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Interpolation of spatial data is a very general mathematical problem with various applications.

In geostatistics, it is assumed that the underlying structure of the data is a stochastic process

which leads to an interpolation procedure known as kriging. This method is mathematically

equivalent to kernel interpolation, a method used in numerical analysis for the same problem,

but derived under completely different modelling assumptions. In this paper we present the

two approaches and discuss their modelling assumptions, notions of optimality and different

concepts to quantify the interpolation accuracy. Their relation is much closer than has

been appreciated so far, and even results on convergence rates of kernel interpolants can

be translated to the geostatistical framework. We sketch different answers obtained in the

two fields concerning the issue of kernel misspecification, present some methods for kernel

selection and discuss the scope of these methods with a data example from the computer

experiments literature.
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1 Introduction

1.1 A survey in mathematics for industry

Interpolation of spatial data is a very general mathematical problem with various ap-

plications, such as surface reconstruction, the numerical solution of partial differential

equations, learning theory, computer experiments and the prediction of environmental

variables, to name a few. Specific instances from different fields of application can be

found in [9] and [85]. The precise mathematical formulation of the problem is as follows:

Reconstruct a function f : T → �, where T is a domain in �d, based on its values

at a finite set of data points X := {x1, . . . , xn} ⊂ T (usually called ‘sampling locations’ in

geostatistics and ‘centres’ in kernel interpolation).
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Figure 1. (Colour online) Perspective plot of Mount Eden (left), and 3D scatterplot of the 300

given data points (right).

This situation is illustrated in Figure 1 with topographic data from Mount Eden, New

Zealand,1 with X being a randomly chosen set of 300 sampling locations. In order to derive

optimal procedures for reconstruction and to provide a priori estimates of their precision, it

is necessary to make assumptions about f. We focus on two different approaches that deal

with the above problem in different ways: kernel interpolation and kriging. The former

assumes that f belongs to some Hilbert space H of functions of certain smoothness. This

allows one to use Taylor approximation techniques to derive bounds for the approximation

error in terms of the density of the data points. Smoothness is a comparatively weak and

flexible assumption, and the error bounds permit control of the precision whenever it is

possible to control the sampling. By construction, the kernel interpolation approach yields

minimal approximation errors with respect to the norm ‖ · ‖H on H.

In some applications there is only limited or no control over the sampling and one

has to get by with the (sometimes very sparse) data that are available. Typical examples

are environmental modelling or mining where sampling involves high costs or is limited

by lack of accessibility of the variable of interest. Moreover, in these applications the

variable of interest is often a very rough function, and together with the sparsity of data

this implies that error bounds obtained on the basis of Taylor approximation are only

of limited use. A way out is possible if the stronger modelling assumption that comes

with a statistical modelling approach is adequate: the assumption that f is a realization

of a random field. Then again optimal approximation procedures can be derived, and a

satisfactory stochastic description of the approximation error is available.

It is quite remarkable that both approaches finally come up with the same type of

approximant despite different model assumptions and motivations of its construction.

Several authors, including [10, 42, 51, 57], have already pointed out this connection, and

a comprehensive overview over both approaches is given by [4]. While the authors of [4]

also establish the link between stochastic processes and reproducing kernel Hilbert spaces

(RKHS), the equivalence of kernel interpolation and kriging is shown by the usual algeb-

raic arguments. In this paper we introduce kernel interpolation and the underlying RKHS

model in a different way than that usually taken in the spline literature. This will make it

clear that the derivation of optimal interpolation procedures follows the same principles

in the stochastic and deterministic frameworks, and reveal that the connection between

these frameworks goes much further than algebraic equivalence of respective interpolants.

In Sections 2 and 3 we describe kernel interpolation and kriging respectively along with

their modelling assumptions and concepts of optimality. Some problems closely related

to spatial interpolation and generalizations are discussed in Section 4. The presentation

1 Available as dataset ‘volcano’ in the package ‘datasets’ of R [61].
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in Section 2 and 3 will show that the function that characterizes the magnitude of

the pointwise approximation error appears – with different interpretations – in both

frameworks. This will be used in Section 5 to apply theorems on the convergence rates

of kernel interpolants to the stochastic framework, where statements of comparable

generality have not been available so far. In Section 6, the issue of kernel misspecification

is addressed, and we give an overview of the answers given in both communities to

the question about the consequences of using an ‘incorrect’ kernel for the construction of

the interpolant. In Section 7 we turn to the issue of parameter estimation and describe

some of the procedures used to select a kernel based on the available data. The scope of

these methods is briefly discussed and illustrated with a data example.

The main focus of this paper is to point out the interconnections between the two

approaches to spatial interpolation. Some topics which receive considerable attention in

one of the two frameworks but are (from our current perspective) hardly relevant for the

respective other, will be briefly addressed in the final discussion.

2 Kernel interpolation

2.1 Positive definite kernels

In the kernel interpolation framework, f is assumed to belong to some Hilbert space H
of real-valued functions on T with inner product (·, ·)H. It is further assumed that for all

x ∈ T the point evaluation functional δx : f �→ f(x) is continuous in H, i.e.

δx ∈ H∗ for all x ∈ T , (2.1)

where H∗ denotes the dual of H with dual norm

‖λ‖H∗ = sup
g∈H : ‖g‖H�1

|λ(g)|, λ ∈ H∗.

Then by the theory of reproducing kernel Hilbert spaces (see [67] and references therein), a

unique symmetric function K : T ×T → � (‘reproducing kernel’) exists with K(·, x) ∈ H
and

g(x) = (g,K(·, x))H

K(x, y) = (K(·, x), K(·, y))H (2.2)

K(x, y) = (δx, δy)H∗

for all x, y ∈ T , g ∈ H. Note that either of the last two equations imply

n∑
i=1

n∑
j=1

αiαjK(xi, xj) � 0 (2.3)

for any choice of points x1, . . . , xn ∈ T , n ∈ � and coefficients α = (α1, . . . , αn) ∈ �n \ {0}.
If the functionals δx1

, . . . , δxn are linear independent when based on distinct points, we

even have strict inequality in (2.3). In this case K is called a positive definite kernel and

H = HK is called the native space for K . The important role of positive definiteness for

kernel interpolation was pointed out by Micchelli [55].
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Table 1. Some positive definite functions Φ(h) normalized such that Φ(0) = 1. Where closed

forms are available, the corresponding Fourier transforms Φ̂(ξ) are also given, otherwise we

give an expression indicating their rate of decay

Gaussians e− 1
2 ‖h‖2

e− 1
2 ‖ξ‖2

Inverse multiquadrics, β > 0 (1 + ‖h‖2)−β ‖ξ‖β− d
2

2β−1 Γ (β)
Kβ− d

2
(‖ξ‖)

Matérn class, ν > 0 ‖h‖ν
2ν−1 Γ (ν)

Kν(‖h‖)
Γ (ν+ d

2 )

Γ (ν)
(1 + ‖ξ‖2)−ν− d

2

Cauchy class, α = 2, β > 0 See inverse multiquadrics

α ∈ (0, 2), β > 0 (1 + ‖h‖α)−β/α O((1 + ‖ξ‖2)− α
2 − d

2 )

Wendland functions, d � 3 (1 − ‖h‖)2+ O((1 + ‖ξ‖2)− 1
2 − d

2 )

cf. [68, 84] for further examples (1 − ‖h‖)4+(4‖h‖ + 1) O((1 + ‖ξ‖2)− 3
2 − d

2 )

(1 − ‖h‖)6+( 35
3

‖h‖2 + 6‖h‖ + 1) O((1 + ‖ξ‖2)− 5
2 − d

2 )

The native space is an abstract concept, but for some important function spaces an

explicit link can be made to translation-invariant kernels where K(x, y) = Φ(y − x) for

some function Φ : �d → �. Consider, for example, the Sobolev spaces Wτ
2 (�d), which

are widely used in numerical analysis, in particular in the context of Partial Differential

Equations (PDEs). They not only have a rich mathematical structure but also characterize

the degree of smoothness of the functions belonging to them. For τ ∈ �, this can be seen

directly from their definition

Wτ
2 (�d) = {f ∈ L2(�

d) : Dαf ∈ L2(�
d) for all |α| � τ, α ∈ �d}

where Dα denotes an αth weak partial derivative [22, Section 5.2]. An equivalent defin-

ition exists in terms of Fourier transforms, and this definition has a straightforward

generalization to non-integer orders, τ > 0. In the remainder of this paper, we always

have τ > d
2
, which implies, by the Sobolev embedding theorem, that every equivalence

class in Wτ
2 (�d) contains a continuous representer. We will interpret Wτ

2 (�d) as a set of

continuous functions in this way. The following theorem [85, Cor. 10.13] shows that it

constitutes the native space of certain translation-invariant kernels Φ which have a degree

of smoothness that depends on τ.

