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New Facts about the Vanishing Off
Subgroup V(G)

Nabil Mlaiki

Abstract. In this manuscript, we generalize Lewis’s result about a central series associated with the
vanishing off subgroup. We write V; = V(G) for the vanishing off subgroup of G, and V; = [V;_;, G]
for the terms in this central series. Lewis proved that there exists a positive integer n such that if
V3 < G3,then|G: Vi| = |G": V2|* = p*". Let D3/V3 = Cgv, (G'/V3). He also showed that if V3 < G,
then either |G: D3| = p" or D3 = Vi. We show that if V; < G; for i > 4, where G; is the i-th term in
the lower central series of G, then |G;_;: Vi_i| = |G: D3|

1 Introduction

Throughout this paper, G is a finite group. We write Irr(G) for the set of irreducible
characters of G and nl(G) = {y € Irr(G) | x(1) #1}. Define the vanishing off sub-
group of G, denoted by V(G), by V(G) = (g € G | there exists y € nl(G) such that
x(g) # 0). This subgroup was first introduced by Lewis in [4]. Note that V(G) is
the smallest subgroup of G such that all nonlinear irreducible characters vanish on
G\ V(G). Moreover, V(G) is a proper subgroup only if G is solvable (and of course
nonabelian). Let G; be the i-th term in the lower central series, which is defined by
G =G,G, =G' =[G, G),and G; = [G;_1, G for i > 3. We are going to study a central
series associated with the vanishing off subgroup, defined inductively by V; = V(G)
and V; = [V;_1,G] for i > 2. Lewis proved in [4] that G;4; < V; < G;. In [4], Lewis
showed that when V; < G;, we have V; < G; for all j such that 1 < j < i. Also, in [4],
Lewis proved that if V, < G,, then there exists a prime p such that G;/V; is an ele-
mentary abelian p-group for all i > 1. In addition, as shown in Figure 1 he proved that
there exists a positive integer n such that if V; < Gs, then |G: Vj| = |G’: V,|* = p*".

We define some subgroups that are useful to prove our results. First, set D3/ V5 =
Cs/v,(G'/V3). Lewis proved in [4] that if V3 < G, then either |G: D;| = \/|G: V]
or D3 = Vj. We are able to generalize the results in [4] to the case where V; < G; for
i > 3. Also, we prove that the index of V;_; in G, is the same as the index of D; in G.
To study the case when i > 3, we define some more subgroups. For each integer i > 3,
set Y;/V; = Z(G/V;) and D;/V; = Cgv,(Gi-1/ Vi).

We say Gy is Hy, if for every normal subgroup N of G where Vi < N < Gy we have
Vi-1/N = Gx-1/N n Yx(G/N).

Received by the editors March 25, 2019; revised March 28, 2019.
Published online on Cambridge Core August 23, 2019.

AMS subject classification: 20D10, 20D15.

Keywords: vanishing off subgroup V(G), lower and upper central series.

https://doi.org/10.4153/50008439519000195 Published online by Cambridge University Press


https://doi.org/10.4153/S0008439519000195

New Facts about the Vanishing Off Subgroup V (G) 263

2n

n

2n n

porp

Figure I: The index of V; in G and the index of V; in G, n the case where V3 < Gs.

Under the additional hypothesis that G’/ V; is abelian, we are able to show that G;
is Hy for all i > 3. We are also interested in computing the index of V; in G;. We will
see that this index depends on the size of D;. In other words, it depends on the size of
the centralizer of G’ modulo V;. The following theorem is very useful to prove other
results of the paper.

Theorem 1  Assume that Vi < G, G'[Vy is abelian, and G; is Hy foralli = 4,..., k.
Then Dy = Ds.

Our second theorem should be considered to be the main result of this paper. We
are able to prove that |G;_;: V;_| = |G: Ds| for every i > 4, where V; < G; and G'/V;
is abelian. Hence, for a nilpotent group of class ¢, if V, < G,, and G'/V, is abelian,
then we have |G;_;: Vi_y| = |G: D;| forall4 < i < cand |G, : V| < |G: Dj|.

Theorem 2  Assume that Vi < G, G'|Vy is abelian, for some k > 3.
(@) |Gk_1: V1| = |G:Ds| for k > 4.

(b) Dy = Ds.

(c) Gy is H.

