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Synchronization is a universal concept in nonlinear science but has received little
attention in thermoacoustics. In this numerical study, we take a dynamical systems
approach to investigating the influence of harmonic acoustic forcing on three different
types of self-excited thermoacoustic oscillations: periodic, quasi-periodic and chaotic.
When the periodic system is forced, we find that: (i) at low forcing amplitudes,
it responds at both the forcing frequency and the natural (self-excited) frequency,
as well as at their linear combinations, indicating quasi-periodicity; (ii) above a
critical forcing amplitude, the system locks in to the forcing; (iii) the bifurcations
leading up to lock-in and the critical forcing amplitude required for lock-in depend
on the proximity of the forcing frequency to the natural frequency; (iv) the response
amplitude at lock-in may be larger or smaller than that of the unforced system and the
system can exhibit hysteresis and the jump phenomenon owing to a cusp catastrophe;
and (v) at forcing amplitudes above lock-in, the oscillations can become unstable and
transition to chaos, or switch between different stable attractors depending on the
forcing amplitude. When the quasi-periodic system is forced at a frequency equal to
one of the two characteristic frequencies of the torus attractor, we find that lock-in
occurs via a saddle-node bifurcation with frequency pulling. When the chaotic system
is forced at a frequency close to the dominant frequency of its strange attractor,
we find that it is possible to destroy chaos and establish stable periodic oscillations.
These results show that the open-loop application of harmonic acoustic forcing can be
an effective strategy for controlling periodic or aperiodic thermoacoustic oscillations.
In some cases, we find that such forcing can reduce the response amplitude by up to
90 %, making it a viable way to weaken thermoacoustic oscillations.
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1. Introduction
A self-excited nonlinear system oscillating periodically at one frequency can

be forced to oscillate at a different frequency when subjected to external forcing
(Pikovsky, Rosenblum & Kurths 2003). This process is known as forced synchro-
nization. It has been studied in various natural and human-made systems, including
pendulum clocks (Huygens 1673), chemical reactions (Petrov, Ouyang & Swinney
1997), circadian rhythms (Rompala, Rand & Howland 2007), neurons (Hopfield
1994) and organ pipes (Abel, Ahnert & Bergweiler 2009). It has also been modelled
accurately with universal low-dimensional oscillators such as the forced van der
Pol (1927) oscillator. The use of external forcing to control or suppress self-excited
oscillations has been attracting growing interest because of its applicability to fields
as wide ranging as hydrodynamics, electromagnetics, neuronics and thermoacoustics
(Hovel 2010).

In thermoacoustic systems, such as gas turbines used for power generation and
aircraft propulsion, self-excited pressure oscillations can arise from the coupling
between unsteady heat release and acoustics, leading to increased noise and pollutant
emissions (Lieuwen & Yang 2005). Experiments (Kabiraj & Sujith 2012; Kabiraj
et al. 2012a; Kabiraj, Sujith & Wahi 2012b) and low-order simulations (Kashinath,
Waugh & Juniper 2014) have shown that even simple thermoacoustic systems (e.g. a
laminar premixed flame in a duct) can exhibit rich nonlinear behaviour. For example,
they can undergo multiple bifurcations as a control parameter is varied, producing
not just period-1 oscillations but also quasi-periodic, intermittent, frequency-locked,
chaotic or period-k oscillations. Experiments on more complex thermoacoustic systems
have revealed similarly elaborate dynamics (Gotoda et al. 2011, 2012). However, the
effect of external harmonic forcing on such systems, particularly those that oscillate
quasi-periodically or chaotically, has not been studied before.

Nevertheless, for thermoacoustic oscillations that are periodic, various control
methods have been demonstrated (Dowling & Morgans 2005). In combusting
systems, harmonic forcing of the fuel flow rate at the same frequency as a periodic
self-excited mode, but out of phase with it, has been implemented for feedback
control (Lubarsky et al. 2003). Recently, more sophisticated strategies have been
proposed using model-based control (Annaswamy 2006) and adaptive feedback control
(Illingworth & Morgans 2010). However, although feedback control works well in
simple thermoacoustic systems, it is challenging in industrial systems because the
sensors and actuators have to withstand harsh environments. It is also unacceptably
risky in some applications, such as aircraft.

For those reasons, open-loop control is preferred. In laboratory experiments,
Bellows, Hreiz & Lieuwen (2008) and Balusamy et al. (2015) investigated the
effectiveness of open-loop harmonic acoustic forcing as a means of weakening
self-excited thermoacoustic oscillations in lean-premixed swirl-stabilized turbulent
combustors. They found that: (i) the oscillations can be synchronized by strong
external forcing; (ii) the overall acoustic power can be reduced by the forcing,
with maximum reductions of up to 90 % near lock-in; but that (iii) weak forcing
(u′/U0 < 10 %) has no appreciable effect on the amplitude or frequency content of
the oscillations. This last finding could be due to two reasons: (i) the high noise levels
in those large-scale turbulent combustors, and (ii) the use of forcing frequencies that
were far away from the natural frequencies of the system.

Bellows et al. (2008) and Balusamy et al. (2015) also mentioned that the system
response is complicated by hydrodynamic instabilities and their interactions with
the acoustic forcing. Recent experiments have shown that forced self-excited
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hydrodynamic systems can exhibit rich nonlinear behaviour near lock-in, including
multiple bifurcations, quasi-periodicity and frequency pulling (Li & Juniper 2013a,b,c).
These dynamics have not been studied in combustion-driven thermoacoustic systems,
but need to be understood and accounted for during initial design or when developing
control strategies.

Intrigued by the rich nonlinear dynamics of forced synchronization and motivated by
the success of open-loop forcing in weakening self-excited oscillations, we explore the
influence of external (open-loop) acoustic forcing on a simple thermoacoustic system
(a laminar premixed flame in a duct) that oscillates periodically, quasi-periodically
or chaotically. We use the coupled dynamical model described in our previous
study (Kashinath et al. 2014) because: (i) it can accurately capture the dynamics
and bifurcations seen in experiments; (ii) it has only 5000 degrees of freedom,
which is significantly fewer than a comparable high-fidelity computational fluid
dynamics simulation; and (iii) it is a relatively simple model consisting of a few
coupled nonlinear oscillators, for which low-dimensional chaotic analogues exist in
the synchronization literature (Pikovsky et al. 2003). Dynamical systems theory has
been used extensively to study synchronization in nonlinear systems and provides a
suitable framework within which to investigate this problem in thermoacoustics.

