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The smoothed profile method is extended to study the rheological behaviour
of colloidal dispersions under shear flow by using the Lees–Edwards boundary
conditions. We start with a reformulation of the smoothed profile method, a direct
numerical simulation method for colloidal dispersions, so that it can be used with
the Lees–Edwards boundary condition, under steady or oscillatory-shear flow. By
this reformulation, all the resultant physical quantities, including local and total
shear stresses, become available through direct calculation. Three simple rheological
simulations are then performed for (1) a spherical particle, (2) a rigid bead chain
and (3) a collision of two spherical particles under shear flow. Quantitative validity
of these simulations is examined by comparing the viscosity with that obtained from
theory and Stokesian dynamics calculations. Finally, we consider the shear-thinning
behaviour of concentrated colloidal dispersions.
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1. Introduction
Colloidal dispersions exhibit a rich variety of phenomena and have been providing

time-honoured problems in the field of physical chemistry for the past century
(Wagner & Brady 2009; Mewis & Wagner 2012), starting with the pioneering work
of von Smoluchowski (1906) and Einstein (1911), among others. In particular, the
rheometry or viscosity measurement has proved to be one of the most challenging
issues. Theoretical descriptions based on hydrodynamic theories have been continu-
ously improved upon, but they are still valid only at low concentrations. In addition,
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Rheological evaluation of colloidal dispersions using the SPM 591

new phenomena have continued to be discovered, such as the effect of frictional
interactions on the discontinuous shear thickening (Seto et al. 2013; Mari et al. 2014)
and the emergence of irreversibility in the configurations of a sheared suspension at
low Reynolds (Re) number (Pine et al. 2005; Corte et al. 2009). Microrheology,
which has found extensive applications outside colloidal science (Mason, Bibette
& Weitz 1995; Mizuno et al. 2008; Guo et al. 2014; Head et al. 2014), is now
being used to probe the dynamics of active matter systems (Marchetti et al. 2013),
which show anomalous viscosities due to their inherent swimming motion (Sokolov
& Aranson 2009; Mussler et al. 2013).

When dealing with many-body interactions between colloidal particles, particularly
when hydrodynamic effects are significant, theoretical predictions are limited to
simple systems at low volume fractions. In such cases, numerical simulations have
proved to be a powerful tool to probe the dynamics of colloidal particle suspensions.
However, traditional molecular dynamics simulations are insufficient, as they are
unable to probe the necessary length and time scales. Thus, a simplified approach is
necessary to simulate such systems. The most widely accepted method for solving
this issue is Stokesian dynamics (SD) (Brady & Bossis 1988), along with recently
developed approximations such as fast lubrication dynamics (Bybee 2009). In this
framework, the Stokes equation is solved with boundary conditions determined by
the shape of the rigid particles. Although such methods provide a high degree of
accuracy, and valuable information has been obtained using them (Foss & Brady
2000; Sierou & Brady 2004; Seto, Botet & Briesen 2011; Kumar & Higdon 2012),
they are restricted to simple host fluids at zero Re. To consider complex host solvents
at arbitrary Re, various mesoscopic approaches have been invented in order to take
the hydrodynamic effects into account: lattice Boltzmann method (LBM) (Ladd 1993;
Succi 2001; Cates et al. 2004), fluid–particle dynamics (Tanaka & Araki 2000),
smoothed profile method (SPM) (Nakayama & Yamamoto 2005; Nakayama, Kim &
Yamamoto 2008), distributed-Lagrange-multiplier/fictitious domain method (Glowinski
et al. 1998, 2000), force coupling method (FCM) (Maxey & Patel 2001; Yeo &
Maxey 2010), and particle-based hydrodynamic simulation approaches, such as the
multi-particle collision method (MPC) (Ji et al. 2011; Poblete et al. 2014), among
others. The boundary integral or boundary element method, originally developed
by Youngren & Acrivos (1974), Kim & Karrila (2005) and Muldowney & Higdon
(2006), has also been used extensively within the fluid dynamics community, though
mostly for low-Reynolds-number flow problems. In this paper, the methodology and
the quantitative validity of the SPM for rheological calculations will be considered.
In particular, we calculate the viscosity of the system by measuring its response
to an applied external shear flow. The standard methodologies for implementing
such a flow in a simulation include the moving-wall boundary condition and the
Lees–Edwards boundary condition. In practice, the former, which explicitly includes
the walls driving the flow, can be employed for all the simulation methods (this
seems to be the preferred approach when using LBM). However, this approach
introduces significant boundary effects, which can be problematic if one intends to
study the dynamics of bulk systems. To remove these effects, one must use suitable
periodic boundaries. For systems under simple-shear flow, these are the Lees–Edwards
boundary conditions (Lees & Edwards 1972).

In this paper, an improved formulation for shear-flow simulations using the SPM,
along with demonstrative simulation results intended to establish the validity of
the method, is presented. The organization of the paper is as follows. In § 2, the
implementation of the SPM using the Lees–Edwards boundary conditions is presented.
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In particular, we show how to obtain all components of the local stress fluctuation.
In § 3, the quantitative validity of the formulation will be examined using rheological
simulations (under steady shear flow) for three example cases, which have been solved
theoretically (with various degrees of approximation) in the literature: (1) a single
spherical particle, (2) a rigid bead chain, and (3) a collision between two spherical
particles. For these three cases, the validity of the viscosity obtained by SPM will be
quantitatively examined, by comparing them with the available theoretical descriptions
and also with the SD results. In addition, we have also considered the shear-thinning
behaviour of concentrated spherical particle dispersions. In § 4, we summarize our
work and present our conclusions.

2. Model and methods
2.1. The smoothed profile method for shear-flow simulations

To simulate diverse types of colloidal dispersions under shear flow, we further extend
the simulation method developed by two of the authors (Kobayashi & Yamamoto
2011). In this method, the shear flow is driven by an imposed coordinate flow (i.e.
a moving grid). The dispersion is simulated by using the SPM, which is a direct
numerical simulation method for solving the motion of the host fluid and the particles
simultaneously. This is accomplished by the introduction of a diffuse interface between
the two phases (solid/fluid), which replaces the original sharp interface, and allows
us to define all field variables over the entire computational domain. When solving
the Navier–Stokes equation the system is then considered as a single-component fluid,
without any boundaries. The effect of particles is introduced through an additional
forcing term in the Navier–Stokes equation. In this sense our method is similar to
the distributed-Lagrange-multiplier method (Glowinski et al. 1998), the fluid particle
dynamics method (Tanaka & Araki 2000), and the force coupling method (Maxey
& Patel 2001); the only difference lies in how the coupling between the particles
and the fluid is achieved. Since the system lacks periodicity under the Lees–Edwards
conditions, the solution method employed for previous SPM studies (Nakayama &
Yamamoto 2005; Nakayama et al. 2008; Molina & Yamamoto 2013), which used the
fast Fourier transform (FFT) to efficiently solve the equations of motion on a discrete
mesh, cannot be directly applied. Thus, one must construct a new generalized (time-
dependent) coordinate system – ‘oblique coordinate’ – in which the system is periodic
in all directions (Onuki 1997; Kobayashi & Yamamoto 2011). Alternative methods
have been used to study such systems, we note, for example, the work by Hwang,
Hulsen & Meijer (2004a,b), who used Glowinski’s distributed Lagrangian method to
study the dynamics of inertialess particles under simple shear in 2D, and the study of
Villone et al. (2011) into the particle migration in a viscoelastic fluid under Poiseuille
flow. In contrast to our method, these approaches require a complex treatment of the
solid–fluid interface (by the use of a finite element method). The virtue of the SPM
is in the introduction of a diffuse interface between the two phases, which greatly
simplifies the calculations.