Theorem 2.1 Suppose that the Fourier transform Φ̂(ξ) = (2π)−d/2
∫

�d e
−i ξ′h Φ(h) dh of some

positive definite function Φ ∈ L1(�d) ∩ C(�d) satisfies

c1 (1 + ‖ξ‖2)−τ � Φ̂(ξ) � c2 (1 + ‖ξ‖2)−τ, ξ ∈ �d, (2.4)

for some τ > d
2

and constants 0 < c1 � c2. Then the native space of Φ coincides with the

Sobolev space Wτ
2 (�d) as a vector space, and the native space norm and the Sobolev norm

are equivalent.

Table 1 shows examples (see [31, 46, 50, 84] for details) of positive definite functions

Φ commonly used in geostatistics and the approximation theory. For Φ ∈ L2(�d) their

Fourier transforms are defined as stated in Theorem 2.1. We write O((1 + ‖ξ‖2)−τ) to

denote that (2.4) is satisfied where closed forms are not available.
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While Sobolev spaces are intuitively more accessible and allow one to better understand

what exactly is assumed for f, the framework of native spaces is useful to derive an

optimal approximation of f based on the given data at X in the sense that the worst

case approximation error is minimized pointwise. Specifically, we consider approximants

of the form

sf,X(x) =

n∑
i=1

ui(x)f(xi) =

n∑
i=1

ui(x) δxi︸ ︷︷ ︸
:=λu(x)

(f), x ∈ T , (2.5)

which are, at each point x ∈ T , a linear combination of the given values of f. The

coefficient functions u1, . . . , un : T → � are defined pointwise, and for fixed x0 ∈ T we

consider the norm of the error functional λerr := δx0
− λu(x0)

Q1/2(u(x0)) := ‖δx0
− λu(x0)‖H∗

K
= sup

g∈HK : ‖g‖HK
�1

|δx0
(g) − λu(x0)(g)| .

According to (2.3), its square can be written as a quadratic form

Q(u(x0)) = K(x0, x0) − 2

n∑
i=1

ui(x0)K(x0, xi) +

n∑
i=1

n∑
j=1

ui(x0)uj(x0)K(xi, xj) , (2.6)

and it follows that optimal coefficients u∗
1(x0), . . . , u

∗
n(x0) minimizing Q must satisfy

n∑
j=1

u∗
j (x0)K(xi, xj) = K(x0, xi) i = 1, . . . , n. (2.7)

If K is positive definite, then this system has a unique solution, and this in turn implies

that the so-called Lagrange conditions,

u∗
i (xk) =

{
1 if i = k

0 if i� k
, i, k = 1, . . . , n, (2.8)

are satisfied. Hence, sf,X interpolates f at X, and it can be shown that it has minimal

native space norm among all such interpolants [65]. This property is the usual starting

point for the derivation of kernel interpolants in the spline literature.

2.2 Conditionally positive definite kernels

Some important classical interpolation schemes, such as thin-plate splines [18–20] or

Hardy’s multiquadrics [35], are not covered by the above theory, but can still be incor-

porated into the framework of kernel interpolation. To this end we must allow for kernels

that are only conditionally positive definite with respect to some finite dimensional function

space P (in applications we usually have P = πm(T ), the space of polynomials on T of

order at most m). Let LP(T ) denote the space of all linear functionals of the form

λX =

n∑
i=1

aiδxi , a1, . . . , an ∈ �, X := {x1, . . . , xn} ⊂ T , n ∈ �
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Table 2. Some conditionally positive definite functions Φ(h) together with the minimal

space with respect to which they are conditionally positive definite

Powers, β ∈ �>0\2� Γ
(
− β

2

)
‖h‖β π� β

2 �−1
(�d)

Thin-plate splines, d ∈ �\2�, d
2
< l ∈ �

Γ ( d2 −l) 2−2l

πd/2(l−1)!
‖h‖2l−d πl− d+1

2
(�d)

d ∈ 2�, d
2
< l ∈ � (−1)l+1−d/2 21−2l

πd/2(l−1)!(l− d
2 )!

‖h‖2l−d log ‖h‖ πl− d
2
(�d)

Multiquadrics, β ∈ �>0\� (−1)�β� (1 + ‖h‖2)β π�β�−1(�d)

that vanish on P, i.e. λX(p) = 0 for all p ∈ P. This is a vector space over � under usual

operations. A kernel K is called conditionally positive definite with respect to P if

(
λ1

Xλ
2
X
)
(K) =

n∑
i=1

n∑
j=1

aiajK(xi, xj) > 0 for all λX ∈ LP(T ) \ {0}, (2.9)

where the superscripts denote the application of λX with respect to the first and second

argument of K respectively. Note that such K is also conditionally positive definite with

respect to any finite dimensional function space P′ ⊃ P, in particular we can always

consider a conditionally positive definite kernel with respect to πm(T ) as conditionally

positive definite with respect to πl(T ) if l � m.

Assume from now that K : T × T → � is (symmetric and) conditionally positive

definite with respect to P. In analogy with (2.3) we let

(λX, μY)K :=
(
λ1

Xμ
2
Y
)
(K), λX, μY ∈ LP(T ),

and due to (2.9) this defines an inner product on LP(T ). This can be used to define

the native space of K as the largest space on which all functionals from LP(T ) act

continuously, i.e.

HK,P := {g : T → � : |λ(g)| � Cg‖λ‖K for all λ ∈ LP(T )}, (2.10)

where Cg < ∞ is a constant depending only on g. A semi-norm on HK,P can be defined

via

|g|HK,P := sup
λ∈LP(T ) : ‖λ‖K�1

|λ(g)|

This characterization goes back to the pioneering work of Madych and Nelson [48]. We

chose it because of its striking analogy with the theory of intrinsic random fields [52],

which will be further discussed in Section 3. In [67] a detailed derivation of the native

space of a given conditionally positive definite kernel K is presented, showing how values

g(x), x ∈ T can be assigned to the abstract function g which a priori can be evaluated

only by functionals from LP(T ) which does not include the point evaluation functionals

δx. Note that the positive definite case discussed above corresponds to P = {0}, and

the continuity of any λ ∈ L{0}(T ) is a consequence of assumption (2.1) and the Riesz

representation theorem.

Examples of conditionally positive definite functions are given in Table 2. For the

thin-plate splines, from now denoted by Φd,l , a counterpart of Theorem 2.1 will provide
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some intuitive understanding of the corresponding native space. Φd,l will be considered

as conditionally positive definite with respect to πl−1(�d). The corresponding function

spaces are the Beppo–Levi spaces

BLl(�
d) =

{
g ∈ Lloc

1 (�d) : Dαg ∈ L2(�
d) for all |α| = l, α ∈ �d

}
with the semi-norm

|g|BLl (�d) =

⎛⎝∑
|α|=l

l!

α1! · · · αd!
‖Dαg‖2

L2(�d)

⎞⎠1/2

.

Beppo–Levi spaces are closely related to Sobolev spaces, and this relation can be used to

show that any BLl(�d) with l > d
2

can be embedded into C(�d) [19].

Theorem 2.2 [85, Theorem 10.43] Let Φd,l be a thin-plate spline kernel from Table 2,

considered as a conditionally positive definite with respect to πl−1(�d). Then the associated

native space HK,P is the Beppo Levi space BLl(�d) of order l, and the semi-norms are the

same.