(d) |Gr:Vi|<|G:Ds.
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Let G be a finite group. We say that G is a Camina group if the conjugacy class
c(x) = xG' forevery x € GNG'. If 3 < i < k-1, then D; = Ds, G; is Hy, and
when i > 4, |G;_;: Vi1| = |G: D3]. Note that the above result was motivated from the
bound of subgroups by MacDonald in [3], where he proved that |G3| < |G: G| for
a Camina group G. Our motivation for adding the hypothesis that G/Vj is abelian
is that the results in [3] were under the hypothesis that G is metabelian (i.e., G is
abelian.) Hence, proving this conclusion under a similar metabelian hypothesis seems
like a reasonable first step. In the Camina group case, removing the metabelian hy-
pothesis required totally different techniques.

2 General Lemmas

In this section, we prove some lemmas that are useful for the proofs of our theorems.
Also, some of these facts give us a good idea about the relation between the lower
central series and the central series associated with the vanishing off subgroup that
we defined in the introduction. Lewis showed in [4] that both series are related by
proving that V; < G; < V;_;. We now show that if Gy is Hj, then Vi_; = Gy_1 n Y.

Lemma 2.1 Assume that Vi < Gy. If there exists N such that Vi < N < Gy with
Vk_l/N = (Gk_l/N) N Z(G/N), then Vi1 = G_; N Y;.

Proof Observe that Y;/N < Z(G/N). We have

Vie1/N < (Yg 0 Gr)/N = (Yi/N) n (G /N)
< Z(GIN) 1 (Gia/N) = Vit/N.

Thus, we obtain equality throughout, and Vj._; = Gx_; N Y} as desired. [

As an immediate consequence, note that if G is Hy, then Vj_; = Gx_; n Y. This
next lemma is well known.

Lemma 2.2 If G is nilpotent and |G;| = p, then for every x € Gi_1 ~ (Gi_1 N'Y;), we
have cl(x) = xG;.

Proof Because G is nilpotent, we can write G = P x Q, where P is a p-group and
Q is a p'-group. Hence, G;_; = P;_; x Q;_1. As|G;| = p, we have G; = P;. In par-
ticular, Q;_; < Z(G). Observe that G;_;/G; is central in G/G;. Thus, it follows that
c(x) € xG;. We deduce that | cl(x)| < p. Recall that x € G;_; \ Y;, which implies
that Q < Cg(x). Now, |cl(x)| = |G: Cg(x)| divides |G : Q| = |P|. Therefore, | cl(x)]| is
either 1 or p. Since x is not central, we must have |cl(x)| = p = |xG;|. We conclude
that cl(x) = xG;. [

Now we get a relationship between the central series associated with the vanishing
off subgroup of the whole group and a quotient group of that group.

Lemma 2.3  Assume that Vi < Gy, for some k > 3. Then for every normal subgroup
N < Gy we have V;(G/N) = V;/N forevery2 <i<k.
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Proof We prove thisbyinduction. In Lemma 2.2 in [4], we have Vi(G/V2)=V (G)/V>.
Let X/N = V(G/N). By Lemma 3.3 in [4], X < V(G). On the other hand, V,/N is
normalin G/N. By Lemma 3.3 in [4] applied to G/N, we have V(G)/V, = Vi(G/V,) =
Vi((G/N)/(V2/N)) < V(G/N)/(V2/N) = (X/N)/(V2/N) = X/ V3. So, V(G) < X.
We deduce that X = V(G), and V,(G/N) = V,/N. This is the initial case of the in-
duction. Now suppose that i > 2 and assume that V;_;(G/N) = V;_;/N. Therefore,
Vi(G/N) =[Vi-1(G/N),G/N] = [Vi-1/N,G/N] = [ Vi1, G]N/N = V;/N as desired.

]

Now we see the importance of the H; hypothesis.
Lemma 2.4 IfV; = 1and G, is Hy, then for every x € G;_1\ V;_; we have cl(x) = xG;.

Proof Since V; =1, we have G; is central in G. Thus, [x, G] is central. This implies
that [x,G] = {x"'x¢ | g € G}. It follows that the map a ~ x~'a is a bijection from
cl(x) to [x, G]. Hence, cl(x) = xG; ifand onlyif [x, G] = G;. Since x € G,_y, it follows
that [x, G] < G;. Suppose that [x, G] < G;, and we want to find a contradiction. We
can find N such that [x, G] < N < G;, where |G;:N| = p. Since x ¢ Y}, [x,G] # L
Thus, N > 1. Applying Lemma 2.3, it is not difficult to see that V;_;(G/N) = V;_;/N.
Notice that xN € Y;(G/N). On the other hand, we have xN € G;_;/N = (G/N);_;.
Thus, since G; is H, we have xN € Y;(G/N) n (G;_1/N) = V;_;(G/N) < V;_1/N.
Therefore, x € V;_;, which contradicts the choice of x. [ |

The following result is a nice consequence of Lemma 2.4 that gives us a good idea
about the irreducible characters in Irr(G|Gy).

