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SUMMARY
A novel analytic approach is proposed for determining the
singularities of some four degree of freedom (DOF) parallel
manipulators (PMs). First, the constraint and displacement
of a general 4-DOF PM are analyzed. Second, a common
3 × 4 translational Jacobian matrix Jν and a common 3 × 4
rotational Jacobian matrix Jω are derived, and a 4 × 4 general
Jacobian matrix J of the 4-DOF PMs is derived from Jν and
Jω. Since a complicated process to determine singularities
from the 4 × 6 Jacobian matrix is transformed into a simple
process to determine singularity from J, the singularities of
the some 4-DOF PMs with 3 translations and 1 rotation,
or with 3 rotations and 1 translation, or with combined
translation–rotations are analyzed and determined easily by
this approach.

KEYWORDS: Parallel manipulator; Singularity; Jacobian
matrix.

1. Introduction
The four degree of freedom (DOF) parallel manipulators
(PMs) have been found having larger workspace and more
flexibility than the 3-DOF PMs, so they have attracted much
attention.1–3 However, when the singularities of PMs occur
at some poses, the DOF of a PM may vary, and this results in
some motion errors and malfunctions. A singularity of PMs
must be avoided in path planning or designing better PMs
and parallel machine tools. The determination of singularity
of PMs has been attracted much attention in order to evaluate
the characteristics of PMs and parallel machine tools.1–7

In this aspect, Huang et al. derived a geometry condition
for discriminating singularity and proposed a singularity
principle of PMs.2–4 Merlet5 introduced Grassmann line
into geometry to find the singularity for Stewart PM.
Gosselin et al. analyzed the singularity loci of a spherical
3-DOF PM and a 5-DOF PM, and studied an uncertainty
singularity of PMs and singularity of a 3-leg 6-DOF PM
by line geometry.6–10 Sandipan and Ashitava analyzed
singularity space of PMs and a geometric characterization
and parametric representation of the singularity manifold of
a 6–6 Stewart PM.11,12 Gallardo-Alvarado et al. analyzed
singularity of a 4-DOF PM by screw theory.13 Gregorio
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explored forward problem singularity in PMs which generate
SX–YS–ZS structures.14 Zhao et al. analyzed the singularity
of PM with terminal constraints.15 Ider presented inverse
dynamics of PMs in the presence of drive singularities.16

Wolf et al. analyzed singularity of a 3-DOF CaPaMan
PM by line geometry and linear complex.17 Anjan et al.
studied singularity-free path-planning of some PMs.18–21 Lu
et al. determined singularities of some PMs by Computer
Aided Design (CAD) variation geometry.22 Each of the
above mentioned approaches has its merit for determining
singularity. However, since the Jacobian matrix of the 4-
DOF PMs is a 4 × 6 rectangle matrix and includes partial
differential items which are difficult to be transformed into
algebra item, the determinant of the Jacobian matrix is hard
to solve when determining the singularity of the 4-DOF PMs.

This paper focuses on a new analytic approach for
analyzing singularities of the 4-DOF PMs by using a 3 × 4
translational Jacobian matrix and a 3 × 4 rotational Jacobian
matrix. A 4 × 6 Jacobian matrix is transformed into a
4 × 4 general Jacobian matrix from translational/rotational
Jacobian matrices. Since each of the partial differential items
in these Jacobian matrices can be easily transformed into an
algebra item, the singularity analyses of the 4-DOF PMs
with 3 translations and 1 rotation, or 3 rotations and 1
translation, or combinations of translations and rotations can
be are simplified obviously and some singularities can be
determined easily.

2. Unified Kinematics Analyses of 4-DOF PMs

2.1. Inverse displacement
The 4-DOF PMs may be classified as the 4-DOF PM with
1T3R, the 4-DOF PM with 2T2R, and the 4-DOF PM with
3T1R according to its motion characteristics. Here, T is
translation and R is rotation. According to the number of
legs, 4-DOF PMs may be classified as the 4-DOF PM with 4
linear active legs24,25 and the 4-DOF PM with 3 linear active
legs and a rotational actuator.26

A general 4-DOF PM includes a fixed base B, a moving
platform m, and 3 or 4 linear active legs ri(i = 1, . . . , 3 or 4)
with the linear actuators, as shown in Fig. 1. Where m is
regular polygon with 3 or 4 vertices bi , 3 or 4 sides li , and a
central point o. B is regular polygon with 3 or 4 vertices Bi , 3
or 4 sides Li , and a central point O. Each of ri connects m at
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Fig. 1. A general 4-DOF PM with Euler rotations XZX.

a point bi with B at point Bi . Let {m} be a coordinate o-xyz
fixed on m at central point o. Let {B} be a coordinate O-XYZ
fixed on B at central point O. Let ‖ be the parallel constraint,
⊥ be the perpendicular constraint.