The aims of this study are as follows: (i) to investigate the influence of open-loop
harmonic acoustic forcing on three different types of self-excited thermoacoustic
oscillations, namely periodic, quasi-periodic and chaotic; (ii) to characterize the
synchronization dynamics leading up to and beyond lock-in, including identifying
the bifurcations that cause lock-in and their positions on the primary (1 : 1) Arnold
tongue; and (iii) to explore the feasibility of using open-loop forcing to weaken
aperiodic thermoacoustic oscillations.

In § 2 we introduce the low-order coupled dynamical model. In § 3 we present
the dynamics of the unforced self-excited system. In § 4 we discuss the influence of
forcing above and below the natural (self-excited) frequency of period-1 oscillations,
at various forcing amplitudes. In § 4.4 we construct a lock-in map centred on the 1 : 1
Arnold tongue, examine its bifurcations and asymmetries, and discuss the implications
for controlling period-1 oscillations in thermoacoustic systems. In § 5 we discuss the
influence of harmonic forcing on quasi-periodic and chaotic oscillations, before
concluding in § 6.

2. Models, analysis methods and forcing conditions
We consider a constant-area duct, open at both ends, containing a two-dimensional

slot-stabilized laminar premixed flame at a distance xf from one end. This thermo-
acoustic system is modelled identically to that of our previous study (Kashinath et al.
2014, § 2): (i) the acoustics is treated linearly – because the perturbation Mach number
remains small even for large acoustic velocity fluctuations (Dowling 1997) – and its
governing equations are discretized with the Galerkin method. (ii) The premixed flame,
which is the main source of nonlinearity in this system, is described by a kinematic
model based on the level-set approach, known as the G-equation in combustion (for
details, see Williams 1994):

∂G
∂ t̃
+ Ũ

∂G
∂ x̃
+ Ṽ

∂G
∂ ỹ
= sL

√(
∂G
∂ x̃

)2

+

(
∂G
∂ ỹ

)2

. (2.1)

Here tildes denote dimensional values, G(x̃, ỹ, t̃) is a time-varying function that is
negative in the unburnt gas, positive in the burnt gas and zero on the flame surface,
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FIGURE 1. Flame wrinkling due to vortex formation and roll-up. (a) Experimental image
of a forced conical flame. (Reprinted from Karimi et al. (2009) with permission from
Elsevier.) (b) The G-field obtained from numerical simulations of a forced conical flame.
(Reprinted from Orchini et al. (2015) with permission from Cambridge University Press.)
In both cases, the forcing is harmonic, with the same frequency and amplitude. The flame
contour G= 0 is highlighted to show that it can qualitatively reproduce the experimental
results.

Ũ and Ṽ are the instantaneous velocities along the x and y directions, respectively,
and sL is the flame speed. (iii) Finally, the perturbation velocity field is modelled as a
travelling wave that originates at the burner lip and propagates downstream according
to the one-dimensional advection equation with a constant phase speed (Kashinath
et al. 2014, equation (2.10)). This perturbation model has been proved to be able to
reproduce the characteristic vortex formation at the burner lip and its roll-up along
the flame (Orchini, Illingworth & Juniper 2015). This gives rise to flame wrinkling,
which modulates the flame surface area and the resultant heat release rate fluctuations
(Preetham, Santosh & Lieuwen 2008). Figure 1 shows a qualitative comparison of the
numerically simulated G-field against experimental results.

We acoustically force this system by applying a harmonic velocity perturbation at
the burner lip. This type of forcing may be achieved in reality using an actuator, such
as a loudspeaker. Note that there is no perturbation to the geometry of the system but
only to the velocity and pressure fields. The total velocity perturbation at this location
is the sum of the self-excited oscillations and the forced perturbations, which may be
added together because the acoustics is linear. The flame therefore experiences the
combined effect of the self-excited oscillations and the forced perturbations. The net
perturbations propagate along the flame surface according to the advection equation
(Kashinath et al. 2014, equation (2.10)).

The evolution equations of this low-order coupled nonlinear dynamical system (i.e.
the acoustic equations, the G-equation and the perturbation velocity equations) are
solved simultaneously using a weighted essentially non-oscillatory (WENO) fifth-order
scheme in space (Jiang & Peng 2000) with a third-order total variation diminishing
(TVD) Runge–Kutta scheme (Gottlieb & Shu 1998) in time. The details of these
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computations, including the local level-set algorithm used to solve the G-equation
(Hemchandra 2009), can be found in our previous study (Kashinath et al. 2014, §2).

A full description of the synchronization dynamics of this system requires the
determination of its Arnold tongues and the bifurcations around them. In this study,
we focus on the primary (1 : 1) Arnold tongue (i.e. ff ≈ fn) because it is the widest
and hence the easiest to resolve. The forcing frequency, ff /fn, is varied from 0.85 to
1.15 in steps of 0.01, with a higher resolution of 0.001 for 0.98< ff /fn < 1.02. Here
fn is the natural (self-excited) frequency, which is defined as (i) the frequency of the
limit cycle of a periodic oscillation, or (ii) one of the two characteristic frequencies
of the 2-torus of a quasi-periodic oscillation, or (iii) the dominant frequency in the
spectrum of a chaotic oscillation. The forcing amplitude, u′f , normalized by the mean
flow velocity, U0, given by ε ≡ u′f /U0, is varied from 0.01 to 0.60 in steps of 0.01.
This range is sufficient to achieve lock-in for all the ff values used in this study.

The response of the system is examined via the pressure fluctuation at a fixed duct
location (x= 0.375), which is away from the pressure nodes of the dominant acoustic
modes. At each forcing condition, we produce a time series lasting 400 steady-state
cycles of the fundamental acoustic mode, which is long enough to resolve the low-
frequency modulations arising when the system is near its synchronization boundaries.
It is worth mentioning that complex behaviour could arise during the transient stages
of the simulations, as was observed in our previous study (Kashinath et al. 2014).
Nevertheless, the focus of the present study is on the steady-state dynamics.