Lemma 2.5 If Vi =1and Gy is Hy, then all the characters in Irr(G|Gy) vanish on
Gi1 N Vi

Proof Consider x € Gi_; \ Vi_;. By Lemma 2.4 we have cl(x) = xGy. Applying the
second orthogonality relation, which is Theorem 2.18 in [1], we obtain

|Gl/IGk| =[G/l el(x)[ = |C6 (%)
= 2 h@F= X @+ X k@

xelrr(G) xelrr(G/Gy) xelrr(G|Gy)

Since Gk_1/Gy is central in G/Gy, we can use the second orthogonality relation in
G/N to see that

G:Gel= X Ix(xGolP= X [y

x€lrr(G/Gy) x€lrr(G/Gy)

Hence,

> x®)P=o.

xelrr(G|Gy)

Since |x(x)|*>0 for each yelrr(G|Gy), this implies that all characters in
Irr(G | Gi) vanish on Gy_; \ Vj_; as desired. [
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Define Ei/(Gi—l N Yl) = CG/(Gi—lﬂYi) (Gi—Z/(Gi—l n Y,)) . We know that ‘/,'_1 < G,’_l.
Since V; = [Vi_1,G], we have V;_; < Y;, and hence, V;_; < G;_; n Y;. Because
[Gi,l, Difl] < Vi_1 £ Gi_1 nY;, it follows that D;_; < E;.

Recall, as a consequence of Lemma 2.1, that if G; is Hy, then V;_; = G;_1nY;.
Hence, D;_1/Vi-1=Ceyv, ,(Gi—2/Vi-1))=Ca (G, 1011y (Gi2/(Gi21 n Y1) =E; /(G;iinYs).
In particular, D;_; = E;.

Notice that our next lemma is the only time we use the hypothesis that G'/V; is
abelian.

Lemma 2.6 Let V; < G;, suppose that i > 4, and assume that G'[V; is abelian. Then
D; <E;.

Proof We may assume that V; = 1. Hence, D; = Cg(G;-1), G’ is abelian, and
Y; = Z(G). Since G’ is abelian, we obtain [G, D;,G;_;] < [G',G’] = 1. On the
other hand, we have [G;_,, G, D;] = [G;_1, D;] = 1. By the Three Subgroups Lemma,
which is Lemma 8.27 in [2], we get [D;, Gi—», G] = 1. Therefore, [D;, G;—;] < Y.
Now, we know that [Di, Gi_z] = [Gi—Z; D,] < Gi-ps and [Di: G,'_z] <G nY;. We
conclude that D; < E;, as desired. [ |

In the next lemma, we get an upper bound for the index of D; in G.
Lemma 2.7  Assume that V; = L If |G;| = p, then |G: D;| < |Gi—1: Gi- n Y.

Proof By Theorem1in [4], we know that G;_1/V;_; is an elementary abelian p-group.
Hence, wecanfind xy, ..., x; € Gi_1\Y;, suchthat G;_; = (x,...,x;, G;.1nY;), where
|Gi—1:Gi1nY;| = p’. Since |G;| = p, we know by Lemma 2.2 that |G : C(x;)| = p for
allj=1,...,t. Thus,

t t
G:Di| = |G: N Co(x))| < TT1G: Calxy)] = p' = [Gia: GianYil. .
j=1 j=1
In our next lemma, we prove a very interesting isomorphism that will a be a key to
getting the index of V; in G;.

Lemma 2.8  Assume that G; is Hy. Let a € G;_ \ V;_ and set K/ V; = Cgv,(aV;).
Then G/K = G;/V;.

Proof Withoutloss of generality, we may assume that V; = 1. Consider the map from
G to G; defined by g — [g, a]. Since a € G;_;, we have [g, a] € G, for every g € G.
Hence, this map is well defined. Also, we know that G; is central in G. Thus, this map
is a homomorphism with kernel K. By Lemma 2.4, this map is onto. Therefore, by the
First Isomorphism Theorem, we conclude that G/K = G;. ]

Now we prove the following result.
Corollary 2.9  Assume that G; is Hy. Then |G;: V;| < |G: Dj].

Proof Let a and K be as in Lemma 2.8. We know since a € G;_; and D;/V; =
Cg/v,(Gi-1/V;) that D; < K. Hence, |G;: Vj| = |G: K| < |G : Dy|.
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The following result is very useful to prove our main theorem.