With the introduction of a smooth interface of thickness ζ between the host fluid
and the particles, the incompressible Navier–Stokes equation is modified to properly
consider the dynamics of the whole system, consistent with the particle equations of
motion. In the absence of shear flow, this modified Navier–Stokes equation takes the
form (Nakayama & Yamamoto 2005)

(∂t + u · ∇)u= ρ−1
∇ · σ + φ f p, (2.1)
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with u the total velocity field, ρ the dispersion density, σ the viscous stress
tensor, and φ f p the body force required to satisfy the rigid body constraints. The
incompressibility condition is applied to the total velocity ∇ · u; this also guarantees
the solid–fluid impermeability (Nakayama & Yamamoto 2005). The total velocity field
is defined in terms of the particle and fluid velocity fields, up and uf , respectively, as
u(x)= (1− φ(x))uf (x)+ φ(x)up(x), with

φ(x)=
N∑
i

φi(x; Ri,Qi), (2.2a)

φ(x)up(x)=
N∑
i

φi(x; Ri,Qi)(V i +Ωi × r i), (2.2b)

where N is the total number of particles, φi is the smooth profile function of particle
i, with position, orientation matrix, velocity and angular velocity given by Ri, Qi, V i
and Ωi, respectively, and r i = x − Ri. The dispersion density is defined as ρ = (1−
φ)ρf + φρp, with ρf and ρp the fluid and particle densities, respectively. Throughout
this work, we will assume buoyancy-free particles with the same density as the fluid,
such that ρ = ρp= ρf . The particle phase field φi(x) is defined such that φ= 1 inside
the particle domain, φ = 0 in the fluid domain, and 0 6 φ 6 1 within the interfacial
regions. For a spherical particle of radius a, we thus require

φi(x) :


1.0, |x− Ri|< a− ζ/2,
0.0<φi < 1.0, a− ζ/2 6 |x− Ri|6 a+ ζ/2,
0.0, |x− Ri|> a+ ζ/2.

(2.3)

Explicit expressions for φi of spherical particles can be found in the literature
(Nakayama & Yamamoto 2005; Nakayama et al. 2008), as well as an extension to
handle arbitrary rigid bodies (Molina & Yamamoto 2013). For simplicity, we assume
a Newtonian fluid of viscosity ηf , so that the Newtonian stress tensor takes the form

σ =−pI + ηf (∇u+ t(∇u)), (2.4)

where p is the pressure (I the unit tensor). By letting the viscous stress tensor act on
the entire domain, we indirectly enforce the no-slip boundary condition at the particle
surface, as it will tend to reduce any difference between uf and up over the interface
region (Nakayama & Yamamoto 2005; Luo, Maxey & Karniadakis 2009).

For simulations under shear, using an oblique coordinate system with Lees–Edwards
boundary conditions, care must be taken when writing down the Navier–Stokes
equation (2.1), since the basis vectors, as well as the grid points on which the field
variables are defined, are time-dependent. Under the assumption that the fluid reacts
instantaneously to the imposed flow, the (incompressible) Navier–Stokes equation (2.1)
can be written as (see appendix A)

(∂ t + ξ̂ ν∇̂ν)ξ̂µ = ρ−1∇̂ν σ̂ νµ + φ̂ f̂ µp − 2γ̇ (t)ξ̂ 2δµ,1, (2.5a)

∇̂µûµ = ∇̂µξ̂µ = 0, (2.5b)

where ξ̂µ is the contravariant component of the peculiar fluid velocity, i.e. the fluid
velocity relative to the shear-flow velocity U = γ̇ yex

ξ = u−U (2.6)
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with carets (·̂) used to specify tensor components in the oblique frame. The Newtonian
stress tensor can be expressed in oblique coordinates as σ = σ̂µν Êµ Êν

σ̂µν =−Gµν p̂+ ηf (G
µγ ∇̂γ ûν +Gνγ ∇̂γ ûµ), (2.7)

where Gµγ is the metric tensor (A 3). The force due to the viscous stresses in the fluid
can be evaluated solely in terms of the peculiar velocity, since

∇̂ν σ̂ νµ =−Gνµ∇̂ν p̂+ ηf Gνγ ∇̂ν∇̂γ ξ̂µ, (2.8)

where we have used the fact that the velocity field is solenoidal (2.5b), and the
Laplacian of the coordinate flow is zero (∇2Uµ = 0). The fluid equations of motion,
(2.5)–(2.8), are discretized using a Fourier spectral scheme in space and a first-order
Euler scheme in time. To simultaneously solve the fluid equations of motion alongside
the particle equations of motion, we use the same fractional-step algorithm introduced
by Nakayama et al. (2008) to handle spherical particles, and later extended by Molina
& Yamamoto (2013) for arbitrary rigid bodies.

The solution procedure can be summarized as follows (see appendix B): (1) we
solve for the viscous advection and diffusion terms, by integrating (2.5) in oblique
space over the whole domain (without the body-force term φ f p). We simultaneously
update the particle positions and orientations. (2) The updated fluid velocity is
then transformed to rectangular coordinates, and the momentum exchange over the
particle domain is computed, in order to determine the hydrodynamic force. (3) The
hydrodynamic force (together with any external or inter-particle force) is used to
update the particle velocities. (4) Finally, the particle rigidity (using the new particle
velocities) is enforced by applying the body-force term φ f p, to obtain the updated
velocity field over the whole computational domain. We note that the incompressibility
condition is enforced twice, during the first and final steps, when the fluid velocity
is being updated. The last step, which enforces the rigidity constraint, is crucial to
achieve an accurate coupling between the fluid and the particles.

The body-force term acts as a penalty function that makes the velocity field match
the rigid body velocities inside the particle domain. Naively, one thinks that a smaller
time step leads to smaller error. However, the impulse that is added to the particle
region as the constraint is imposed will in turn create an impulse in the fluid. The
Stokes layer over which this impulse appears scales as

√
ν1t (ν the kinematic

viscosity), i.e. it will become thinner as the time step is decreased. If the thickness
of this Stokes layer falls below the resolution of the grid, the error will increase
(Luo et al. 2009). This situation, in which a smaller time step gives a better control
of the rigidity constraint, but a thinner and less resolved Stokes layer, results in a
non-monotonic error as a function of the time step. A detailed error analysis of the
SPM has been performed by Luo et al., they find that the optimum value for the time
step 1t depends on the specific time-stepping scheme that is used, but in general
it will scale as 1t ∼ ζ 2/ν. As expected, a smaller value of ζ will provide a more
accurate representation, but results in a smaller optimum time step. For simplicity, we
do not use the precise time step which minimizes this time-stepping error, instead,
we use the stability condition given by the momentum diffusion term, which gives
1t = 1/νK2

max (Kmax the largest Fourier mode in our pseudo-spectral scheme), which
is independent of ζ . For typical values of ζ = 1, 2, there is no significant difference
between the two time steps (the error is a function of

√
ν1t/ζ ), and a similar degree

of accuracy is obtained (Nakayama & Yamamoto 2005).
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Among the alternative simulation methods that have been proposed to model
homogeneous shear simulations, the SPM with the Lees–Edwards boundary conditions
(Kobayashi & Yamamoto 2011) closely resembles that used by Rogallo (1981) and
Brucker et al. (2007) to study turbulent flows, and Onuki’s investigation of phase
separating systems (Onuki 1997). In these cases, the fluid equations are solved on a
grid that is moving with the shear flow, but in our case we have added an additional
forcing term φ f p to treat particles dispersed in the fluid. The standard approach
requires the remeshing of the grid at some specified strain rate, in order to maintain
numerical stability (Onuki 1997). In our case, we reset the grid (γ = 0) whenever
γ (t)= γ̇ t= 1, since, at this point in time, the stretched oblique grid overlaps with the
ortho-normal Cartesian grid. Unfortunately, such remeshing introduces discontinuities
which lead to a loss of turbulent kinetic energy and rate of dissipation (Brucker
et al. 2007). These discontinuities are not an issue for the shear rates (Reynolds
numbers) considered in this work, but they can become drastic at very high shear
rates, such as those used by Rogallo to study turbulent flows. Fortunately, Brucker
et al. have provided a clever fix to this problem. They noticed that the effect of the
moving frame could be accounted for by introducing a phase shift into the Fourier
transforms themselves, while still maintaining a fixed orthogonal mesh. The drawback
to this method is the fact that standard FFT routines cannot be used, but it is entirely
compatible with the current SPM framework.

Finally, we note that there is an alternative method to perform shear-flow
simulations with the SPM, which uses an external force to maintain a linear zig-zag
profile in the fluid (vx(y=±Ly/4)=±γ̇Ly/4, with Ly the length of the box along the
shear-gradient direction) (Iwashita & Yamamoto 2009). As the zig-zag flow matches
the periodic boundary conditions, there is no need to use a time-dependent oblique
coordinate frame. However, the use of this zig-zag profile presents several difficulties.
First, the shear rate cannot be controlled precisely and, more importantly, there are
artificial kinks in the flow field, where the sign of the velocity gradient changes sign.
This can lead to unwanted situations when the particles cross the kinks in the flow.
In particular, if a particle is placed at the position of the kinks y = ±Ly/4, it will
exhibit translation with no net rotation. For non-spherical particles this can result in
a considerable increase of the shear stresses in the fluid. At moderate concentrations,
we can expect the relative effect of the particles near the kink regions to be reduced;
however, for non-spherical particles or very dense suspensions, it is not immediately
clear what the effect is on the dynamics and structure of the system. In addition,
one cannot directly obtain the zero-wavevector transport coefficients by applying this
finite-wavelength perturbation to the system. The present approach, based on the
Lees–Edwards formulation, is free of such problems.