When it comes to deriving an optimal approximation of f, minimization of the norm of

the error functional λerr = δx0
− λu(x0) for fixed x0 ∈ T again amounts to the minimization

of the quadratic form Q in (2.6). In the general framework of conditionally positive definite

kernels, however, λerr is not automatically in LP(T ), and the additional constraint

δx0
(p) = λu(x0)(p) for all p ∈ P (2.11)

must be satisfied to ensure that ‖λerr‖K is defined. Note that this constraint also implies
that functions from P are always reproduced exactly by sf,X . Since P was assumed finite

dimensional, we can choose a basis p1, . . . , pq , and the above condition becomes

pk(x0) =

n∑
i=1

ui(x0)pk(xi), k = 1, . . . , q. (2.12)

Minimizing (2.6) subject to (2.12) can be done using Lagrange multipliers η1(x0), . . . , ηq(x0),
and it follows that optimal coefficients u∗

1(x0), . . . , u
∗
n(x0) must satisfy (2.12) and

n∑
j=1

u∗
j (x0)K(xi, xj) +

q∑
k=1

η∗
k (x0)pk(xi) = K(x0, xi) i = 1, . . . , n, (2.13)

which generalizes the equation system (2.7) derived in the positive definite setup. If the set

of data points X = {x1, . . . , xn} is P-unisolvent, i.e. the zero function is the only function

in P that vanishes on X, then the system of equations defined by (2.12) and (2.13) has a

unique solution. Then again the Lagrange conditions (2.8) are satisfied, showing that sf,X
interpolates the data. Criteria for πm(�d)-unisolvency are discussed in [85, Section 2.2]

and [23, Section 6.1].

Representation (2.5) of sf,X is a good starting point to derive a pointwise optimal

approximation of f, but it is quite inefficient from a computational point of view.
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Some algebraic manipulations of (2.5), (2.12) and (2.13) however yield the alternative

representation

sf,X =

n∑
j=1

αjK(·, xj) +

q∑
k=1

βkpk, (2.14)

where the coefficients α1, . . . , αn and β1, . . . , βq are defined by the system

n∑
j=1

αjK(xi, xj) +

q∑
k=1

βkpk(xi) = f(xi), i = 1, . . . , n

(2.15)
n∑

i=1

αjpk(xj) = 0, k = 1, . . . , q

which is again uniquely solvable if K is conditionally positive definite and X is P-

unisolvent. Note that the first set of equations simply forces sf,X to interpolate the data,

while the second set is necessary to ensure a unique decomposition into two terms in

(2.14). This system needs to be solved only once and then yields an expression for sf,X in

closed form, valid on the whole of T . Its solution requires O(n3) floating point operations

which may still be too expensive for large spatial data sets. We refer to [85, Chapter 15]

for an overview over some algorithms that compute an approximate solution to reduce

the computational cost to a practically manageable level.

3 Kriging

The statistical counterpart to kernel interpolation is known as kriging, the geostatistical

term for optimal linear prediction of spatial processes. Kriging is based on the modelling

assumption that f is a realization of a random field Z , which is a collection {Z(x) : x ∈ T }
of random variables over the same probability space (Ω,A, P ), indexed over T . The

observations f(x1), . . . , f(xn) are then realizations of the random variables Z(x1), . . . , Z (xn).

To predict Z at some (unobserved) location x0 ∈ T , one considers all linear predictors of

the form

Zu(x0) =

n∑
i=1

ui(x0)Z(xi) (3.1)

which are themselves random variables. The prediction of f(x0) given f(x1), . . . , f(xn) is

then as for kernel interpolation

sf,X(x0) =

n∑
i=1

ui(x0)f(xi).

To determine optimal weights u∗
1(x0), . . . , u

∗
n(x0), additional structural assumptions on Z

are needed, and depending on these assumptions one distinguishes simple, ordinary,

universal and intrinsic kriging. There are still quite other forms (such as complex kriging

[45], indicator kriging [41] or disjunctive kriging [53, 54]) but we shall only discuss the

aforementioned ones due to their close connection to kernel interpolation.
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T

f(x)

T

f(x)

T

f(x)

Figure 2. (Colour online) Perspective plots of one realization of Gaussian random fields with

different Matérn covariance functions Φν with ν = 1.0 (left), ν = 1.5 (middle) and ν = 2.0 (right).

We use the parametrization of Φν proposed by Handcock and Wallis [34], where the argument is

rescaled such that the value of ν influences the shape of Φν(h) only near h = 0.

3.1 Simple kriging

The additional assumption with simple kriging is that Z(x) is centred, i.e. E(Z(x)) = 0,

and that the second moments exist for every x ∈ T . Then the covariance function

K(x, y) := Cov(Z(x), Z(y))
Z centred

= E(Z(x)Z(y)), x, y ∈ T (3.2)

can be defined and it follows from some basic properties of the (co)variance that K is al-

ways symmetric and positive semi-definite. In this framework K describes the probabilistic

structure of Z , but certain ‘deterministic properties’ such as the smoothness of realizations

are controlled by K as well (see Figure 2, created with [73]). Note however, that a com-

plete characterization of the probabilistic structure of a random field requires additional

assumptions on its distribution (e.g. assuming all finite dimensional distributions to be

multivariate Gaussian). The covariance function K can be viewed as an inner product on

the vector space

VZ :=

{
n∑

i=1

aiZ(xi), a1, . . . , an ∈ �, x1, . . . , xn ∈ T , n ∈ �

}

of second-order random variables. The closure of VZ under this inner product yields a

Hilbert space that is isomorphic to HK from Section 2 (see [4]). When it comes to spatial

interpolation, however, the natural counterpart of the Hilbert space generated by Z is the

dual H∗
K rather than HK , as will become clear in the following.

The geostatistical notion of optimality is to consider as the ‘best’ linear predictor Zu∗ (x0)

the random variable with minimal expected squared deviation from Z(x0), i.e.

E((Z(x0) − Zu∗ (x0))
2) � E((Z(x0) − Zu(x0))

2) for all Zu(x0) of the form (3.1).

The optimal weights are then obtained by minimizing

E((Z(x0) − Zu(x0))
2) = E(Z(x0)Z(x0))︸ ︷︷ ︸

=K(x0 ,x0)

−2

n∑
i=1

ui(x0) E(Z(x0)Z(xi))︸ ︷︷ ︸
=K(x0 ,xi)

(3.3)

+

n∑
i=1

n∑
j=1

ui(x0)uj(x0) E(Z(xi)Z(xj))︸ ︷︷ ︸
=K(xi,xj )

.
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This is, however, the same quadratic form Q as in (2.6), and so the simple kriging prediction

coincides with the optimal approximation (2.5) with weights u∗
1(x0), . . . , u

∗
n(x0) determined

by (2.7). Briefly, in kriging the covariance function takes the role of the interpolation

kernel, and Q, originally introduced as the squared norm of the pointwise error functional

at x0, becomes the expected squared prediction error.

We briefly mention another perspective which is in a way even more probabilistic:

the Bayesian approach. In the simple kriging framework, it is essentially the additional

assumption of Z being Gaussian that needs to be made. As mentioned above, once

K is fixed, the distribution of a Gaussian random field is completely determined, and

the Bayesian approach uses it as infinite-dimensional prior distribution for the unknown

function f. The posterior distribution of f at x0 given the observations f(x1), . . . , f(xn) is

then a Gaussian distribution with mean sf,X(x0) (with weights u∗
1(x0), . . . , u

∗
n(x0) as above)

and variance Q(u∗(x0)). Unlike in simple kriging and kernel interpolation, this result is

not based on a particular loss function. It is an immediate consequence of the complete

specification of a prior distribution for f (see also [62, Section 24.]).

3.2 Ordinary and universal kriging

Especially the assumption that Z is centred seems inappropriate in most applications of

geostatistics. The first generalization of simple kriging is therefore to allow for a non-zero

mean function m(x) := E(Z(x)) while still keeping the assumption that Z has second

moments. The mean function is usually unknown in practice, but this problem can be

bypassed by requiring the potential predictors Zu of Z to be unbiased, i.e.

E(Z(x)) = E(Zu(x)) for all x ∈ T .

