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SUMMARY

A novel analytic approach is proposed for determining the
singularities of some four degree of freedom (DOF) parallel
manipulators (PMs). First, the constraint and displacement
of a general 4-DOF PM are analyzed. Second, a common
3 x 4 translational Jacobian matrix J, and a common 3 x 4
rotational Jacobian matrix J,, are derived, and a4 x 4 general
Jacobian matrix J of the 4-DOF PMs is derived from J, and
Jw»- Since a complicated process to determine singularities
from the 4 x 6 Jacobian matrix is transformed into a simple
process to determine singularity from J, the singularities of
the some 4-DOF PMs with 3 translations and 1 rotation,
or with 3 rotations and 1 translation, or with combined
translation—rotations are analyzed and determined easily by
this approach.

KEYWORDS: Parallel manipulator; Singularity; Jacobian
matrix.

1. Introduction

The four degree of freedom (DOF) parallel manipulators
(PMs) have been found having larger workspace and more
flexibility than the 3-DOF PMs, so they have attracted much
attention.'™> However, when the singularities of PMs occur
at some poses, the DOF of a PM may vary, and this results in
some motion errors and malfunctions. A singularity of PMs
must be avoided in path planning or designing better PMs
and parallel machine tools. The determination of singularity
of PMs has been attracted much attention in order to evaluate
the characteristics of PMs and parallel machine tools.'™’
In this aspect, Huang et al. derived a geometry condition
for discriminating singularity and proposed a singularity
principle of PMs.>™* Merlet® introduced Grassmann line
into geometry to find the singularity for Stewart PM.
Gosselin et al. analyzed the singularity loci of a spherical
3-DOF PM and a 5-DOF PM, and studied an uncertainty
singularity of PMs and singularity of a 3-leg 6-DOF PM
by line geometry.®~! Sandipan and Ashitava analyzed
singularity space of PMs and a geometric characterization
and parametric representation of the singularity manifold of
a 6-6 Stewart PM.!""!? Gallardo-Alvarado et al. analyzed
singularity of a 4-DOF PM by screw theory.!* Gregorio
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explored forward problem singularity in PMs which generate
SX-YS-ZS structures.'* Zhao et al. analyzed the singularity
of PM with terminal constraints."> Ider presented inverse
dynamics of PMs in the presence of drive singularities.'®
Wolf et al. analyzed singularity of a 3-DOF CaPaMan
PM by line geometry and linear complex.!” Anjan et al.
studied singularity-free path-planning of some PMs.!872! Lu
et al. determined singularities of some PMs by Computer
Aided Design (CAD) variation geometry.””> Each of the
above mentioned approaches has its merit for determining
singularity. However, since the Jacobian matrix of the 4-
DOF PMs is a 4 x 6 rectangle matrix and includes partial
differential items which are difficult to be transformed into
algebra item, the determinant of the Jacobian matrix is hard
to solve when determining the singularity of the 4-DOF PMs.

This paper focuses on a new analytic approach for
analyzing singularities of the 4-DOF PMs by using a 3 x 4
translational Jacobian matrix and a 3 x 4 rotational Jacobian
matrix. A 4 x 6 Jacobian matrix is transformed into a
4 x 4 general Jacobian matrix from translational/rotational
Jacobian matrices. Since each of the partial differential items
in these Jacobian matrices can be easily transformed into an
algebra item, the singularity analyses of the 4-DOF PMs
with 3 translations and 1 rotation, or 3 rotations and 1
translation, or combinations of translations and rotations can
be are simplified obviously and some singularities can be
determined easily.

2. Unified Kinematics Analyses of 4-DOF PMs

2.1. Inverse displacement
The 4-DOF PMs may be classified as the 4-DOF PM with
1T3R, the 4-DOF PM with 2T2R, and the 4-DOF PM with
3T1R according to its motion characteristics. Here, T is
translation and R is rotation. According to the number of
legs, 4-DOF PMs may be classified as the 4-DOF PM with 4
linear active legs?*?> and the 4-DOF PM with 3 linear active
legs and a rotational actuator.?®

A general 4-DOF PM includes a fixed base B, a moving
platform m, and 3 or 4 linear active legs r;(i = 1, ...,30r4)
with the linear actuators, as shown in Fig. 1. Where m is
regular polygon with 3 or 4 vertices b;, 3 or 4 sides /;, and a
central point o. B is regular polygon with 3 or 4 vertices B;, 3
or 4 sides L;, and a central point O. Each of r; connects m at
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Fig. 1. A general 4-DOF PM with Euler rotations XZX.

a point b; with B at point B;. Let {m} be a coordinate o-xyz
fixed on m at central point o. Let {B} be a coordinate O-XYZ
fixed on B at central point O. Let || be the parallel constraint,
1 be the perpendicular constraint.

