
Robotica (2012) volume 30, pp. 449–456. © Cambridge University Press 2011
doi:10.1017/S0263574711000646

Design and analysis of CICABOT: a novel translational parallel
manipulator based on two 5-bar mechanisms
M. F. Ruiz-Torres, E. Castillo-Castaneda∗ and J. A. Briones-Leon
Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Instituto Politecnico Nacional, Cerro Blanco 141,
Colinas del Cimatario, Queretaro, Mexico

(Received in Final Form: May 31, 2011; accepted May 26, 2011. First published online: July 21, 2011)

SUMMARY
This work presents the CICABOT, a novel 3-DOF
translational parallel manipulator (TPM) with large
workspace. The manipulator consists of two 5-bar
mechanisms connected by two prismatic joints; the moving
platform is on the union of these prismatic joints; each
5-bar mechanism has two legs. The mobility of the
proposed mechanism, based on Gogu approach, is also
presented. The inverse and direct kinematics are solved
from geometric analysis. The manipulator’s Jacobian is
developed from the vector equation of the robot legs; the
singularities can be easily derived from Jacobian matrix. The
manipulator workspace is determined from analysis of a 5-
bar mechanism; the resulting workspace is the intersection
of two hollow cylinders that is much larger than other TPM
with similar dimensions.

KEYWORDS: Parallel manipulators; Translational parallel
manipulator; Mobility analysis; 5-bar mechanism; Robot
workspace.

1. Introduction
Parallel robots have become a very interesting option
in the development of industrial applications due to the
advantages that these mechanisms present compared with the
conventional serial robots. For machining applications, such
as milling and drilling, a 3-DOF manipulator is very suitable
since it can be considerably lighter, making it possible to
add additional DOF through a mechanism with independent
actuators.1–3 On the other hand, manipulation tasks often
require high precision and very high speed positioning,
so the parallel robots have been successfully applied in
this type of task.4–8 However, there are disadvantages
that limit its use, such as the reduced working space
and the existence of multiple singular configurations.
There are several mechanisms, which are variants or
combinations of parallel manipulators, seeking to the
following: optimize workspace, increase stiffness, reduce
the number of singularities, or simply facilitate analysis. A
translational parallel manipulator (TPM) is a 3-DOF parallel
mechanism whose output link, called mobile platform, can
achieve three independent orthogonal translational motions
with respect to the fixed base.
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The Orthoglide9 is a variant of TPM developed in ref. [6],
in which the workspace is optimized by a convenient location
of legs and actuators. Another variant is the H4 developed in
ref. [5]; the manipulator has a leg adding an extra DOF for
rotation. The work described in ref. [10] presents a TPM that
has legs with 5-DOF in each of them.

Gosselin and Angeles11 have proposed kinematic analysis
of some 3-DOFs parallel mechanisms. Synthesis and
enumeration of possible 3-DOFs parallel mechanisms that
can provide either translational or rotational DOFs have
been extensively studied based on screw theory12,13 and Lie
group theory.14–17 The work developed in ref. [18] presents
a synthesis of 3-DOF pure TPMs, some novel examples,
including doubly planar kinematic chains, are synthesized
systematically. In ref. [14], a synthesis of orthogonal TPMs
is developed using Lie group theory. Also, ref. [15] introduces
four families of 3-DOF translational–rotational parallel
mechanisms using Lie group theory.

Other designs that try to take advantage of the most basic
mechanisms as 5-bar mechanism were developed in refs.
[19, 20]. The aim of this work is to present the CICABOT,
a novel TPM based on two 5-bar mechanisms developped at
Centro de Investigacion en Ciencia Aplicada y Tecnologia
Avanzada (CICATA), which is a research center of the
Instituto Politecnico Nacional (IPN) in Mexico. The main
advantages of our novel TPM are following: a very wide
workspace, only limited by the size of the links; a very
simple determination of inverse and direct kinematics; and
the passive joints of the mechanism are mainly rotational
ones, avoiding backlash and friction of spherical joints.

2. Design of the Mechanism
Figure 1(a) shows the mechanical structure of the proposed
TPM. The fixed platform or base is a square frame; the
mobile platform is composed of two prismatic joints located
at 90◦ between them. The base is attached to the mobile
platform through four legs. Figure 1(b) shows a side view
of the proposed mechanism, one clearly observe one 5-bar
mechanism. If this view of the mechanism rotates 90◦, one
can see an identical 5-bar mechanism. In ref. [21], a study
on the optimization of the workspace of a 5-bar mechanism
is presented.

