 5 aj

for all j 5 $1, . . . ,n%, j Þ i
and a value for attributeai

'

in the neighborhood ofai : 6ai
' 2 ai 6 , «

The size of the training set can be controlled through
parameter«. In our experience, a reduction of the training
set to 15% of the catalogue is possible and the results are of
acceptable accuracy. In addition, the descriptions generated

based on the preselected examples are significantly smaller
and therefore more comprehensible for humans.

4. EXPERIMENTS

In this section two design cases are discussed in detail. We
chose circular and linear path fragments, because these are
very important fragments of the paths needed in practical
mechanism design. Thus far, approximate circle tracing
mechanisms have been synthesized through laborious com-
putation algorithms. Only the recent results of Ceccarelli
and Vinciguerra~2000! allow their efficient synthesis. Ap-
proximate straight lines are required in the case of level
luffing cranes used on many docks to load and unload cargo
~Waldron & Kinzel, 1999!. Another application of straight
line generating mechanisms is in strip chart recorders. In
addition, a linear path fragment followed by a circular one
is required in the film-advance mechanism of any movie
camera~Chironis, 1991; Norton, 1992; Sandor & Erdman,
1984!, as shown in Figure 12.

For the circular path fragment~Fig. 13! we found a 100%
correct description by using just decision trees, so that no
other method could perform better. In the second case the
description given by decision trees had errors; thus, con-
structive induction was needed.

The desired curve fragments for the two case studies are
given in Figures 13 and 14. The path fragment is given as
an ordered list of points~the ordering is reflected in the
numbering of points!.

In the first case~see Fig. 13!, the mechanism space
was divided into positive and negative classes and then
C4.5 was applied. The produced decision tree is shown in
Figure 15a. At each leaf node the predicted class of the
corresponding cases is given as negative or positive class.

The tree classifies all the cases correctly, so that for ev-
ery example presented to it the real class is the same as the
predicted class. The production rules can be derived from it

Fig. 11. The preselection of training data. Fig. 12. The film-advance mechanism of a movie camera.
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by reading the paths from the root to the leaves. In Fig-
ure 15b we show only the rules for the positive class, be-
cause any example that satisfies neither of these rules is
negative.

For the same problem, the best description~of the posi-
tive examples! produced by genetic programming is shown
in Figure 16.

We tried out different numbers of branches for the ge-
netic trees. According to our observations, with fewer
branches more accurate descriptions were found in fewer
generations, hence the idea of applying genetic program-
ming for attribute generation in constructive induction.

The second desired path is a straight line approximated
by the ordered point list of Figure 14. In this case, C4.5
produced a decision tree of size 47 containing 11 errors
~i.e., misclassified cases!. Our next step was the separate
generation of new attributes by genetic programming, as
shown in Figure 9.

Some of the attributes proposed by genetic programming
are presented in Table 2. The third column~Type! specifies
whether the attribute corresponds to the positive or the neg-
ative class. The last column~G! represents the generation
when the attribute emerged. The best decision tree had 41
nodes and misclassified six cases.

The next step was the introduction of the attribute gen-
erator at the level of node creation in the decision tree~see
Fig. 10!. Table 3 summarizes the results of 10 runs. The
size of a decision tree is given as the number of nodes, and
the errors are the misclassified cases. The number of new

Fig. 13. The first desired path fragment.

Fig. 14. The second desired path fragment.

Table 2. The new attributes proposed by GP

Attribute Expression Type Fitness G

1 sinu 2 0.7 p 87.2 6
2 e2 a 1 1 p 61.3 1
3 d0cosu n 76.4 2
4 c 2 a 2 e2 p 89.0 5

~11 e!cosu
5 a02.32 5.20sinu n 97.0 2
6 8.7sinu 2 4.48 n 84.7 1
7 cosu n 76.4 9
8 e2 a n 80.5 3

Table 3. The results of 10 runs of the program

Decision Tree New Features

No. Size Errors No.
Ave.

Compl.
Usage
~%!

1 37 4 10 28 66.7
2 39 4 9 58 78.9
3 41 5 9 37 45
4 41 5 10 39 55
5 45 6 6 86 34.8
6 33 5 8 45 68.75
7 41 6 10 33 50
8 31 6 4 11 33.3
9 33 5 11 36 75
10 45 7 9 21 50
Ave. 39 5 9 37 55.7
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features actually used and their average complexity are
shown. The complexity of a feature is the number of nodes
in its tree representation~e.g., the complexity of the second
attribute from Table 2 is 5!. By new feature usage, we mean
the percentage of decision nodes in the tree where a new
feature was selected.