For a periodically forced self-excited system with a single oscillatory mode, two
types of synchronization can occur: phase trapping and phase locking (Pikovsky et al.
2003). In this study, we use the term ‘lock-in’ to refer to phase locking, which occurs
when a forced self-excited system has a constant phase difference with respect to
the forcing at all instants in time. This means that the system always oscillates at ff .
Phase trapping, also known as frequency locking without phase locking, occurs when
the phase difference oscillates boundedly around a fixed value as though it is trapped
(Aronson, Ermentrout & Kopell 1990). The instantaneous frequency of the system
is therefore not always equal to ff but its time-averaged frequency is. To distinguish
between phase locking and phase trapping, we extract the instantaneous phase and
amplitude of the pressure signal using the Hilbert transform (Gabor 1946). This
technique has the advantage that it can be applied to nonlinear and non-stationary
data. Its usefulness in the study of nonlinear dynamics and synchronization is well
recognized (Pikovsky et al. 2003).

The dynamics of self-excited thermoacoustic systems and the phenomenon of
synchronization are governed by nonlinear processes and cannot be described with
linear tools. We therefore use methods from dynamical systems theory and nonlinear
time-series analysis. These methods are well established and have been documented
in textbooks (Strogatz 1994; Thompson & Stewart 2002; Kantz & Schreiber 2003;
Small 2005).

3. The unforced self-excited system

The dynamics of the unforced self-excited system were characterized by Kashinath
et al. (2014). From figure 3 of that paper, we choose four states (corresponding to
four different flame positions xf ) at which to study the forced response of the system.
These four states are described in table 1. Their time series, power spectra, phase
portraits, Poincaré sections, correlation dimensions and instantaneous flame images
were shown by Kashinath et al. (2014) and are not reproduced here for the sake
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State xf Oscillation type Natural frequency Preceding bifurcation

A 0.166 Period-1 fn = 2.304 Supercritical Hopf
B 0.480 Period-1 fn = 1.125 Subcritical Hopf
C 0.400 Quasi-periodic f1 = 2.22, f2 = 0.17 Neimark–Sacker (torus-birth)
D 0.067 Chaotic fn = 1.16 —

TABLE 1. The natural (unforced) states of the system to which harmonic forcing is applied.
These states are reached by varying the flame position xf within a constant-area duct
with open ends, whilst keeping all other parameters constant (Kashinath et al. 2014, see
figure 3 for details). The natural frequency is non-dimensionalized by the frequency of the
fundamental acoustic mode in the absence of heat release and damping.

of conciseness. We choose these particular states because: (i) they are representative
of the different types of oscillations present in this thermoacoustic system; (ii) they
include limit cycles due to both subcritical and supercritical Hopf bifurcations of
the steady base state; and (iii) their amplitudes are small enough that lock-in may
be achieved with moderate forcing amplitudes, justifying the attachment boundary
condition used for the flame’s base (Kashinath et al. 2014, §2.3).

4. Forcing of period-1 oscillations: states A and B
In this section, we examine the forced response of the system during period-1

oscillations, which arise from supercritical (state A) or subcritical (state B) Hopf
bifurcations of the steady base state. We consider forcing conditions leading up to
lock-in for ff above and below fn, both close to and far from fn, i.e. ff /fn between
0.95 and 1.05 (close to) and between 0.85 and 1.15 (far from). We also examine
the response when the forcing amplitude (ε) increases beyond that which is required
for lock-in. In all cases, the data shown represent the system’s dynamics after
reaching steady state. At each forcing condition, we produce a time series lasting 400
steady-state cycles of the fundamental acoustic mode, which is long enough to resolve
the low-frequency modulations arising when the system is near its synchronization
boundaries. It is worth mentioning that complex behaviour could arise during the
transient stages of the simulations, as was observed in our previous study (Kashinath
et al. 2014, §6). Nevertheless, the focus of the present study is on the steady-state
dynamics.

4.1. Before lock-in: ff close to fn

First we force the system at a frequency close to its natural frequency: ff /fn = 0.98.
The responses for states A and B are qualitatively similar to each other, so for brevity
only state A is presented here: a period-1 oscillation arising from a supercritical Hopf
bifurcation (Kashinath et al. 2014, figure 3 at xf = 0.166). Figure 2 shows the time
series and Poincaré maps for this state at different forcing amplitudes (ε).

When forced, the system responds at both its natural frequency and the forcing
frequency but, as will be shown later, the former ( f ′n, where the prime indicates the
presence of forcing) shifts towards the latter ( ff ) and is therefore no longer equal to
the natural frequency of the unforced system ( fn). The oscillations in figure 2(a–f )
are quasi-periodic and arise from a torus-birth bifurcation (i.e. a Neimark–Sacker
bifurcation) of the unforced period-1 oscillation. The power spectrum, which is not
shown here but is similar to that reported for forced self-excited hydrodynamic
systems (Li & Juniper 2013a,b), contains peaks at linear combinations of f ′n and ff ,
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FIGURE 2. (Colour online) Saddle-node bifurcation to lock-in: the forced response of
the system during period-1 oscillations (state A) when the forcing frequency is close to
the natural frequency, ff /fn = 0.98, where fn = 2.304. Time series and Poincaré maps are
shown for increasing forcing amplitudes: (a) ε≡ u′f /U0= 0.03, (b) 0.06, (c) 0.09, (d) 0.11,
(e) 0.12, ( f ) 0.125 and (g) 0.13.

indicating nonlinear triad interactions between the natural and forced modes. The
Poincaré maps show two rings, indicating that the phase trajectory is not closed but
spirals around the surface of a stable ergodic 2-torus. The time series shows evidence
of beating, a low-frequency modulation of the pressure amplitude at the beating
frequency, 1f = f ′n − ff .
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FIGURE 3. (Colour online) Saddle-node bifurcation to lock-in: the phase difference
(normalized by 2π) between the system and the forcing at the conditions of figure 2.

When forced above a critical amplitude (figure 2g, ε = 0.13), the system locks in
to the forcing and oscillates only at ff . The Poincaré map shows two discrete points,
indicating a closed period-1 orbit in phase space. This transition from a quasi-periodic
oscillation to a period-1 oscillation is abrupt, which, as will be confirmed later, reveals
a saddle-node bifurcation to lock-in. The attractor at lock-in is a stable periodic orbit
on the surface of the 2-torus that existed before the saddle-node bifurcation (Balanov
et al. 2009).