Before determining the singularities of some 4-DOF PMs,
their common inverse displacement should be analyzed. The
position vector B; of point B; in { B} and the position vectors
"b; and b; of point b; in {m} and {B} are expressed in ref.
[23] as follows:

X i Xpi Xpi X,
B;=|Yg |,"b; = Yoi | bi=| Yy |,o=|Y, |,
| Zsi Zbi Zypi Z,
!
flR =|Xm Ym Zm|,b; = ﬁRmb, +o. (1)
Xn Vn Zn

Here, o is a position vector of point 0 on m in {B},
(Xo, Yy, Z,) are the components of o; ZR is a rotation
transformation matrix from {m} to {B}; (x;, Xm, Xn, VI,
Yms Yn> 2> Zm»> Zn) are the orientation parameters of m, their
constrained equations can be obtained from refs. [23, 24].

The length r;(i = 1,2,30r4) and the unit vectors §; of
active legs in {B}, and the vectors e; from the center o of
m to the joint b; on m in {B} can be solved from Eq. (1) as
follows:

ri=1|b — Bi|, 8 = (b — B)[ri =[x 8y 681",

ei=b—o0 =le, ey el 2)

Let s, =sing, ¢, =cosg, t, =tang, here ¢ may be
one of Euler angles («, B, y) of m. Let Cy, C, and C3 be
the unit vectors of rotational axes of (¢, B, y), respectively.
Each of (x;, X, Xy, Yis Yms Yn» 2s Zm» Zn> C1, C2 and C3) can
be expressed by (o, B,y) in ref. [23]. Let x; (i =
1,2,3,4) be 4 independent pose parameters of m, x; €
(Xoa YO’ Zoa o, :B’ y)
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Generally, the platform m of a limited-DOF PM with
(n <6) DOFs is applied by n active wrenches from
n actuators and is exerted 6-n passive constraints from
mechanism structures.”>?* Hence, the platform m of a 4-
DOF PM is applied by 4 active wrenches and is exerted
2 structure (passive) constraints. Based on 2 structure
(passive) constraints, 2 independent constraint equations can
be derived. After that, x; can be determined from the 2
independent constrained equations. Thus, extension r; and
the unit vector §; of active legs, and the vectors e; from the
central point o to the joints b; on m can be expressed by
x;. Each of (X,, Y,, Z,, a, B, y) can be expressed by x; as
follows:

Xo = Xo(x1, X2, x3,x4), Y, =Yo(x1, x2, X3, X4),

Zo = Zo(x1, X2, X3, X4), o =oa(xg, X2, x3,X4), (3)

B = B(x1,x2,X3,X4), ¥ = y(X1, X2, X3, X4).

2.2. Inverse/forward velocity and Jacobian matrix
Differentiating each of (X,, Y,, Z,, «, B, y) with respect to
time ¢, it leads to

Let V be a general forward velocity of m at o, v, and ®
be a linear velocity and an angular velocity of m at its
center, respectively. Let v, be an equivalent velocity of

x;(i =1,...,4). They can be expressed as follows:
. X
X, Wy .
v . X2
V = [ ]’ v = Y() ’ W = wy ’ ve = .
[0} . X3
Z, w; .
X4
(%)
v can be expressed from Egs. (4) and (5) as follows:
V= vaea
Jvz[Jvl Jv2Ju3]v4] (6)
0X,/0x; 0X,/0x, 0X,/0x3 0X,/0x4
= | dY,/ox; 0dY,/0x, 0Y,/dx3 dY,/0x4
0Z,/0x; 0Z,/0x, 0Z,/0x3 0Z,/0x4

