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Extending an old conjecture of Tutte, Jaeger conjectured in 1988 that for any fixed integer

p � 1, the edges of any 4p-edge connected graph can be oriented so that the difference

between the outdegree and the indegree of each vertex is divisible by 2p + 1. It is known

that it suffices to prove this conjecture for (4p + 1)-regular, 4p-edge connected graphs.

Here we show that there exists a finite p0 such that for every p > p0 the assertion of

the conjecture holds for all (4p + 1)-regular graphs that satisfy some mild quasi-random

properties, namely, the absolute value of each of their non-trivial eigenvalues is at most

c1p
2/3 and the neighbourhood of each vertex contains at most c2p

3/2 edges, where c1, c2 > 0

are two absolute constants. In particular, this implies that for p > p0 the assertion of the

conjecture holds asymptotically almost surely for random (4p + 1)-regular graphs.

1. Introduction

A nowhere-zero 3-flow in an undirected graph G = (V , E) is an orientation of its edges

and a function f assigning a number f(e) ∈ {1, 2} to any oriented edge e such that, for

any vertex v ∈ V , ∑
e∈D+(v)

f(e) −
∑

e∈D−(v)

f(e) = 0,

where D+(v) is the set of all edges emanating from v, and D−(v) is the set of all edges

entering v.
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A well-known conjecture of Tutte, raised in 1966 in [19], asserts that any 4-edge

connected graph admits a nowhere-zero 3-flow. This conjecture is still wide open, and

it is not even known whether or not there is a finite k such that any k-edge connected

graph has a nowhere-zero 3-flow, although it is known that if the edge connectivity of an

n-vertex graph is at least c log2 n, then it does have a nowhere-zero 3-flow. This is proved

in [4] (in a somewhat implicit, stronger form, with c = 2), and in [14] (with c = 4).

It is known (see, e.g., [17]) that a graph admits a nowhere-zero 3-flow if and only if

it has a nowhere-zero flow over Z3, or equivalently, an edge orientation in which the

difference between the outdegree and the indegree of any vertex is divisible by 3. It is also

known (see, e.g., [8]) that it is enough to prove the conjecture for 5-regular graphs. Thus,

Tutte’s conjecture has the following equivalent form.

Conjecture 1.1 (Tutte). Every 4-edge connected 5-regular graph has an edge orientation in

which every outdegree is either 4 or 1.

Jaeger [12] extended this statement and conjectured that for any integer p � 1, the

edges of any 4p edge-connected graph can be oriented so that the difference between

the outdegree and the indegree of any vertex is divisible by 2p + 1. Such an orientation

is called a mod (2p + 1)-orientation. As before, it is known that the general case can be

reduced to the (4p + 1)-regular one, and thus the conjecture has the following equivalent

form.

Conjecture 1.2 (Jaeger’s modular orientation conjecture). For any fixed integer p � 1, every

4p-edge connected, (4p + 1)-regular graph has a mod (2p + 1)-orientation, that is, an edge

orientation in which every outdegree is either 3p + 1 or p.

This conjecture is still open, and appears to be difficult. It is thus natural to try and

prove that its assertion holds for almost all (4p + 1)-regular graphs. (It is known that a

typical (4p + 1)-regular graph is (4p + 1)-edge connected.) Our main result in this note is

that the assertion of the conjecture holds for all (4p + 1)-regular graphs with a sufficiently

large eigenvalue gap and with no dense neighbourhoods, for all sufficiently large p. As a

special case this implies that the assertion holds for almost all (4p + 1)-regular graphs. In

order to state the main result we need the notion of an (n, d, λ)-graph.

An (n, d, λ)-graph is a d-regular graph on n vertices in which the absolute value of any

non-trivial eigenvalue of the adjacency matrix is at most λ. This notation was introduced

by the first author, motivated by several results showing that if λ is significantly smaller

than d then the graph exhibits some strong pseudo-random properties.

Theorem 1.3. There are absolute positive constants d0, c1, c2 such that if λ < c1d
2/3, then

any (n, d, λ)-graph G = (V , E), where d = 4p + 1 > d0, in which no neighbourhood of a vertex

contains more than c2d
3/2 edges, has a mod (2p + 1)-orientation, that is, an orientation in

which every outdegree is either 3p + 1 or p.
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In order to prove the main result it is convenient to consider an equivalent formulation

of Conjecture 1.2, proved in [8] for p = 1 and in [13] for general p. The equivalence is

a consequence of an old result of Hakimi [10] which follows from Hall’s theorem, or

from the max-flow min-cut theorem. For two disjoint sets of vertices S and T in a graph

G = (V , E), let E(S, T ) denote the set of all edges with an end in S and an end in T , and

let Sc = V \ S denote the complement of S .