Figure 3 shows the phase difference φ1,2 (normalized by 2π) between the system
and the forcing at the conditions of figure 2. The response pressure is measured at
the same position in the duct as the forcing (i.e. the burner lip). Furthermore, we
assume acoustic compactness of the flame. Different x positions in the duct will have
different phase, but focusing on one location is sufficient to understand the complete
dynamics because other locations will behave similarly with a constant (time-invariant)
phase difference. To explore the different states of synchronization, it is necessary to
consider only the temporal evolution of φ1,2 and not its absolute value (Pikovsky et al.
2003). The average slope of each curve is the beating frequency, 1f = f ′n − ff . In
all cases except at ε = 0.128 (strong forcing), the oscillations are quasi-periodic, as
indicated by the non-zero slope of φ1,2, showing that f ′n 6= ff . As ε increases, two trends
emerge. First, the linear decrease in φ1,2 becomes increasingly wavy, with alternating
periods of synchronicity (flat slope) and asynchronicity (steep slope), the latter of
which are called phase slips (Pikovsky et al. 2003). Second, the magnitude of the
average slope of each curve decreases, indicating that f ′n→ ff . This behaviour, called
frequency pulling, is characteristic of lock-in via a saddle-node bifurcation and can be
modelled with universal low-dimensional oscillators (Balanov et al. 2009).
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With strong forcing (ε > 0.12), there are times when φ1,2 is nearly constant,
indicating synchronicity, with phase slips occurring relatively abruptly. The phase
slips are equal to −2π because here ff /fn < 1, which means that the system overtakes
the forcing by one full cycle during a phase slip. As ε increases further, both the
abruptness of the phase slips and the time interval between them increase, ultimately
leading to infinitely long intervals of constant φ1,2 and thus lock-in.

The characteristics observed in figures 2 and 3, which correspond to ff < fn, are
also observed when ff > fn as long as ff is close to fn. Crucially, the sequence
of bifurcations remains unchanged: it begins with a torus-birth bifurcation to
quasi-periodicity from a period-1 oscillation, followed by a saddle-node bifurcation to
lock-in at a critical forcing amplitude. However, when ff > fn, the phase slips occur
in the opposite direction (+2π) because the system loses one full cycle with respect
to the forcing when it phase slips.

4.2. Before lock-in: ff far from fn

Next we force the system at a frequency far from its natural frequency: ff /fn = 0.89.
For completeness, here we present state B, which responds qualitatively similarly
to state A and is likewise a period-1 oscillation. However, state B arises from a
subcritical, rather than a supercritical, Hopf bifurcation of the steady base state
(Kashinath et al. 2014, figure 3). Figure 4 shows the time series, power spectra
and phase portraits for this state at increasing ε, starting with the unforced case
(figure 4a).

Compared to figure 2 ( ff close to fn), figure 4 ( ff far from fn) shows many
similarities but also some key differences. In both cases, at intermediate forcing
amplitudes, the system responds at both f ′n and ff , becoming quasi-periodic via a
torus-birth bifurcation of the unforced period-1 oscillation. Furthermore, the time
series show low-frequency beating and the phase portraits show a stable ergodic
2-torus.

For ff far from fn (figure 4), f ′n remains unchanged from its unforced value ( fn) as
ε increases; but for ff close to fn (§ 4.1), f ′n shifts towards ff , leading to frequency
pulling. Moreover, for ff far from fn, the power spectra show a steady decrease in the
amplitude of the natural mode (at f ′n) and a corresponding increase in the amplitude
of the forced mode (at ff ). At lock-in (figure 4h), the system oscillates only at ff ,
with the natural mode becoming suppressed and the phase trajectory in a closed
period-1 orbit, similar to the case for ff close to fn (figure 2g). However, unlike for ff

close to fn, here the transition from quasi-periodicity to lock-in is gradual rather than
abrupt, revealing an inverse Neimark–Sacker bifurcation (i.e. a torus-death bifurcation)
rather than a saddle-node bifurcation. This is consistent with predictions from generic
models of self-excited oscillators, such as the forced van der Pol oscillator (Balanov
et al. 2009). Finally, the response amplitude at lock-in is significantly lower than
that of the unforced case; at this particular value of ff /fn, it is approximately 70 %
lower (compare figure 4a with figure 4h). As will be discussed in § 4.4, this decrease
tends to occur when ff is far from fn. When ff is close to fn, however, the response
amplitude at lock-in tends to be higher than that of the unforced case. Nevertheless,
the decrease shows that weakening of self-excited thermoacoustic oscillations is
possible via open-loop acoustic forcing at far-off-resonance frequencies, confirming
the results of Bellows et al. (2008).

Figure 5 shows the phase difference φ1,2 (normalized by 2π) at the conditions of
figure 4. For weak forcing (0<ε6 0.14), φ1,2 decreases linearly with an average slope
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FIGURE 4. (Colour online) Torus-death bifurcation to lock-in: the forced response of the
system during period-1 oscillations (state B) when the forcing frequency is far from the
natural frequency, ff /fn = 0.89, where fn = 1.125. Time series, power spectra and phase
portraits are shown for increasing forcing amplitudes: (a) ε ≡ u′f /U0 = 0.00 or unforced,
(b) 0.02, (c) 0.08, (d) 0.14, (e) 0.16, ( f ) 0.18, (g) 0.20 and (h) 0.23.

equal to the beating frequency, 1f = ff − f ′n. For moderate forcing (0.14< ε 6 0.18),
the magnitude of the average slope increases via large phase slips (many of them
> 2π), indicating frequency pushing: f ′n shifts away from ff as ε increases, which
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FIGURE 5. (Colour online) Torus-death bifurcation to lock-in: the phase difference
(normalized by 2π) between the system and the forcing at the conditions of figure 4.

will be discussed below. For stronger forcing, the magnitude of the average slope
decreases slightly (0.18 < ε 6 0.218), indicating frequency pulling, before abruptly
snapping to zero at ε = 0.218→ 0.22. After this, the phase slips continue to occur,
keeping φ1,2 bounded within a ±π band around φ1,2 = 0. The result is a partially
synchronous state known as phase trapping (Aronson et al. 1990), which was only
recently discovered in hydrodynamics (Li & Juniper 2013c) and thermoacoustics
(Balusamy et al. 2015). During phase trapping, the oscillations are still quasi-periodic
and frequency-locked but are not phase-locked. They become phase-locked only at
lock-in, when the amplitude at f ′n is completely quenched (ε = 0.23). In figure 4, this
last sequence of events (frequency pulling → phase trapping → lock-in) coincides
with the forced mode overtaking the natural mode in amplitude (figure 4e–h) and
was recently reported for a forced hydrodynamically self-excited low-density jet (Li
& Juniper 2013c). It is worth mentioning that, although the results shown in figures 4
and 5 are for ff < fn, the same qualitative behaviour is seen for ff > fn as long as ff
is far from fn.