2.2. Stress calculation
The rheometry of suspensions is one of the most crucial parts of colloidal science
(Mewis & Wagner 2012). Because of the temporally slow and spatially large degrees
of freedom characterizing colloidal suspensions, the shear stress depends strongly
on the imposed shear-flow velocity. For the suspension rheology of non-deformable
colloidal particles, both the inter-particle and hydrodynamic interactions contribute
to the macroscopic stress behaviour (Batchelor 1977; Brady & Bossis 1988; Brady
1993; Bender & Wagner 1995). The average stress tensor of the dispersion 〈Σ〉 is
given as

〈Σ〉 = 〈σf 〉 + 〈s〉, (2.9)
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where, by assuming ergodicity, ensemble averages 〈· · ·〉 are averages over volume and
time, with 〈σf 〉 the bulk contribution due to the fluid

〈σf 〉 ≡−〈p〉I + 2ηf 〈e〉, (2.10)

〈e〉 the bulk rate-of-strain tensor, and 〈s〉 the particle contribution to the stress. The
dispersion viscosity η can then be obtained from the shear component of the stress
as

η= 〈Σ
12〉
γ̇
= ηf + 〈s

12〉
γ̇
. (2.11)

For what follows, we define the intrinsic viscosity for a particle dispersion at solid
volume fraction Φ = 4/3π(a/L)3N, as

[η] = η− ηf

ηfΦ
= 〈s

12〉
ηfΦγ̇

. (2.12)

To evaluate the heterogeneity of the stress in a realization, we define the deviatoric
shear stress as

δσ = σ − 〈σf 〉. (2.13)

Within the SPM formalism, the instantaneous volume-averaged stress of the flowing
dispersion is given by Iwashita & Yamamoto (2009) and Kobayashi & Yamamoto
(2011)

Σ = 1
V

∫
dr [σ − rρφ f p + ru · ∇(ρu)], (2.14)

where the last term in square brackets comes from the convective momentum-flux
tensor required to define the full stress tensor. The particle contribution to the stress
is then

s=Σ − 〈σf 〉. (2.15)

This instantaneous particle stress s can be used to define the corresponding values of
the instantaneous viscosity and intrinsic viscosity, as in (2.11) and (2.12). To further
evaluate the role of the inter-particle forces, and the accuracy of the lubrication
interactions within the SPM, we divide the body force into hydrodynamic and direct
particle–particle Lennard-Jones (LJ) force terms f p= f H

p + f C
p (see appendix C), such

that

Σ = 〈σf 〉 + sH + sC, (2.16)

sH = 1
V

∫
dr [δσ − rρφ f H

p + ru · ∇(ρu)], (2.17)

sC =− 1
V

∫
dr rρφ f C

p , (2.18)

where s = sH + sC. In particular, for spherical particles, sC can be evaluated
analytically and reduces to the virial expression for the stress (Evans & Morriss
2008)

sC =− 1
V

∑
i<j

Rij FC
ij , (2.19)
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where Rij = Rj − Ri is the distance vector from particle i to particle j, and Fij is
the force on particle i due to particle j. We note that, in SD simulations, the sharp
interface of the particle is taken into account, and no inter-particle interactions are
required. Particle overlap is prevented by including the lubrication forces (Brady &
Bossis 1988; Brady 1993). In the current formulation of the SPM, we are not able to
accurately recover the lubrication forces when the surface-to-surface distance between
particles becomes smaller than the grid spacing. Therefore, we include a truncated LJ-
type potential to prevent particle overlap. This inter-particle interaction, which depends
only on the centre-to-centre distance, gives rise to a repulsive force when two particles
are within contact distance r' 2a.

3. Results
When solid or viscous objects are immersed in a host fluid under a linear shear

flow, they induce an inhomogeneity in the flow field, and a decoupling of the rotation
and strain flows takes place, due to the imposed boundary conditions. For the case of
uniform shear, the velocity field can be decomposed into pure rotation and pure strain.
Measured in the shear plane, with respect to the mean flow direction, the strain field
is extended in the π/4 angle and compressed in the 3π/4 angle (Batchelor 1967).
Such anisotropic behaviour in the flow and strain fields is ubiquitous, for example
in the flow behaviour of polymeric liquids (Milner 1993) or supercooled liquids
(Furukawa & Tanaka 2009). When a particle of non-negligible size is immersed
in the flow, there is a pure rotational flow around the particle due to the no-slip
boundary condition, and the flow is modulated so that the strain tensor becomes
anisotropic around the particle (note that this property is reproduced using MPC, a
particle-based hydrodynamic simulation method (Ji et al. 2011)).

We consider here the simulation results for four different cases of particles in
simple-shear flow in the x–y plane: (1) a single particle, (2) a single rigid linear bead
chain, (3) two colliding spherical particles, and (4) a dense dispersion of spherical
particles. To test the validity of our method, we compare the results obtained in
the first three cases with available analytical theories and SD calculations. We take
as canonical simulation units the grid spacing ∆, the fluid density ρf = ρ and the
viscosity ηf . All remaining units can be obtained from these three; the units of mass,
time and pressure are ρ∆3, ρ∆2/ηf and ηf /ρ∆

2, respectively. All the simulations
presented here were performed for periodic cubic systems of lateral size L = 64
(volume V = L3), under steady shear. For the low-Re simulations, the shear rate γ̇
was chosen small enough (Re ' 10−3 − 10−2) that inertial effects are negligible and
we can compare our results with those obtained at Re= 0. We take the x–y plane to
be the shear plane, with x the shear-flow direction, y the shear-gradient direction, and
−z the vorticity axis. Unless stated otherwise, the thickness of the smooth interface
is fixed at ζ/∆= 2; the particle resolution was varied depending on the system under
study, we have used a/∆ = 2, 4, 8. Of particular relevance to our study is the ratio
between the particle radius and the system size ε = a/L. For large values of ε, finite
size effects and the use of the periodic boundaries conditions become important.
However, for ε . 0.1, these effects can be safely ignored, at least with regards to
the stress and viscosity calculations (this is not true for the calculation of diffusion
coefficients for example) (Iwashita & Yamamoto 2009).

3.1. Single particle under shear flow
For the case of a single spherical particle in shear flow, the equations governing
the Stokes flow (Re= 0) can be solved analytically (Lin, Peery & Schowalter 1970;
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Mikulencak & Morris 2004). The expression for the peculiar velocity field is

ξ = γ̇



−a5y
2r5
− 5a3x2y

2r5

(
1− a2

r2

)
−a5x

2r5
− 5a3xy2

2r5

(
1− a2

r2

)
−5a3xyz

2r5

(
1− a2

r2

)


, (3.1)

where a is the particle radius. Note that in a region close to the surface of a large
enough particle (r − a� a, a→∞), the flow field represents an extensional flow,
because ξ = u − γ̇ yex ' −γ̇ a5/2r4(y/r, x/r, 0). The resulting deviatoric Newtonian
stress is given by

δσ 12 = γ̇ η
[
− a3

2r3

(
5− 8a2

r2

)
+ 5a3x2y2

r7

(
5− 7a2

r2

)]
, (3.2)

where δσ 12 is anisotropic with a periodicity of π/2, because 4x2y2 = (r cos θ)4 sin 2ϕ
in spherical polar coordinates, where θ = arccos(z/

√
x2 + y2 + z2) and ϕ= arctan(y/x)

are the polar and azimuthal angles. On the z= 0 plane, δσ 12 exhibits a sign inversion
slightly outside the spherical surface in the region

√
19/15a 6 r 6

√
8/5a.

