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In this paper, we study under what boundary conditions the inequality

‖∇ω‖2
L2(Ω)

� C(‖ curl ω‖2
L2(Ω)

+ ‖div ω‖2
L2(Ω)

+ ‖ω‖2
L2(Ω)

)

holds true. It is known that such an estimate holds if either the tangential or normal
component of ω vanishes on the boundary ∂Ω. We show that the vanishing tangential
component condition is a special case of a more general one. In two dimensions, we
give an interpolation result between these two classical boundary conditions.
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1. Introduction

In this paper, we study the estimate

‖∇ω‖2
L2(Ω) � C(‖ curlω‖2

L2(Ω) + ‖divω‖2
L2(Ω) + ‖ω‖2

L2(Ω)), (1)

where ω ∈ H1(Ω)n is a vector field (n = 2, 3 in most applications) and C is a con-
stant independent of ω. H1(Ω)n denotes the Sobolev space of vector fields, whose
components and all its derivatives are L2 integrable. It is well known that such an
estimate holds true if either the tangential or normal component of ω vanishes on the
boundary ∂Ω, which we shall call the classical boundary conditions. More precisely,
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if ν is the unit exterior normal vector on ∂Ω, then (1) holds true if

ν × ω = 0 on ∂Ω or 〈ν;ω〉 = 0 on ∂Ω. (2)

These boundary conditions have been studied in great detail and the literature on it
and its applications to physical systems, mainly Maxwell’s equations and Navier–
Stokes equations, is very large. Our aim is to show that some of these classical
boundary conditions can be extended to much more general ones. A particular case
of our main result gives in two dimensions an interpolation between the two classical
boundary conditions (cf. remark 3.3 (ii)).

Let us first mention that inequality (1) cannot hold true without further
restrictions on ω. To see this, take any domain Ω ⊂ R

2 and define for n ∈ N

ωn(x) = (enx1 cos(nx2),−enx1 sin(nx2)).

Then one easily verifies that divωn = 0, curlωn = 0,

|∇ωn(x)|2 = 2n2e2nx1 and |ωn(x)|2 = e2nx1 .

Hence there can be no constant C independent of n such that for all n

2n2

∫
Ω

e2nx1 � C

∫
Ω

e2nx1 . (3)

A similar example works also in higher dimensions.
Some standard references on (1) and its applications are Amrouche-Bernardi-

Dauge-Girault [1], Costabel [8], Dautray–Lions [15], and Grisvard [21]. The
inequality (1) has also been studied in the more general context of differential
forms, where curl is replaced by the d operator, respectively, div is replaced by
δ. In this setting, it is called Gaffney-Friedrichs inequality after Gaffney [17,18],
but for domains with boundary and the classical boundary conditions, it is due to
Morrey [28], [30] or Friedrichs [16]. Proofs of this general version can also be found
in Csató–Dacorogna–Kneuss [13], Iwaniec–Martin [23], Morrey [29], Schwarz [31],
Taylor [32]. Therefore, we will call also (1) Gaffney inequality henceforth.

The first and simplest generalization of the boundary conditions (cf. theorem
2.1) is by mixing the classical ones, namely requiring that on some parts of the
boundary the tangential part vanishes and on other parts, the normal part vanishes.
This result already seems to be known, see for instance Goldsthein–Mitrea [20] or
Jakab–Mitrea–Mitrea [25] and the references therein. We state and indicate a very
simple proof of this result for completeness (cf. theorem 2.1), since it does not
appear explicitly in the references.

First attempts to give more general boundary conditions have been obtained in
Csató–Dacorogna [12], see also Csató [11] for a general version on Riemannian
manifolds. There the authors have proven, in particular, that in three dimensions,
if λ is a given fixed vector field, then there exists a constant C = C(Ω, λ) such that
(1) holds true if

ν × ω = λ〈ν;ω〉 on ∂Ω.

This generalizes the classical condition of vanishing tangential component by setting
λ = 0.
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Our first main result is an even simpler generalization of this classical bound-
ary condition (vanishing tangential component) which additionally has an obvious
geometric interpretation. Namely, theorem 3.2 asserts that (1) holds true if

λ× ω = 0 on ∂Ω, (4)

where again C will depend on λ and Ω. Geometrically, this means that Gaffney
inequality holds true whenever the vector fields ω are collinear with a given fixed
vector field on ∂Ω. This time, setting λ = ν gives the classical boundary condition.
We will prove Gaffney inequality under the condition (4) for Lipschitz domains as
long as λ is C1. Thus, if Ω is not C2 (and thus ν is not C1), this result does not
include the classical boundary condition ν × ω = 0. However, we will give in the
case of domains in R

2 a better result which does not even require λ to be globally
Lipschitz on ∂Ω, see theorem 4.2. A special case of this theorem is, for instance,
Gaffney inequality on polygonial domains with either of the classical boundary
conditions on different parts of the polygon. This is the first step in providing
more general Gaffney inequalities, with simple proof, to be applicable in numerical
analysis. We refer to Arnold–Falk–Winther [2] (§ 7.7) and Bonizzoni–Buffa–Nobile
[5] for a discussion on vector-valued finite element methods and applications of
Gaffney inequality in that setting.

We do not require in any of our results that Ω is convex. This is because we
assume that our vector fields ω are at least in H1(Ω)n. A weaker formulation of the
classical Gaffney inequality for Lipschitz domains requires Ω to be convex. By the
weak formulation, we mean that we assume

ω ∈ HT (div, curl; Ω) = {ω ∈ L2(Ω)n| divω ∈ L2(Ω),

curlω ∈ L2(Ω)n, ν × ω = 0 on ∂Ω}.