Before determining the singularities of some 4-DOF PMs,
their common inverse displacement should be analyzed. The
position vector Bi of point Bi in {B} and the position vectors
mbi and bi of point bi in {m} and {B} are expressed in ref.
[23] as follows:

Bi =

⎡
⎢⎣

XBi

YBi

ZBi

⎤
⎥⎦ , mbi =

⎡
⎢⎣

xbi

ybi

zbi

⎤
⎥⎦ , bi =

⎡
⎢⎣

Xbi

Ybi

Zbi

⎤
⎥⎦ , o =

⎡
⎢⎣

Xo

Yo

Zo

⎤
⎥⎦ ,

B
mR =

⎡
⎢⎣

xl yl zl

xm ym zm

xn yn zn

⎤
⎥⎦ , bi = B

mRmbi + o. (1)

Here, o is a position vector of point o on m in {B},
(Xo, Yo, Zo) are the components of o; B

mR is a rotation
transformation matrix from {m} to {B}; (xl , xm, xn, yl ,
ym, yn, zl , zm, zn) are the orientation parameters of m, their
constrained equations can be obtained from refs. [23, 24].

The length ri(i = 1, 2, 3 or 4) and the unit vectors δi of
active legs in {B}, and the vectors ei from the center o of
m to the joint bi on m in {B} can be solved from Eq. (1) as
follows:

ri = |bi − Bi | , δi = (bi − Bi)
/
ri = [δix δiy δiz]

T ,

ei = bi − oi = [eix eiy eiz ]T . (2)

Let sϕ = sin ϕ, cϕ = cos ϕ, tϕ = tan ϕ, here ϕ may be
one of Euler angles (α, β, γ ) of m. Let C1, C2 and C3 be
the unit vectors of rotational axes of (α, β, γ ), respectively.
Each of (xl, xm, xn, yl, ym, yn, zl, zm, zn, C1, C2 and C3) can
be expressed by (α, β, γ ) in ref. [23]. Let xi (i =
1, 2, 3, 4) be 4 independent pose parameters of m, xi ∈
(Xo, Yo, Zo, α, β, γ ).

Generally, the platform m of a limited-DOF PM with
(n ≤ 6) DOFs is applied by n active wrenches from
n actuators and is exerted 6-n passive constraints from
mechanism structures.23,24 Hence, the platform m of a 4-
DOF PM is applied by 4 active wrenches and is exerted
2 structure (passive) constraints. Based on 2 structure
(passive) constraints, 2 independent constraint equations can
be derived. After that, xi can be determined from the 2
independent constrained equations. Thus, extension ri and
the unit vector δi of active legs, and the vectors ei from the
central point o to the joints bi on m can be expressed by
xi . Each of (Xo, Yo, Zo, α, β, γ ) can be expressed by xi as
follows:

Xo = Xo(x1, x2, x3, x4), Yo = Yo(x1, x2, x3, x4),

Zo = Zo(x1, x2, x3, x4), α = α(x1, x2, x3, x4), (3)

β = β(x1, x2, x3, x4), γ = γ (x1, x2, x3, x4).

2.2. Inverse/forward velocity and Jacobian matrix
Differentiating each of (Xo, Yo, Zo, α, β, γ ) with respect to
time t, it leads to

Ẋo =
4∑

i=1

∂Xo

∂xi

ẋi , Ẏo =
4∑

i=1

∂Yo

∂xi

ẋi , Żo =
4∑

i=1

∂Zo

∂xi

ẋi ,

α̇ =
4∑

i=1

∂α

∂xi

ẋi , β̇ =
4∑

i=1

∂β

∂xi

ẋi , γ̇ =
4∑

i=1

∂γ

∂xi

ẋi . (4)

Let V be a general forward velocity of m at o, ν, and ω

be a linear velocity and an angular velocity of m at its
center, respectively. Let νe be an equivalent velocity of
xi(i = 1, . . . , 4). They can be expressed as follows:

V =
[

ν

ω

]
, ν =

⎡
⎢⎣

Ẋo

Ẏo

Żo

⎤
⎥⎦, ω =

⎡
⎢⎣

ωx

ωy

ωz

⎤
⎥⎦, νe =

⎡
⎢⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎥⎥⎦.

(5)

ν can be expressed from Eqs. (4) and (5) as follows:

ν = Jννe,

Jν = [
Jν1 Jν2 Jν3 Jν4

]
(6)

=

⎡
⎢⎣

∂Xo/∂x1 ∂Xo/∂x2 ∂Xo/∂x3 ∂Xo/∂x4

∂Yo/∂x1 ∂Yo/∂x2 ∂Yo/∂x3 ∂Yo/∂x4

∂Zo/∂x1 ∂Zo/∂x2 ∂Zo/∂x3 ∂Zo/∂x4

⎤
⎥⎦ .