The phenomenon of frequency pushing has been observed by Bellows et al. (2008)
and Balusamy et al. (2015) in experiments on lean-premixed turbulent combustors
at similar forcing conditions, i.e. for ff far from fn. Those researchers mentioned
that this shift in the natural frequency could not be explained simply. Frequency
pushing is well known, however, in magnetrons (Chen 1990) and has been modelled
successfully by adding a Duffing (cubic restoring force) term to the van der Pol
equation (Walsh et al. 1989). In magnetrons, frequency pushing arises from highly
nonlinear electron–wave interactions that change the mean field (Chen 1990). Given
the similarities between this thermoacoustic system and universal model oscillators,
we speculate that frequency pushing in thermoacoustics could also be modelled by
adding a Duffing term.

4.3. Before lock-in: beating frequency and summary
For a closer examination of the beating frequency, figure 6 shows the dependence
of 1f = ff − f ′n on ff , both normalized by fn at two different values of ε. The data
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FIGURE 6. (Colour online) Dependence of the beating frequency, 1f = ff − f ′n, on the
forcing frequency, ff , both normalized by the unforced natural frequency, fn, at two forcing
amplitudes: (a) ε=0.04, where lock-in occurs via a saddle-node bifurcation for both ff < fn
and ff > fn, and (b) ε= 0.06, where lock-in occurs via a saddle-node bifurcation for ff < fn
but via a torus-death bifurcation for ff > fn.

shown are for state B but are also representative of state A. In figure 6(a), where
the forcing is weak (ε = 0.04), 1f /fn around ff /fn = 1 is zero, indicating lock-in.
For higher or lower values of ff /fn, the magnitude of 1f /fn increases (i) nonlinearly
close to the lock-in boundary, indicating frequency pulling, but (ii) linearly away
from it, indicating no frequency pulling. This behaviour of 1f /fn has been derived
analytically for low-order model oscillators and is well known in the literature
of nonlinear dynamics and synchronization (Pikovsky et al. 2003): 1f /fn has a
square-root dependence on frequency detuning ( ff − fn) close to the saddle-node
bifurcation, where ff is relatively close to fn. In figure 6(a), an approximately
square-root dependence is seen on both sides of ff /fn = 1.

Figure 6(b) is with stronger forcing (ε = 0.06). As in figure 6(a), 1f /fn is zero
near ff /fn= 1 (indicating lock-in) and has a similar square-root-like dependence when
ff /fn < 1 (indicating frequency pulling). However, when ff /fn > 1, 1f /fn increases
(i) abruptly at the lock-in boundary and (ii) linearly away from it, indicating an
absence of frequency pulling. This suggests that, at this particular forcing amplitude
(ε = 0.06), lock-in occurs via a torus-death bifurcation when ff /fn > 1 but via a
saddle-node bifurcation when ff /fn < 1. This will be confirmed in § 4.4.

In summary, we have shown that, even when oscillating periodically, this
self-excited thermoacoustic system responds to harmonic forcing in many different
ways, depending on the proximity of the forcing frequency ( ff ) to the natural
frequency ( fn) and whether ff is above or below fn. When the forcing amplitude
(ε) increases from zero, the system first undergoes a torus-birth bifurcation to
quasi-periodicity from a period-1 oscillation. When ε exceeds a critical value, the
system locks in to the forcing. If ff is close to fn, lock-in occurs via a saddle-node
bifurcation with frequency pulling. If ff is far from fn, lock-in occurs via a torus-death
bifurcation, with frequency pushing if ff and fn are sufficiently far apart. The lock-in
process has two subtle features: (i) it is asymmetric about ff /fn = 1 and (ii) the
response amplitude at lock-in may be larger or smaller than that of the unforced
system. These and other lock-in features will be discussed next.
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FIGURE 7. (Colour online) The 1 : 1 Arnold tongue for period-1 oscillations (state B)
when forced across (a) a small range of frequency detuning (0.98 < ff /fn < 1.02) and
(b) a large range of frequency detuning (0.85< ff /fn< 1.15). The diamond markers denote
saddle-node bifurcations, and the circular markers denote torus-death bifurcations. The
dashed lines are linear fits to the saddle-node data on either side of ff /fn = 1.

4.4. At lock-in: the 1 : 1 Arnold tongue, response amplitudes and jump phenomena
In this section, we continue to examine the system during period-1 oscillations (state
B), but we focus on the forced response at lock-in. Figure 7 shows the 1 : 1 Arnold
tongue: the minimum forcing amplitude required for lock-in, εlock, as a function of
the frequency detuning around ff /fn = 1. The diamond markers denote saddle-node
bifurcations, and the circular markers denote torus-death bifurcations. The dashed lines
are linear fits to the saddle-node data on either side of ff /fn = 1.

In figure 7(a), εlock increases linearly with |ff − fn| when ff is close to fn,
producing a characteristic V-shaped lock-in curve for saddle-node bifurcations.
Similar V-shaped curves have been reported for other self-excited, but physically
disparate, systems such as turbulent lean-premixed combustors (Bellows et al. 2008),
momentum-dominated low-density jets (Li & Juniper 2013a), laminar jet diffusion
flames (Li & Juniper 2013b), low-density and equidensity cross-flowing jets (Davitian
et al. 2010; Getsinger, Hendrickson & Karagozian 2012), capillary jets (Olinger
1992) and cylinder wakes (Provansal, Mathis & Boyer 1987). The slope of the V
is asymmetric about ff /fn = 1: lock-in occurs more readily for ff /fn > 1 than for
ff /fn < 1. A similar asymmetry has been observed in laminar jet diffusion flames (Li
& Juniper 2013b) and equidensity cross-flowing jets (Davitian et al. 2010), but an
opposite asymmetry has been observed in cylinder wakes (Blevins 1985), low-density
cross-flowing jets (Getsinger et al. 2012) and momentum-dominated low-density jets
(Li & Juniper 2013a). The exact cause of the asymmetry is unknown.