Here J, is a 3 x 4 translational Jacobian matrix.
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 can be expressed from Eq. (4) as follows:

o
w=C :8 =Ja)vea
14
Cix Cxx C3z
C=[C, Cy C3]l=|ciy ¢y 3|, @)

Clz C27 C3g

Ja)= [Ja)l Ja)2 Jw3 Jw4]

do/dx; Jdo/dxy; Oda/dx3 Jdo/dxy
=C|d8/dx; 0B/dx, 0B/dx3 0B/0x4
dy/ox; dy/dxy dy/dxz 0y/dx4

Here J,, is a 3 x 4 rotational Jacobian matrix. Combining
Eq. (6) with Eq. (7), it leads to

V= Jeve,

J _|:Jv:|_|:-]v1 Jv2 Jv3 Jv4:| (8)
o Ja) B le JwZ -]w3 Ja)4 6><4.

Here J, is a 6 x 4 equivalent Jacobian matrix.
The scalar velocities v,; of r; along r; can be obtained from
ref. [23] as follows:

vi = [8] (e x §)T V. ©)

When given 4 input translational displacements r;(i =
1,2,3,4) along the active legs of the 4-DOF PM with 4
active legs, an input displacement vector X;, and its velocity
vector v;, are expressed as follows:

T
Xip=1I[r1 rn r rl,

Vin =[Vr1 V2 VU3 l)r4]T‘ (10)

When given V, v;, of the 4-DOF PM with 4 active legs is
derived from Eq. (8) to Eq. (10) as follows:

vip =3,V =31, = Jv,,

Ve = J_lvin’ J = [4Jr]4><6[Je]6><4»
Vr1 8{ (el X 61)T
§ 8T 8"
= | =2 (€2 x Z)T (11)
V3 35 (e3 x 83)
V4 87 (e4 x 87 it

Here J is a 4 x 4 general Jacobian matrix, and J~' exists.
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J for the 4-DOF PM with 4 active legs can be expanded from
Egs. (8) and (11) as follows:

Jvl Jv2 Jv3 Jv4:|
6x4

_4 =¢ x
J="J.J. CJr)axe |:Jw1 Jor Jwz Jowa

Ju Ji2 Jiz Jia
Jon Jn Joz I
J51 J2 Jzz Jau
Jag Juo Jaz Jua

Jij = 8] Juj + (e; x 8)T J o,
i=1,....4 j=1,..4

’

12)

When given an input rotational angle « about C and 3 input
extensions r; (i = 1, 2, 3) of active legs for the 4-DOF PMs
with 3 active legs, X;, and v;, are expressed from Eq. (7) as
follows:

Xin=I[r1 nrn rn al,
Vin = [Vrl Vr2 Vr3 d]Ta

—1
(o4 Cix Cax C3x Wy
pl=Clo=]|c, o c, wy |, (13)
14 Ciz Cpz (3 Wz

a = [(C2yc3z_c3yc2z)wx + (CBXCZZ_CZxC3z)wy
+ (C‘sz:,‘y—Cg,szy)wz]/ |C| .

When given V, v;, of the 4-DOF PM with 3 active legs is
derived from Egs. (9) and (13) as follows:

Vin = 3JrV = 3JrJeve = Jv,,
J= [3Jr]4><6[Je]6x4'
8 (e x 8"

87 (exx &)

-1
Ve = J Vin,

3
Jr = 14
8 (e3 x 83T (1
0 KT
1 C2yC3; — C3yC2;
K=—|c xC2; — CoxC
|C| 3x €2z 2xC3z

C2xC3y — C3xC2y

The general Jacobian matrix J for the 4-DOF PM with 3
active legs can be expanded from Egs. (8) and (14) as follows:

_3 =
J — JrJe ( Jr)4X6 |:le sz Ja)3 Jw4

Ju Ji2 Jiz Ju
J J J J

_ | 2 T , (15)
Jasi Jn Sz Sy

Ju Ju Jiz Ju
J,’j = 6,-Tij +(ei X Si)Tij’

Jvl Jv2 Jv3 Jv4 j|
6x4

Ly =K' 1.,
i=1,2,3,
j=1,...,4.
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When given v;,, V can be derived from Egs. (8), (11) and
(14) as follows:

V=3I i vi,=Jv.. (16)

Thus, a complicated process to determine singularities of
the 4 x 6 Jacobian matrix J, is transformed into a simple
process to determine singularity of the 4 x 4 general Jacobian
matrix J.