Here Jν is a 3 × 4 translational Jacobian matrix.
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ω can be expressed from Eq. (4) as follows:

ω = C

⎡
⎢⎣

α̇

β̇

γ̇

⎤
⎥⎦ = Jωνe,

C = [C1 C2 C3 ] =

⎡
⎢⎣

c1x c2x c3z

c1y c2y c3z

c1z c2z c3z

⎤
⎥⎦ , (7)

Jω = [
Jω1 Jω2 Jω3 Jω4

]

= C

⎡
⎢⎣

∂α/∂x1 ∂α/∂x2 ∂α/∂x3 ∂α/∂x4

∂β/∂x1 ∂β/∂x2 ∂β/∂x3 ∂β/∂x4

∂γ /∂x1 ∂γ /∂x2 ∂γ /∂x3 ∂γ /∂x4

⎤
⎥⎦ .

Here Jω is a 3 × 4 rotational Jacobian matrix. Combining
Eq. (6) with Eq. (7), it leads to

V = Jeνe,

Je =
[

Jν

Jω

]
=

[
Jν1 Jν2 Jν3 Jν4

Jω1 Jω2 Jω3 Jω4

]
6×4

.
(8)

Here Je is a 6 × 4 equivalent Jacobian matrix.
The scalar velocities vri of ri along ri can be obtained from

ref. [23] as follows:

vri = [ δT
i (ei × δi)T ]V. (9)

When given 4 input translational displacements ri(i =
1, 2, 3, 4) along the active legs of the 4-DOF PM with 4
active legs, an input displacement vector X in and its velocity
vector νin are expressed as follows:

X in = [r1 r2 r3 r4 ]T ,

νin = [νr1 νr2 νr3 νr4 ]T . (10)

When given V , νin of the 4-DOF PM with 4 active legs is
derived from Eq. (8) to Eq. (10) as follows:

νin = 4Jr V = 4JrJeνe = Jνe,

νe = J−1νin, J = [4Jr ]4×6[Je]6×4,

νin =

⎡
⎢⎢⎢⎣

νr1

νr2

νr3

νr4

⎤
⎥⎥⎥⎦ ,4Jr =

⎡
⎢⎢⎢⎣

δT
1 (e1 × δ1)T

δT
2 (e2 × δ2)T

δT
3 (e3 × δ3)T

δT
4 (e4 × δ4)T

⎤
⎥⎥⎥⎦

4×6

. (11)

Here J is a 4 × 4 general Jacobian matrix, and J−1 exists.

J for the 4-DOF PM with 4 active legs can be expanded from
Eqs. (8) and (11) as follows:

J = 4JrJe = (4Jr )4×6

[
Jν1 Jν2 Jν3 Jν4

Jω1 Jω2 Jω3 Jω4

]
6×4

=

⎡
⎢⎢⎢⎣
J11 J12 J13 J14

J21 J22 J23 J24

J31 J32 J33 J34

J41 J42 J43 J44

⎤
⎥⎥⎥⎦,

Jij = δT
i Jνj + (ei × δi)T Jωj ,

i = 1, . . . , 4; j = 1, . . . , 4.

(12)

When given an input rotational angle α about C1 and 3 input
extensions ri (i = 1, 2, 3) of active legs for the 4-DOF PMs
with 3 active legs, X in and νin are expressed from Eq. (7) as
follows:

X in = [r1 r2 r3 α ]T ,

νin = [νr1 νr2 νr3 α̇ ]T ,

⎡
⎢⎣

α̇

β̇

γ̇

⎤
⎥⎦ = C−1ω =

⎡
⎢⎣

c1x c2x c3x

c1y c2y c3y

c1z c2z c3z

⎤
⎥⎦

−1 ⎡
⎢⎣

ωx

ωy

ωz

⎤
⎥⎦ , (13)

α̇ = [(c2yc3z−c3yc2z)ωx + (c3xc2z−c2xc3z)ωy

+ (c2xc3y−c3xc2y)ωz]/ |C| .
When given V , νin of the 4-DOF PM with 3 active legs is
derived from Eqs. (9) and (13) as follows:

νin = 3Jr V = 3JrJeνe = Jνe,

νe = J−1νin, J = [3Jr ]4×6[Je]6×4.

3Jr =

⎡
⎢⎢⎢⎣

δT
1 (e1 × δ1)T

δT
2 (e2 × δ2)T

δT
3 (e3 × δ3)T

0 K T

⎤
⎥⎥⎥⎦ , (14)

K = 1

|C|

⎡
⎢⎣

c2yc3z − c3yc2z

c3xc2z − c2xc3z

c2xc3y − c3xc2y

⎤
⎥⎦ .