The boundary between saddle-node and torus-death bifurcations lies closer to ff /fn=

1 when ff /fn> 1. Beyond this boundary, the loci of the torus-death bifurcations deviate
from the linear fits to the saddle-node data, which is a trend that has been proved
analytically for the forced van der Pol oscillator (Holmes & Rand 1978). Furthermore,
the loci of the torus-death bifurcations are different on either side of ff /fn= 1 (i.e. the
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FIGURE 8. (Colour online) (a) The system response at lock-in, i.e. at the critical forcing
amplitude, εlock. The response is defined as the non-dimensional amplitude of the pressure
oscillations, Alock = p′/γMp0. As in figure 7(b), the diamond markers denote saddle-node
bifurcations, and the circular markers denote torus-death bifurcations, with the different
colours indicating different regimes. (b) The frequency-response curve for a forced Duffing
oscillator with a soft cubic spring. The dashed branch (between points 3 and 6) is unstable
and cannot be reached in experiments or simulations, leaving a discontinuous jump that
resembles that seen in panel (a).

left and right branches of the 1 : 1 Arnold tongue). Figure 7(b) shows the same Arnold
tongue as figure 7(a) but over a larger range of ff /fn. The data for ff /fn > 1 (right
branch) saturate at εlock ≈ 0.12, but the data for ff /fn < 1 (left branch) peak at εlock ≈

0.32 (where ff /fn≈0.97) before decreasing with decreasing ff /fn. This behaviour of the
left branch is identical to that seen in experiments on hydrodynamically self-excited jet
diffusion flames (Li & Juniper 2013b). It is attributed to subharmonic lock-in arising
from the overlap of the adjacent 3 : 4 Arnold tongue.

Figure 8(a) shows the response amplitude of the system at lock-in (i.e. at εlock) as
a function of ff /fn. Here the response amplitude is defined as the non-dimensional
amplitude of the pressure oscillations, Alock = p′/γMp0. The peak in Alock at a
frequency below ff /fn = 1 and the sharp decrease on either side of it give rise to a
characteristic ‘shark-fin’ curve that has been observed in other nonlinear systems, such
as hydrodynamically self-excited jet diffusion flames (Li 2012) and thermoacoustically
self-excited turbulent premixed flames (Bellows et al. 2008). Crucially, this behaviour
is also observed in the forced response of low-dimensional model oscillators, such
as the Duffing oscillator with a soft cubic spring (Thompson & Stewart 2002). This
similarity in the forced response of physically disparate systems is further evidence
that, with more analysis, some aspects of thermoacoustically self-excited systems can
be represented by simple model oscillators.

A discontinuous jump in Alock occurs at a critical value of ff /fn (0.97), suggesting
a region of bistability and the possibility of hysteresis. This jump phenomenon is a
classical feature of a cusp catastrophe (Thompson & Stewart 2002). It arises when
variations in one or two of the control parameters (here ff and ε) cause the system to
cross the fold curve on the catastrophe surface, jumping from a point on the upper
(lower) stable manifold to a point on the lower (upper) stable manifold (Nayfeh &
Mook 1995). To produce figure 8(a), we started the simulations at ff /fn = 1 and
worked outwards, increasing ff to get to ff /fn > 1 and decreasing ff to get to ff /fn < 1.
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Hence, the bifurcation at ff /fn= 0.97 is reached by decreasing ff . This corresponds to
path 1→ 2→ 3→ 4→ 5 in figure 8(b), which is a sketch of the frequency-response
curve for a forced Duffing oscillator with a soft cubic spring (Nayfeh & Mook 1995).
The reverse path 5→ 4→ 6→ 2→ 1 is not explored in this study, but is expected
to extend the lower branch of figure 8(a) (green circles) further to the right.

Like the V-shaped lock-in curve and the ‘shark-fin’ frequency-response curve, the
jump phenomenon has been observed in various nonlinear systems, such as electronic
circuits (Giannakopoulos & Deliyannis 2001), hypoid gears (Wang & Lim 2011),
ecosystems (Scheffer et al. 2001), shape-memory alloys (Xia & Sun 2015) and
turbulent premixed combustors (Bellows et al. 2008). Crucially, it can be modelled
accurately with a forced Duffing oscillator, a second-order nonlinear damped oscillator
with cubic elasticity subjected to periodic forcing (Nayfeh & Balachandran 2004):

ẍ+ 2ζω0ẋ+ω2
0x+ βx3

= ε cos(ωf t). (4.1)

Here x is the position at time t, ζ is the damping constant, ω0 is the undamped
natural frequency and β controls the degree of nonlinearity in the restoring force.
On the right-hand side, ε is the forcing amplitude and ωf is the angular frequency
of the forcing. Figure 8(b) shows the typical frequency-response curve for a forced
Duffing oscillator with a soft cubic spring (β < 0). The dashed branch (between
points 3 and 6) is unstable and cannot be reached in experiments or simulations,
leaving a discontinuous jump that resembles that seen in figure 8(a). The forced
Duffing oscillator is also able to reproduce the peak in the response amplitude at
ff /fn < 1, as well as predicting hysteresis. Moreover, when ff is far from fn, both the
Duffing oscillator and the thermoacoustic system oscillate at amplitudes that are far
below those of their unforced states. This implies that it may be possible (i) to use
open-loop harmonic forcing to weaken self-excited thermoacoustic oscillations and
(ii) to understand and predict how this occurs through analysis of low-order model
oscillators. Quantitatively relating the coefficients of such model oscillators to the
system characteristics is possible but beyond the scope of this study.

In summary, lock-in occurs most readily when ff is close to fn, but the details
depend on whether ff > fn or ff < fn. When ff < fn, stronger forcing is required
for lock-in than when ff > fn. However, when ff is gradually decreased from fn,
the response amplitude at lock-in first increases, reaches a maximum and then
drops abruptly in turn. This jump phenomenon is a well-known hysteretic feature
of nonlinear oscillators undergoing a cusp catastrophe. When ff is far from fn, the
response amplitude at lock-in drops to as low as 10 % of that of the unforced
system. This shows that lock-in can be an effective means of weakening self-excited
thermoacoustic oscillations, provided that ff is chosen carefully with respect to fn.
Finally, the similarities in the forced response of this thermoacoustic system and that
of universal model oscillators suggest that the behaviour seen here is not limited to
this particular system, but is representative of an entire class of self-excited oscillators
with a single dominant oscillatory mode.

4.5. An alternative route to lock-in: intermittency
In §§ 4.1 and 4.2, we showed that lock-in can occur via a torus-birth bifurcation
followed by either (i) a saddle-node bifurcation with frequency pulling or (ii) a
torus-death bifurcation without frequency pulling. Although this is true for many
types of periodic oscillations, the transition to lock-in may sometimes involve
other bifurcations, including transition to chaos. This may arise from large forcing
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FIGURE 9. (Colour online) Intermittency route to lock-in: the forced response of the
system during period-1 oscillations (state A) when ff /fn = 0.97, where fn = 2.304. Time
series and Poincaré maps are shown for increasing forcing amplitudes: (a) ε ≡ u′f /U0 =

0.06, (b) 0.12, (c) 0.16, (d) 0.18, (e) 0.20, ( f ) 0.21, (g) 0.22, (h) 0.23 and (i) 0.24.

amplitudes, forcing frequencies far away from the natural frequency or self-excited
oscillations that are extremely resistant to external forcing (Pikovsky et al. 2003).