Under this hypothesis on ω, Gaffney inequality becomes a regularity result and
states that ω ∈ H1(Ω)n and satisfies the corresponding estimate (1). The same
result holds true if we replaceHT withHN , the space with vanishing normal compo-
nent. The usual approach to prove such regularity results is to use Gaffney inequality
for an approximating sequence {ωk} in H1. The difficulty consists in establishing
ν × ωk = 0 on ∂Ω, using the assumption that ν × ω = 0 on ∂Ω in a weak sense.
This approximation fails for nonconvex domains, which are only Lipschitz and the
regularity statement does not hold true. See, for instance, the remark following the
proof of Theorem 5.1 in Mitrea [26]. This is essentially the same example as the one
for the Laplace equation: it is well known that the solution u of Δu = f , f ∈ L2,
is in general only in H3/2 if Ω is a nonconvex polygonial domain, cf. Grisvard [22].
For more details on these approximation theorems and regularity results, we refer
to Amrouche–Bernardi-Dauge-Girault [1], Belgacem-Bernardi-Costabel-Dauge [4],
Ciarlet-Hazard-Lohrengel [6], Costabel [7], Costabel-Dauge [9] and Girault-Raviart
[19]. For a different approach in proving the classical Gaffney inequality for non-
smooth domains see Mitrea [26], where the inequality is obtained using existence
and regularity of an elliptic boundary value system established in Mitrea [27].

Note that the proof of Theorem 3.2 (Gaffney inequality with condition (4)) would
not simplify if we assumed Ω to be smooth.
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In view of the condition (4), one might expect that the classical condition 〈ν;ω〉 =
0 can be generalized too, by replacing ν with a nonvanishing vector field λ. This
is, however, not true if n � 3 as can be seen by a simple counterexample. It is also
not true that condition (4) generalizes to differential forms of higher order. We give
these counterexamples at the end of this paper.

2. Mixed classical boundary conditions

If Ω is a bounded C1,1 open set with unit exterior normal ν on its boundary ∂Ω
and ω is some vector field, we shall decompose it as

ω = ωT + ωN , where ωN = 〈ω; ν〉ν and ωT = ω − ωN .

Throughout this paper, for vectors fields ω, λ in R
n, the curl and cross product are

defined as vectors in R
(n
2) defined by

(curlω)ij =
∂ωj

∂xi
− ∂ωi

∂xj
and (ω × λ)ij = ωiλj − ωjλi , 1 � i < j � n.

We now state a theorem whose proof is essentially the same as the one presented
in Csató–Dacorogna–Kneuss [13] for the classical Gaffney inequality.

Theorem 2.1. Let n � 2 and Ω ⊂ R
n be a bounded open C1,1 set with exterior unit

normal ν on ∂Ω. Then there exists a constant C = C(Ω) such that

‖∇ω‖2
L2(Ω) � C

(
‖ curlω‖2

L2(Ω) + ‖divω‖2
L2(Ω) + ‖ω‖2

L2(Ω)

)
,

for all ω ∈ H1(Ω)n satisfying

ωT = 0 or ωN = 0 on Γi, ∂Ω =
M⋃
i=1

Γi ,

and Γi are open sets in ∂Ω and M ∈ N.

Remark 2.2. If M = 1 (classical boundary conditions, Γ1 = ∂Ω) and Ω is con-
tractible, then one easily obtains the better estimate

‖∇ω‖2
L2(Ω) � C

(
‖ curlω‖2

L2(Ω) + ‖divω‖2
L2(Ω)

)
,

see Csató–Dacorogna–Kneuss [13] theorems 6.5 and 6.7 (Step 1 of the proof). A
precise treatment of the optimal topological assumptions on the domain for such
an estimate to hold true is carried out in von Wahl [33].

Proof. We will not give a detailed proof. The result follows from [13] theorem 5.7
(see also [21] theorem 3.1.1.1) in the same way as the classical Gaffney inequality:
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Indeed, as in the proof of Theorem 5.16 in [13], one obtains that∫
Ω

((| curlω|2 + |divω|2) �
∫

Ω

|∇ω|2 − C

∫
∂Ω

|ω|2,

and one concludes similarly. The above-mentioned references treat C2 domains but
remain valid without any change for C1,1 domains. See also Step 3 in the first proof
of Proposition 3.4. �

3. The λ × ω = 0 condition

We now state our first main result. We will distinguish the case n = 2 as we will give
in § 4 in the two-dimensional case an improvement of the theorem by weakening
the regularity assumptions . To state the theorem, we need the following definition
(which we will use actually only for Cr,α = C1,0 or C0,1).

Definition 3.1. Let r � 0 be an integer and 0 � α � 1. If Ω is a Lipschitz set
(meaning that ∂Ω is Lipschitz), we say that a function λ : ∂Ω → R is in Cr,α(∂Ω)
if there exists an extension of λ to R

n such that λ ∈ Cr,α(Rn). We make the
convention that Cr,0 = Cr.

Theorem 3.2. Let n � 2, Ω ⊂ R
n be a bounded open Lipschitz set and λ ∈ C1(∂Ω)n

be such that

λ 	= 0 on ∂Ω.

Then there exists a constant C = C(Ω, λ) such that

‖∇ω‖2
L2(Ω) � C(‖ curlω‖2

L2(Ω) + ‖divω‖2
L2(Ω) + ‖ω‖2

L2(Ω)),

for all ω ∈ H1(Ω)n which satisfy

λ× ω = 0 on ∂Ω.

If n = 2 then the same conclusion holds under the weaker regularity assumptions
λ ∈ C0,1(∂Ω)2.

Remark 3.3.

(i) Note that if Ω is a C2 set, then the unit outward normal vector ν is C1 and
the theorem implies the classical boundary condition ν × ω = 0.

(ii) If n = 2, then this theorem interpolates between the two classical boundary
conditions ωT = 0, respectively, ωN = 0. To see this take λ = ν = (ν1, ν2),
respectively, λ = (ν2,−ν1).

(iii) Recall (see remark 2.2) that if Ω is contractible and λ = ν, then in the above
theorem the inequality can be replaced by

‖∇ω‖2
L2(Ω) � C(‖ curlω‖2

L2(Ω) + ‖divω‖2
L2(Ω)),

This is not true for general λ. To see this just notice that one can take
λ ∈ C∞(Ω)n equal to a harmonic field (i.e. curlλ = 0 and div λ = 0) that
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never vanishes on the boundary. Then ω = λ trivially satisfies λ× ω = 0 on
∂Ω. Such non-constant harmonic fields exist, for example, take ω = (x2, x1)
and a domain Ω ⊂ R

2 such that 0 /∈ ∂Ω, so that λ = ω 	= 0 on the boundary.

(iv) If λ is constant then C = 1, see lemma 3.10 or proof of Proposition 3.4.
C = 1 also if λ = ν is normal to ∂Ω and Ω is convex (actually n− 1 convex
is sufficient), see [14], but this requires a different proof.