The general Jacobian matrix J for the 4-DOF PM with 3
active legs can be expanded from Eqs. (8) and (14) as follows:

J = 3JrJe = (3Jr )4×6

[
Jν1 Jν2 Jν3 Jν4

Jω1 Jω2 Jω3 Jω4

]
6×4

=

⎡
⎢⎢⎢⎣

J11 J12 J13 J14

J21 J22 J23 J24

J31 J32 J33 J34

J41 J42 J43 J44

⎤
⎥⎥⎥⎦ , (15)

Jij = δT
i Jνj + (ei × δi)T Jωj ,

J4j = K T Jωj ,

i = 1, 2, 3,

j = 1, . . . , 4.
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When given νin, V can be derived from Eqs. (8), (11) and
(14) as follows:

V = JeJ−1νin, νin = Jve. (16)

Thus, a complicated process to determine singularities of
the 4 × 6 Jacobian matrix Jr is transformed into a simple
process to determine singularity of the 4 × 4 general Jacobian
matrix J.

3. Singularity Analyses
Let |J| denote the determinant of the general Jacobian matrix
J. The singularities of the 4-DOF PMs have been classed into
following 3 types according to Eq. (16):1

(1) When |J| = 0, the boundary singularities of the 4-DOF
PMs occur;

(2) When |J| → ∞, the local singularities of the 4-DOF PMs
occur;

(3) When |J| → 0/0, the structure singularities of the 4-DOF
PMs occur.

Based on Eqs. (12) and (15) and the above three types of
singularities, some singularities of the 4-DOF PMs with 4
legs or 3 legs can be analyzed and determined as follows.

3.1. General Jacobian matrix J of 3T1R 4-DOF PM
When the platform of the 4-DOF PM in {B} has 3 translations
(Xo, Yo, Zo) and a rotation α about Z, (x1, x2, x3, x4) and
their velocity vector νe are expressed as follows:

x1 = Xo, x2 = Yo, x3 = Zo, x4 = α,

νe = [Ẋo Ẏo Żo α̇ ]T . (17)

The 3 × 4 translational Jacobian matrix Jν is derived from
Eqs. (6) and (17) as below,

Jν = [
Jν1 Jν2 Jν3 Jν4

]

=

⎡
⎢⎣

∂Xo/∂Xo ∂Xo/∂Yo ∂Xo/∂Zo ∂Xo/∂α

∂Yo/∂Xo ∂Yo/∂Yo ∂Yo/∂Zo ∂Yo/∂α

∂Zo/∂Xo ∂Zo/∂Yo ∂Zo/∂Zo ∂Zo/∂α

⎤
⎥⎦

=

⎡
⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

⎤
⎥⎦ .

(18)

Suppose that platform of the 4-DOF PM in {B} rotate in an
order ZXY, the 3 × 4 rotational Jacobian matrix Jω is derived

from Eqs. (7) and (17) as follows:

Jω = [ Jω1 Jω2 Jω3 Jω4 ],

= C

⎡
⎢⎣

∂α/∂Xo ∂α/∂Yo ∂α/∂Zo ∂α/∂α

∂β/∂Xo ∂β/∂Yo ∂β/∂Zo ∂β/∂α

∂γ /∂Xo ∂γ /∂Yo ∂γ /∂Zo ∂γ /∂α

⎤
⎥⎦ ,

=

⎡
⎢⎣

0 cα −sα

0 sα cα

1 0 0

⎤
⎥⎦

⎡
⎢⎣

0 0 0 1

0 0 0 0

0 0 0 0

⎤
⎥⎦ (19)

=

⎡
⎢⎣

0 0 0 0

0 0 0 0

0 0 0 1

⎤
⎥⎦ .

The general Jacobian matrix J for the 4-DOF PM with 4
active legs is derived from Eqs. (12), (18), and (19) as,

J = 4JrJe = 4Jr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

δ1x δ1y δ1z e1xδ1y − e1yδ1x

δ2x δ2y δ2z e2xδ2y − e2yδ2x

δ3x δ3y δ3z e3xδ3y − e3yδ3x

δ4x δ4y δ4z e4xδ4y − e4yδ4x

⎤
⎥⎥⎥⎦ . (20)

The general Jacobian matrix J for the 4-DOF PM with 3
active legs is derived from Eqs. (15), (18), and (19) as,

J = 3JrJe = 3Jr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

δ1x δ1y δ1z e1xδ1y − e1yδ1x

δ2x δ2y δ2z e2xδ2y − e2yδ2x

δ3x δ3y δ3z e3xδ3y − e3yδ3x

0 0 0 1

⎤
⎥⎥⎥⎦ , (21)

K = [ 0 0 1 ]T .