Figure 9 shows the transition to lock-in when the system, undergoing period-1
oscillations (state A), is forced at ff /fn = 0.97. As ε increases from zero, the first
transition is a torus-birth bifurcation to quasi-periodicity, as seen previously in §§ 4.1
and 4.2. However, this is followed by intermittent instability in the torus attractor:
the phase trajectories in a neighbourhood around the surface of the 2-torus start to
diverge. In the time series, this appears as mildly chaotic oscillations separated by
‘quiet’ quasi-periodic intervals, but complete breakdown of the 2-torus to fully chaotic
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FIGURE 10. (Colour online) Intermittency route to lock-in: the phase difference
(normalized by 2π) between the system and the forcing at the conditions of figure 9. The
arrows show that phase slips can be greater than 2π.

oscillations does not occur. (It is worth noting that, at a different operating point,
complete breakdown to chaos does occur, resembling the Ruelle–Takens–Newhouse
route to chaos presented by Kashinath et al. (2014).) When ε increases further, the
mildly chaotic oscillations eventually lock in to the forcing, resulting in period-1
oscillations again but this time at ff (figure 9i).

Figure 10 shows φ1,2 at the conditions of figure 9. As ε increases from zero, the
magnitude of the slope of φ1,2 decreases, indicating frequency pulling, similar to that
seen in figure 3. For ε > 0.15 (solid lines), phase slips occur between periods of
quasi-periodicity. The arrows show that the phase slips can be greater than 2π and
cause the slope of φ1,2 to become positive, producing an overshoot in the frequency
pulling that causes the system to oscillate at a frequency slightly higher than that of
the forcing, even though ff /fn = 0.97. Inspection of figures 9 and 10 shows that the
phase slips coincide with (i) intervals of intermittent ‘spikes’ in the time series and
(ii) intermittent instability of the phase trajectories around the 2-torus. With stronger
forcing (0.21 6 ε 6 0.23), the phase slips become more infrequent and, at ε = 0.24,
the slope of φ1,2 is zero, indicating lock-in.

Intermittency is well-known in synchronization and has been studied extensively
in many systems, from simple one-dimensional maps, such as the circle map, to
more complex systems of coupled chaotic oscillators (Belair & Glass 1983; Glass
et al. 1984). The reasons behind the various transitions and their bifurcations have
been studied for low-dimensional dynamical systems using periodic orbit theory
(Venkatesan & Lakshmanan 1997). A detailed investigation of these transitions and
bifurcations in our thermoacoustic system is beyond the scope of this study.
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FIGURE 11. (Colour online) Transition to chaos from lock-in via period-doubling
bifurcations (route I): the forced response of the system during period-1 oscillations (state
B) when ff /fn = 1, where fn = 1.125. Time series, power spectra, phase portraits and
Poincaré maps are shown for increasing forcing amplitudes: (a) ε≡ u′f /U0= 0.16, (b) 0.24,
(c) 0.30, (d) 0.34 and (e) 0.36.

4.6. Beyond lock-in: the stability of synchronized oscillations
As ε increases above εlock, the amplitude of the phase-locked oscillations at ff also
increases. However, for large values of ε, the periodic orbit at ff can become unstable
and transition to chaos. Pikovsky et al. (2003) explain that there are three main routes
to chaos when ε increases within an Arnold tongue. Route I, which is typically found
near the centre of the Arnold tongue where the stable and unstable periodic orbits are
far apart, involves a series of period-doubling bifurcations of the stable periodic orbit.
And routes II and III, which are typically found near the outer edges of the Arnold
tongue where the frequency detuning is large, involve intermittency, which manifests
as long ‘laminar’ synchronized periods separated by phase slips at chaotic intervals
(route II usually occurs at smaller values of ε (Pikovsky et al. 2003)). All three routes
to chaos have been analysed by Afraimovich & Shilnikov (1983) and Aronson et al.
(1990).

Figure 11 shows an example of route I: transition to chaos via period-doubling
bifurcations of the locked-in periodic orbit at ff . In our previous study, we observed
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FIGURE 12. (Colour online) Switching between different stable attractors after lock-in:
the forced response of the system during period-1 oscillations (state A) when ff /fn= 1.06,
where fn= 2.304. Time series, power spectra, phase portraits and Poincaré maps are shown
for increasing forcing amplitudes: (a) ε ≡ u′f /U0 = 0.03, (b) 0.16, (c) 0.18, (d) 0.21 and
(e) 0.24.

this route to chaos when the flame position was varied (Kashinath et al. 2014,
figure 14). In figure 11, the same route to chaos is observed when ε is increased.
The period-1 oscillations (arising from lock-in) undergo a period-doubling bifurcation
to period-2 oscillations, followed by another period-doubling bifurcation to period-4
oscillations and so on. The power spectra show the emergence of a new subharmonic
at each period-doubling bifurcation: ff /2 in figure 11(b), ff /4 in (c), ff /8 in (d),
ultimately leading to chaos in (e).

Apart from chaos, there are other features of synchronization at large ε that are not
observed at small ε. For example, different synchronization regions (Arnold tongues)
can overlap, leading to multi-stability. This means that, for certain combinations of
ff and ε, periodic oscillations with different rational ratios between the observed and
forcing frequencies can coexist. This phenomenon has been experimentally observed
by van der Pol & van der Mark (1927) in a low-dimensional oscillator circuit and,
as figure 12 shows, is also present in our thermoacoustic system when ff /fn = 1.06.
Figure 12(a) shows the familiar quasi-periodic oscillation that arises from a torus-birth
bifurcation, followed by lock-in at ε = 0.12 via a torus-death bifurcation (not shown).
At larger ε, the system switches to a periodic oscillation at ff /2 (figure 12b). At still
larger ε, it switches back to the primary synchronization orbit at ff (figure 12e). This
occurs because the external forcing modifies the stability of the different attractors,
altering their basins of attraction, thus making one state more stable than another
depending on ε (Pikovsky et al. 2003). These results show that besides choosing ff

carefully, in order to maximize the weakening of the self-excited mode, it is also
important to examine the stability of the system at lock-in.
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FIGURE 13. (Colour online) Synchronization of a T2 attractor: the forced response of
the system during quasi-periodic oscillations (state C) when forced at the dominant
characteristic frequency of its 2-torus, ff /f1=1, where f1=2.22. Time series, power spectra
and Poincaré maps are shown for increasing forcing amplitudes: (a) ε ≡ u′f /U0 = 0.00 or
unforced, (b) 0.09, (c) 0.18, (d) 0.24, (e) 0.30 and ( f ) 0.31.