Lemma 2.10 Assume that V; < G;, G'|V; is abelian, and G;_, is Hy, for i > 4. Let
ac G,'_z A ‘/,'_2 and set K/‘/,'_l = CG/\,i_l(a\/,-_l). Then K < D,‘.

Proof We may assume that V; = 1. Hence, V;_; is central in G, G’ is abelian, Y; =
Z(G),and D; = C5(G;-1). Fix x € K, and let w € G be arbitrary. Notice that [a, x] €
Vi1 £ Y;. Thus, [a,x,w] = 1. Also, [x,w] € G'. Because i >4, G;., < G'soa € G
Since G’ is abelian, [x,w, a] < [G’,G’] = 1. Therefore, by Hall’s Identity, which is
Lemma 8.26 in [2], we obtain [w, a,x] = 1. This implies that x centralizes [w, a].
Since a ¢ V;_, and G;_; is Hy, we deduce by Lemma 2.4 that as w runs through all of G,
[w, a] runs through all of G;_;. Hence, x centralizes G,_;. Thus, x < D;. Therefore,
K< D;. ]

As a consequence of the previous lemma, we get the following corollary.

Corollary 2.11  Assume that V; < G;, G'[V; is abelian, and G;_y is Hy, for i > 4. Then
D; <D,

Proof Letae G;\VijandsetK/V; | =Cgy,_,(aVi_1). Then by Lemma 2.10 we
have K < D;. Also, we know that D;_; < K. Thus, D;_; < D;. ]

We now get an upper bound for |G;_; : G;_; N Y.
Lemma 2.12  Assume that V; < G; and G;_; is Hy. Then |G:E;| > |Gi-1:G;-1 n Y;l.

Proof Fixa € G;_; \ V;_, and consider the map f from G to G;_;/V;_; defined by
f(g) =[a, g]Vi-1. Asin the proof of Lemma 2.8, we know that f is an onto homomor-
phism. It follows that f maps G/E; onto G;_1/f(E;). Thus, |G;_;: f(E;)| < |G:E;|.
Sincea € G;_,, [Ei’ a] <G;_nY;, and thusf(E,) <G;_1nY;. Then ‘Gi—l : Gi-]in| <
|Gi—1: f(E;)|- Hence, |G: Ei| 2 |Gi-1: Gi—1 N Y;| as required. |

3 Proofs of Theorems 1 and 2

In this section, we prove our three theorems using the general lemmas that we proved
in the previous section.
Now we prove Theorem 1.

Proof of Theorem 1 We have D; = Ds. This is the initial case of induction. Assume
that the theorem is true for k — 1. We are going to prove it for k. By hypothesis,
we know that Gy is Hj, and by Lemma 2.1, we have Vi_; = Gy N Y. This implies
Ex = Dj_,. By the inductive hypothesis we know that Dy_; = D3, and so, Ex = D;. By
Lemma 2.6, we obtain Dy < Ej. Applying Corollary 2.11, we conclude that D_; < Dy.
Thus, Dy_; < Dy < E; = Dy_;. Therefore, we deduce that Dy = Ex = Dy_;=D3;. =

Now we are ready to prove our second theorem.

Proof of Theorem 2 We are going to prove this theorem by induction. Notice that
the initial case of induction (i = 3) is done by Lewis in [4]. Now assume that the
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theorem is true for k = i — 1. We are going to prove it for k = i. Also in this proof,
without loss of generality, we may assume that V; = 1. We also know by the inductive
hypothesis that D;_; = D3 and G;_; is H;. Now, by Lemma 2.6 we have that D; < E;.
By Corollary 2.11, we have D; < D;_;. First we assume that |G;| = p. Thus, we obtain

|G:Dj| > |G:Dj| 2 |Gizy: Via| 2 |Giz1: Gimy N Y.

But by Lemma 2.7, we have |G:D;| < |G;_1:G;_; n Y;|. Hence, we have equality
throughout the above inequality. Therefore, V;.; = G;_; n Y;, and |G;_: Viy| =
|G : D,'_1|.

Now assume that |G;| > p. Consider a normal subgroup N, such that V; < N < G;
and |G; : N| = p. The above argument shows that V;_1(G/N) = Y;(G/N) n(G;_1/N).
Thus, G; satisfies H;. By strong induction we have G, ..., G;_; satisfy Hy. Thus, we
may apply Theorem 1 to see that D; = D;. First define D;xy/N = Cg/n(Gi-1/N). Note
that D; < D;y, and so D;y = Ds. The above argument yields |G: D3| = |G:D;_4| =
|Gi-1: Vi_y|. To prove part (d), since G; is Hj, by Corollary 2.9 we obtain |G;: V;| <
|G : Dy, as desired. u
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