To show that the SPM provides the same velocity profile and stress distribution, a
simulation of one spherical particle in simple-shear flow is conducted (γ̇ = 10−3). The
centre of mass of the spherical particle, of radius a/∆= 4 (ε= 0.0625) is initially set
at the centre of the box r = 0, where the shear-flow velocity vanishes. The particle
Reynolds number for this system is Re = ργ̇ a2/ηf = 1.6 × 10−2. As expected, the
particle position remains constant during the simulation, with the particle rotating
about its centre with a mean angular velocity of γ̇ /2. Figure 1(a–c) shows the
comparison between the (a) analytical and (b) numerical solutions for the peculiar
fluid velocity field (1− φ)ξ and the deviatoric Newtonian stress field δσ 12 (with the
density map representing the magnitude). Simulation results are presented as time
averages in the steady state (over a time interval γ̇ t ∼ 102). Both the velocity and
stress fields exhibit very good agreement, which is also supported by the plot in
figure 1(c), which shows the distribution of the difference in the stress δσ 12 between
the analytical and numerical calculations. Since, in our numerical simulations, the
particle/fluid interface is smeared out, the fluid can enter the particle interface region
(a − ζ/2 < r < a), giving rise to relatively high stress differences. To check the
effect of the boundaries, we have also performed simulations for a larger value
of ε = 0.125 (figure 1d–f ). We again obtain good qualitative agreement with the
analytical results, although notable differences in the velocity at the system boundaries
start to appear, accompanied by an increase in the stress differences. This is expected,
since the analytical solution we are comparing against is for a spherical particle in
an unbounded flow, and our simulations assume periodic boundary conditions.

For this system, we expect that Einstein’s law for the viscosity η = ηf (1 + 5/2φ)
should be applicable, since the dispersion is dilute, with a volume fraction of
Φ = 4/3π(a/L)3 = 1.0 × 10−3 (ε = 0.0625), such that η = 1.00255. Indeed, from
the numerical calculations using the SPM, the shear viscosity is calculated to be
1.00244. For the system at ε = 1.020, we obtain η = 1.019, compared with the
theoretical value of η= 1.020. This agreement between the simulation and Einstein’s
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FIGURE 1. (Colour online) Comparison of the peculiar fluid velocity (1 − φ)ξ and
normalized deviatoric Newtonian shear stress field δσ 12/ηf γ̇ for a single spherical particle,
under simple shear (γ̇ = 10−3), placed at the origin: (a,d) analytical solution (unbounded
flow) and (b,e) numerical solution using the SPM (with periodic boundary conditions),
(c, f ) normalized shear stress difference |δσ 12 − δσ 12|/ηf γ̇ . Solid lines show the particle
surface assuming a sphere of radius a, dashed lines show the surface of the outer
boundary a′= a+ ζ/2 (the radius of the particle including the interfacial boundary layer).
(a–c) Shows results for a/∆= 4 (ε = 0.0625), (d–f ) for a/∆= 8 (ε = 0.125).

law was already reported by Kobayashi & Yamamoto (2011). In addition, we have
also checked the dependence of the viscosity on Re, by varying the shear rate
10−4 6 γ̇ 6 1.6 (a/∆= 4, ε = 0.0625). Our results are given in figure 2, together with
previous simulation data (Mikulencak & Morris 2004) obtained using a finite element
method for ε = 0.01, 0.1. Excellent agreement is obtained up to Re ' 101, however,
differences start to appear as Re is increased further. At high Re, we should decrease
the time step, to properly account for the advection, as well as increase the resolution,
to resolve the small-scale variations in the flow. The latter is straightforward, but the
former requires special care due to the non-monotonic dependence of the error in the
SPM method with respect to the time step. Such considerations are outside the scope
of this work.

3.2. Single bead chain
In practice, most industrial and technological applications which involve the motion of
particles under an imposed flow deal with non-spherical particles. Even for the simple
case of a single particle in shear flow, a wide variety of dynamic modes can be found
for high Re. Recent work by Huang et al. (2012) for spheroidal particles in Couette
flow (Re 6 700), using a multi-relaxation-time lattice Boltzmann method, has shown
the existence of distinct tumbling and log rolling modes, which are sensitive to both
the initial orientation and the precise value of Re. Here, in an attempt to validate our
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FIGURE 2. (a) Angular velocity ωz and (b) intrinsic viscosity [η] as a function of Re for
a single spherical particle under simple-shear flow, for ε = 0.0625 (filled circles). Results
obtained by Mikulencak & Morris for two different system sizes ε = 0.01 (open squares)
and ε = 0.1 (open circles), are also shown.

model, we focus on the case of an isolated axisymmetric particle under simple shear
in the low-Re regime, for which analytic solutions are known (Re = 0). These were
first obtained by Jeffery for ellipsoidal particles (Jeffery 1922), but they are applicable
to any rigid axisymmetric body once one defines its equivalent aspect ratio re (which
need not coincide with the geometric aspect ratio) (Bretherton 1962; Cox 2006; Zhang
et al. 2011). The orientation of the body is parametrized using the three Euler angles
θ, φ, ψ (see figure 3). Here, θ is the polar angle between the vorticity axis z and
the symmetry axis of the body, φ is the angle of rotation in the shear plane, and
ψ the angle of rotation around the symmetry axis of the body (not shown). Without
loss of generality, we can consider the fluid velocity at the centre of mass to be zero,
hence the particle will experience no net translation (this is accomplished by placing
the centre of mass of the chain at the centre of the simulation box). The particle will
therefore experience a pure rotational motion, completely specified by the three Euler
angles. As discovered by Jeffery, the particles will follow closed periodic trajectories,
specified by an orbit constant C, which depends only on the initial orientation. These
are the so-called Jeffery’s orbits and they take the following form

tan φ = r tan
(

γ̇ t
r+ 1/r

)
+ tan φ0, (3.3a)

tan θ =
(

Cr
r2 cos2 φ + sin2 φ

)1/2

, (3.3b)
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x
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y

FIGURE 3. (Colour online) Schematic representation of a (rigid) linear chain with n= 5
beads in simple-shear flow.

ψ =
∫ t

0
dt(γ̇ /2− φ̇) cos θ, (3.3c)

where the orbit constant C is given by

C= tan θ
r
(r2 cos2 φ + sin2 φ)1/2. (3.4)

We recall that r in (3.3) and (3.4) should be replaced with the equivalent aspect ratio
re when dealing with general axisymmetric bodies (instead of the ellipsoids originally
considered by Jeffery). This equivalent aspect ratio can be obtained if one knows the
period of oscillation, since

T = 2π

γ̇
(r+ r−1). (3.5)

An alternative, proposed by Cox (2006), is to measure the ratio of the torques on the
body in a fixed horizontal and vertical orientation, as

re =
√
[ω]V
[ω]H =

√
[τ ]V
[τ ]H , (3.6)

where τV (τH) is the hydrodynamic torque exerted on a particle fixed in the vertical
φ= 0 (horizontal φ=π/2) position within the shear plane θ =π/2. However, we have
obtained more accurate results by using the relation between the oscillation period
T and the aspect ratio r: we use the oscillation period obtained from the simulation
results of a free particle and invert (3.5) to obtain the equivalent aspect ratio. Finally,
the viscosity of a dilute suspension of such axisymmetric rigid bodies (in which the
particle–particle interactions are ignored) is also known (Batchelor 1970; Hinch &
Leal 1972), and in the absence of Brownian diffusion, takes the form

[η] = A sin4 θ sin2 2φ + 2B sin2 θ + 2
I‖
, (3.7)
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where the intrinsic viscosity [η] is defined such that η = η0(1 + [η]Φ), with Φ the
particle number density, and A and B given by

A= J‖
I‖J⊥
+ 1

I‖
− 2

I⊥
, (3.8)

B= 1
I⊥
− 1

I‖
, (3.9)

where the I and J are form factors which depend only on the shape (aspect ratio) of
the particle; assuming r> 1 they are given by

I‖ = 2r
∫ ∞

0

dx
(r2 + x)1/2(1+ x)3

= (3s+ 2r2 − 5)r2 q
2
, (3.10a)

J‖ = r
∫ ∞

0

dx x
(r2 + x)1/2(1+ x)3

= ((1− 4r2)s+ 2r2 + 1)r2 q
4
, (3.10b)

I⊥ = r(r2 + 1)
∫ ∞

0

dx
(r2 + x)3/2(1+ x)2

= (r2(1− 3s)+ 2)(r2 + 1)q, (3.10c)

J⊥ = r
∫ ∞

0

dx x
(r2 + x)3/2(1+ x)2

= ((2r2 + 1)s− 3)r2q, (3.10d)

s= acosh r
r(r2 − 1)1/2

q= 1
(r2 − 1)2

. (3.10e)