Proof of Theorem 3.2. We first prove the result for C1 vector fields ω, respectively,
Lipschitz vector fields if n = 2 (cf. proposition 3.4). Theorem 3.2 will then follow
by approximation (cf. proposition 3.15). �

Proposition 3.4. Let n � 2, Ω ⊂ R
n be a bounded open Lipschitz set and λ ∈

C0,1(∂Ω)n be such that λ 	= 0 on ∂Ω. Then there exists a constant C = C(Ω, λ)
such that

‖∇ω‖2
L2(Ω) � C

(
‖ curlω‖2

L2(Ω) + ‖divω‖2
L2(Ω) + ‖ω‖2

L2(Ω)

)
,

for all ω ∈ C1(Ω)n which satisfy λ× ω = 0 on ∂Ω. If n = 2, then the same holds
true if ω ∈ C0,1(Ω)2.

Remark 3.5. Note that in this proposition, we require that λ is only Lipschitz. The
loss of regularity compared with the main theorem 3.2 arises in the approximation,
see proposition 3.15.

We give two proofs of this proposition. The first one is simpler, following the
ideas of Csató–Dacorogna [12]. However, we do not use the identity established in
[12] and which is used in establishing the classical Gaffney inequality, respectively
theorem 2.1. The second proof that we give is a generalization of Morrey’s original
proof of Gaffney inequality (see Morrey [28], Morrey–Eells [30] or Iwaniec–Scott–
Stroffolini [24] for an Lp version) for the boundary condition ν × ω = 0. It is longer,
but several of the intermediate steps are of interest on their own right, cf. lemma
3.10, and also lemmas 3.8 and 3.12 which are independent of the boundary condi-
tions. In the first proof, we will use the following abbreviation, f being a function
defined on a neighborhood of ∂Ω:

∂ij [f ] := νj
∂f

∂xi
− νi

∂f

∂xj
,

where ν = (ν1, . . . , νn) is the outward unit normal vector on ∂Ω. It can be easily
seen that ∂ij [f ] is a tangential derivative and depends only on the values of f on
∂Ω. Therefore, if f is Lipschitz then ∂ij [f ] is well defined Hn−1 almost everywhere
on any Lipschitz boundary ∂Ω, see for instance lemma 3.6 equations (3.6)–(3.7)
for the case n = 2 (if n � 3, the argument is similar by composing f with a local
parametrization of ∂Ω). Moreover, by the product rule of derivation:

∂ij [fg] = ∂ij [f ]g + f∂ij [g]. (3.1)

Throughout the proof, we will frequently use that any Lipschitz function defined
on a subset of R

n can be extended to a Lipschitz function on the whole space, and
conversely, that restrictions of Lipschitz functions to any subset are still Lipschitz.
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First Proof of Proposition 3.4.

Step 1. Let us assume first that ω ∈ C2(Ω)n. A direct calculation gives the
identity

| curlω|2 + |divω|2 − |∇ω|2 = 2
∑
i<j

(
∂ωi

∂xi

∂ωj

∂xj
− ∂ωi

∂xj

∂ωj

∂xi

)
.

So we obtain by partial integration that∫
Ω

(| curlω|2 + |divω|2 − |∇ω|2)
= −

∑
i<j

∫
∂Ω

ωi∂ij [ωj ] +
∑
i<j

∫
∂Ω

ωj∂ij [ωi]. (3.2)

Note that (3.2) involves only the first derivatives of ω. Therefore, by
approximation one directly deduces that (3.2) remains true for any
ω ∈ C1(Ω)n. To see this, note that standard convolution in the whole
space works since the derivatives of ω are uniformly continuous, and the
derivatives of the approximating sequence will converge also uniformly
on ∂Ω. If n = 2 we apply lemma 3.6 to obtain that (3.2) remains true
if ω ∈ C0,1(Ω)2.

Step 2. Since λ = (λ1, . . . , λn) 	= 0 on ∂Ω, there exist open sets W1, . . . ,WM ,
integers 1 � k(1), . . . , k(M) � n and ε > 0 such that

∂Ω ⊂
M⋃
l=1

Wl and |λk(l)| � ε in Wl for 1 � l � M.

We now define inductively

S1 = W1 ∩ ∂Ω, S2 = (W2 ∩ ∂Ω)\S1 , . . . ,

Sj = (Wj ∩ ∂Ω)\
(

j−1⋃
m=1

Sm

)
,

for j = 1, . . . ,M . Thus the Sj form a disjoint union of ∂Ω and we can
write∫

∂Ω

(−ωi∂ij [ωj ] + ωj∂ij [ωi]) =
M∑
l=1

∫
Sl

(−ωi∂ij [ωj ] + ωj∂ij [ωi]) , (3.3)

for any i < j. We now claim that for each l = 1, . . . ,M and each i < j,
there exists a constant C = C(Ω, λ) > 0 such that∣∣∣∣

∫
Sl

(−ωi∂ij [ωj ] + ωj∂ij [ωi])
∣∣∣∣ � C

∫
Sl

|ω|2 (3.4)

for any ω satisfying λ× ω = 0 on ∂Ω. Indeed, fix l and assume without
loss of generality that k(l) = 1. Then we obtain from the boundary
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condition on ω that λ1ωi − λiω1 = 0 for i = 1, . . . , n on ∂Ω. Thus we
first obtain that for i = 1, . . . , n

ωi = μiω1 and where μi =
λi

λ1
∈ C0,1(Si).

This gives, using (3.1) that on Sl, we have

(−ωi∂ij [ωj ] + ωj∂ij [ωi]) = −ω2
1 (μi∂ij [μj ] − μj∂ij [μi]) .

From this indentity, we obtain (3.4).

Step 3. From (3.2), (3.3) and (3.4) it follows that∫
Ω

(| curlω|2 + |divω|2 − |∇ω|2) � −C1

∫
∂Ω

|ω|2

for some constant C1 = C1(Ω, λ) > 0. We now recall that there exists a
constant C2 = C2(Ω) such that (see for instance [21] theorem 1.5.1.10
or [13] proposition 5.15) for any 0 < ε < 1∫

∂Ω

|ω|2 � ε

∫
Ω

|∇ω|2 +
C2

ε

∫
Ω

|ω|2.