As is shown in Fig. 2, each of the four legs Gi is composed
of two links ai, bi ; connected by rotational joints Ri2 . The
link ai is attached to the base by joint Ri1 . The legs G1 and
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Fig. 1. Schematic diagram of CICABOT: (a) 3D view and (b) side view.

G2 are connected by c12 bar and two rotational joints R13 and
R23, thus forming a 5-bar mechanism. Similarly, G3 and G4

legs are connected by c34 bar and joints R33 and R34 forming
a second 5-bar mechanism. The mobile platform is linked to
the mechanism by two orthogonal prismatic joints Pr1 and
Pr2 that slide through the bars c12 and c34 allowing, thus,
only translational motion.

3. Mobility Analysis
Mobility or the degree of freedom is defined as the number of
independent coordinates needed to define the configuration
of a kinematic chain or mechanism.22 Mobility (M) is used
to verify the existence of a mechanism (M > 0), to indicate
the number of independent parameters in the both kinematic
and the dynamic models and to determine the number of
inputs needed to drive the mechanism. A very wide review
of methods on the calculation of the mobility is presented in
ref. [23].

One of the most used formulas is the Grübler criterion
proposed by Hunt,24 which considers the number of links,
number of joints, and types of joints incorporated in the
mechanism.

An outstanding contribution to this formula is presented in
ref. [6], where it is proposed to subtract the number of passive
degrees of freedom from total degrees of freedom computed
by Grübler criterion; it is possible to use this formula to
determine the mobility of mechanisms with passive degrees
of freedom as the Stewart platform. This and other important

contributions were grouped into a formula known as CGK
(Chebychev–Grübler–Kutzback). However, this formula is
not applicable for all types of manipulators.25 For example, in
mechanisms that contain multiple closed loops, the mobility
calculation is complicated because these closed loops cancel
the mobility independence of some joints.

An innovative formula allowing the mobility calculation
of serial and parallel mechanisms, with one or more closed
loops in the sense of graph theory, is developed in ref. [26].
This method decomposes the mechanism in k closed loops
and analyzes the motion restrictions in each closed loop, thus
determines the overall mobility restrictions in the mechanism
and consequently their mobility. The formula is defined as
follows:

M =
p∑

i=1

fi − r, (1)

where M is the mechanism mobility, p is the total joints
number, fi is the mobility of ith joint, and r is the number
of joint parameters that lose their independence in the
mechanism after closing all the mechanism loops. The r
variable is defined as

r =
k∑

i=1

SGi
− SF + rl, (2)

where k is the number of independent closed loops in the
sense of graph theory, SGi

is the connectivity of leg Gi when
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Fig. 2. (a) Schematic diagram of CICABOT and (b) structure of the manipulator.
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Fig. 3. (a) Legs G1 and G2, (b) legs G3 and G4, and (c) 5-bar mechanism H1.

it is disconnected from the mechanism, SF corresponds to
the total connectivity of the mechanism, and rl is the number
of parameters that lose their independence in the ith closed
loop.

Connectivity SA of a simple open kinematic chain A(1 −
2 − ... − n) is given by the connectivity between the final and
reference links n and 1. Connectivity represents the number
of independent finite displacements between the extreme
links n and 1.

The number of joint parameters that lose their
independence in the closed loop of the mechanism is given by
the rank of the homogeneous linear set of velocity equations
of the mechanism; those equations are not simple to calculate
in the case of multiloop mechanisms. An alternative approach
is to perform a symbolic calculation of the rank in an arbitrary
position of the mechanism without indicating the numerical
values of the joint variables and the geometric parameters. In
such case, the variables SGi

and SF are defined as follows:

SGi
= dim(RGi

),

SF = dim(RF ) = dim(RG1 ∩ RG2 ∩ · · · ∩ RGk
),

and

rl =
k∑

i=1

r
Gi

l , (3)

where RF is the velocity vector of the mechanism, RGi is the
velocity vector of leg Gi when it is disconnected from the
mechanism, and r

Gi

l is the number of parameters that lose
their independence in the leg Gi .

Figure 3 shows the CICABOT decomposed in two 5-bar
mechanisms. The legs G1 and G2 form a 5-bar mechanism,
named H1; the legs G3 and G4 form a second 5-bar
mechanism, named H2. From Gogu’s definitions: p = 14
and k = 2. When H1 and H2 are disconnected (see Fig. 3),
one can observe that the corresponding velocity vectors
RH1 and RH2 related to mobile platform P are following:
RH1 = {vx, vy, vz, ωy} and RH2 = {vx, vy, vz, ωx}.