This has the additional advantage of preventing systematic over- or underestimation of

Z(x0). Note that any such predictor is automatically unbiased if Z is centred. Using this

unbiasedness constraint to recalculate the target function (3.3) one obtains

E((Z(x0) − Zu(x0))
2) = E((Z(x0) − E(Z(x0)) + E(Zu(x0)) − Zu(x0))

2)

= E

⎛⎝(
Z(x0) − E(Z(x0)) −

n∑
i=1

ui(x0) (Z(xi) − E(Z(xi)))

)2
⎞⎠

= Cov(Z(x0), Z(x0))︸ ︷︷ ︸
=K(x0 ,x0)

−2

n∑
i=1

ui(x0) Cov(Z(x0), Z(xi))︸ ︷︷ ︸
=K(x0 ,xi)

+

n∑
i=1

n∑
j=1

ui(x0)uj(x0) Cov(Z(xi), Z(xj))︸ ︷︷ ︸
=K(xi,xj )

,

which is again the quadratic form Q in (2.6), depending only on K but not on m. Its

minimizer, however, is in general not the same as above, since the additional unbiasedness

constraint

m(x) =

n∑
i=1

ui(x)m(xi) for all x ∈ T (3.4)
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restricts the choice of weights. To ensure that condition (3.4) can be satisfied at all, one

cannot let the mean function completely general, but must assume a sufficiently simple,

finite dimensional model. The simplest model is a constant (but unknown) mean function,

and this assumption leads to what is called ordinary kriging. This is, however, just a special

case of universal kriging where the mean function is modelled as

m(x) :=

q∑
k=1

βkpk(x), x ∈ T , (3.5)

with known and linear independent functions p1, . . . , pq , and unknown coefficients

β1, . . . , βq . Such a mean function is also called a trend, and condition (3.4) becomes

q∑
k=1

βkpk(x) =

q∑
k=1

βk

n∑
i=1

ui(x) pk(xi) for all x ∈ T .

This condition must hold for any set of coefficients β1, . . . , βq , and so when predicting

at x0 we are back to condition (2.12) restricting the weights u1(x0), . . . , un(x0). It follows

that the universal kriging prediction coincides with the optimal approximation (2.5)

from the conditionally positive definite kernel interpolation setup, with optimal weights

u∗
1(x0), . . . , u

∗
n(x0) determined by (2.12) and (2.13). Representation (2.14) was already noted

by Matheron [51], and the corresponding equation system is known as dual kriging.

The universal kriging interpolant can also be derived within a Bayesian framework. As a

prior distribution for f, one assumes a Gaussian random field with covariance function

K and mean function m as in (3.5). For a complete specification of the prior for f,

a distribution assumption needs to be made for β1, . . . , βq as well. Then the posterior

distribution of f can be worked out, but it will depend both on K and on the prior

distribution of the trend coefficients. In the special case of a flat (uninformative) prior,

however, Omre and Halvorsen [59] show that the posterior of f at x0 is a Gaussian

distribution with mean sf,X(x0) and variance Q(u∗(x0)), both calculated with the optimal

weights from the universal kriging approach.

Universal kriging and kernel interpolation with conditional positive definite kernels

are formally equivalent and are derived from the same loss function Q. Nevertheless,

the analogy is not yet perfect because the universal kriging assumption that Z(x) has

second moments for every x ∈ T automatically entails positive (semi)definiteness of K .

We therefore consider a slightly different stochastic model leading to kriging interpolants

of the same form, but using a more general dependence structure that permits the use of

conditionally positive definite kernels.

3.3 Intrinsic kriging

The idea with intrinsic random fields (introduced in [52]) is that one no longer specifies the

full second-order structure of Z , but only the dependence structure of certain increments.

More specifically, let P again be a finite dimensional space of functions on T , and let

LP(T ) be as in Section 2, i.e. the space of functionals of the form λX =
∑n

i=1 aiδxi with
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λX(p) = 0 for all p ∈ P. For every such λX ∈ LP(T )

Zλ,X := λX(Z) =

n∑
i=1

aiZ(xi)

is called an allowable linear combination of Z with respect to P. Assume that all allowable

linear combinations of Z have second moments and are centred, i.e. E(Zλ,X) = 0. The

function K : T × T → � is then called a generalized covariance function of Z if

E(Zλ,XZλ,X) =

n∑
i=1

n∑
j=1

aiajK(xi, xj) for all λX ∈ LP(T ).

We note that Z and Z + p have the same generalized covariance function for any p ∈ P.

Moreover, since the expectation of any squared random variable is non-negative, K must

be conditionally positive semi-definite with respect to P.

The most important case in practice is the case where P = πm(�d), the space of

polynomials of order at most m, and where Z is intrinsically (weakly) stationary of order

m, i.e. K(x, y) = Φ(y − x) for some function Φ : �d → � that is conditionally positive

semi-definite with respect to πm(�d). Assuming K to be translation invariant is often

reasonable because general dependence structures are usually too complex for reliable

inference. Note that λX ∈ Lπm
(�d) implies λX+x ∈ Lπm

(�d) for all x ∈ �d, owing to the

binomial formula, and hence all random variables

Zλ,X+x =

n∑
i=1

aiZ(xi + x), x ∈ �d

are allowable if only λX ∈ Lπm
(�d). It follows that the random field {Zλ,X+x : x ∈ �d}

of mth-order increments is weakly stationary (i.e. centred with second moments and

translation-invariant covariance function) with

E(Zλ,X+xZλ,X+y) =

n∑
i=1

n∑
j=1

aiajΦ(y − x + xj − xi) =: Φλ,X(y − x).

Whenever in practice one faces the situation that Z itself does not appear to be weakly

stationary, there is still a chance that this seems plausible for some higher order increments,

and this then motivates the modelling with intrinsically stationary random fields. A

detailed introduction to this topic is given in [9, Chapter 4], and in particular the

differences from a modelling perspective to the model underlying the universal kriging

approach are illustrated excellently.

To predict Z(x0) we consider the error functional λerr = δx0
− λu(x0) as in Section 2, but

in the stochastic framework we are interested in the expected squared prediction error.

When K is the generalized covariance function of Z , we have by definition

E((λerr(Z))2) = K(x0, x0) − 2

n∑
i=1

ui(x0)K(x0, xi) +

n∑
i=1

n∑
j=1

ui(x0)uj(x0)K(xi, xj) ,
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which is again the quadratic form Q in (2.6). The requirement λerr ∈ LP(T ) again entails

condition (2.12), and so it follows that the intrinsic kriging prediction is identical to

the optimal approximation (2.5) in the conditionally positive definite kernel interpolation

setup with optimal weights u∗
1(x0), . . . , u

∗
n(x0) determined by the equation systems (2.13)

and (2.12).

The difference to universal kriging lies in the interpretation of representation (2.14).

While it is legitimate in universal kriging to interpret the second term in (2.14) as an

approximate mean function and the first term as an approximate deviation from it, such

an interpretation would be wrong in intrinsic kriging where a mean function is not even

defined.

3.4 Comparison with the deterministic framework

We sum up what has been pointed out so far concerning the two different modelling

approaches and the corresponding notions of optimality. In both frameworks we seek to

minimize, at every fixed location x0 ∈ T , the quadratic form

Q(u(x0)) = K(x0, x0) − 2

n∑
i=1

ui(x0)K(x0, xi) +

n∑
i=1

n∑
j=1

ui(x0)uj(x0)K(xi, xj) ,

possibly subject to some additional restrictions. The sense in which the resulting approx-

imation of f at x0 is optimal then differs according to the interpretation of Q:

(1) In the deterministic framework, Q(u(x0)) indicates how well δx0
can be approximated

by the linear combination λu(x0) of the point evaluation functionals for points of X.

It measures how big the approximation error can be in the worst case assuming only

that f ∈ HK,P.

(2) In the stochastic framework, Q(u(x0)) indicates how big the error for approximating

a random field Z at x0 by λu(x0)(Z) will be on average. Its calculation is based on the

assumption that Z has generalized covariance function K .

Both worst-case and average-case behaviour of numerical algorithms are studied and

compared by Ritter [64]. For his average-case analysis, Ritter adopts the stochastic

perspective and specifies a probability measure on the space of all functions by making the

geostatistical assumption of a random field Z with covariance kernel K . The average-case

optimality of K-splines that is stated in this monograph is then a consequence of the

equivalence of kriging and kernel interpolation. A short list with terminology used in

kernel interpolation and geostatistics is provided in Table 3.