Choose ε such that εC1 � 1/2 and then the theorem follows. �

We have used in the proof of Proposition 3.4, in the case n = 2, the following
lemma. In this case one cannot prove (3.2) for Lipschitz vectors by approximation,
since the standard convolution by some smoothing kernels {ηk}k∈N in the whole
space does not imply any kind of convergence of {ηk ∗ ∂ωi/∂xj}k∈N on ∂Ω to the
required function.

Lemma 3.6. Let Ω ⊂ R
2 be a bounded open Lipschitz set with unit outward normal

ν and assume that ω1 , ω2 ∈W 1,∞(Ω). Then the following identity holds

∫
∂Ω

ω1

(
∂ω2

∂x2
ν1 − ∂ω2

∂x1
ν2

)
=
∫

Ω

(
∂ω1

∂x1

∂ω2

∂x2
− ∂ω2

∂x1

∂ω1

∂x2

)
. (3.5)

Proof.

Step 1. Clearly, (3.5) holds true for (ω1, ω2) ∈ C2(Ω)2, by partial integration.
Let us first show that (3.5) holds true if ω1 ∈ C2(Ω) and ω2 is Lips-
chitz. Let us first assume that ∂Ω is connected and hence there exists
a Lipschitz curve ϕ and some interval [0, L] such that

ϕ : [0, L] → ∂Ω, ϕ(0) = ϕ(L) (3.6)

is a parametrization of ∂Ω. We obtain that ω2 ◦ ϕ ∈W 1,∞([0, L]), as
it is the composition of two Lipschitz functions, and it is differentiable
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almost everywhere in [0, L] with

d
dt

(ω2 ◦ ϕ)(t) =
∂ω2

∂x1
(ϕ(t))ϕ′

1(t) +
∂ω2

∂x2
(ϕ(t))ϕ′

2(t)

=
(
∂ω2

∂x1
ν1 − ∂ω2

∂x2
ν2

)
(ϕ(t))|ϕ′(t)|. (3.7)

We have assumed here that ϕ turns around the domain counterclock-
wise. Thus we obtain, using that ϕ(0) = ϕ(L), ω1 ∈ C2(Ω) (and hence
its second derivatives commute)

∫
∂Ω

ω1

(
∂ω2

∂x2
ν1 − ∂ω2

∂x1
ν2

)
=
∫ L

0

ω1(ϕ(t))
d
dt

[ω2(ϕ(t))] dt

= −
∫ L

0

d
dt

[ω1(ϕ(t))]ω2(ϕ(t)) dt

= −
∫

∂Ω

ω2

(
∂ω1

∂x2
ν1 − ∂ω1

∂x1
ν2

)

=
∫

Ω

(
∂ω1

∂x1

∂ω2

∂x2
− ∂ω2

∂x1

∂ω1

∂x2

)
.

This proves the claim of the present step, in case ∂Ω is connected. If ∂Ω
is not connected then we first show that on each connected component
Si of ∂Ω (i = 1, . . . ,K for some K ∈ N)∫

Si

ω1

(
∂ω2

∂x2
ν1 − ∂ω2

∂x1
ν2

)
= −

∫
Si

ω2

(
∂ω1

∂x2
ν1 − ∂ω1

∂x1
ν2

)
,

as before, taking periodic paramterizations ϕi of Si. Then we take the
sum over these integrals and can proceed in the same way. This proves
the claim of Step 1.

Step 2. Let us now assume that ω1 , ω2 are both Lipschitz. Take a sequence
{ωk

1} ∈ C∞(Ω), k ∈ N, such that

ωk
1 → ω in W 1,2(Ω) for k → ∞.

By Step 1, we have for each k∫
∂Ω

ωk
1

(
∂ω2

∂x2
ν1 − ∂ω2

∂x1
ν2

)
=
∫

Ω

(
∂ωk

1

∂x1

∂ω2

∂x2
− ∂ω2

∂x1

∂ωk
1

∂x2

)
.

By the trace theorem ωk
1 → ω1 in L2(∂Ω), and by (3.7)(

∂ω2

∂x2
ν1 − ∂ω2

∂x1
ν2

)
∈ L∞(∂Ω).

So by letting k → ∞, we obtain (3.5). �
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748 G. Csató, O. Kneuss and D. Rajendran

We split the second proof of Propostion 3.4 (which requires λ to be C1,1) into
several intermediate steps. We first recall the definition of the pushforward of a
vector field.

Definition 3.7. Let U, V ⊂ R
n be two open sets and Φ ∈ Diff1(U ;V ). Then for

any ω ∈ C(U)n we define its pushforward Φ∗(ω) ∈ C(V )n by

Φ∗(ω)(x) = ∇Φ(Φ−1(x))ω(Φ−1(x)),

where Ab is the usual multiplication of a (column) vector b by a matrix A.

We will use several times the following elementary properties: (Φ ◦ Ψ)∗(ω) =
Φ∗(Ψ∗(ω)) and

α× β = 0 at x ⇔ Φ∗(α) × Φ∗(β) = 0 at Φ(x). (3.8)

The proof of the next lemma is a straightforward algebraic calculation. The anal-
ogous result for the pullback of general k-forms can be found in [10], lemma B.13.
However, in the present case of vector fields, the proof is much simpler. O(n) shall
denote the set of orthogonal matrices.

Lemma 3.8. Let U, V ⊂ R
n be open sets, A ∈ O(n), b ∈ R

n, and ψ : U → V = ψ(U)
defined by ψ(u) = Au+ b. Then for all ω ∈ C0,1(U)n and almost every u ∈ U the
following three identities hold true:

|∇ω(u)|2 = |∇(ψ∗(ω))|2(ψ(u)) (3.9)

| curlω(u)|2 = | curl(ψ∗(ω))|2(ψ(u)) (3.10)

|divω(u)|2 = |div(ψ∗(ω))|2(ψ(u)). (3.11)

Remark 3.9. This lemma holds true by the specific algebraic properties of ∇,
curl and div and is not valid in general for an arbitrary linear combination of
derivatives of ω. In case of div, we have actually something stronger: divω(u) =
div(ψ∗(ω))(ψ(u)) for any invertible matrix A.