Then, the corresponding connectivity is SH1 =
dim(RH1 ) = SH2 = dim(RH2 ) = 4. Therefore, the velocity
vector of the mechanism is RF1 = RH1 ∩ RH2 = vx, vy, vz;
the corresponding connectivity is SF1 = dim(RF1 ) = 3.

To compute the number of parameters that lose their
independence in the ith closed loop, each of the two 5-bar
mechanisms should be disconnected (see Fig. 3c).

Disconnecting the legs G1 and G2 at point C, one can
obtain the following corresponding velocity vectors and
connectivity’s:

RG1 = {vy, vz, ωx}; SG1 = dim(RG1) = 3,

and

RG2 = {vy, vz, ωx}; SG2 = dim(RG2) = 3.

Then, the mechanism velocity vector and connectivity are
following:

RF2 = RG1 ∩ RG2 = {vy, vz, ωx}; SF2 = dim(RF2) = 3.

Substituting the values in Eqs. (2) and (3): rH 1

l = rH 2

l =
3, rl = 6, and r = 11.

Therefore, substituting in Eq. (1), we obtain M = 14 −
−11 = 3.

In conclusion, the mobility of the proposed novel TPM
of this work is 3; it means that only three active joints are
required. Thus, one of the legs does not have any active joint,
in our case, the leg G4 will be considered only as a support of
leg G3. It is not recommended to leave out the nonactuated
leg since it contributes to increase robot rigidity giving an
extra support leg to the mechanism.

4. Inverse and Direct Kinematics

4.1. Inverse kinematics
Figure 4 shows a simplified geometrical description of the
novel TPM. The active joint variables are γi , with i = 1, 2, 3;
the passive joints are γi ; the legs positions are defined
by distances di;h1 is the distance between the top 5-bar
mechanism and mobile platform; and h2 is the distance
between the two 5-bar mechanisms. The points P1, P2, P3 are
the final positions of legs 1,2,3, respectively; and the point
P represents the final position of the mobile platform. From
here, we use the following notation: Pi = [pix, piy, piz]t .

From the geometrical representation in Fig. 4,

OAi + AiBi + BiPi = OPi. (4)
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Fig. 4. Geometrical description of CICABOT.

Rewriting Eq. (4), we obtain Eqs. (5)–(7)

⎡
⎣p1x

p1y

p1z

⎤
⎦ =

⎡
⎣a1 cos θ1 + b1 cos γ1

−d1

a1 sin θ1 + b1 sin γ1

⎤
⎦, (5)

⎡
⎣p2x

p2y

p2z

⎤
⎦ =

⎡
⎣−a2 cos θ2 − b2 cos γ2

d2

a2 sin θ2 + b2 sin γ2

⎤
⎦, (6)

⎡
⎣p3x

p3y

p3z

⎤
⎦ =

⎡
⎣ d3

a3 cos θ3 + b3 cos γ3

a3 sin θ3 + b3 sin γ3

⎤
⎦. (7)

The points P1 and P2 are collinear, while points A2 and
A1 are collinear with respect to Y-axis, then

px = p1x = p2x,

py = p3y,

pz = p1z + h1 = p2z + h1 = p3z + h1 + h2.

(8)

From Eq. (5),

(p1x − a1 cos θ1)2 + (p1z − a1 sin θ1)2 = (b1 cos γ1)2

+(b1 sin γ1)2. (9)

Simplifying

p2
1x + p2

1z − 2a1p1x cos θ1 − 2a1p1z sin θ1 + a2
1 − b2

1 = 0.

(10)
Defining the following variables:

k11 = −2a1p1x,

k12 = −2a1p1z,

k13 = p2
1x + p2

1z + a2
1 − b2

1.
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Fig. 5. Geometrical description of one 5-bar mechanism.

One can rewrite Eq. (10) as follows:

(k13 − k11) tan2 θ1

2
+ 2k12 tan

θ1

2
+ k11 + k13 = 0.

Finally,

θ1 = 2 tan−1

⎛
⎝−k12 ±

√
k2

12 − k2
13 + k2

11

k13 − k11

⎞
⎠. (11)

Likewise, Eqs. (6) and (7) result

θ2 = 2 tan−1

⎛
⎝−k22 ±

√
k2

22 − k2
23 + k2

21

k23 − k21

⎞
⎠, (12)

θ3 = 2 tan−1

⎛
⎝−k32 ±

√
k2

32 − k2
33 + k2

31

k33 − k31

⎞
⎠, (13)

where

k21 = 2a2p2x,

k22 = −2a2p2z,

k23 = p2
2x + p2

2z + a2
2 − b2

2,

and

k31 = −2a3p3y,

k32 = −2a3p3z,

k33 = p2
3y + p2

3z + a2
3 − b2

3.