We note that in situations where both frameworks are applicable, different answers

are obtained as to the question of which K should be used. Indeed, assume that f is

a realization of a centred random field Z on �d with translation invariant covariance

function Φτ whose Fourier transform Φ̂τ satisfies (2.4). For this model the simple kriging

framework applies, and states that the optimal interpolant is obtained with Φτ. On the

other hand, Scheuerer [71] shows that the realizations of Z- and hence f- are in the

Sobolev space W
μ
2 (�d) if and only if μ < τ − d

2
. The space W

μ
2 (�d), however, calls for

some reproducing kernel Φμ satisfying (2.4) with μ instead of τ (see Theorem 2.1), and so
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Table 3. Some frequently used terms in the language of statistics (left column) and

numerical analysis (right column)

Covariance function Symmetric and positive definite kernel

∼ of a weakly stationary random field Translation-invariant kernel

∼ of a w. stat. and isotropic random field Radially symmetric, translation-invariant kernel

Kriging Kernel interpolation

Intrinsic kriging ∼ with a conditionally positive definite kernel

Kriging variance P 2
K,X Power function PK,X

a numerical analyst would rather use Φμ with μ ≈ τ− d
2

for interpolation. In other words:

if worst case optimality is aspired, then a rougher kernel is considered appropriate for the

same function f than when the aim is average-case optimality.

4 Generalizations and related problems

The spatial interpolation problem discussed in this paper can be generalized by consid-

ering arbitrary functionals λ0(f), λ1(f), . . . , λn(f) instead of f(x0), f(x1), . . . , f(xn). Such a

generalization covers, for example, the situation where f is to be reconstructed from both

function values and derivatives (‘Hermite–Birkhoff interpolation’), or the case where the

interest is in approximating integrals of f over certain sub-domains of T . The latter is

an important problem in mining, where measurements (which may also effectively be

integrals over small areas) are taken at certain locations in some ore deposit, and the

interest is in predicting the overall content.

In numerical analysis, approximation with general functionals goes back to [87]. In

the positive definite setup, the considered functionals must be in the dual space H∗
K ,

the analogue requirement with simple kriging is that λ0(Z), λ1(Z), . . . , λn(Z) are all well-

defined random variables and have second moments. If these conditions are met, the

generalization

Q(u(λ0)) =
(
λ1

0λ
2
0

)
(K) − 2

n∑
i=1

ui(λ0)
(
λ1

0λ
2
i

)
(K) +

n∑
i=1

n∑
j=1

ui(λ0)uj(λ0)
(
λ1
i λ

2
j

)
(K) ,

of the quadratic form (2.6) is well defined, and its minimization yields optimal weights

u∗
1(λ0), . . . , u

∗
n(λ0) for the approximation of λ0(f) by

sf,X(λ0) =

n∑
i=1

ui(λ0)λi(f).

In the framework of conditionally positive definite kernels (intrinsic kriging), one needs to

require that (λ1
i λ

2
j )(K) and λi(pk) are well defined for all i, j ∈ {0, . . . , n} and k ∈ {1, . . . , q},

and condition (2.12) becomes

λ0(pk) =

n∑
i=1

ui(λ0)λi(pk), k = 1, . . . , q.
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The quadratic form Q from above is then again well defined, and its minimization

is straightforward. Wendland [85, Section 16.2] discusses the case of Hermite–Birkhoff

interpolation in more detail and shows that the resulting system of equations has a

unique solution if λ1, . . . , λn are linearly independent, and if λi(p) = 0 for all p ∈ P and

i ∈ {1, . . . , n} implies that p = 0. The close link between approximation and integration

of f and its consequences on the error analysis of these problems is discussed in [64]. In

the geostatistical framework, both kriging with gradient information and kriging of block

averages are described in [9]. The former method has been applied to meteorological

problems involving several variables related by physical laws [7, 8].

A different type of generalization of the setup in Sections 2 and 3 is required when

the set X is infinite. One could think, for example, of data from moving tracking devices

which measure f continuously along one-dimensional trajectories. λu(x0) itself is then no

longer a finite linear combination of point evaluation functionals, but lies in the closure

of such functionals, i.e.

λu(x0) ∈
{
λX,X

finite⊂ X, λX(p) = p(x0) for all p ∈ P
}

=: FP,X,x0
.

The definition of Q(u(x0)) := ‖δx0
− λu(x0)‖2

K remains unchanged and the functional λu∗(x0)

defining the optimal interpolant is obtained as the projection of δx0
on FP,X,x0

[69]. In

the same way, the kriging approximation Zu∗ (x0) of Z(x0) based on the values of Z at all

points of X is obtained as the projection of Z(x0) on the space{
λX(Z),X finite⊂ X, λX(p) = p(x0) for all p ∈ P

}
,

where the closure is under the inner product induced by the generalized covariance

function. While this generalization is straightforward in theory, it is not clear how a

solution can be obtained in practice. Matheron [52] studies a special case where Zu(x0)

can be represented by a measure μx0
with support in X, i.e.

Zu(x0) =

∫
T

Z(x) μx0
(dx) =

∫
X

Z(x) μx0
(dx).

Such a representation is not always possible, and a counterexample in [52] shows that

smooth covariance functions, such as the Gaussian model, may lead to unsolvable systems.

If, however, the optimal solution can be represented in that way, then the system of

equations (2.12) and (2.13) becomes a system of integral equations∫
X

K(x, y) μx0
(dy) +

q∑
k=1

η∗
k (x0)pk(x) =K(x0, x) for all x ∈ X,∫

X

pk(x) μx0
(dx) = pk(x0), k = 1, . . . , q

that determine μx0
. At least in special cases, for example when K is such that Z has the

Markov property and the geometry of X is sufficiently simple, closed-form solutions for

μx0
can be obtained from these equations.
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A mathematical problem that is closely related to the spatial interpolation problem

discussed in this paper arises when the function f has to be reconstructed based on data

yi := f(xi) + εi, i = 1, . . . , n, (4.1)

i.e. where f is observed with measurement errors ε1, . . . , εn. In this situation the aim is no

longer interpolation of the data, but rather approximation by a function that is close to

the noisy observations (4.1) on the one hand but still reasonably smooth on the other

hand. This is the standard setup in machine learning, and depending on the loss function

that is used to assess the fidelity to the data, different approaches turn out to be optimal.

Schaback and Wendland [70] discuss the role of kernel methods in machine learning. The

approach that is most closely related to the kernel interpolants (‘splines’) in Section 2 is

the concept of smoothing splines, which corresponds to a quadratic loss function. More

specifically, instead of minimizing the native space norm among all functions interpolating

the data, smoothing splines minimize

n∑
i=1

(yi − sf,X(xi))
2 + λ ‖sf,X‖2

HK,P
, (4.2)

where λ is a regularization parameter that controls the fit/smoothness trade-off mentioned

above. The universal kriging counterpart of (4.2) is obtained when f is assumed to be a

realization of a random field Z with covariance function K , and ε1, . . . , εn are assumed

to be realizations of independent, centred random variables with variance λ. The optimal

solution in that case still has the form (2.5), but in the system of equation (2.13) defining

the kriging weights, K(xi, xi) is replaced by (K(xi, xi) + λ) for all i ∈ {1, . . . , n}. For a

detailed description of smoothing splines, their connection to RKHS on the one hand

and geostatistical methods on the other, we refer to [83] and references therein.

5 Error estimates

In both frameworks the magnitude of the approximation error at x0 ∈ T is characterized

by Q. In the literature on kernel interpolation, the value of Q1/2 for approximation with

the optimal weights u∗
1(x0), . . . , u

∗
n(x0) is denoted by

PK,X(x0) := Q1/2(u∗(x0))

and is called the power function. The definition of Q1/2 immediately implies the error

bound

|f(x0) − sf,X(x0)| � PK,X(x0) · |f|HK,P , x0 ∈ T . (5.1)

The function f is unknown but fixed, and so in order to control the approximation error

one is interested in quantifying how PK,X depends on K and X. Conversely, a bound on

the absolute approximation error at x0 normalized by |f|HK,P that holds for any f ∈ HK,P
implies a bound on PK,X(x0).
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In geostatistics too PK,X(x0) is a well-known quantity: its square is the so-called kriging

variance. Stein’s book [77] is the main reference for an in-depth study of the asymptotic

behaviour of kriging interpolants. In Section 3.6 he considers a centred, weakly stationary

random field Z on � with covariance function Φτ satisfying (2.4). The simple kriging

interpolant Zu∗ (0) at x0 = 0 is calculated based on the values of Z at ±δ,±2δ, . . .