3. Singularity Analyses

Let |J| denote the determinant of the general Jacobian matrix
J. The singularities of the 4-DOF PMs have been classed into
following 3 types according to Eq. (16):!

(1) When |J| = 0, the boundary singularities of the 4-DOF
PMs occur;

(2) When |J| — o0, the local singularities of the 4-DOF PMs
occur;

(3) When |J| — 0/0, the structure singularities of the 4-DOF
PMs occur.

Based on Egs. (12) and (15) and the above three types of
singularities, some singularities of the 4-DOF PMs with 4
legs or 3 legs can be analyzed and determined as follows.

3.1. General Jacobian matrix J of 3TIR 4-DOF PM

When the platform of the 4-DOF PM in { B} has 3 translations
(X,,Y,,Z,) and a rotation « about Z, (x1, x», X3, X4) and
their velocity vector v, are expressed as follows:

xl = X09x2 = Y09x3 = Z()s -x4 = Ol,

v.=1[X, Y, Z, a]’. (17)

The 3 x 4 translational Jacobian matrix J, is derived from
Egs. (6) and (17) as below,

o=[Ju Jun Ju Ju]
[9Xx,/0X, 0X,/0Y, 0X,/0Z, 0X,/da
=|dY,/0X, dY,/0Y, dY,/0Z, Y,/
_8Zg/8X0 1Z,/d9Y, 0Z,/0Z, 0dZ,/dx (18)
1 0 0 0
=|0 1 0 O
[0 0 1.0

Suppose that platform of the 4-DOF PM in {B} rotate in an
order ZXY, the 3 x 4 rotational Jacobian matrix J, is derived
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from Egs. (7) and (17) as follows:

Jo=[Jo1 Jo2 Jo3 Josal
da/0X, OJu/dY, da/dZ, OJu/dx
=C|dB8/0X, 0dB/0Y, 0B/0Z, 9B/0a |,
ay/oX, dy/dY, 0dy/dZ, OJy/du
[0 ¢, —s ][0 0 0 1
=10 s, ¢4 0 0 0 O (19)
_1 0 0 ] 0 0 0O
[0 0 0 0
=10 0 0 O
_O 0 0 1_

The general Jacobian matrix J for the 4-DOF PM with 4
active legs is derived from Eqgs. (12), (18), and (19) as,

[1 0 0 0]
0O 1 0 O
0 01 0
_ 4 _4
J="1J.="J, 00 0 0
0 0 0 O
0 0 0 1]
Slx 5ly 312 elx51y - elyslx
_ 82x 52y 82z 62x82y_62y82x ‘ (20)
83){ 53y 831 €3x53y - 33)’63):

84x 64y 841 €4x 54)’ — €4y 84x

The general Jacobian matrix J for the 4-DOF PM with 3
active legs is derived from Eqgs. (15), (18), and (19) as,

1 0 0 O
01 0 0
J= 51 =3 0 010
ST 0 0 000
0 0 0O
[0 0 0 1]
81){ 81y 5lz elxaly - elyfslx
_ Sox 82y b2 edny — €2y ’ 21
J3x 83y O3 e3d3y — 3,83,
0 0 o0 1
K=[001]".

3.2. Singularity analyses of a 2UPU+RRPU PM

A 4-DOF overconstrained 2UPU+RRPU PM?* is developed
in Yanshan University, as shown in Fig. 2. It has 4 DOFs
corresponding to 3 translations and 1 rotation about Z. Hence,
this PM is one type of the 3T1R 4-DOF PMs with 3 active
legs. This PM includes a moving platform m, a fixed base B, 2
(UPU) (universal joint-active prismatic joint-universal joint)
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B(’(X(H }/())

Fig. 2. A overconstrained 2UPU+-RRPU PM.

legs with a linear actuator, and an RRPU (active revolute
joint-revolute joint-active prismatic joint-universal joint) leg
with a rotational actuator and a linear actuator. Here, m is
a regular triangle with 3 vertices b;(i = 1,2, 3) and 3 sides
[; =1 and a central point o; B is a regular triangle with 3
vertices B; and 3 sides L; = L and a central point O. Since
this PM has 3 legs and 4 DOFs corresponding to 1 rotation
and 3 translations, it is simpler in structure and has less
potential interference than some 4-DOF PMs with 4 active
legs.