3.2. Singularity analyses of a 2UPU+RRPU PM
A 4-DOF overconstrained 2UPU+RRPU PM24 is developed
in Yanshan University, as shown in Fig. 2. It has 4 DOFs
corresponding to 3 translations and 1 rotation about Z. Hence,
this PM is one type of the 3T1R 4-DOF PMs with 3 active
legs. This PM includes a moving platform m, a fixed base B, 2
(UPU) (universal joint-active prismatic joint-universal joint)
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Fig. 2. A overconstrained 2UPU+RRPU PM.

legs with a linear actuator, and an RRPU (active revolute
joint-revolute joint-active prismatic joint-universal joint) leg
with a rotational actuator and a linear actuator. Here, m is
a regular triangle with 3 vertices bi(i = 1, 2, 3) and 3 sides
li = l and a central point o; B is a regular triangle with 3
vertices Bi and 3 sides Li = L and a central point O. Since
this PM has 3 legs and 4 DOFs corresponding to 1 rotation
and 3 translations, it is simpler in structure and has less
potential interference than some 4-DOF PMs with 4 active
legs.
The determination |J| can be derived from Eq. (21) as follow:

|J| =

∣∣∣∣∣∣∣∣∣

δ1x δ1y δ1z e1xδ1y − e1yδ1x

δ2x δ2y δ2z e2xδ2y − e2yδ2x

δ3x δ3y δ3z e3xδ3y − e3yδ3x

0 0 0 1

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
δ1x δ1y δ1z

δ2x δ2y δ2z

δ3x δ3y δ3z

∣∣∣∣∣∣∣
= 0. (22)

Some singularities of the 2UPU+RRPU PM can be
determined from Eq. (22) as follows:

(1) When δix = 0(i = 1, 2, 3), |J| = 0 is satisfied. In this
case, when l2 = L2, each of the active legs ri(i = 1, 2, 3)
may locate in the planes parallel with O-YZ, a singularity
occurs. Similarly, when l1 = L1 or l3 = L3, other two
symmetry singularities can be determined.

(2) When δiy = 0(i = 1, 2, 3), |J| = 0 is satisfied. In this
case, when a line from b2 to middle point of l2 is the
same as a line from B2 to middle point of L2, the two
active legs (r1 and r3) may locate in one plane parallel
with O-XZ, and leg r2 may locate in the other plane
parallel with O-XZ, and a singularity occurs. Similarly,
when a line from bi to middle point of li is the same as
a line from Bi to middle point of Li(i = 1, 3), other two
singularities can be determined.

(3) When δiz = 0(i = 1, 2, 3), |J| = 0 is satisfied. In this
case, when the platform and the base are coplanar, a
singularity occurs.

(4) When δ1 = δ3, |J| = 0 is satisfied. In this case, when
α = 0◦ and l2 = L2, a singularity occurs. Similarly, when
α = 0◦ and l1 = L1, or α = 0◦ and l3 = L3, other two
singularities occur.

(5) When δ1 = δ1 = δ3, |J| = 0 is satisfied. In this case,
when li = Li(i = 1, 2, 3), a singularity occurs.

(6) When ei = 0(i = 1, 2, 3), |J| = 0 is satisfied. In this
case, when platform becomes a point o, a singularity
occurs.

3.3. General Jacobian matrix J of 3R1T 4-DOF PMs
When a 4-DOF PM such as 4 SPS (spherical joint-
active prismatic joint-spherical joint) + PS (prismatic joint-
spherical joint) PM has 3 Euler rotations (α, β, γ ) and a
translation along Z, (x1, x2, x3, x4) and their velocity vector
ve are expressed as follows:

x1 = Zo, x2 = α, x3 = β, x4 = γ,

νe = [Żo α̇ β̇ γ̇ ]T . (23)

The 3 × 4 translational Jacobian matrix Jν is derived from
Eqs. (6) and (23) as follows:

Jν = [ Jν1 Jν2 Jν3 Jν4 ] =

⎡
⎢⎣

0 0 0 0

0 0 0 0

1 0 0 0

⎤
⎥⎦ . (24)

The 3 × 4 translational Jacobian matrix Jω is derived from
Eqs. (7) and (23) as follows:

Jω = C

⎡
⎢⎣

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎦ = [

0 C1 C2 C3
]
. (25)

The general Jacobian matrix J for the 3R1T 4-DOF PM with
4 active legs is derived from Eqs. (12), (24), (25) as follows:

J = 4JrJe = 4Jr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

1 0 0 0

0 c1x c2x c3x

0 c1y c2y c3y

0 c1z c2z c3z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

δ1z (e1 × δ1)T C1 (e1 × δ1)T C2 (e1 × δ1)T C3

δ2z (e2 × δ2)T C1 (e2 × δ2)T C2 (e2 × δ2)T C3

δ3z (e3 × δ3)T C1 (e3 × δ3)T C2 (e3 × δ3)T C3

δ4z (e4 × δ4)T C1 (e4 × δ4)T C2 (e4 × δ4)T C3

⎤
⎥⎥⎥⎦ .