4.2. Direct kinematics
The manipulator’s direct kinematics is extremely simplified
since each of the two 5-bar mechanisms moves only on a
well-defined plane; the 5-bar mechanism named H1 allows
motions on plane X–Z; the 5-bar mechanism named H2 allows
motion on plane Y–Z.

https://doi.org/10.1017/S0263574711000646 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574711000646


Design and analysis of CICABOT: a novel translational parallel manipulator based on two 5-bar mechanisms 453

Fig. 6. (a) First solution of inverse kinematics: θ1 = −3.8°, θ2 = −3.8°, θ3 = −7.67° and second solution of direct kinematics: (b)
px = 0 mm, py = 88.15 mm, pz = 464.26 mm.

Figure 5 shows H1 that is composed by legs G1 and G2

with two active joints θ1 and θ2. From Fig. 5,

c1 = (a2
1 + b2

1 − 2a1b1 cos φ1)
1/2, (14)

and

φ1 = θ1 + θ2. (15)

Then,

p1x = c1 cos

(
180 + θ1 − θ2

2

)
,

p1z = c1 sin

(
180 + θ1 − θ2

2

)
.

(16)

Rewriting Eq. (7) using the form of Eq. (10)

p2
3y + p2

3z − 2a3p3y cos θ3 − 2a3p3z sin θ3 + a2
3 − b2

3 = 0.

(17)
Substituting p3z, from Eq. (8), in Eq. (17)

p2
3y + p3y(−2a3 cos θ3) + (p1z − h2)2 − 2a3(p1z − h2)

sin θ3 + a2
3 − b2

3 = 0

gives

p3y =
−m2 ±

√
m2

2 − 4m1m3

2m1
, (18)

where

m1 = 1,

m2 = −2a3 cos θ3,

m3 = (p1z − h2)2 − 2a3(p1z − h2) sin θ3 + a2
3 − b2

3.

Therefore, the manipulator’s direct kinematics is defined by
Eqs. (8), (16), and (18).

For example, given ai = bi = 300 mm, and h1 = h2 = 40
mm:

(1) Inverse kinematics, given px = py = pz = 0, has two
solutions:
First solution: θ1 = −3.8°, θ2 = −3.8°, θ3 = −7.67°,
Second solution: θ1 = −176.18°, θ2 = −176.18°,
θ3 = −172.34°.

(2) Direct kinematics, given θ1 = θ2 = θ3 = 45◦ , has two
solutions:
First solution: px = 0 mm, py = 333.11 mm, pz =
464.26 mm,
Second solution: px = 0 mm, py = 88.15 mm, pz =
464.26 mm.

Figure 6 shows the configurations corresponding to the
first solution of inverse kinematics (see Fig. 6a), and second
solution of direct kinematics (see Fig. 6b).

5. Manipulator’s Jacobian
It is possible to determine the manipulator’s Jacobian from
joint velocities [θ̇1, θ̇2, θ̇2] and mobile platform velocities
Vp = [Vx, Vy, Vz]t , as is presented in ref. [26]. From Eq. (4),
the velocity of the mobile platform can be derived as

Vp = ω1i × Ai + ω2i × Bi. (19)

Premultypling by Bi

Bi · Vp = ω1i · (Ai × Bi), (20)

where for leg 1,

A1 =
⎡
⎣a1 cos θ1

0
a1 sin θ1

⎤
⎦; B1 =

⎡
⎣b1 cos γ1

0
b1 sin γ1

⎤
⎦;

ω11 =

⎡
⎢⎣

0

− ·
θ1

0

⎤
⎥⎦.

For leg 2,

A2 =
⎡
⎣−a2 cos θ2

0
a2 sin θ2

⎤
⎦; B2 =

⎡
⎣−b2 cos γ2

0
b2 sin γ2

⎤
⎦;

ω12 =

⎡
⎢⎣

0
·
θ2

0

⎤
⎥⎦.
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Fig. 7. The workspace of a typical 5-bar mechanism.

For leg 3,

A3 =
⎡
⎣ 0

a3 cos θ3

a3 sin θ3

⎤
⎦; B3 =

⎡
⎣ 0

b3 cos γ3

b3 sin γ3

⎤
⎦; ω13 =

⎡
⎢⎣

·
θ3

0
0

⎤
⎥⎦.