Proof. We first prove (3.9). Let aij denote the entries of the matrix A. Since At =
A−1, we have that for any k, l = 1, . . . , n,

n∑
i=1

aikail = δkl. (3.12)

We can assume that b = 0. Let x = ψ(u) = Au, and hence ψ∗(ω)(x) = Aω(Atx). So
the components of ψ∗(ω), respectively, their derivatives are

(ψ∗(ω))i (x) =
n∑

k=1

aikωk(Atx) and
∂ (ψ∗(ω))i

∂xj
(x) =

n∑
k,l=1

aikajl
∂ωk

∂ul
(Atx).
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We, therefore, obtain

|∇ψ∗(ω)|2(x) =
n∑

i,j=1

⎛
⎝ n∑

k,l=1

aikajl
∂ωk

∂ul
(u)

⎞
⎠

2

=
n∑

i,j=1

n∑
k,l=1

n∑
r,s=1

aikajlairajs
∂ωk

∂ul
(u)

∂ωr

∂us
(u).

Using now (3.12) gives the desired result. To prove (3.10), we use that

| curl(ψ∗(ω))|2 =
∑
i<j

(
∂ (ψ∗(ω))j

∂xi
− ∂ (ψ∗(ω))i

∂xj

)2

=
1
2

n∑
i,j=1

(
∂ (ψ∗(ω))j

∂xi
− ∂ (ψ∗(ω))i

∂xj

)2

=
1
2

n∑
i,j=1

⎛
⎝ n∑

k,l=1

aikajl

(
∂ωk

∂ul
− ∂ωl

∂uk

)⎞⎠
2

and proceed as in the proof of (3.9). The proof of (3.11) is very similar. �

We start proving proposition 3.4 in a special case.

Lemma 3.10. Let Ω ⊂ R
n be a bounded open Lipschitz set and let λ ∈ R

n be a
nonzero constant vector. Then the equality∫

Ω

|∇ω|2 =
∫

Ω

(| curlω|2 + |divω|2)

holds true for all ω ∈ C1(Ω)n which satisfy λ× ω = 0 on ∂Ω.

Remark 3.11. We will only use this lemma for λ = e1, and will, therefore, only
prove that case. The result for general λ follows easily from this particular case,
lemma 3.8 and (3.8).

Proof. As remarked, we only prove the lemma in the case when λ = e1 =
(1, 0, . . . , 0). In this case, the boundary condition λ× ω = 0 is equivalent with
ω2 = · · · = ωn = 0 on ∂Ω. Recall that, see (3.2),∫

Ω

(| curlω|2 + |divω|2 − |∇ω|2) = −
∑
i<j

∫
∂Ω

ωi∂ij [ωj ] +
∑
i<j

∫
∂Ω

ωj∂ij [ωi].

The right-hand side of the previous equality cancels since for any i 	= j, ωi∂ij [ωj ] is
pointwise zero on ∂Ω : indeed, either ωi = 0 on ∂Ω or

∂ij [ωj ] =
∂ωj

∂xi
νj − ∂ωj

∂xj
νi = 0 on ∂Ω

if ωj = 0 on ∂Ω recalling that ∂ij [ωj ] is a tangential derivative. �
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The main statement of the next lemma (Part (ii)), states that the change of the
L2 norms of ∇ω, curlω and divω under the pushforward of Φ can be estimated
appropriately, if ∇φ ∈ SO(n) at some point and if a neighbourhood is taken small
enough near that point.

Lemma 3.12. Let x0 ∈ R
n and λ be a C1,1 vector field defined in a neighbourhood

of x0, such that |λ(x0)| = 1.

(i) Then there exist open sets O,W ⊂ R
n, x0 ∈ O, 0 ∈W , and a diffeomorphism

Φ ∈ Diff1,1(O;W ) such that Φ(x0) = 0,

Φ∗(λ) = e1 in W and ∇Φ(x0) ∈ SO(n).

(ii) Moreover, for any 0 < ε � 1, up to taking O and W smaller, there exists a
constant C = C(Φ) satisfying the following three inequalities:

∣∣∣∣
∫

O

|∇ω|2 −
∫

W

|∇(Φ∗(ω))|2
∣∣∣∣ � ε

∫
O

|∇ω|2 +
C

ε

∫
O

|ω|2 (3.13)

∣∣∣∣
∫

O

| curlω|2 −
∫

W

| curl(Φ∗(ω))|2
∣∣∣∣ � ε

∫
O

|∇ω|2 +
C

ε

∫
O

|ω|2 (3.14)

∣∣∣∣
∫

O

|divω|2 −
∫

W

|div(Φ∗(ω))|2
∣∣∣∣ � ε

∫
O

|∇ω|2 +
C

ε

∫
O

|ω|2 (3.15)

for all ω ∈ C0,1(O)n.

Remark 3.13. The proof will actually show that (3.13)–(3.15) remain valid with
the same constant C replacing O by any of its own open subsets V and replacing
W with U = Φ(V ).

Proof. Without loss of generality, we can assume that x0 = 0.

Step 1. We first prove (i). Let Ψ̃(t, x) be the solution of

∂Ψ̃
∂t

= λ(Ψ̃) and Ψ̃(0, x) = Ax,

where A ∈ SO(n) is such that its first column is equal to λ(x0). Then
define Ψ(x) = Ψ̃(x1, 0, x2, . . . , xn). It can be easily verified that Φ =
Ψ−1 has all the desired properties.