(26)

The general Jacobian matrix J of the 3R1T 4-DOF PM with
3 active legs is derived from Eqs. (15), (24), and (25) as
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Fig. 3. A 4 SPS+PS PM and it’s a singularity.

follows:

J = 3JrJe = 3Jr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

1 0 0 0

0 c1x c2x c3x

0 c1y c2y c3y

0 c1z c2z c3z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣
δ1z (e1 × δ1)T C1 (e1 × δ1)T C2 (e1 × δ1)T C3

δ2z (e2 × δ2)T C1 (e2 × δ2)T C2 (e2 × δ2)T C3

δ3z (e3 × δ3)T C1 (e3 × δ3)T C2 (e3 × δ3)T C3

0 1 0 0

⎤
⎥⎥⎥⎦ .

(27)

3.4. Singularity analyses of a 4 SPS+PS PM
A 4-DOF 4 SPS+PS PM is one type of the 3R1T 4-DOF PM
with 4 active legs (see Fig. 3a).

It includes a moving platform m, a fixed base B, and 4 SPS
legs with a linear actuator, and a PS passive constrained leg.
Here, m is a rectangle quaternary with a short side l1, a long
side l2, 4 vertices bi , and a central point o. B is a square with
side Li = L, 4 vertices Bi , and a central point O. Each of ri

connects m with B by spherical joint S on m at bi , a leg ri

with an active prismatic joint P, and S on B at Bi . ro connects

m with B by a S on m at o, a passive prismatic joint P on B at
O, and a geometric constraint ro⊥B is satisfied.

Some singularities of the 4 SPS+PS PM can be determined
from Eq. (26) as follows:

(1) When δiz = 0(i = 1, 2, 3, 4), |J| = 0 is satisfied. In
this case, when platform and the base are coplanar, a
singularity occurs.

(2) When ei = 0 and δiz = 0 (i = 1 or 2 or 3 or 4), |J| = 0 is
satisfied. In this case, when one of vertices bi coincides
with o and locates in the base, a singularity occurs.

(3) When ei = 0 or Ei = 0 (i = 1, 2, 3, 4), δi(i = 1, . . . , 4)
become dependent each other, |J| = 0 is satisfied. In
this case, when platform become one point o or B
becomes one point o, δi must intersect to one point, two
singularities occur.

(4) When δi(i = 1, . . . , 4) interest at one point, and
|J| = 0 is satisfied. In this case, when (li = l, Li =
L, and m||B, i = 1, . . . , 4), a singularity occurs.

(5) When one of δi(i = 1, . . . , 4) is zero, |J| = 0/0 is
satisfied. In this case, one of ri is zero, a singularity
occurs.

(6) When ei × δi = 0(ei 
= 0), and δiz = 0 (i =
1 or 2 or 3 or 4), |J| = 0 is satisfied. In this case,
when one of ri(i = 1, . . . , 4) pass through the center
point O of base, a singularity occurs.

(7) When ei × δi 
= 0 and (ei × δi)T Cj = 0 (i = 1, 4
or 2, 3; j = 1, 2, 3), |J| = 0 is satisfied. As i = 1, 4,
from Eq. (26), it leads to

|J| =

∣∣∣∣∣∣∣∣∣

δ1z 0 0 0

δ2z (e2 × δ2)T C1 (e2 × δ2)T C2 (e2 × δ2)T C3

δ3z (e3 × δ3)T C1 (e3 × δ3)T C2 (e3 × δ3)T C3

δ4z 0 0 0

∣∣∣∣∣∣∣∣∣
= 0. (28)

In this case, the plane including ei and δi(i = 1, 4) must
be perpendicular to the 3 vectors Cj (j = 1, 2, 3). Suppose
that the platform m rotates by Euler order XZX, thus C1 and
X being collinear, C2 and Z1 (formed from Z about X by
an angle α) being collinear, and C3||x are satisfied. Hence,
when (B1, b1, b4, B4) locate a plane of m and is parallel with
a plane including Cj (j = 1, 2, 3), a singularity occurs, as
shown in Fig. 3b. Similarly, other 3 symmetry singularities
can be determined.

3.5. Singularity analyses of a 4 SPS+SP PM
A 4-DOF 4 SPS+SP PM25 is similar to the 4-DOF 4 SPS+PS
PM, except that the platform m and the base B are exchanged
each other in their functions and positions. However, the
position workspace of the platform is enlarged obviously. A
prototype of the 4-DOF 4 SPS+SP PM is built in Yanshan
University, as shown in Fig. 4.

Since the configuration of the 4-DOF 4 SPS+SP PM
is an inverse configuration of the 4 SPS+PS PM, some
singularity configurations of the 4-DOF 4 SPS+SP PM
must be the inverse singularity configurations of the 4
SPS+PS PM. Thus, when sizes of m and B are exchanged
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Fig. 4. A prototype of a 4 SPS+SP PM.

Fig. 5. A 2 SPS+RRPR PM.

each other, the singularities of the 4-DOF 4 SPS+SP PM
are similar to that of the 4-DOF 4 SPS+SP PM, except
that when (B1, b1, b4, B4) locate a plane of base B and
parallel with planes including Cj (j = 1, 2, 3), a singularity
occurs. Similarly, other 3 symmetry singularities can be
determined.