(interpolation problem) or at −δ,−2δ, . . . (extrapolation problem). In both cases it turns

out that the kriging variance can be bounded by

E((Z(0) − Zu∗ (0))2) � C δ2τ−1 as δ → 0.

This result is very useful to understand the impact of the smoothness of Z on the

precision of kriging approximations, but the geometric setup is rather special. In the

kernel interpolation literature similar statements exist for very general alignment of

points where f is observed. As a consequence of the coincidence of P 2
K,X with the kriging

variance, these results can be easily translated to the stochastic framework.

To characterize the density of locations in X without restricting to lattice data, one

defines the fill distance

hX,T := sup
x∈T

min
xj∈X

‖x − xj‖.

Intuitively, hX,T is the radius of the largest ball centred at some x ∈ T that does not

contain any of the data points. Results will be given for approximation on a bounded

domain T ⊆ �d with Lipschitz boundary, which means that the boundary can be thought

of as locally being the graph of a Lipschitz continuous function. Moreover, T must satisfy

an interior cone condition, i.e. there exists an angle θ ∈ (0, π
2
) and a radius r > 0 such that

for every x ∈ T a unit vector ξ(x) exists such that the cone

C(x, ξ(x), θ, r) := {x + λu : u ∈ �d, ‖u‖ = 1, u′ξ(t) � cos θ, λ ∈ [0, r]}

is contained in T . This simply means that there exists a cone of fixed size that can be

placed everywhere inside T , thus excluding the possibility of extremely narrow bulges

of the boundary. We state two results from the kernel interpolation literature (see [85,

Section 11.6] and [58, Section 4]) and formulate their consequences for kriging:

Theorem 5.1 Suppose that T ⊂ �d is a bounded domain, has a Lipschitz boundary, and

satisfies an interior cone condition. Let X ⊂ T be a given discrete set and sf,X be the kernel

interpolant based on a translation invariant and positive definite kernel Φτ satisfying (2.4)

with τ = k + s, where k > d
2

is a positive integer and 0 � s < 1. Then the error between

f ∈ Wτ
2 (T ) and its interpolant sf,X can be bounded by

|f(x) − sf,X(x)| � C h
τ− d

2

X,T ‖f‖Wτ
2 (T ), x ∈ T ,

for all sufficiently dense sets X.

Corollary 1 Let Z be a centred, weakly stationary random field on a bounded domain T ⊂
�d with covariance function Φτ as in Theorem 5.1. Assume that T has a Lipschitz boundary
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and satisfies an interior cone condition. Then the kriging variance can be bounded by

E((Z(x) − Zu∗(x))2) � C h2τ−d
X,T , x ∈ T ,

for all sufficiently dense sets X.

Theorem 5.2 Suppose that T ⊂ �d is a bounded domain that satisfies an interior cone con-

dition. Consider the thin-plate splines Φd,l from Table 2 as conditionally positive definite with

respect to πl−1(T ). Then the error between f ∈ Wl
2(T ) and its thin-plate spline interpolant

sf,X can be bounded by

|f(x) − sf,X(x)| � C h
l− d

2

X,T |f|BLl (T ), x ∈ T ,

for all sufficiently dense sets X.

Corollary 2 Let Z be an intrinsically stationary random field of order l on a bounded

domain T ⊂ �d with generalized covariance function Φd,l as in Table 2. Assume that T

satisfies an interior cone condition. Then the kriging variance can be bounded by

E((Z(x) − Zu∗(x))2) � C h2l−d
X,T , x ∈ T ,

for all sufficiently dense sets X.

The preceding Corollaries give rates for the speed of decline of the kriging variance as

the data become denser. Corollary 1 is in agreement with, but more general than the

result from [77, Section 3.6] mentioned above. To our knowledge, there is no result on

convergence rates of kriging predictions in the statistical literature that covers geometric

setups of data points with the generality of Corollaries 1 and 2. We refer to [86] for

generalizations of Theorems 5.1 and 5.2 to the situation (4.1) where f is observed with

measurement error.

6 Interpolation with misspecified kernels

So far it has always been assumed that the correct K is known. In geostatistics this

means that the covariance structure of the random field under study is known, in kernel

interpolation it amounts to the assumption that one knows the native space in which f

is contained. In practice, however, such knowledge is usually not available, and so the

question arises whether the interpolation schemes discussed above are still near-optimal

if an ‘incorrect’ kernel K̃ is used instead of K .

In kernel interpolation, the main interest is to ensure that the optimal rates in Theorems

5.1 and 5.2 are maintained. If this is the only goal, then rescaling the argument of Φ does

not have an effect because in (2.4) rescaling only changes the constants, and thin-plate

spline interpolants are invariant to rescaling of the argument of Φd,l anyway. Misspecifying

the smoothness of Φ, however, does have an effect on the rate. If a kernel Φτ̃ with τ̃ < τ

is used in the setup of Theorem 5.1, then the statement remains valid for the lower rate

of τ̃ − d
2
. For τ̃ > τ on the contrary, it cannot be guaranteed that f ∈ Wτ̃

2 (T ), and so
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Theorem 5.1 does not apply. Under the additional condition that the separation radius

qX :=
1

2
min
j�k

‖xj − xk‖

does not decline faster than hX,T , however, it can be shown that the error rate is of the

same order as if a kernel with the correct degree of smoothness was used [58]. Hence, for

quasi-uniform sets X, i.e.

qX � hX,T � cqX

for some fixed constant c > 0, using a very smooth kernel does not degrade the approx-

imation accuracy of sf,X with respect to the error rate. The power function, however, is

independent of the true smoothness of f, thus decreases with the faster rate of τ̃ − d
2
, and

consequently yields a false description of the magnitude of approximation errors.

The last point is not considered a big deficiency in kernel interpolation, but in geo-

statistics the exact quantification of the approximation error plays an important role,

and a different perspective has been adopted here. A major step towards a theoretically

founded answer to the kernel misspecification issue was made in [75]: If K and K̃ are

compatible, then the approximation based on K̃ will have the same asymptotic efficiency

as the optimal approximation, and the relative deviation of the true expected squared

approximation error from the one calculated under the false assumption that K̃ is correct

is asymptotically negligible. A full explanation of the concept of compatibility is beyond

the scope of this paper, for details consider [38, 77, 78]. To compare with the statement

above, we shall however give a sufficient condition for compatibility in an important

special case where

K(x, y) =
σ2(a ‖y − x‖)ν

2ν−1 Γ (ν)
Kν(a ‖y − x‖), x, y ∈ T , σ, a, ν > 0, (6.1)

i.e. K is translation-invariant, radially symmetric and of the Matérn type (see Table 1).

In addition to the parameter ν controlling the smoothness of K , we consider a parameter

a rescaling the argument, and a variance parameter σ that does not affect the interpolant

sf,X but scales the power function. This choice of K satisfies (2.4) with τ = ν + d
2

for any

value of σ and a. When K has the above form and d � 3, compatibility of K and K̃ is

guaranteed [88] if

ν̃ = ν and σ̃2 ã2ν = σ2 a2ν . (6.2)

This still allows for certain deviations of K̃ from K , but limits the choice of K̃ much more

than the condition ν̃ � ν that ensures optimal rates of the approximation error. Note the

dependence of the above condition on the space dimension. For d � 5, condition (6.2) is

no longer sufficient, and K and K̃ are compatible only in the trivial case where K̃ = K [1].

The case d = 4 is still open. To formulate the precise statement of [75], consider a random

field Z on a bounded domain T with mean function of the form (3.5) and covariance

function K . Let ZK̃(x0) be the kriging prediction at x0 ∈ T based on observations of Z at

some set Xn ⊂ T , derived under the (false) assumption that K̃ is the covariance function.