Step 2. We now prove (ii). We will only do the proof for (3.13). The proof
for (3.14) and (3.15) is very similar. Let Φ ∈ Diff1,1

(
O,W

)
be as in

(i) and Ψ = Φ−1. Throughout the proof C1, C2, C3 and C4 will denote
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constants depending only on Φ. Let us write

∇(Φ∗(ω))(y) = ∇((∇Φ ◦ Ψ)(ω ◦ Ψ))(y)

=
n∑

k=1

Sk(Φ, y)ωk(Ψ(y)) + ∇Φ(Ψ(y))∇ω(Ψ(y))∇Ψ(y),

where Sk(Φ, y), k = 1, . . . , n, are matrix valued functions depending
only on derivatives of at most second order of Φ. Its entries shall be
donoted by Sk

ij(Φ, y). So we have

|∇(Φ∗(ω))|2 = D + E + F, (3.16)

where

D(y) =
n∑

i,j=1

(∇Φ(Ψ(y))∇ω(Ψ(y))∇Ψ(y))2ij ,

F (y) =
n∑

i,j=1

(
n∑

k=1

Sk
ij(Φ, y)ωk(Ψ(y))

)2

E(y) = 2
n∑

i,j,k=1

Sk
ij(Φ, y)ωk(Ψ(y))(∇Φ(Ψ(y))∇ω(Ψ(y))∇Ψ(y))ij

Fix 0 < ε � 1. Using the inequality 2ab � a2/ε+ b2ε and the fact that
Φ is C1,1, one immediately obtains

E(y) � C1ε|∇ω|2(Ψ(y)) +
C1

ε
|ω|2(Ψ(y)) and

F (y) � C2|ω|2(Ψ(y)) for all y ∈ O.

Changing the variables we, therefore, get∫
W

E �
∫

O

(
C1ε|∇ω|2(x) +

C1

ε
|ω|2(x)

)
det∇Φ(x)dx

�
∫

O

(
C3ε|∇ω|2 +

C3

ε
|ω|2

)
(3.17)

and similarly ∫
W

F �
∫

O

C4|ω|2. (3.18)

Combining (3.16), (3.17) and (3.18) it is enough to estimate∣∣∣∣
∫

W

D −
∫

O

|∇ω|2
∣∣∣∣

to prove (3.13). By the change of variables formula, we get∫
W

D =
∫

O

|∇Φ(x)∇ω(x) (∇Φ(x))−1|2 det∇Φ(x)dx.
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Thus

∫
W

D −
∫

O

|∇ω|2 =
∫

O

(∣∣∇Φ(x)∇ω(x) (∇Φ(x))−1
∣∣2 det∇Φ(x)

− ∣∣∇Φ(0)∇ω(x) (∇Φ(0))−1
∣∣2)dx

+
∫

O

(∣∣∇Φ(0)∇ω(x) (∇Φ(0))−1
∣∣2 − |∇ω(x)|2

)
dx.

It follows from (3.9) that the integrand in the second integral of the
right-hand side of the previous equation is pointwise 0 in O. To see
this, fix x ∈ O, set A = ∇Φ(0) ∈ SO(n) and apply the map ψ(u) = Au
to lemma 3.8: then (3.9) evaluated at u = x gives

|∇ω(x)|2 = |∇(ψ∗(ω))|2(ψ(x)) = |A∇ω(x)At|2

= |∇Φ(0)∇ω(x) (∇Φ(0))−1|2.

Hence, recalling that det∇Φ(0) = 1, it follows from continuity of ∇Φ
that, taking O smaller (and consequently W as well) if necessary, that

∣∣∣∣
∫

W

D −
∫

O

|∇ω|2
∣∣∣∣ � ε

∫
O

|∇ω|2.

This concludes the proof of the lemma since the estimates on E and
F remain valid for the new smaller open sets O and W with the same
constants C1, C2, C3 and C4. �

We now prove proposition 3.4 in the special case when the vector fields ω have
compact support in a sufficiently small neighbourhood of a boundary point x0 ∈ ∂Ω.

Lemma 3.14. Let Ω ⊂ R
n be a bounded open Lipschitz set and λ ∈ C1,1(∂Ω)n be

such that λ 	= 0 on ∂Ω and assume that x0 ∈ ∂Ω. Then there exists an open set
O ∈ R

n, x0 ∈ O and a constant C = C(Ω, O, λ) such that

∫
V

|∇ω|2 � C

∫
V

(| curlω|2 + |divω|2 + |ω|2),

where V = Ω ∩O, for all ω ∈ C1(O) which satisfy

λ× ω = 0 on ∂Ω and supp(ω) ⊂ O.

Proof. The proof follows from lemmas 3.10 and 3.12. With no loss of generality, we
can assume that |λ(x0)| = 1. We claim that O given by lemma 3.12 will have the
desired property and we shall use the notation of that lemma. If λ× ω = 0 on ∂Ω,
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we get that, using (3.8),

e1 × Φ∗(ω) = 0 on Φ(∂Ω ∩O)

Also, since ω has compact support in O, then Φ∗(ω) has compact support in Φ(O).
We conclude that setting U = Φ(V ),

e1 × Φ∗(ω) = 0 all over ∂U

for any ω satisfying the assumptions of the lemma. We thus conclude from lemma
3.10 that ∫

U

|∇(Φ∗(ω))|2 =
∫

U

(| curl(Φ∗(ω))|2 + |div(Φ∗(ω))|2).

Finally using (3.13)–(3.15) (and remark 3.13) with ε = 1/6 and the previous
equality, we obtain that∫

V

|∇ω|2 � ε

∫
V

|∇ω|2 +
C

ε

∫
V

|ω|2 +
∫

U

|∇(Φ∗(ω))|2

� 3ε
∫

V

|∇ω|2 + 3
C

ε

∫
V

|ω|2 +
∫

V

(| curlω|2 + |divω|2)

=
1
2

∫
V

|∇ω|2 + 18C
∫

V

|ω|2 +
∫

V

(| curlω|2 + |divω|2).

which proves the lemma. �

We give the second proof of the main proposition under the more restrictive
hypothesis that λ ∈ C1,1(∂Ω)n.

Second Proof (Proposition 3.4). Since ∂Ω is compact, we can cover it by open
neighbourhoods Oi ⊂ R

n, i = 1, . . . ,M which satisfy the conclusion of lemma 3.14.
Moreover, let us choose a further open set O0 ⊂ O0 ⊂ Ω such that Ω ⊂ ∪M

i=0Oi. Let
{ξi}M

i=0 be a partition of unity subordinate to the Oi:

0 � ξi � 1, supp(ξi) ⊂ Oi and
M∑
i=0

ξi = 1 in Ω.