The determination |J| can be derived from Eq. (21) as follow:

51x 81y 812 elx81y - elyalx
51x (Sly 81z
dox B2y 82 e€xxday — €2y
|J| = = 52x 82}' 82z
53x 83}' 83z 63x83y - e3y53x s s s
0 0 0 1 3x 3y 3z
=0. (22)

Some singularities of the 2UPU+RRPU PM can be
determined from Eq. (22) as follows:

(1) When §;, =0 =1, 2, 3), |J| =0 is satisfied. In this
case, when [, = L,, each of the active legs r; (i = 1, 2, 3)
may locate in the planes parallel with O-YZ, a singularity
occurs. Similarly, when /; = L, or I3 = L3, other two
symmetry singularities can be determined.

(2) When §;, =0G =1,2,3), |J| =0 is satisfied. In this
case, when a line from b, to middle point of /; is the
same as a line from B, to middle point of L,, the two
active legs (r; and r3) may locate in one plane parallel
with O-XZ, and leg r, may locate in the other plane
parallel with O-XZ, and a singularity occurs. Similarly,
when a line from b; to middle point of /; is the same as
a line from B; to middle point of L;(i = 1, 3), other two
singularities can be determined.
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(3) When §;, =0G = 1,2,3), |J| =0 is satisfied. In this
case, when the platform and the base are coplanar, a
singularity occurs.

(4) When §; = 83, |J| = 0 is satisfied. In this case, when
a = 0°andl, = L,, asingularity occurs. Similarly, when
oa=0°and [, = L, or « = 0° and /3 = L3, other two
singularities occur.

(5) When 8; = §; = 63, |J| = 0 is satisfied. In this case,
when /; = L;(i = 1, 2, 3), a singularity occurs.

(6) When e; =00 =1,2,3), |J] =0 is satisfied. In this
case, when platform becomes a point o, a singularity
occurs.

3.3. General Jacobian matrix J of 3RIT 4-DOF PMs
When a 4-DOF PM such as 4 SPS (spherical joint-
active prismatic joint-spherical joint) + PS (prismatic joint-
spherical joint) PM has 3 Euler rotations («, §, y) and a
translation along Z, (x;, x, x3, x4) and their velocity vector
v, are expressed as follows:

.X'3:,3,

a g vyl (23)

xn=2, x=aq X4 =y,

Ve = [Zo

The 3 x 4 translational Jacobian matrix J, is derived from
Egs. (6) and (23) as follows:

0 0 0O
Ju = [Jvl Jv2 Jv3 Jv4] =10 0 0 O (24)
1 0 0 O

The 3 x 4 translational Jacobian matrix J,, is derived from
Egs. (7) and (23) as follows:

=[0 ¢, C, Ci]. 25

S = O
- o O

The general Jacobian matrix J for the 3R1T 4-DOF PM with
4 active legs is derived from Eqgs. (12), (24), (25) as follows:

0O 0 0 0

0 0 0 0

1 0 0 0

J=%3J.="),

0 Clx Cx C3yx

0 Cly Cay C3y
_O Clz €2z O3z |

81z (61 x8)TCy (e1 x8)TCy (€1 x 8 C

8. (e2x8)"C,y
85, (e3 x 83)7C,y
81, (eq x 8)7C,

(e2 x 82)C, (e2 x 82)" C3

(e3 x 83)"C, (e3 x 83)"C3

(e4 x 845)7Cy (e4 x 84)"C3
(26)

The general Jacobian matrix J of the 3R1T 4-DOF PM with
3 active legs is derived from Egs. (15), (24), and (25) as
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S, By

(b)

Fig. 3. A 4 SPS+PS PM and it’s a singularity.

follows:
[0 0 0 0]
0O 0 0
0 0 0
J=31J.=°1,

Cix Cax C3x

Cly Cay C3y

S O O = O O

Clz €2z €37 |

1. (e1 x81)'Cy (e1x8)Cy (&1 x 8))C5
_[82: (e2x8)"Cy1 (e2x8)"Cy (€2 x82)" C3
185 (3 x 83)7Cy (63 x 83)7C2 (e3 x 83)7C5

0 1 0 0

27)

3.4. Singularity analyses of a 4 SPS+PS PM
A 4-DOF 4 SPS+-PS PM is one type of the 3R1T 4-DOF PM
with 4 active legs (see Fig. 3a).