Assume further that x0 � Xn, the sequence (Xn)n∈� of point sets is getting dense in T and

EK ((ZK(x0) − Z(x0))
2) → 0
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as n tends to infinity, where EK denotes the expectation under K . Then it holds, for any

compatible covariance function K̃ , that

EK ((ZK̃(x0) − Z(x0))
2)

EK ((ZK(x0) − Z(x0))2)
−→ 1 and

EK̃ ((ZK̃(x0) − Z(x0))
2)

EK ((ZK̃(x0) − Z(x0))2)
−→ 1 (6.3)

as n tends to infinity. The convergence is even uniform on T [77]. Recall that

EK ((ZK̃(x0) − Z(x0))
2) = QK (u∗

K̃
(x0) and EK((ZK (x0) − Z(x0))

2) = P 2
K,X(x0),

where the subscripts K and K̃ denote for Q that the quadratic form is calculated using

K and K̃ respectively, and for u∗ the optimal weights were obtained by minimizing QK

and QK̃ respectively. In the language of numerical analysis, (6.3) says that asymptotically

the interpolant obtained with a compatible kernel K̃ is still optimal, and that the power

function calculated with K̃ tends to the ‘true’ power function QK (u∗
K̃
(x0). This statement

is much stronger than that of an optimal convergence rate, but it is based on more

restrictive assumptions like (6.2).

An extension of this result to some conditionally positive definite covariance functions

is proved in [78]. Putter and Young [60] consider the setting where K̃ is not fixed but may

depend on n, which accommodates the situation in practice where K̃n can be estimated

from the data at Xn (see Section 7) with increasing precision as n tends to infinity.

This convergence is formalized by introducing the concept of contiguity (which replaces

compatibility, see [60] for definition), and it is shown that (6.3) still holds if the stochastic

models corresponding to the sequence (K̃n)n∈� on the one hand and the true covariance

function K on the other hand are contiguous.

7 Kernel selection and parameter estimation

An immediate question to follow up the issue of kernel misspecification is how to identify

the ‘correct’ K based on the information and data at hand. We do not intend to give a

comprehensive list of all methods available, but focus on two methods that are applicable

in both deterministic and stochastic frameworks.

The issue of kernel selection has received comparatively little attention in the framework

of kernel interpolation. This is not surprising in the light of the preceding section

where we noted that working with some smooth kernel would always guarantee optimal

convergence rates whatever be the particular form (and scaling) of this kernel, provided

that the sampling locations are quasi-uniform. Consequently, more emphasis was put

on the study of good configurations of sampling locations [14, 16, 39] on the one hand,

and edge correction strategies (see [26] for an overview) on the other hand to avoid

undesired oscillations near the boundaries that often come with smooth and flat kernels.

Nevertheless, several authors [6,27,28,63] have pointed out the big impact of the choice of,

for example, the scaling parameter on the accuracy of interpolant. When ill-conditioning

(see Section 8) is not an issue for a relevant range of parameter values, there is usually a

value that minimizes interpolation errors.

In the earlier literature, the question of suitable scaling of kernel has been typically

solved by ad hoc rules [25, 28, 35]. Rippa [63] was the first to propose an algorithm
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based on the idea of leave-one-out cross validation (LOOCV) which chooses the scale

parameter such that some norm of the LOOCV error vector ε is minimized. In the kernel

interpolation setup, the components of ε are formed by leaving out one sampling location

xi at a time, calculating the interpolant based on the remaining ones only and taking

εi to be the difference between the true value f(xi) and the approximation sf,X(xi). This

procedure yields good choices of the scaling parameter and can be implemented such

that the calculation of ε for a given kernel can be done with the computational cost

of order O(n3), where n is the number of sampling locations. A more recent paper [24]

discusses extensions of Rippa’s algorithm that have been applied in the context of an

iterated approximate moving least-squares approximation of function value data and

RBF (radially symmetric kernels) pseudo-spectral methods for the solution of partial

differential equations.

LOOCV does not make any explicit modelling assumptions and is therefore also

applicable in the geostatistical framework. In the geostatistical literature, however, cross

validation is mainly used as a diagnostic tool to compare the performances of geostatistical

models. Traditionally, variogram-based estimation methods have been used (see e.g. [11,

Sections 2.4–2.6] or [9, Chapter 2] for details) since an estimate of the variogram

γ(h) :=
1

2
E((Z(x + h) − Z(x))2) (assuming that Z is stationary)

usually constitutes the first step in the exploratory analysis of geostatistical data.

Here we focus on maximum likelihood estimation [49], which is applicable in all of the

kriging setups presented above, and makes optimal use of the information contained in the

data [37, Chapter 2 and Theorem 8.1]. It is usually derived under the additional modelling

assumptions that Z is a Gaussian random field, and that K belongs to some parametric

class {Kθ : θ ∈ Θ} of covariance models. In the simple case where Z has a zero mean,

the log likelihood function, i.e. the logarithm of the probability density function of the

random vector (Z(x1), . . . , Z (xn))
′ evaluated with the data vector f := (f(x1), . . . , f(xn))

′ is

then given by

l(θ) = −n

2
log(2π) − 1

2
log(|Aθ|) − 1

2
f ′A−1

θ f , θ ∈ Θ,

with Aθ as defined below and |Aθ| denoting its determinant. The maximum likelihood

estimator then chooses the parameter that maximizes l(θ), reasoning that under the

corresponding stochastic model observing the data f becomes most likely. An extension

that works for both the case of a non-trivial mean of the form (3.5) and the case of a

generalized covariance function was proposed by Kitanidis [43]. The idea is to use the

information of n − q allowable linear combinations of f only, rather than the complete

data vector. In the universal kriging setup this causes the mean function to be filtered out

from the data. This procedure is called restricted maximum likelihood (REML) estimation,

and it can be shown [36] that the restricted log likelihood function can be written as

l(θ) = −n − q

2
log(2π) − 1

2
log(|Aθ|) − 1

2
log

(∣∣P ′A−1
θ P

∣∣)
+

1

2
log(|P ′P |) − 1

2
f ′(A−1

θ − A−1
θ P

(
P ′A−1

θ P
)−1

P ′A−1
θ

)
f , θ ∈ Θ,
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with Aθ and P by

Aθ =

⎛⎜⎝Kθ(x1, x1) · · · Kθ(x1, xn)
...

. . .
...

Kθ(xn, x1) · · · Kθ(xn, xn)

⎞⎟⎠ , P =

⎛⎜⎝ p1(x1) · · · pq(x1)
...

. . .
...

p1(xn, ) · · · pq(xn)

⎞⎟⎠ .

An elementary introduction to maximum likelihood methods in spatial statistics is given

in [44]. A major drawback seems to be the strong assumption that Z is Gaussian under

which the maximum likelihood estimator is derived. In [72], however, an alternative

derivation of REML in the framework of kernel interpretation (where much weaker

modelling assumptions are made) is given, and a numerical study with several non-

stochastic test cases is presented in which REML often yields very good choices of

K .

Within the Bayesian paradigm, parameter selection and interpolation are not formally

distinct. The full specification of a probabilistic model permits, via Bayes’ Theorem, to ob-

tain posterior distributions for the unobserved values of f, the trend parameters β1, . . . , βq
and the covariance parameter θ. One could even step up yet another level and let the

Bayesian methodology choose between different parametric model structures [62, Sec-

tion 5.2]. This unified treatment of model selection and interpolation has the advantage

that the additional uncertainty due to the fact that the data-generating model is unknown

is reflected in posterior distributions. These distributions can, however, in general not be

stated in closed form. For certain choices of the priors, some of the integrals that result

from the repeated applications of Bayes’ Theorem within the hierarchical model specific-

ation can be calculated analytically [17, 33], but the final posterior distributions usually

require numerical approximations or Markov chain Monte Carlo (MCMC) methods.

In the situation (4.1) where only noisy observations of f are available, the main focus is

on estimating the regularization parameter λ in (4.2). Wahba [82] discusses a generalized

cross-validation (GCV) procedure which has the advantage over standard LOOCV that

it achieves certain desirable invariance properties (see [83] for a detailed motivation and

asymptotic results for GCV). While Stein [76] proves that REML is asymptotically (as

the sampling locations get increasingly dense) superior to GCV when the geostatistical

assumptions are true, asymptotic results from Wahba [82] suggest that REML can

fail when f is a smooth deterministic function, whereas GCV chooses a good λ in all

frameworks. The following example, however, shows that a rather different behaviour

may be observed in our interpolation framework and finite settings.