Let now ω ∈ C1(Ω)n be a vector field such that λ× ω = 0 on ∂Ω. Then using lemma
3.10 for i = 0, respectively lemma 3.14 for i = 1, . . . ,M , we obtain that∫

Vi

|∇(ξiω)|2 � Ci

∫
Vi

(| curl(ξiω)|2 + |div(ξiω)|2 + |ξiω|2
)
, (3.19)

for some constants Ci = Ci(Ω, λ), where Vi = Ω ∩Oi. Note that

∫
Ω

|∇ω|2 =
∫

Ω

∣∣∣∣∣∇
(

M∑
i=0

ξiω

)∣∣∣∣∣
2

� M
M∑
i=0

∫
Ω

|∇(ξiω)|2 = M
M∑
i=0

∫
Vi

|∇(ξiω)|2.
(3.20)
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Thus combining (3.20) and (3.19), one gets

∫
Ω

|∇ω|2 � C1

M∑
i=0

∫
Vi

(| curl ξiω|2 + |div ξiω|2 + |ξiω|2)

� C2

∫
Ω

(| curlω|2 + |divω|2 + |ω|2),

for some constants C1 and C2 depending only on Ω and λ. �

To extend proposition 3.4 to H1 vector fields, we need to show that a vector field
ω ∈ H1(Ω)n which satisfies λ× ω = 0 on the boundary can be approximated by C1

vector fields also satisfying the same boundary condition. This is possible according
to the next proposition.

Proposition 3.15. Let n � 2, r � 0 be an integer and 0 � α � 1, with r + α � 1.
Suppose Ω ⊂ R

n is a bounded open Lipschitz set and λ ∈ Cr,α(∂Ω)n be such that

λ 	= 0 on ∂Ω.

Suppose ω ∈ H1(Ω)n is such that λ× ω = 0 on ∂Ω. Then there exists a sequence
{ωk}k∈N ⊂ Cr,α(Ω)n such that for k → ∞

ωk → ω ∈ H1(Ω)n and λ× ωk = 0 on ∂Ω for all k.

Proof.

Step 1. We first prove the following claim: For every x0 ∈ ∂Ω, there exists a
neighbourhood W ⊂ R

n of x0 such that for all ω ∈ H1(Ω) satisfying

supp(ω) ⊂W and λ× ω = 0 on ∂Ω, (3.21)

there exists a sequence {ωk}k∈N ⊂ Cr,α
(
Ω ∩W )n such that

ωk → ω in H1 (Ω ∩W )n and λ× ωk = 0 on ∂Ω ∩W for all k.

We extend λ to a Cr,α vector field in R
n, see definition 3.1. Since λ does

not vanish on the boundary, we can assume with no loss of generality
that λ1 	= 0 in W where W is a small enough neighbourhood of x0. Let
us define

αi = λ1ωi − λiω1 = (λ× ω)1i .

Note that by the additional assumptions (3.21) the support of ω is
contained in W and, in particular, vanishes on ∂W . Therefore, αi ∈
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H1
0 (Ω ∩W ) and hence there exists a sequence αk

i with the properties

{αk
i }k∈N ∈ C∞

c (Ω ∩W ), αk
i → αi in H1(Ω ∩W ).

Moreover, we choose a sequence {βk} ∈ C∞(Ω ∩W ) such that βk → ω1

in H1(Ω ∩W ). We finally define ωk = (ωk
1 , . . . , ω

k
n) by

ωk
1 =βk

ωk
i =

αk
i + λiβ

k

λ1
for i = 2, . . . , n.

Using that αk
i = 0 on ∂Ω ∩W , we obtain that for any i, j ∈ {1, . . . , n}

λjω
k
i − λiω

k
j =

λj

λ1
λiβ

k − λi

λ1
λjβ

k = 0 on ∂Ω ∩W .

and thus ωk has all the desired properties claimed in Step 1.

Step 2. Using that ∂Ω is compact, we can cover it by a finite number of open
sets W1, . . . ,WL with the properties given by Step 1. Clearly, we can
add W0 such that W0 is also open, Ω ⊂ ⋃L

l=0Wl and any ω0 ∈ H1(W0)
with compact support in W0 can be approximated by smooth vector
fields ω0,k with compact support in W0. In particular, λ× ω0,k = 0 on
∂Ω for all k. Let ηl be a smooth partition of unity subordinate to this
covering such that

L∑
l=0

η2
l = 1 in Ω.

Define ωl = ηlω. Using Step 1 there exists for each l = 1, . . . , L
sequences {ωl,k}k∈N of Cr,α vector fields such that for k → ∞
ωl,k → ωl inH1(Ω ∩W ) and λ× ωl,k = 0 on ∂Ω ∩W for all k.

Then ηlω
l,k ∈ Cr,α(Ω)n is well defined and ωk =

∑L
l=0 ηlω

l,k has all the
desired properties. �

4. Formulation in R
2 for discontinuous λ

In two dimensions, we improve theorem 3.2: we no longer require λ to be continuous
on the whole boundary, but still Lipschitz on different pieces of ∂Ω. More precisely,
we make the following assumption.

Assumption 4.1. Assume that Ω ⊂ R
2 is a bounded open Lipschitz set, such that

for some integer N

∂Ω =
N⋃

i=1

Γi and Γi ∩ Γi+1 = {Si} for i = 1, . . . , N,

where Γi are disjoint open sets in ∂Ω (with the convention that ΓN+1 = Γ1) and
the Si are N different points on the boundary, called vertices. Let λi ∈ C0,1(Γi)2
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for i = 1, . . . , N and define

λ :
N⋃

i=1

Γi → R
2,

by λi = λ on Γi. We also assume that

λi 	= 0 on Γi .

Note that we allow that at a vertex Si the segments Γi and Γi+1 can meet at an
angle π. In this setting, we have the following theorem.

Theorem 4.2. Let Ω and λ be as in assumption 4.1. Then there exists a constant
C = C(Ω, λ) such that

‖∇ω‖2
L2(Ω) � C

(
‖ curlω‖2

L2(Ω) + ‖divω‖2
L2(Ω) + ‖ω‖2

L2(Ω)

)
, (4.1)

for all ω ∈ H1(Ω)2 which satisfy

λ× ω = 0 on ∂Ω,

where the last equality is understood as λi × ω = 0 on Γi for each i = 1, . . . , N .

Example 4.3. As a special case, we obtain Gaffney inequality with the classical
boundary conditions in polygonial domains.

The proof of Theorem 4.2 is essentially the same as the corresponding result
for globally Lipschitz λ: only the approximation result, that is, the analogy to
proposition 3.15 has to be adapted. This is done in the next proposition.