Up to this point, learning has been performed on the
whole catalogue. In order to reduce CPU time require-
ments, we introduce an additional training data selection
step in our algorithm presented in Section 2~between steps
3 and 4!.

Because the number of positive examples is much less
than the number of negative examples and omitting some of
them could result in losing important data that are not sam-
pled elsewhere, we include all the positive examples in the
training set. We select the relevant negative examples as the
neighbors of positive examples in the mechanism space~as
described in Section 3.4!. The rest of the negative examples
are put in the test data set. By this preselection we reduce
the size of the training set to 983 elements and reduce the
CPU time requirements by 85% at the cost of worse solu-
tion accuracy. The best tree has 21 nodes, misclassifies eight
training examples, but correctly classifies all the test data.

This structural description can be seen in Figure 17. A mech-
anism that satisfies one of the three constraint sets in Fig-
ure 17b is a feasible straight line generating mechanism.
Table 4 summarizes the best results for this mechanism.

5. DISCUSSION

Let us revisit the example problem presented in Figure 14.
The coupler curves of the corresponding mechanisms~that
belong to the catalogue! are presented in Figure 18. There
are several different types of curves that all contain the
straight line within the given tolerance. As a matter of fact,
the mechanisms that generate these curves differ from each
other in many ways: the length of links, the position and
orientation of the fixed link, and the input angle correspond-
ing to any selected point of the straight line. For example,
let us consider two distinct curves and the corresponding
mechanisms that generate these curves, as shown in Fig-
ure 19. The graphics are drawn to the same scale. We rep-
resented the mechanisms~together with their coupler curve!
in two positions: the start and the terminal position of the
generated straight line. The input link is the emphasized
link, and it is rotated in the direction indicated by the arrow.

Fig. 15. ~a! The decision tree produced by C4.5 for~2! negative or~1! positive classes and~b! the rules corresponding to the positive
class.

Fig. 16. The best description created by GP.
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For better distinction, instead of drawing the fixed link, we
show just its joints, using the black disks.

This depiction is clear evidence of the fact that the com-
mon features of such different mechanisms~belonging to
the same class! are not obvious, and therefore discovering
these common features is not an easy task. Then again, the
knowledge of such features~the structural description in
our terminology! could be very helpful for the engineer
involved in mechanism design.

In many cases the mechanism is a part of a complex
system and must fit in a predefined area. That is, the mech-
anism must remain within the predefined area during path
generation. In addition, the position and orientation of the
fixed link might also be constrained. The mechanism of
Figure 19a could be preferred to the mechanism of Fig-
ure 19b from the point of view of fitting in a predefined
area.

The choice of one or another mechanism from a class is
left to the designer. The class is defined by the structural
description and not the enumeration of the acceptable ele-
ments of the catalogue. The catalogue consists of points of
the mechanism space and therefore the found structural de-
scription applies not only to its elements but also to the
mechanism space.

6. CONCLUSIONS

We combined decision tree learning with genetic program-
ming to solve a difficult mechanism design problem. In-
stead of finding a single four bar mechanism that generates

Fig. 17. The description of the straight line generating mechanisms.

Table 4. The best decision trees for the different methods

New Features Decision Tree

Method No. Usage~%! Size Errors

C4.5 0 0 47 11
Separate GP 8 60 41 6
GP at node level 10 66.7 37 4
Train data presel. 6 60 21 8
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a given path, we developed the structural description of the
feasible regions of the design space. In simpler tasks deci-
sion trees performed well, but in most cases constructive
induction was needed. First, the new attributes were gener-
ated by genetic programming and then presented to the de-
cision tree learner C4.5. Second, we introduced the attribute
generator at the level of decision nodes in the tree, so that
for each node the attribute with the highest information
gain could be created and selected properly. In order to

reduce CPU time we introduced a training data preselection
step, which also resulted in more comprehensible descrip-
tions being generated.
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Fig. 18. The coupler curves of the straight line generating mechanisms.
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Fig. 19. Straight line generating mechanisms in two positions~- - -! start and~—! terminal.
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