For simplicity, we consider rigid chains of spherical beads. We place a single chain
of n= 3 spherical beads, particle radius a/∆= 2, at the centre the cubic simulation
box of length L = 64 (ε = an/L ' 9 × 10−2), under simple-shear flow with shear
rate γ̇ = 5× 10−4 (Re= ργ̇ (an)2/ηf = 1.8× 10−2). We consider three different initial
orientations, θ = π/10, π/4, π/2 with φ = 0, which corresponds to orbit constants
of C = 0.32, 1,∞. As explained above, the effective aspect ratio of this rigid body
re = 2.79 can be obtained after measuring the period of oscillation. This value of re

can then be used to obtain the corresponding Jeffery orbits, which are compared to
our simulation results in figure 4. Excellent agreement is obtained for the orbit of
the spherical chain. Results for larger system size L, smaller ε, exhibit no system
size dependence (not shown). However, when comparing the results for the intrinsic
viscosity, we observe a clear difference between both sets of data. To validate our
simulation procedure, we have also computed the viscosity given by SD, which
provides the exact solution (at Re = 0). The SD results are obtained by taking the
SPM simulation data for the trajectories and velocities and using them to solve
the corresponding resistance problem. Good agreement with our data, particularly
for chain configurations parallel or perpendicular to the shear flow (φ = 0, π/2), is
obtained. For configurations with φ ∼ π/4, for high values of the orbit constant,
there is a clear overestimation of the intrinsic viscosity in the SPM measurements.
We believe this discrepancy, which can be of the order of '10 %, is due to the
diffuse interface used to represent the fluid–particle boundary. Specifically, due to
the strong fluid flow along this diffuse particle surface. The reason this effect is
highly orientation-dependent is simple: for both φ = 0 and φ =π/2 the fluid velocity
parallel to the symmetry axis of the body is small, and does not vary strongly along
the surface, in contrast to the case for φ = π/4 (where the velocity along the body
of the particle increases with height). The effective size of the particles can be
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FIGURE 4. (Colour online) Jeffery’s orbits for a single spherical bead chain, of geometric
aspect ratio r = 3 and effective aspect ratio re ' 2.8. The Euler angles (ψ, φ, θ)
characterizing the orientation of the chain (see figure 3), are given in (a), (b) and (c),
respectively, for one full period. The corresponding intrinsic viscosity is given in plot (d).
Simulation data using our SPM model is represented using the filled symbols and Jeffery’s
solution (using the effective aspect ratio re) is given by the dashed lines. For the intrinsic
viscosity [η], data obtained from SD calculations are also given (solid lines).

considered to increase slightly depending on the relative orientation with respect to
the shear flow. To test this, we have validated against SD calculations, using the same
effective aspect ratio as before, but varying only the radius of the spherical beads.
The results for the particle shear stress s12, summarized in figure 5, indeed show a
strong dependence on the hard-sphere radius of the particles. A difference of only
5 %, which is well within the relative size of our diffuse interface, can account for
the variations between our data and the reference SD data. Finally, we see that even
though an effective aspect ratio can be used to transfer Jeffery’s solution to arbitrary
axisymmetric rigid bodies, the stress on the fluid (not surprisingly) depends strongly
on the shape of the particle, and it cannot be accurately represented using the same
aspect ratio (as shown by the poor comparison between Jeffery’s solution and both
the SD and SPM simulations).

3.3. Collision of a pair of particles
Interactions between colloidal particles strongly affect the rheology and flocculation
behaviour under shear flow. Due to the hydrodynamic interactions from the host
fluid, a pair of immersed particles, which are initially separated, will never come into
contact, thanks to the lubrication forces between them. Accurately representing these
interactions, which diverge as the surface-to-surface separation between the particles
goes to zero, poses significant problems when dealing with many-particle systems.
However, simulation frameworks for dealing with hydrodynamically interacting
particles have already been developed (Durlofsky, Brady & Bossis 1987; Brady
& Bossis 1988; Ladd 1988), which take these lubrication effects into account, at
least at the level of SD. Numerical studies based on this formulation have shown that
hydrodynamic effects can account for the concentration dependence of the viscosity
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FIGURE 5. (Colour online) Particle shear stress s12 for a single rigid bead chain of aspect
ratio r= 3 (re' 2.8), for different orbit parameters: (a) C=∞, (b) C= 1.0, (c) C= 0.32.
Simulation data obtained using our SPM model, with a diffuse fluid/particle interface, is
given by the solid symbols. Results from SD calculations using the same hard-sphere
radius a as the SPM simulations is given by the solid line, results obtained using a
modified hard-sphere particle radius a′/a= 0.95, 1.05, are given as dashed lines.

of semi-dilute suspensions (Batchelor & Green 1972; Chwang & Wu 1974). There
have been many discussions regarding the rheology of more highly concentrated
suspensions, where the viscosity dependence on the concentration φ is compared
between various simulations (Ladd 1990; Boek et al. 1997; Sierou & Brady 2001)
and experiments (van der Werff & de Kruif 1989; Shikata & Pearson 1994; Singh &
Nott 2003), and the inter-particle forces have been shown to have a dramatic effect
on the viscosity.

The simplest example for the rheology of interacting colloidal particles is that of
two colliding spheres under shear flow, which we turn to now. This problem was first
considered by Batchelor and Green some 40 years ago, when they analytically solved
for the interaction between a pair of colloids in an infinite fluid, as a function of
the relative particle separation distance r = r2 − r1, under the Stokes approximation
(Batchelor & Green 1972; Russel, Saville & Schowalter 1992). In their theory, the
interaction force dipoles between a pair of particles is solved, and gives rise to the
following particle contribution to the shear stress

Vs12 = 20
3

πa3ηf γ̇

[
(1+K(r))+ x2 + y2

r2 L(r)+ 2x2y2

r4 M(r)
]
, (3.11)
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FIGURE 6. (Colour online) A pair of particles in a host fluid under shear flow is shown
for three consecutive times γ̇ t=−2.53, −1.17, and 0.87, for a shear rate γ̇ = 10−3. The
peculiar velocity field ξ and deviatoric Newtonian shear stress δσ 12/ηf γ̇ are displayed
using the arrows and colour map, respectively.

where r = (x, y, z) and the coefficients K, L,M are defined as

K(r) = −2r̃−5 + o(r̃−6), (3.12a)
L(r) = − 5

2 r̃−3 + 10r̃−5 + 25
4 r̃−6 + o(r̃−6), (3.12b)

M(r) = 25
2 r̃−3 − 35r̃−5 + 25r̃−6 + o(r̃−6). (3.12c)

Here, the radii of the two particles is assumed to be the same (a) and r̃ = (r/a) is
the relative distance normalized by this radius a.

We performed a simulation for a pair of spherical particles, radius a/∆ = 8
(ζ/∆ = 1), to confirm whether our rheological calculation can accurately reproduce
the behaviour described above, for two approaching particles. As before, we impose
a constant shear flow (γ̇ = 10−3). The two particles are initially placed at positions
r± = (±20∆, ±1y, 0), such that they are displaced from the origin by a distance
of 1y = a in the y-direction (shear-gradient direction). The imposed shear flow will
pull the particles together, ensuring that they will collide. Therefore, 1y represents
the impact parameter of this particle collision. We define the time origin (t = 0)
when the particles have the same position along the x-axis (shear-flow direction):
x+(t= 0)= x−(t= 0). Thus, negative times correspond to instants before the collision,
when particles are being squeezed together, positive times to instants after the
collision, when the flow is pulling the particles apart.

In figure 6, a cross-section view of the spatial distribution of the deviatoric
Newtonian shear stress δσ 12 is plotted as a colour map, together with a 2D projection
of the peculiar velocity field ξ (represented by the arrows) at z = 0. As shown in
figure 6(a), δσ 12 and the velocity ξ have anisotropic structures with π/2 rotational
periodicity, as in the one-particle case (see figure 1). When the particles are in near
contact with each other (b) (at γ̇ t=−1.17), the direct inter-particle LJ interaction will
give a significant contribution to the stress. The surrounding fluid then starts flowing
into the interstitial space between the particles, to allow subsequent particle separation.
Because the particles are nearly at contact and are pushing out the interstitial fluid
between them, δσ 12 is largely negative, as observed around the contact point. At
γ̇ t= 0.87, the particles are being pulled apart, with the fluid coming into the region
between them, δσ 12 is then strongly positive, as shown in (c). Around the particle
surface in particular, the deviatoric Newtonian stress δσ 12 represents the stress due to
the particle pushing or dragging the fluid.
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The shear stress s12, can be decomposed into the contributions given in (2.9). In
particular, within the SPM framework, the effect of the hydrodynamic interactions
is represented by sH , and it is of interest to see how large it is compared to the
pure inter-particle interactions (sC). To validate the accuracy of the stress calculations
within the SPM, we compare against Batchelor’s analytical solution and SD results.
For this, we use the trajectory of the particles r1(t) and r2(t) obtained from our
SPM simulations. Using (3.11), we obtain an estimate for the shear stress s12 within
Batchelor’s force dipole approximation. For the comparisons with SD, the particle
trajectories are used to solve the corresponding mobility problem, both with and
without lubrication corrections. For both cases (Batchelor and SD), we must define
the hard-sphere radius of the particles. However, given the diffuse interface used in
our simulations, it is not clear what value we should use. For this, we have fitted an
effective radius aeff , in such a way that the stress at large separations γ̇ t' 2 obtained
from our SPM simulations matches the stresses obtained from Batchelor’s solution or
SD. We obtained an effective radius aeff /a' 0.975 (aeff /∆= 7.8), which is consistent
with the SPM parameters, since the interface region is smeared out over distances
7.5 6 r/∆ 6 8.5 (ξ/∆ = 1.0). Furthermore, in this large-separation limit, where
lubrication forces are negligible, both Batchelor’s solution and SD predict the same
values for the stress (using equivalent particle radii). This shows that any effects due
to the use of periodic boundary conditions can be ignored. However, for the results
obtained during the collision event, when r ' 2a and the interface of both particles
can overlap, strong differences are seen between Batchelor’s results and the SD
calculations. In addition, there is also a strong dependence on the precise value used
for the effective radius aeff , which makes a direct comparison with our SPM results
difficult. These differences are considerably reduced at large particle separations,
and can be made arbitrarily small by increasing the particle resolution (as discussed
below). Finally, we note that when we compare our results with SD, we do not
included any additional inter-particle repulsive forces (sSD