Applying Eq. (20) for each leg,

(b1 cos γ1)Vx + (b1 sin γ1)Vz = ((a1 sin θ1)(b1 cos γ1)

−(a1 cos θ1)(b1 sin γ1))(−
·

θ1),

(−b2 cos γ2)Vx + (b2 sin γ2)Vz = ((a2 cos θ2)(b2 sin γ2)

−(a2 sin θ2)(b2 cos γ2))(
·

θ2),

(b3 cos γ3)Vy + (b3 sin γ3)Vz = ((a3 cos θ3)(b3 sin γ3)

−(a3 sin θ3)(b3 cos γ3))(
·

θ3) .

Rearranging the above equations in matrix form, we obtain

JxVp + Jθ

·
θ = 0, (21)

where

Jx =
⎡
⎣ b1 cos γ1 0 b1 sin γ1

−b2 cos γ2 0 b2 sin γ2

0 b3 cos γ3 b3 sin γ3

⎤
⎦;

Jθ =
⎡
⎣Jθ11 0 0

0 Jθ22 0
0 0 Jθ33

⎤
⎦

are the manipulator’s Jacobian matrixes, with

Jθ11 = (a1 cos θ1)b1 cos γ1 − (a1 sin θ1)b1 cos γ1,

Jθ22 = (a2 cos θ2)b2 cos γ2 − (a2 sin θ2)b2 cos γ2,

Jθ33 = (a3 cos θ3)b3 cos γ3 − (a3 sin θ3)b3 cos γ3.

The manipulator’s singularities can be easily found from Jx

and Jθ matrix.

6. Workspace
The manipulator’s workspace can be determined from
ref. [21] that presents an optimum design of a 5-bar
mechanism. The corresponding workspace is ring shaped
as is shown in Fig. 7.

In the case of the TPM presented in this paper, composed
by two 5-bar mechanisms, the resulting workspace is the
intersection of two hollow cylinders, shifted by a distance h2.
The radius of each cylinder is l1 < (a1 + b1) and l3 < (a3 +
b3); theirs lengths are defined by c12 and c34, respectively

Fig. 8. Workspace shape: (a) intersection of two cylinders and (b) resulting workspace.
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Fig. 9. Two different configurations of CICABOT using two 5-bar mechanisms.

(see Fig. 8a). One can see (Fig. 8b) that the geometry of the
workspace is very close to a rectangle, so the volume of work
space, in theory, is much higher than in other translational
parallel mechanisms, where the workspace is close to a
semicircle.

7. Conclusions
We designed a translational parallel robot of novel structure
with a large workspace, consisting of two 5-bar mechanisms
coupled with prismatic joints. The mobility analysis of
the mechanism was performed using the method proposed

Fig. 10. Several poses of the first prototype of CICABOT.
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by Gogu.26 This method determines mobility in a clear
and accurate way for any type of mechanism, unlike
other methods that are not valid for mechanisms with
closed loops. Thanks to the decoupling of the two 5-bar
mechanisms, the inverse and direct kinematics are solved
very simply by geometrical considerations. The workspace
can be considered as a rectangle whose dimensions are
determined according to the lengths of the links. It was
not necessary to apply advanced algorithms to calculate the
workspace due to the simplicity of the geometric structure of
the manipulator.

It is expected that the orthogonal layout of the two 5-bar
mechanisms, which form the CICABOT help to improve
rigidity, compared to that presented in the conventional 5-
bar mechanisms. In addition, the four-point support of the
CICABOT do provide a more stable structure than the classic
three-point support of the parallel robot with 3-DOF, as for
example the Delta robot.

The prismatic joint that connects the two 5-bar
mechanisms should include a ball bearing to not reduce
the stiffness of the mechanism. Also, all rotational passive
joints are of the needle bearing type. On the other hand,
the servomotors used as active rotational joints have high-
speed reducers (120:1). This makes the complex dynamics
of the robot is not reflected in the servomotors and therefore
not reflected at the level of control algorithms. The use of
counterweights or springs on opposite sides of the links ai

increases the payload of the robot.
It is possible to define new and original configurations

of the manipulator depending of the 5-bar mechanism
connection, such as shown in Fig. 9. Figure 10 shows some
pictures of the first prototype of CICABOT in different poses;
links are made in aluminum and prismatic joints are made in
stainless steel with needle bearings.
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