Proposition 4.4. Let Ω and λ be as in assumption 4.1. Suppose ω ∈ H1(Ω)2 is
such that λ× ω = 0 on ∂Ω. Then there exists a sequence {ωk}k∈N ⊂ C0,1(Ω)2 such
that for k → ∞

ωk → ω ∈ H1(Ω)2 and λ× ωk = 0 on ∂Ω for all k.

Proof.

Step 1. We first prove the following claim: For every x0 ∈ ∂Ω, there exists a
neighbourhood W ⊂ R

2 of x0 such that for all ω ∈ H1(Ω) satisfying

supp(ω) ⊂W and λ× ω = 0 on ∂Ω, (4.2)

there exists a sequence {ωk}k∈N ⊂ C0,1(Ω ∩W )2 such that

ωk → ω in H1(Ω ∩W )2 and λ× ωk = 0 on ∂Ω ∩W for all k.

The proof of this claim is the same as the proof of Proposition 3.15 if
x0 is not a vertex and so we can assume that x0 = Γi ∩ Γi+1 is a vertex.
Then we distinguish two cases.
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Case 1. We assume that λi(x0) and λi+1(x0) are linearly dependent.
Since the boundary condition λ× ω = 0 is invariant under scaling or
sign change of λ, and neither λi nor λi+1 vanish, we can assume that
λi(x0) = λi+1(x0). But then λ is Lipschitz in Γi ∪ Γi+1 and thus we can
again proceed as in proposition 3.15.
Case 2. We assume that det(λi(x0)|λi+1(x0)) 	= 0. In this case, we
extend both λi and λi+1 separately to C0,1 vector fields defined in
R

2. By continuity, there exists a neighbourhood W of x0 such that
det(λi|λi+1) 	= 0 in W . Let ω be a vector field satisfying (4.2). Define
the two functions

p = λi × ω ∈ H1(Ω), and q = λi+1 × ω ∈ H1(Ω),

which can also be written in the matrix form(
p
q

)
=
( −λi

2 λi
1

−λi+1
2 λi+1

1

)(
ω1

ω2

)
= M

(
ω1

ω2

)
.

By an extension theorem (see Bernard [3] or theorem 1.6.1 of Grisvard
[22] for polygonial domains) there exists sequences {pk}k∈N, {qk}k∈N ∈
C1(Ω) such that both pk (respectively qk) converges to p (respectively
q) in H1(Ω) and

pk = 0 on Γi and qk = 0 on Γi+1 for all k ∈ N.

Since det(λi|λi+1) 	= 0 on W , we can define ωk ∈ C0,1(W ∩ Ω) by

ωk = M−1

(
pk

qk

)
.

Note that λi × ωk = pk, respectively, λi+1 × ωk = qk. It straightforward
to check that ωk has all the desired properties claimed by Step 1.

Step 2. We finally conclude exactly as in Step 2 of the proof of Proposition 3.15.

�

We now prove the main theorem of this section.

Proof of Theorem 4.2. Since Ω is a Lipschitz domain, we can use partial integration
and obtain∫

Ω

(| curlω|2 + |divω|2 − |∇ω|2)

=
∫

∂Ω

ω1

(
ν1
∂ω2

∂x2
− ν2

∂ω2

∂x1

)
−
∫

∂Ω

ω2

(
ν1
∂ω1

∂x2
− ν2

∂ω1

∂x1

)

=
N∑

i=1

[∫
Γi

ω1(ν1
∂ω2

∂x2
− ν2

∂ω2

∂x1
) −

∫
Γi

ω2

(
ν1
∂ω1

∂x2
− ν2

∂ω1

∂x1

)]

that holds for any ω ∈ C0,1(Ω)2, where the first equality is exactly as in Step 1 of
the first proof of Proposition 3.4). We now proceed as in Step 2 of the first proof

https://doi.org/10.1017/prm.2018.48 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.48
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of Proposition 3.4, working on each Γi separately: Using that each Γi is a C0,1

curve and that λi does not vanish on Γi, one obtains that there exists a constant
C1 = C1(Ω, λ) > 0 such that∫

Ω

(| curlω|2 + |divω|2 − |∇ω|2) � −C1

∫
∂Ω

|ω|2

for all ω ∈ C0,1(Ω)2 satisfying λ× ω = 0 on ∂Ω. This proves the theorem for C0,1

vector fields ω. The general case follows from proposition 4.4 �

5. Counterexamples

In view of theorems 3.2, 4.2 and the classical boundary condition 〈ν;ω〉 = 0, one
could expect that if n � 3, we also have a Gaffney inequality under the boundary
condition

〈λ;ω〉 = 0 on ∂Ω,

if λ does not vanish on ∂Ω. This is, however, not true as shown by the following
simple example.

Example 5.1. Let Ω ⊂ R
3 be any bounded open smooth set and λ = (0, 0, 1). Then

there exists no constant C = C(Ω, λ) such that∫
Ω

|∇ω|2 � C

∫
Ω

(| curlω|2 + |divω|2 + |ω|2)
for all ω ∈ C2(Ω; Rn) satisfying 〈λ;ω〉 = 0 on ∂Ω. To see this, take

ω(x) = (enx1 cos(nx2),−enx1 sin(nx2), 0).

Then one easily verifies that divω = 0, curlω = 0, |∇ω(x)|2 = 2n2e2nx1 and
|ω(x)|2 = e2nx1 . Hence, as in (3), Gaffney inequality cannot hold.

The question also arises whether theorem 3.2 generalizes to differential forms of
a higher order (identifying vector fields with 1-forms). This is also not true. More
precisely, we have the following counterexample for 2-forms.

Example 5.2. Let n � 3, Ω ⊂ R
n be a bounded open smooth set. Then there exists

no constant C = C(Ω) such that∫
Ω

|∇ω|2 � C

∫
Ω

(|dω|2 + |δω|2 + |ω|2)
for all ω ∈ C2(Ω;Λ2) such that dx3 ∧ ω = 0 on ∂Ω. To see this, take

ω = enx1 cos(nx2)dx1 ∧ dx3 + enx1 sin(nx2)dx2 ∧ dx3.

One can verify that dω = 0 and δω = 0. Thus one concludes exactly as in
example 5.1.
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