It includes a moving platform m, a fixed base B, and 4 SPS
legs with a linear actuator, and a PS passive constrained leg.
Here, m is a rectangle quaternary with a short side /;, a long
side /5, 4 vertices b;, and a central point 0. B is a square with
side L; = L, 4 vertices B;, and a central point O. Each of r;
connects m with B by spherical joint S on m at b;, a leg r;
with an active prismatic joint P, and S on B at B;. r, connects
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m with B by a S on m at o, a passive prismatic joint P on B at
0, and a geometric constraint r, L B is satisfied.

Some singularities of the 4 SPS4PS PM can be determined
from Eq. (26) as follows:

(1) When §;, =0 =1,2,3,4), |J| =0 is satisfied. In
this case, when platform and the base are coplanar, a
singularity occurs.

(2) Whene; =0andé;; =0(@G =1or2or3or4),|J] =0is
satisfied. In this case, when one of vertices b; coincides
with o and locates in the base, a singularity occurs.

(3) Whene; =00r E; =01 =1,2,3,4),6G=1,...,4)
become dependent each other, |J| = 0 is satisfied. In
this case, when platform become one point o or B
becomes one point o, §; must intersect to one point, two
singularities occur.

(4) When §;(i=1,...,4) interest at one point, and
|[J| =0 is satisfied. In this case, when (; =1/, L; =
L, andm||B,i =1, ...,4), a singularity occurs.

(5) When one of §;(i =1,...,4) is zero, |J| =0/0 is
satisfied. In this case, one of r; is zero, a singularity

occurs.

(6) When e; x § =0(e; £0), and 8i; =00 =
lor2or3or4), |J| =0 is satisfied. In this case,
when one of r;(i =1,...,4) pass through the center

point O of base, a singularity occurs.

(7) When e; x§; #0 and (e; x (Sl-)TCj =0 G=1,4
or2,3; j=1,2,3), |[J] =0 is satisfied. As i = 1,4,
from Eq. (26), it leads to

51 0 0 0
8. (e2x8)'Cy (e2x8)'Cyr (€2 x8)'C
83 (e3x83)'Cy (e3x83)"Cy (e3 x83)'C
Su 0 0 0

=0. (28)

I =

In this case, the plane including e; and §;(i = 1, 4) must
be perpendicular to the 3 vectors C; (j = 1, 2, 3). Suppose
that the platform m rotates by Euler order XZX, thus C; and
X being collinear, C, and Z; (formed from Z about X by
an angle «) being collinear, and Cs||x are satisfied. Hence,
when (By, by, by, By) locate a plane of m and is parallel with
a plane including C; (j = 1,2, 3), a singularity occurs, as
shown in Fig. 3b. Similarly, other 3 symmetry singularities
can be determined.

3.5. Singularity analyses of a 4 SPS+SP PM

A 4-DOF 4 SPS+SP PM? is similar to the 4-DOF 4 SPS+PS
PM, except that the platform m and the base B are exchanged
each other in their functions and positions. However, the
position workspace of the platform is enlarged obviously. A
prototype of the 4-DOF 4 SPS+SP PM is built in Yanshan
University, as shown in Fig. 4.

Since the configuration of the 4-DOF 4 SPS+SP PM
is an inverse configuration of the 4 SPS+PS PM, some
singularity configurations of the 4-DOF 4 SPS+SP PM
must be the inverse singularity configurations of the 4
SPS+PS PM. Thus, when sizes of m and B are exchanged
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Co, Xt

Fig. 5. A 2 SPS+RRPR PM.

each other, the singularities of the 4-DOF 4 SPS+SP PM
are similar to that of the 4-DOF 4 SPS+SP PM, except
that when (By, by, by, Bs) locate a plane of base B and
parallel with planes including C; (j = 1, 2, 3), a singularity
occurs. Similarly, other 3 symmetry singularities can be
determined.