3.6. Singularity analyses of 4-DOF 2 SPS+RRPR PM
A 2 SPS+RRPR PM26 is one type of 4-DOF PMs with 3
active legs, as shown in Fig. 5.

This PM is composed of a moving platform m, a fixed
base B, and 2 SPS active legs ri(i = 1, 3) with the linear
actuators, and an RRPR (active revolute joint-revolute joint-
active prismatic joint-revolute joint) constrained active leg r2

with a rotational actuator and a linear actuator. Here, m and B
are the same as that of 4-DOF overconstrained 2UPU+RRPU
PM. Each of ri(i = 1, 3) connects m to B by a spherical joint
S at bi , an active leg ri with a prismatic joint P, and a spherical
joint S at Bi . The RRPR constrained active leg r2 connects m
to B by a revolute joint R3 attached to m at b2, a constrained

active leg r2 with a prismatic joint P, and a universal joint U
attached to B at B2. The universal joint U at B2 is composed
of two cross-revolute joints R1 and R2. In structure, there are
following geometric constraints: R1 and the axis of motor
are collinear, R3 and y are collinear; R1||Z, R1⊥B, R2⊥R1,
R2⊥R3, R2⊥r2, and R3⊥r2. Since each of the SPS active legs
ri(i = 1, 3) only bears the active force along ri , it obviously
has relative larger capacity of load bearing and is simple in
structure.

The vector Bi of Bi in {B} and the vectors bi of bi in {B}
are expressed in ref. [26] as follows:

b1 = 1

2

⎡
⎢⎣

qexl − eyl + 2Xo

qexm − eym + 2Yo

qexn − eyn + 2Zo

⎤
⎥⎦ , b2 =

⎡
⎢⎣

eyl + Xo

eym + Yo

eyn + Zo

⎤
⎥⎦ ,

b3 = 1

2

⎡
⎢⎣

−qexl − eyl + 2Xo

−qexm − eym + 2Yo

−qexn − eyn + 2Zo

⎤
⎥⎦ , q =

√
3, (29)

B1 = E

2

⎡
⎢⎣

q

−1

0

⎤
⎥⎦, B2 =

⎡
⎢⎣

0

E

0

⎤
⎥⎦, B3 = E

2

⎡
⎢⎣

−q

−1

0

⎤
⎥⎦ .

When a 2 SPS+RRPR PM has 3 rotations (a, β, γ ) and
a translation along Z, there are x1 = Zo, x2 = α, x3 = β,
x4 = γ , and their velocity vector νe are expressed as Eq.
(23).

Suppose that platform rotate in order ZXY, B
mR is expressed

in ref. [26] as below,

B
mR =

⎡
⎢⎣

−sαsβsγ + cαcγ −sαcβ sαsβcγ + cαsγ

cαsβsγ + sαcγ cαcβ −cαsβcγ + sαsγ

−cβsγ sβ cβcγ

⎤
⎥⎦ .

(30)

Two pose parameters Xo and Yo can be expressed by
(Zo, α, β) and have been derived in ref. [26] as follows:

Xo = sα(e + Zosβ)/cβ, Yo = E − cα(e + Zosβ)/cβ.

(31)

The 3 × 4 translational Jacobian matrix Jν is derived from
Eqs. (6), (23), and (30) as below,

Jν =

⎡
⎢⎣

sαtβ cα(e + Zosβ)/cβ sα(Zo + esβ)/c2
β 0

−cαtβ sαcβ(e + Zosβ)/cβ −cα(Zo + esβ)/c2
β 0

1 0 0 0

⎤
⎥⎦.

(32)

Since C1 and Z being collinear, C2 and X1 (formed from
X about Z by an angle α) being collinear, and C3||y2 are
satisfied, the matrix C and the vector K have been derived in
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ref. [26] as follows:

C = [
C1 C2 C3

] =

⎡
⎢⎣

0 cα −sαcβ

0 sα cαcβ

1 0 sβ

⎤
⎥⎦ ,

K =

⎡
⎢⎣

sαtβ

−cαtβ

1

⎤
⎥⎦ . (33)

A 3 × 4 translational Jacobian matrix Jω is derived from Eqs.
(7), (23), and (33) as below,

Jω = C

⎡
⎢⎣

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎦ =

⎡
⎢⎣

0 0 cα −sαc
β

0 0 sα cαcβ

0 1 0 sβ

⎤
⎥⎦ . (34)

The general 4 × 4 Jacobian matrix J can be derived from
Eqs. (15), (31), and (33) as below,