C = 0); we thus compare the
stress obtained from the SPM calculations (with the short-range LJ-type repulsion)
with the purely hydrodynamic SD stress. Figure 7 shows the time evolution of the
total deviatoric shear stress s12 obtained from our simulations, as well as the pure
hydrodynamic contribution to the shear stress s12

H , together with the relative positions
x and y, and the surface-to-surface distance between the particles (r − a). Our SPM
simulation results are compared to Batchelor’s theory (3.11) and to SD calculations
(with and without the lubrication corrections), using two different particles sizes: (1)
an equivalent hard-sphere radius a/∆ = 8.0, and (2) the effective hard-sphere radius
aeff /∆= 7.8.

During the collision process, as seen in figure 7, when the particles come close
to each other (r & 2; γ̇ t ∼ −2), the deviatoric shear stress s12 obtained from the
simulations sSPM begins to increase due to the hydrodynamic interactions. When this
distance reaches a value close to the particle diameter, the particles are subjected to an
inter-particle repulsive interaction, which corresponds to a gap between sSPM and sSPM

H
and partially represents the lubrication interaction in real dispersions (as evidenced by
the comparison with the SD calculations that include the lubrication corrections sSD

lub).
Subsequently, the particles are pushed away from the centre due to the normal stress
(dy/dt> 0), and a peak in s12 is soon achieved (the position of the peak is the same
regardless of the calculation method). At t=0 (x=0), just after the direct inter-particle
LJ interaction vanishes, hydrodynamic drag forces start to pull the particles closer
to the centre line (dy/dt < 0). Note that the hydrodynamic stress sSPM

H significantly
underestimates the full stress during the particle collision (−1.3 . γ̇ t < 0), when the
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FIGURE 7. (Colour online) Collision process for a pair of particles in linear shear flow.
(a) The total deviatoric shear stress s12 obtained from our simulations is shown with
filled blue points, and the deviatoric shear stress s12

H is plotted with blue open circles, for
particles of radius a/∆=8 (ε=0.125). SPM results for the shear stress are compared with
Batchelor’s approximation (dashed–dotted lines), and SD calculations with (solid lines)
and without (dashed lines) lubrication corrections. The pink and blue lines correspond to
results obtained for an equivalent hard-sphere radius a and an effective hard-sphere radius
aeff /a=0.975, respectively. (b) The surface-to-surface distance between the particles r−2a,
as well as the x (y) components of their relative position x (y).

direct inter-particle LJ interactions are significant. Due to the nature of our method,
it is clear that we could not expect to accurately take into account the lubrication
effects when the surface-to-surface distance is less than the grid spacing. Including
the direct inter-particle contribution to the stress gives much better agreement with
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FIGURE 8. (Colour online) Relative deviation of the particle contribution to the shear
stress s12 obtained by SPM with respect to Batchelor’s results is plotted as a function
of particle resolution a/∆. This deviation is estimated in the time region γ̇ t ' 2 where
sSPM = sDNS

H . The impact parameter is set as 1y= a.

SD, particularly when we compare against the results obtained using the effective
radius aeff (fitted to the stress outside of the collision region). However, there is still
a relatively large error for the peak stress at γ̇ t ' −1 (≈20–30 %). If required, one
can consider more accurate representations for the lubrication forces, for example, by
using a steeper inter-particle repulsion, or even by adding the lubrication corrections
directly (Nguyen & Ladd 2002).

Finally, we show the dependence of the stress calculations on the particle
resolution a/∆. Outside of the collision region (r > 2a), we have seen that SD
and Batchelor’s results coincide. However, full agreement with our SPM calculations
was obtained only if we used an effective hard-sphere radius aeff for both SD and
Batchelor’s calculations. Using the same hard-sphere radius a, the SPM results slightly
underestimate the stresses. This is reasonable given the diffuse nature of the particle
interface within the SPM formulation. As further evidence for this, we show that by
increasing the particle resolution a/∆, the difference between the stresses given by
the SPM, and those obtained from Batchelor’s solution using the same hard-sphere
radius a, is reduced (i.e. a/aeff → 1). In figure 8, the relative difference between
these two stresses 1s12 = (s12,DNS − s12,Batchelor)/s12,Batchelor is plotted as a function of
particle resolution a/∆, showing that the deviation becomes smaller at large enough
particle radius. Thus, it is clear that the deviation originates from the use of the
diffuse fluid–particle interface. It is expected to vanish if we employ a large enough
radius.

3.4. Viscosity of concentrated colloidal dispersions
Having established the accuracy with which the SPM method is able to resolve
the hydrodynamics of particles in shear flow, we now consider the viscosity of
dense colloidal suspensions. It is well known that in the presence of shear, colloidal
dispersions will exhibit several interesting non-Newtonian behaviours, such as shear
thinning or shear thickening. While a complete understanding of such behaviour
is still lacking, computer simulations have significantly helped to establish the
mechanisms behind these phenomena. Of particular importance is the ability to
establish a link between the microstructure of the dispersion and the macroscopic
rheological properties. The present method is well suited to study such problems.
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FIGURE 9. (Colour online) The viscosity of a dispersion of spherical colloidal particles as
a function of Péclet number Pe, for various particle concentrations Φ. The data obtained
using the proposed Lees–Edwards SPM method (filled symbols), is compared with the
data previously obtained data using an externally driven zig-zag shear flow (open symbol)
by Iwashita & Yamamoto (2009). The dashed lines show the fit to the empirical formula
given in (3.14). Error bars, representing the standard deviation of the mean, have been
drawn for a selection of the simulation results.

Indeed, previous work by Iwashita & Yamamoto (2009) using the SPM with a
zig-zag velocity profile has successfully studied the shear-thinning behaviour of
Brownian colloidal particles over a wide range of Reynolds (10−4 < Re < 100) and
Péclet numbers (10−2 < Pe< 101), where the latter is defined as

Pe= 6πηf a3γ̇ /kBT. (3.13)

We have compared our results using the Lees–Edwards SPM, to those obtained
using the zig-zag flow (Iwashita & Yamamoto 2009). To facilitate the comparison
we have used the same parameters. The size of the system is L/∆ = 64, with
spherical particles of radius a/∆= 4, interface thickness ζ/∆= 2 (ε = 0.0625). The
temperature is kBT = 7, as determined by equilibrium calculations in the absence of
shear. Simulations were performed for volume fractions of Φ = 0.31, 0.41, 0.46, 0.51
and 0.56, corresponding to particle numbers of N = 300, 400, 450, 500 and 550,
respectively, for shear rates in the range 10−4 6 γ̇ 6 10−1. The total time tmax,
corresponding to 2 × 106 steps, was the same for all systems. Thus, the total strain
γ = γ̇ tmax varied from 101 for the lowest shear rate, to 104 for the largest shear rate.
Figure 9 summarizes our results for the dispersion viscosity η as a function of Pe,
together with the previously reported zig-zag results, and the corresponding fits to
the following empirical formula (Iwashita & Yamamoto 2009)

η(Pe, Φ)= η∞ +
(

η0 − η∞
1+ b−1(Φ)Pe

)
, (3.14)
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where η0(η∞) is the low (high) shear rate limiting viscosity, and b(Φ) is a fitting
parameter. As expected, upon increasing the Pe, and thus the relative importance of the
hydrodynamic interactions over the thermal fluctuations, the shear-thinning behaviour
is recovered for particle concentrations Φ & 0.46. Excellent agreement is obtained
between both methods, at least for Pe & 10−1 and Φ . 0.51, which indicates that the
use of the zig-zag profile is not a significant problem for rheological measurements of
moderately dense spherical particle dispersions. At smaller Pe the results show clear
differences for Φ = 0.56, which indicates that the presence of the kinks in the zig-zag
flow profile becomes important, and their effects on the structure and dynamics of the
dispersion needs to be considered.