5. Forcing of aperiodic oscillations: states C and D

Kashinath et al. (2014) showed that this thermoacoustic system can oscillate not just
periodically but also aperiodically. In this section, we examine the forced response of
this system when its natural (unforced) self-excited state is quasi-periodic and chaotic.

First we consider the system when it is oscillating quasi-periodically at characteristic
frequencies of f1 = 2.22 and f2 = 0.17 (state C in table 1), with the amplitude at
f1 being higher than that at f2. Figure 13 shows the response of this system when
forced at ff = f1. The time series shows that the beating frequency decreases as ε
increases. This can be seen in the power spectra as a steady decrease in the bandwidth
of the sidebands, indicating frequency pulling. The shape of the 2-torus changes as ε
increases, until the system undergoes a saddle-node bifurcation to a stable periodic
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FIGURE 14. (Colour online) Synchronization of a strange attractor: the forced response of
the system during chaotic oscillations (state D) when forced at the dominant frequency of
its unforced spectrum, ff /fn=1, where fn=1.16. Time series, power spectra, phase portraits
and Poincaré maps are shown for increasing forcing amplitudes: (a) ε ≡ u′f /U0 = 0.00 or
unforced, (b) 0.09, (c) 0.18, (d) 0.27, (e) 0.30 and ( f ) 0.31.

orbit at lock-in (figure 13f ). This is the same type of transition and bifurcation as
described in § 4.1.

Synchronization and control of driven and autonomous chaotic oscillators have
been attracting growing interest in the last two decades (Miranda 2004). In particular,
the destruction of chaos via lock-in to a stable periodic orbit presents an appealing
strategy for open-loop control of chaotic oscillations. The strength of chaos is
indicated by the maximal Lyapunov exponent, with stronger chaos requiring stronger
forcing to cause chaos destruction. In our previous study (Kashinath et al. 2014), we
characterized some of the strange attractors associated with chaotic oscillations in
this thermoacoustic system by calculating the Lyapunov exponent and the correlation
dimension.

Figure 14 shows the response of the system when forced at the dominant frequency
of its strange attractor, fn = 1.16 (state D in table 1). As ε increases, the time series
show the emergence of order, the power spectra show sharper peaks at discrete
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frequencies, and the phase portraits and Poincaré maps show a change in the topology
of the attractor. With stronger forcing (ε∼ 0.30), the system is stabilized to a period-3
orbit (figure 14e). Destruction of chaos may be viewed as the stabilization of one of
the infinitely many unstable periodic orbits that comprise the strange attractor. When
ε increases, one (or more) of these unstable periodic orbits is stabilized, resulting in
lock-in. One may therefore speculate that the control of chaos could be achieved via
a two-step process: (i) stabilize one of the unstable periodic orbits, and then (ii) apply
techniques from § 4 to weaken this periodic orbit.

6. Conclusions

We have examined the forced response of a low-order numerical model of
a thermoacoustic system consisting of a realistic flame, several acoustic modes
and negligible numerical noise. Our aims are: (i) to understand and predict the
synchronization behaviour by relating it to that of simple forced nonlinear dynamical
systems; (ii) to provide ‘clean’ test cases against which other numerical or experi-
mental results can be compared; and (iii) to investigate the potential of using
open-loop harmonic forcing as a means of weakening self-excited thermoacoustic
oscillations that are periodic, quasi-periodic and chaotic.

We find that the forced response of this system is quite elaborate, with the following
features. (i) Forced period-1 oscillations have different bifurcations leading up to
lock-in, some of which involve transitions to intermittency and chaos. (ii) The critical
forcing amplitude required for lock-in depends on two factors: (1) whether the forcing
frequency is above or below the natural (self-excited) frequency, and (2) the proximity
of the forcing frequency to the natural frequency. (iii) The response amplitude at
lock-in may be larger or smaller than that of the unforced system and can exhibit
hysteresis (the jump phenomenon) owing to a cusp catastrophe. At certain forcing
frequencies, even weak forcing is sufficient to weaken the self-excited oscillations
to amplitudes nearly 90 % lower than that of the unforced system. (iv) When the
locked-in state is forced at increasing amplitudes, two types of behaviour are observed:
(1) the locked-in state loses stability and transitions to chaos via period-doubling
bifurcations, or (2) it repeatedly switches between different stable attractors, indicating
multi-stability. (v) Finally, quasi-periodic and chaotic oscillations can be synchronized
to periodic forcing via different bifurcations, which suggests that weakening an
aperiodic oscillation may be possible via a two-step strategy: (1) the aperiodic
oscillation is first stabilized to a periodic oscillation by periodic forcing, and then
(2) that periodic oscillation is suppressed by additional periodic forcing applied at a
frequency far from the frequency of the original forcing. In other words, it may be
possible to weaken aperiodic thermoacoustic oscillations via a careful choice of two
forcing frequencies and amplitudes, applied sequentially.

In summary, we find that this thermoacoustic system exhibits rich synchronization
behaviour, similar to that seen in recent experiments on forced hydrodynamically
self-excited jet diffusion flames and low-density jets (Li & Juniper 2013a,b,c) but
previously unreported in the literature on thermoacoustics. The numerical model
used in this study has around 5000 degrees of freedom and consists of 20 coupled
oscillators interacting with each other via a nonlinear heat release rate and perturbed
by open-loop harmonic forcing. The behaviour observed in this study, however,
suggests that this system behaves similarly to low-dimensional model oscillators. This
implies that a low-order dynamical model may exist that is capable of reproducing
the dynamics of the larger system. The pursuit of such a model is attractive because

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

87
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.879


712 K. Kashinath, L. K. B. Li and M. P. Juniper

it could provide opportunities to identify the causes of the rich synchronization
behaviour, to improve our interpretation of the underlying nonlinear dynamics, and
to develop and test new control strategies for weakening self-excited oscillations, as
well as making the direct application of well-known results from dynamical systems
theory in thermoacoustics possible.
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