J = 3JrJe

= 3Jr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sαtβ
cα

cβ

(e + Zosβ)
sα

c2
β

(Zo + esβ) 0

−cαtβ
sα

cβ

(e + Zosβ) −cα

c2
β

(Zo + esβ) 0

1 0 0 0

0 0 cα −sαcβ

0 0 sα cαcβ

0 1 0 sβ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(35)

Some items in J can be expressed as follows:

J11 = (δ1xsα − δ1ycα)tβ + δ1z,

J13 = (e1 × δ1)T C2 + (δ1xsα − δ1ycα)(Zo + esβ)/c2
β,

J14 = (e1 × δ1)T C3, J21 = (δ2xsα − δ2ycα)tβ + δ2z,

J23 = (e2 × δ2)T C2 + (δ2xsα − δ2ycα)(Zo + esβ)/c2
β,

J24 = (e2 × δ2)T C3 = 0, J31 = (δ3xsα − δ3ycα)tβ + δ3z,

J33 = (e3 × δ3)T C2 + (δ3xsα − δ3ycα)(Zo + esβ)/c2
β,

J34 = (e3 × δ3)T C3, J41 = J43 = J44 = 0, J42 = 1.

(36)

The length ri (i = 1, 2, 3) and the unit vectors δi of active
legs in {B}, and the vectors ei from the center o of m to the
joint bi on m in {B} have been derived in ref [26].

Determinant |J| can be simplified from Eqs. (35) and (36)
as below,

|J| =

∣∣∣∣∣∣∣
J11 J13 J14

J21 J23 J24

J31 J33 J34

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
J11 J13 J14

J21 J23 0

J31 J33 J34

∣∣∣∣∣∣∣
. (37)

Some singularities of the 2 SPS+RRPR PM can be
determined from Eq. (35)–(37) as follows:

(1) When β = 90◦, |J| → ∞ is satisfied. In this case, Xo →
∞, Yo → ∞, a local singularity occurs.

(2) When δi = 0 (i = 1 or 2 or 3), |J| = 0 is satisfied. In this
case, ri = 0 (i = 1 or 2 or 3), a singularity occurs.

(3) When e1 = e3 = 0, |J| = 0 is satisfied. In this case,
platform m becomes a line ob2, a singularity occurs.

(4) When (e1 × δ1)T C3 = (e3 × δ3)T C3 = 0, |J| = 0 is
satisfied. In this case, side l2 = 0, a singularity occurs.

(5) When Zo = −esβ and (ei × δi)T C2 = 0 (i = 1, 2, 3),
|J| = 0 is satisfied. In this case, a singularity occurs.

(6) When (δiycα − δixsα)tβ = δiz(i = 1, 2, 3), |J| = 0 is
satisfied. In this case, a singularity occurs.

These singularities may be only a part of the whole
singularities of the 2 SPS+RRPR PM. Other singularities
of this PM can be also determined from Eqs. (34)–(37).

4. Conclusions
A common 3 × 4 translational Jacobian matrix Jν without
partial differential items and a common 3 × 4 rotational
Jacobian matrix Jω without partial differential items for the 4-
DOF PMs can be derived separately. A 4 × 6 Jacobian matrix
J with partial differential items can be transformed into a
4 × 4 general Jacobian matrix J without partial differential
items by means of Jν and Jω. Thus, the singularities of the
4-DOF PMs can be determined easily by J.

When the 4-DOF PMs have 3 translations and 1 rotation
about Z, Jν is a 3 × 4 sum matrix of a 3 × 3 unit matrix and a
zero vector; Jω is a 3 × 4 sum matrix of a 3 × 3 zero matrix
and a Z vector; and J is a 4 × 4 matrix only including the unit
vectors along active legs and the vectors from central point
to vertices on platform. Since (Jν , Jω, J) have no any partial
differential items, the determination of the singularity of the
4-DOF PMs with 3 translations and 1 rotation is easiest.

When the 4-DOF PMs have 1 translation along Z and 3
Euler rotations, Jν is a 3 × 4 sum matrix of a 3 × 1 zero
vector and a 3 × 3 unit matrix; Jω is a 3 × 4 sum matrix of
a Z vector and a 3 × 3 zero matrix; and J is a 4 × 4 matrix
including the unit vectors along active legs, the vectors from
central point to vertices on platform, and the unit vectors of
rotational axes of Euler angles. Since (Jν , Jω, J) have no any
partial differential items, the determination of the singularity
of the 4-DOF PMs with 1 rotation and 3 translations is quite
easy.

When the 4-DOF PMs have 3 active legs, the rank of the
determinant of the 4 × 4 general Jacobian matrix J may be
reduced from 4 to 3. Thus, the determination of the singularity
of the 4-DOF PMs with 3 active legs becomes quite easy.

In fact, the singularity analyses of the 4-DOF PMs are far
from being exhaustive. There may be other singularities or
the singular space needed to be determined from J. Since J
is simplified and its determinant rank is reduced to 3, other
singularities or the singular space can be determined easily.
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