4. Conclusion

We have successfully extended the SPM formalism to compute the rheological
properties of rigid bodies under simple shear. We have also shown that the
methodology is applicable to bodies of arbitrary shape, not just to spherical particles.
To simulate bulk systems, we use the appropriate Lees–Edwards periodic boundary
conditions, which in turn require that the fluid equations of motion be expressed in an
oblique time-dependent reference frame. We have given a general derivation for the
fluid equations of motion, which show how the current approach may be extended to
more complex flows (e.g. oscillatory shear). Our method provides explicit expressions
for the local viscous shear stress, as well as the particle contribution to the stress.
We have validated our results by analysing three well-known flow problems for
particles in simple-shear flow: (1) a single particle, (2) a single rigid chain, and (3)
two colliding particles. In addition, we have examined the shear-thinning behaviour
of concentrated colloidal dispersions. In the three simple test cases, the simulation
results for the fluid velocity and shear stress are quantitatively compared with the
analytical solutions and the SD results. We obtain very good agreement for all the
cases considered. However, we note that certain differences exist due to the diffuse
nature of the particle/fluid interface. Such differences are localized around the particle,
and will increase as the flow around the surface becomes more important. For the
case of a single particle, the local stress will deviate from the analytical solution,
as the particle boundary is not uniquely defined in our simulations. Furthermore,
this deviation can depend on the relative orientation of the particle (as seen when
calculating the stress of the single sphere or the rigid chain in the Jeffery Orbits), and
is found to be larger along the compression axis. As particles will tend to align in
this direction (Foss & Brady 2000; Kumar 2010), the extent to which this discrepancy
in the stress will affect the structure or dynamics in concentrated dispersions is a
point which still needs to be considered. In addition, when two (or more) particles
approach each other, we are not able to accurately reproduce the lubrication effects
if the surface-to-surface distance is less than the grid spacing. If necessary, one could
also add the lubrication corrections directly (Nguyen & Ladd 2002), although this
becomes quite involved when non-spherical particles are considered. Overall, we
consider such errors, which are typically ∼10 %, to be acceptable, considering the
generality of the method and the relative ease with which it can be implemented. Our
method has been developed to provide a general framework which is applicable to
complex host solvent from low to moderate Reynolds numbers, with arbitrary particle
geometries, and is consistent with SD and its variants.
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Appendix A. Navier–Stokes equation in a moving coordinate system
The (oblique) basis vectors are defined such that they move with the average

flow velocity, and satisfy the periodic boundary conditions at all times. Thus, under
shear flow with mean velocity U(t) = γ̇ (t)yex (γ̇ (t) = dγ (t) /dt the imposed shear
rate at time t, γ (t) the shear strain, and ex the Cartesian x-axis), the velocity of
the lattice points (coordinate-flow velocity) must be equal to the shear-flow velocity
U. Since the basis vectors are no longer ortho-normal, it becomes necessary to
distinguish between contravariant and covariant tensor components. The covariant
and contravariant transformation matrices, Λ and Λ′, respectively, which define the
transformation between the canonical Cartesian frame, and the time-dependent oblique
frame, are given by Kobayashi & Yamamoto (2011)

Λ=
1 γ (t) 0

0 1 0
0 0 1

 , Λ′ =
1 −γ (t) 0

0 1 0
0 0 1

 , (A 1a,b)

with Λ · Λ′ = Λ′ · Λ = I . In what follows, we will distinguish between tensor
components measured in the fixed Cartesian lab frame and the oblique frame, by
using a caret or hat (·̂) for the latter. Thus, the oblique covariant (contravariant)
basis sets Êµ (Ê

µ
), and the corresponding components x̂µ (x̂µ) of a given vector

x= xµeµ = x̂µ Êµ = x̂µ Ê
µ
, are defined as Carroll (2004)

Êµ =Λν
µeν, Ê

µ =Λ′µνeν, (A 2a)

x̂µ =Λν
µxν, x̂µ =Λ′µνxν, (A 2b)

where the Einstein summation convention is implied (lowercase Greek variables are
used for the coordinate indices µ = 1, 2, 3), eµ = eµ by definition, and Λν

µ = [Λ]νµ
and Λ′µν = [Λ′]µν denote the matrix components of Λ and Λ′ (A 1a,b), respectively.
The metric tensors for this oblique coordinate space are then

Gµν = Ê
µ
· Ê

ν =
1+ γ 2(t) −γ (t) 0
−γ (t) 1 0

0 0 1

 , (A 3a)

Gµν = Êµ · Êν =
 1 γ (t) 0
γ (t) 1+ γ 2(t) 0

0 0 1

 . (A 3b)
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Due to the homogeneous nature of the coordinate transformation, all the Christoffel
symbols are exactly zero, and covariant/contravariant derivatives can be replaced with
the corresponding partial derivatives (i.e. ∇̂µ = ∂/∂ x̂µ and ∇̂µ =Gµν∂/∂ x̂ν).

When the coordinate system used to solve the Navier–Stokes equation is time-
dependent, which is the case we are interested in here, the proper form for the
equations of motion is given by Luo & Bewley (2004), Venturi (2009)

δuµ

δt
= ρ−1∇νσ νµ + φf µp , (A 4)

where δ/δt denotes the intrinsic time derivative, defined for a contravariant quantity
as

δAµ

δt
= ∂Aµ

∂t
+ (uν −Uν)∇νAµ + Aν∇νUµ (A 5)

with Uµ ≡ −∂xµ/∂t the velocity of the coordinate flow. For simple-shear flow, the
coordinate flow is defined as the mean shear-flow velocity

U = γ̇ (t)y e1 = γ̇ (t)x̂2 Ê1. (A 6)

In terms of the peculiar velocity, ξ = u−U, (A 4) can then be written in the oblique
frame as

(∂̂t + ξ̂ ν∇̂ν)ξ̂µ = ρ−1∇̂ν σ̂ νµ + φ̂ f̂ µp −
(

dγ̇ (t)
dt

x̂2 + 2γ̇ (t)ξ̂ 2

)
δµ,1, (A 7)

where ∂̂t gives the partial time derivative at a fixed point in oblique space

∂̂t ≡ ∂

∂t

∣∣∣∣
x̂µ
= ∂

∂t

∣∣∣∣
xµ
+ γ̇ (t)y ∂

∂x
. (A 8)

The last term on the right-hand side of (A 7) arises because of the coordinate flow. It
is instructive to consider the meaning of each of these terms independently. One of
the factors in γ̇ (t)ξ̂ 2 comes from the explicit time dependence of the basis vectors,
the other from the advection of the coordinate flow, and the term proportional to
∂γ̇ /∂t from the time dependence of the imposed shear. In the case of oscillatory-
shear flow, this last term is problematic, as it depends explicitly on x̂2, rendering
the equation incompatible with the proposed periodic boundary conditions. However,
under the assumption that the k = 0 component of the fluid velocity instantaneously
follows the applied shear, we can safely set this term equal to zero, i.e. ∂̂tÛµ = 0.
The fact that this approximation is necessary is not surprising, as we are dealing with
an unbounded system under (Lees–Edwards) periodic boundary conditions. As there
is no boundary or external force driving the system, it is not possible to consider the
response of the fluid to the imposed flow. Experimentally, this assumption corresponds
to situations in which the oscillatory Reynolds number Reω =ωL2/ν� 1 (with ω the
driving frequency and L the characteristic length over which the flow is varying). In
such quasi-steady situations, the Stokes boundary layer δ'√ν/ω is much larger than
the system size, and the velocity and stress profiles are equivalent to the steady case
ω = 0 (e.g. steady Couette flow). Thus, when considering oscillatory-shear flows, δ
must be much larger any length scale in our system.
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Finally, we arrive at

(∂t + ξ̂ ν∇̂ν)ξ̂µ = ρ−1∇̂ν σ̂ νµ + φ̂ f̂ µp − 2γ̇ (t)ξ̂ 2δµ,1, (A 9)

which gives the time evolution of the (contravariant) components of the peculiar
fluid velocity ξ̂µ, with respect to a time-dependent coordinate system x̂µ, which
is being instantaneously advected by the linear flow field U (A 6). Our final form
for the Navier–Stokes equation, (A 9), is analogous to the SLLOD equations of
motion for the peculiar momentum of a particle in an arbitrary homogeneous and
divergence-free flow (Todd & Daivis 2007; Evans & Morriss 2008). In this case, the
same approximation of an instantaneous response is assumed. In contrast with (A 7),
(A 9) contains no explicit dependence on the coordinates and, as such, can be used
together with the Lees–Edwards boundary conditions to describe periodic systems
under both steady and oscillatory shear.