3.6. Singularity analyses of 4-DOF 2 SPS+RRPR PM
A 2 SPS+RRPR PM? is one type of 4-DOF PMs with 3
active legs, as shown in Fig. 5.

This PM is composed of a moving platform m, a fixed
base B, and 2 SPS active legs r;(i = 1, 3) with the linear
actuators, and an RRPR (active revolute joint-revolute joint-
active prismatic joint-revolute joint) constrained active leg r,
with a rotational actuator and a linear actuator. Here, m and B
are the same as that of 4-DOF overconstrained 2UPU+RRPU
PM. Each of r; (i = 1, 3) connects m to B by a spherical joint
S atb;, an active leg r; with a prismatic joint P, and a spherical
joint S at B;. The RRPR constrained active leg r, connects m
to B by a revolute joint Rz attached to m at b;, a constrained
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active leg r, with a prismatic joint P, and a universal joint U
attached to B at B,. The universal joint U at B; is composed
of two cross-revolute joints R; and R;. In structure, there are
following geometric constraints: R; and the axis of motor
are collinear, R; and y are collinear; R;||Z, R{ LB, Ry LRy,
Ry L R3, Ry 11y, and R Lr,. Since each of the SPS active legs
r;(i = 1, 3) only bears the active force along r;, it obviously
has relative larger capacity of load bearing and is simple in
structure.

The vector B; of B; in {B} and the vectors b; of b; in {B}
are expressed in ref. [26] as follows:

1 _qe-xl — ey + 2X0 ey + X()
bl :E qexm_eym+2Yo , b2: eym+Yo s
_qexn — €Yn + 220 €yYn + Zo
| _—qexl —ey +2X,
by = 3 —qgexy, —ey, +2Y, |, q= V3, 29)
__qexn —€Yn + 220
_ 0 _
E q E 4
Bi=|-1|. B=|E|. By=3|-1
0 0 0

When a 2 SPS4+RRPR PM has 3 rotations (a, 8, y) and
a translation along Z, there are x; = Z,, xp = «, x3 = f3,
x4 =y, and their velocity vector v, are expressed as Eq.
(23).

Suppose that platform rotate in order ZXY, BR is expressed
in ref. [26] as below,

—SaSgSy + CaCy —SaCp  SaSECy + CaSy
B
wR =\ casgs, +sq0y CaCp —CaSECy + SuSy
—CBSy Sg CpCy

(30)

Two pose parameters X, and Y, can be expressed by
(Z,, o, B) and have been derived in ref. [26] as follows:

Xo =s5ule+Z,sp)/cpg, Y, =E —cole+ Zysg)/cp.

3D

The 3 x 4 translational Jacobian matrix J, is derived from
Egs. (6), (23), and (30) as below,

Salp cole+ Zosg)/cp soe(Z, + es;g)/cf9 0
Jo=|—catp sacgle + Zosg)/cg —cu(Zo+ esﬂ)/cé 0f.
1 0 0 0

(32)

Since C; and Z being collinear, C, and X; (formed from
X about Z by an angle «) being collinear, and Cs||y, are
satisfied, the matrix C and the vector K have been derived in
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ref. [26] as follows:

0 co —sacp
C=[C1 C2 C3]= 0 Sa CaCp s
1 0 Sp
Salp
K= | —cutp (33)
1

A 3 x 4 translational Jacobian matrix J,, is derived from Egs.
(7), (23), and (33) as below,

01 0 0 0 0 co —sac,
Jo=C|0 0 1 0|=[0 0 s¢ cqocp (34)
0 0 0 1 01 0 g

The general 4 x 4 Jacobian matrix J can be derived from
Egs. (15), (31), and (33) as below,

J=3J.J.
_ Co Sy _
Salp ;(6 + ZoSﬂ) %(Zo + €Sﬁ) 0
S Cu
—cCalp  —(e+ Zosp) ——(Z,+ esp) 0
3 Cﬁ Cﬁ
=J 1 0 0 0
0 Co —SaCp
0 0 Sq CaCB
L 0 1 0 sg

(35)
Some items in J can be expressed as follows:

Ji1 = (B1x85¢ — S1yCa)tg + 012,

Jiz = (e1 x 81)" Co + (81350 — S1yca)(Zy + esﬂ)/c,zg,

Jis = (e1 x 8)7C3, o1 = (820 — 82yCa)lp + 8z,

Joz = (€2 X 82)7 Ca + (82x50 — 82yCa)(Z, + es;s)/cé,

Ju = (€2 x8)"C3=0, J31 = (83150 — 83y¢a)lp + 83,

J33 = (€3 x 83)7 Ca + (83150 — 83yCa)(Zo + es,«a)/c?;,

Juu=(e3x83)'Cs, Ju=Jiz=Jau=0, Jp=1.
(36)

The length r; (i = 1,2, 3) and the unit vectors §; of active
legs in {B}, and the vectors e; from the center o of m to the
joint b; on m in {B} have been derived in ref [26].

Determinant |J| can be simplified from Egs. (35) and (36)
as below,

Ju Jiz Juis Ju Jiz Ju
J=1|J1 Jz Ja|=|Ja1 Jz O
Jar Jiz Ju 51 iz Ju

(37)

Some singularities of the 2 SPS+RRPR PM can be
determined from Eq. (35)-(37) as follows:
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(1) When 8 = 90°, |J| — oo is satisfied. In this case, X, —
o0, Y, — 00, a local singularity occurs.

(2) Whend; =0 = 1or2or3), |J| = 0is satisfied. In this
case, r; = 0 (i = 1 or 2 or 3), a singularity occurs.

(3) When e; =e3 =0, |J| =0 is satisfied. In this case,
platform m becomes a line 0b,, a singularity occurs.

(4) When (e; x 8)'C3 =(e3 x83)7C3=0, |J] =0 is
satisfied. In this case, side [, = 0, a singularity occurs.

(5) When Z, = —esg and (e; x §HTC, =0 (i =1,2,3),
|J] = 0 1is satisfied. In this case, a singularity occurs.

(6) When (8jycq — Sixse)tpg =8i:(i =1,2,3), |J] =0 is
satisfied. In this case, a singularity occurs.

These singularities may be only a part of the whole
singularities of the 2 SPS+RRPR PM. Other singularities
of this PM can be also determined from Eqgs. (34)—(37).

4. Conclusions

A common 3 x 4 translational Jacobian matrix J, without
partial differential items and a common 3 x 4 rotational
Jacobian matrix J,, without partial differential items for the 4-
DOF PMs can be derived separately. A 4 x 6 Jacobian matrix
J with partial differential items can be transformed into a
4 x 4 general Jacobian matrix J without partial differential
items by means of J, and J,. Thus, the singularities of the
4-DOF PMs can be determined easily by J.

When the 4-DOF PMs have 3 translations and 1 rotation
about Z, J, is a3 x 4 sum matrix of a 3 x 3 unit matrix and a
zero vector; J,, is a 3 x 4 sum matrix of a 3 x 3 zero matrix
and a Z vector; and J is a4 x 4 matrix only including the unit
vectors along active legs and the vectors from central point
to vertices on platform. Since (J,, J,,, J) have no any partial
differential items, the determination of the singularity of the
4-DOF PMs with 3 translations and 1 rotation is easiest.

When the 4-DOF PMs have 1 translation along Z and 3
Euler rotations, J, is a 3 x 4 sum matrix of a 3 x 1 zero
vector and a 3 x 3 unit matrix; J, is a 3 x 4 sum matrix of
a Z vector and a 3 x 3 zero matrix; and J is a 4 x 4 matrix
including the unit vectors along active legs, the vectors from
central point to vertices on platform, and the unit vectors of
rotational axes of Euler angles. Since (J,, J,, J) have no any
partial differential items, the determination of the singularity
of the 4-DOF PMs with 1 rotation and 3 translations is quite
easy.

When the 4-DOF PMs have 3 active legs, the rank of the
determinant of the 4 x 4 general Jacobian matrix J may be
reduced from 4 to 3. Thus, the determination of the singularity
of the 4-DOF PMs with 3 active legs becomes quite easy.

In fact, the singularity analyses of the 4-DOF PMs are far
from being exhaustive. There may be other singularities or
the singular space needed to be determined from J. Since J
is simplified and its determinant rank is reduced to 3, other
singularities or the singular space can be determined easily.
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