We illustrate and compare LOOCV and REML with a test function (the ‘borehole

model’) used by many authors (e.g. [40, 56]) to compare different methods in computer

experiments. Examples from this field of application are particularly interesting in the

context of the present paper because they are typically deterministic in nature but

considered as realizations of Gaussian random fields. Consider the function

f(rw, r, Tu, Hu, Tl, Hl, L,Kw) =
2πTu(Hu − Hl)

ln(r/rw)
[
1 + 2LTu

ln(r/rw)r2wKw
+ Tu

Tl

]
describing the flow rate through a borehole. The eight input variables and their respective
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Table 4. Input variables and respective ranges of interest for the borehole function

Variable Range of interest

rw Radius of borehole 0.05 to 0.15 m

r Radius of influence 100 to 50, 000 m

Tu Transmissivity of upper aquifer 63, 070 to 115, 600 m2/year

Hu Potentiometric head of upper aquifer 990 to 1, 110 m

Tl Transmissivity of lower aquifer 63.1 to 116 m2/year

Hl Potentiometric head of lower aquifer 700 to 820 m

L Length of borehole 1, 120 to 1, 680 m

Kw Hydraulic conductivity of borehole 9, 855 to 12, 045 m/year

Table 5. Parameter estimates and some error statistics for the borehole test function

REML LOOCV1 LOOCV2

σ2 3.67 × 104 5.45 × 103 1.26 × 104

θ1 1.27 × 10−1 3.81 × 10−1 2.62 × 10−1

θ2 1.00 × 10−6 1.00 × 10−6 1.00 × 10−6

θ3 1.00 × 10−6 1.38 × 10−4 1.00 × 10−6

θ4 7.73 × 10−3 2.08 × 10−2 1.21 × 10−2

θ5 4.96 × 10−5 5.62 × 10−5 2.13 × 10−5

θ6 1.05 × 10−2 1.74 × 10−2 5.80 × 10−3

θ7 1.40 × 10−2 3.63 × 10−2 2.78 × 10−2

θ8 1.25 × 10−3 1.99 × 10−3 1.23 × 10−3

RMSE 3.96 6.73 5.03

MAE 3.08 5.02 3.77

MAStE 1.02 1.05 1.05

ranges of interest are summarized in Table 4. We rescale these variables to the range (1, 3)

and use the same orthogonal sampling design as Joseph et al. [40] with [27] locations. We

now assume f to be a realization of a stationary Gaussian random field with covariance

function

Φ(h) = σ2e−
∑8

j=1 θjh
2
j

of the Gaussian type. Its mean function will be considered constant but unknown so that

we are in the framework of ordinary kriging (see Section 3). Table 5 shows the estimates

for the parameters θ1, . . . , θ8 and σ2 obtained via REML, LOOCV1 and LOOCV2, where

the subscript indicates that either the ‖ · ‖1-norm or the ‖ · ‖2-norm of the cross-validation

errors is minimized.

Unlike real-world applications of computer experiments, the borehole function is cheap

to evaluate, and this allows us to calculate its values on the grid G := {1, 1.5, 2, 2.5, 3}8

on the space of the scaled input variables and compare them with the values predicted

via ordinary kriging with the covariance functions estimated by different methods. The
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Figure 3. (Colour online) PIT histograms for probabilistic predictions corresponding to

covariance parameters estimated via REML (left), LOOCV1 (middle) and LOOCV2 (right).

following error statistics are given in Table 5:

RMSE :=

√∑
x∈G

(f(x) − sf,X(x))2, MAE :=
∑
x∈G

|f(x) − sf,X(x)|

and MAStE :=
∑
x∈G

|f(x) − sf,X(x)|
PK,X(x)

.

In the borehole example, both root mean squared error (RMSE) and mean absolute

error (MAE) are the lowest for the interpolant computed with the REML estimates,

but the LOOCV estimates too give good results. To judge how well the kriging variance

describes the prediction uncertainty, one can look at the mean absolute standardized

errors (MAStE). If the kriging variance (which also depends on the estimated parameters)

has correct magnitude, the absolute standardized errors should average to 1, and indeed

all three parameter choices yield an MAStE quite close to that. Since we have assumed

a Gaussian random field, we can go even further and calculate, for every x ∈ G, the

probability integral transform (PIT) Fx(f(x)), where Fx is the cumulative distribution

function of a Gaussian distribution with mean sf,X(x) and variance P 2
K,X(x). Fx is a

probabilistic forecast of f(x) that automatically comes with our stochastic modelling

assumptions. If it is correct, then the PIT values have a uniform distribution in [0, 1], and

this property can be checked by plotting them in the form of a histogram [2]. The PIT

histograms in Figure 3 are quite far from uniformity, suggesting that the assumption of

a Gaussian distribution is rather questionable. It is quite remarkable that REML, which

is based on this assumption, does an excellent job in selecting good parameters, and we

found that this is also true for many other test cases (see [72]).

A critical issue about REML estimation is the computational cost of O(n3) floating

point operations for each choice of θ, which is prohibitive for large spatial data sets. When

all sampling locations are on a (near-)regular lattice, spectral methods to approximate

the likelihood can be used and allow to reduce the computational cost to an order

of O(n log(n)) [13, 29, 32]. These techniques cannot be applied to scattered data, but

other approaches to approximating likelihoods [5, 47, 79, 81], covariance tapering [30] or

simplified Gaussian models of low rank [3, 12, 21] have been proposed and shown to be

quite effective in reducing the computational effort to an order that allows the application

of REML in most practical situations.
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8 Discussion

A variety of practical problems amount to or can be linked to the mathematical problem

of data interpolation. In this paper two approaches – kernel interpolation and kriging –

were presented and their interconnections were pointed out. In either framework the

interpolation procedure is optimal in a certain sense, but optimality is based on the

assumption that the ‘correct’ kernel is used. Answers given by numerical analysts and

statisticians to the question about the consequences on approximation accuracy of using

an ‘incorrect’ kernel were discussed. Finally, some methods for choosing a suitable kernel

based on the given data were presented.

The borehole example analysed in the preceding section poses the interesting challenge

that it is not entirely clear if a stochastic modelling perspective is appropriate. While this

does not matter anyway with respect to the interpolation method, it is comforting to see

that with both cross validation and maximum likelihood good choices of an interpolation

kernel are obtained. At first sight, this seems to contradict the asymptotic results by

Wahba [82] mentioned above. It seems, however, that in this and many other examples

the sample size is simply too small for asymptotic statements to hold. Moreover, in Wahba’s

setup the actual interpolation kernel is fixed, and only λ is estimated. Our belief is that

REML is mostly competitive even in deterministic settings as long as it can choose from a

sufficiently flexible class of kernels that permits, for example, adaptation to the regularity

of f. Generally, when a high approximation accuracy is expected, the deterministic

perspective seems more appropriate. When the data are sparse and/or f has low regularity,

a random field model often yields a good description of f. The transition between the

two perspectives and their respective methodologies, however, is rather smooth.

We have focused our discussion on topics that are relevant for both numerical analysts

and statisticians. An important issue in kernel interpolation not mentioned so far is that

of an ill-conditioned equation system (2.15). This problem frequently arises because in the

deterministic framework very smooth and flat kernels are often preferred since they can

achieve high convergence rates when f is very smooth (see Sections 5 and 6). Such kernels,

however, inevitably lead to ill-conditioned systems which are a big challenge for numerical

algorithms, and they call for special techniques such as preconditioning or changes of

basis. If the standard basis K(·, x1), . . . , K(·, xn) is used as suggested by representation

(2.14), ill-conditioning is tied to smoothness of kernel and small approximation errors in

terms of power function [66]. But the interpolant sf,X in function space is not dramatically

ill-conditioned [15] such that ill-conditioning is a problem of bad basis, not a problem of

the reconstruction process. In geostatistics, the variables of interest in typical applications

are usually very rough and call for kernels with low smoothness, and so ill-conditioning

is usually not a big issue.

We shall finally mention a field of research where the methods discussed in this paper

are applied in a slightly different context: the field of machine learning. The problem

studied there can again be formulated as an interpolation problem, and both stochastic

and deterministic modelling approaches can be used for its solution. An outline of

connections to Gaussian processes and reproducing kernels is given in [62, 74]. Van der

Vaart and van Zanten [80] discuss the Bayesian approach to the machine learning problem

and provide – in a slightly different setting and based on a different risk function – results

on convergence rates and the role of regularity of the covariance kernel similar to the
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results that have been discussed in Sections 5 and 6. In machine learning too it is not

always obvious if stochastic modelling assumptions are appropriate, and so understanding

the implications of different assumptions and identifying the scope of the corresponding

methods seem vital.
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