Appendix B. Computational Algorithm

In what follows we provided a detailed description of the time-stepping scheme we
have used. First, we update the fluid velocity by solving for the advection and viscous
stress, and update the particle configuration. We solve (A 9) in the absence of any
particle constraint force

ξ̂µ∗ = ξ̂µ +
∫ tn+1

tn

ds [∇̂ν(ρ−1σ̂ νµ − ξ̂ ν ξ̂µ)− 2γ̇ (t)ξ̂ 2δµ,1] (B 1)

under the incompressibility condition (∇̂µξ̂µ = 0). Next, we solve the Newton–Euler
equations to obtain the new particle positions and orientations

Rn+1
i = Rn

i +
∫ tn+1

tn

ds V i, (B 2)

Qn+1
i =Qn

i +
∫ tn+1

tn

ds skew(Ωi) ·Qi. (B 3)

The fluid updated fluid velocity ξ̂µ∗ is transformed from the oblique frame to the
ortho-normal Cartesian frame. The updated fluid and particle velocity fields, are then

u∗(x)= (γ̇ (tn+1)yδµ,1 +Λµ
ν ξ̂

ν∗(x)
)
eµ, (B 4)

φu∗p(x)=
∑

i

φn+1
i [V n

i +Ωn
i × rn+1

i ], (B 5)

with rn+1
i = x − Rn+1

i . After solving the Navier–Stokes equation, the oblique velocity
ξ̂ ν∗ is not defined on the Cartesian grid, but instead on the moving oblique grid.
We need to interpolate the values between the two grids. We abandon the linear
interpolation scheme used previously (Kobayashi & Yamamoto 2011) to map between
the oblique and rectangular grid points. Instead, we use a higher-order interpolation,
which reduces the fluctuations in the local stress calculations. Thus, a field variable
f (xi,j,k), evaluated at a fixed Cartesian grid point xi,j,k =∆(i, j, k) (i, j, k integers and
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∆ the grid spacing), is interpolated using the values at all Nx oblique grid points
x̂ ı̂,̂ ,k̂, along the flow direction ex

f (xi,j,k)=
Nx∑

ı̂=0

α(i← ı̂)f (x̂ ı̂,̂ ,k̂), (B 6)

where, according to (A 2b), ̂ = j and k̂= k, and the interpolation weights α(i← ı̂) are
chosen to obtain a periodic cubic spline fit with continuous first and second derivatives
(Hildebrand 1987).

Second, we compute the hydrodynamic force FH and torque NH exerted by
the fluid on the particles. Assuming momentum conservation, the time-integrated
hydrodynamic force and torque are given directly by the momentum exchange over
the particle domain [∫ tn+1

tn

ds FH
i

]
=
∫

dx ρφn+1
i (u∗ − u∗p), (B 7)[∫ tn+1

tn

ds NH
i

]
=
∫

dx [rn+1
i × ρφn+1

i (u∗ − u∗p)]. (B 8)

Third, we update the particle velocities and angular velocities

V n+1
i = V n

i +M−1
i

∫ tn+1

tn

ds [FH
i + FC

i + FExt
i ], (B 9)

Ωn+1
i =Ωn

i + I−1
i ·

∫ tn+1

tn

ds [NH
i + NC

i + NExt
i ], (B 10)

which gives the final particle velocity field un+1
p , where FC (NC) and FExt (NExt)

represent the inter-particle and external forces (torques). Without loss of generality,
we will neglect all external fields, such that FExt

i = NExt
i = 0. For what follows, we

also define the hydrodynamic and colloidal velocity increments as

1VX
i =M−1

i

∫ tn+1

tn

ds FX
i (X =H, C), (B 11)

1ΩX
i = I−1

i ·

∫ tn+1

tn

ds NX
i (B 12)

such that V n+1
i = V n

i + 1VH
i + 1VC

i , and likewise for the angular velocity update.
Finally, we impose the particle rigidity on the total fluid velocity through the body
force φ f p in the Navier–Stokes equation

un+1 = u∗ +
[∫ tn+1

tn

dsφ f p

]
, (B 13)[∫ tn+1

tn

dsφ f p

]
= φn+1(un+1

p − u∗) (B 14)

and we again impose the divergence-free condition on the total velocity field ∇ ·
un+1 = 0. The new velocity field is then transformed back to oblique space, and the
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procedure is repeated for the subsequent time steps. As pointed out by Onuki (1997),
whenever γ̇ t= 1, we should reset the grid and the strain (γ (t)→ γ̇ t− 1) in order to
maintain numerical stability. This procedure introduces additional problems of its own,
such as the loss of kinetic energy and dissipation rate, but this is significant only at
very high shear rates, and is not a problem for the systems considered in this work
(Brucker et al. 2007).

Appendix C. Calculation of particle stress
Within the SPM, the particle contribution to the stress is given in terms of the body

force f p as

s= 1
V

∫
dr [δσ − rρφ f p + ru · ∇(ρu)]. (C 1)

It is convenient to separate the contributions arising from the hydrodynamic
interactions, from those arising from the direct inter-particle colloidal forces, such
that φ f p = φ f H

p + φ f C
p . By definition, we have[∫ tn+1

tn

dsφ f p

]
= φn+1(un+1

p − u∗)

= φn+1(un+1
p − u∗p)− φn+1(u∗ − u∗p). (C 2)

The first term on the right-hand side can then be expressed in terms of the
hydrodynamic and colloid (inter-particle) forces, as

φn+1(un+1
p − u∗p) =

∑
i

φn+1
i [1VH

i +1ΩH
i × rn+1

i ]

+
∑

i

φn+1
i [1VC

i +1ΩC
i × rn+1

i ]. (C 3)

The individual contributions to the body force, to first order in time, are then given
by

hφ f H
p =

∑
i

[1VH
i +1ΩH

i × rn+1
i ] − φn+1(u∗ − u∗p), (C 4)

hφ f C
p =

∑
i

φn+1
i [1VC

i +1ΩC
i × rn+1

i ]. (C 5)

Appendix D. Calculation of local stress field
When the colloidal dispersion is simulated using the SPM, the Navier–Stokes

equation for the total fluid velocity is solved using a Fourier spectral scheme in
oblique space. As the velocity field is given in this oblique (dual) wavevector space,
it is computationally more efficient to directly compute the local stress (pressure) field
in this space as well, and then perform an inverse Fourier transform to recover the
real components of the stress over the fixed Cartesian grid. Based on the definition
of the basis vectors and the tensorial quantities defined in (A 2a) and (A 2b), the
contravariant components of the wavevectors k̂µ are represented in terms of covariant
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wavevectors k̂µ = 2πn/Lµ, where n is an integer and we assume a rectangular
simulation box of dimensions Lµ, as k̂µ = Ĝµν k̂ν

k̂1 = [1+ γ 2(t)]k̂1 − γ (t)k̂2, (D 1)

k̂2 = k̂2 − γ (t)k̂1, (D 2)

k̂3 = k̂3. (D 3)

Application of the incompressibility condition in (2.5b) to the Navier–Stokes equation
(A 9) leads to

∇̂µ
[
∇̂ν(ξ̂µξ̂ ν)+ η

ρ
∇̂2ξ̂µ + 2γ̇ ξ̂ 2δµ,1

]
+ ∇̂2 p̂

ρ
= 0, (D 4)

which allows us to calculate the pressure p̂(k̂) as

p̂(k̂)= iρ
k̂µ

k̂λk̂λ

(
ik̂νV̂µν + η

ρ
k̂ν k̂ν ξ̂µ + 2γ̇ ξ̂ 2δ1,µ

)
, (D 5)

where V̂µν(k̂)= ∫ ξ̂µξ̂ ν exp(−ik̂α x̂α)dx̂ is the Fourier transform of the dyadic product
of the (peculiar) velocity field with itself. As usual for incompressible systems, the
pressure p̂ itself is meaningless, it just serves to obtain a solenoidal velocity field.
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