Theorem 1.4 ([13]). Let p > 0 be an integer, and let G be a (4p + 1)-regular graph. Then

G = (V , E) has an orientation in which every outdegree is either 3p + 1 or p if and only if

there is a partition V = V+ ∪ V− with |V+| = |V−| = |V |/2 such that, for all S ⊆ V ,

|E(S, Sc)| � (2p + 1)||S ∩ V+| − |S ∩ V−||. (1.1)

In view of the above, the following result implies the assertion of Theorem 1.3.

Theorem 1.5. There are absolute positive constants d0, c1, c2, c3 such that if d > d0 and

λ < c1d
2/3, then any (n, d, λ)-graph G = (V , E) with an even number of vertices in which

no neighbourhood of a vertex contains more than c2d
3/2 edges, has a vertex partition V =

V+ ∪ V− with |V+| = |V−| = |V |/2 such that, for all S ⊆ V (G),

|E(S, Sc)| �
(
d

2
+ c3

√
d

)
||S ∩ V+| − |S ∩ V−||. (1.2)

The above theorem implies, as a special case, that the assertion of Conjecture 1.2 holds

for almost all d = (4p + 1)-regular graphs. This refers to the probability space of random

d = (4p + 1)-regular graphs with uniform probability distribution. This space is denoted

Gn,d, where d is a fixed integer. We say that a property holds in this space ‘asymptotically

almost surely’ (or a.a.s. for short) if the probability that a member G ∈ Gn,d satisfies the

property tends to 1 as n tends to ∞ (n is even since d is odd). See, e.g., [7], [20] for more

details about Gn,d.

Theorem 1.6. There exists a finite p0 such that for any fixed integer p > p0, a random

(4p + 1)-regular graph G admits a.a.s. a mod (2p + 1)-orientation, that is, an orientation in

which every outdegree is either 3p + 1 or p.

The rest of this note is organized as follows. In Section 2 we present a few useful

lemmas. The main result, Theorem 1.5 (which implies Theorem 1.3), is proved in Section 3.

Section 4 contains the simple derivation of Theorem 1.6 from the main result, and the

final section contains some concluding remarks and open problems. Throughout the note

we assume, whenever this is needed, that the number n of vertices of the graphs considered

is sufficiently large as a function of their degree of regularity d.

2. Preliminaries

To prove the result we use the expansion properties of random d-regular graphs that follow

from their eigenvalues. The adjacency matrix A = A(G) of a given d-regular graph G on
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n vertices is an n × n real symmetric matrix. Thus, the matrix A has n real eigenvalues,

which we denote by λ1 � λ2 � · · · � λn. It is known that several structural properties of a

d-regular graph are reflected in its spectrum. Since we focus on expansion properties, we

are particularly interested in the following quantity: λ = λ(G) = max(|λ2|, |λn|). In words,

λ is the largest absolute value of an eigenvalue other than λ1 = d (for more details, see

the general survey [11] about expanders, or [6, Chapter 9]).

The number of edges |E(S, T )| between two sets S and T in a random d-regular graph

on n vertices is expected to be close to d|S ||T |/n. A small λ (that is, a large spectral gap)

implies that the deviation is small. The following useful bound is essentially proved in [2]

(see also [6]).

Lemma 2.1 (Expander Mixing Lemma). Let G be a d-regular graph with n vertices and

set λ = λ(G). Then, for all S, T ⊆ V ,∣∣∣∣|E(S, T )| − d|S ||T |
n

∣∣∣∣ � λ
√

|S ||T |.

When T = Sc is the complement of S , it will sometimes be convenient to apply the

following lower estimate for |E(S, Sc)|:

|E(S, Sc)| � (d − λ)|S ||Sc|
n

(2.1)

for all S ⊆ V . This is proved in [5] (see also [6]).

We also need the well-known fact (see [1], [15]) that for fixed d and large n, any

(n, d, λ)-regular graph satisfies

λ � (2 − o(1))
√
d − 1. (2.2)

For a partition (A,Ac) of the vertex set, define

δ(A,Ac) = |E(A,Ac)| − d|A||Ac|
n

,

that is, δ(A,Ac) measures the difference between the actual number of edges between

A and Ac and the expected value of this number in a graph of edge density d/n. The

following simple lemma shows that for a small λ, if two partitions are not too far from

each other, then the sizes of the two corresponding cuts are similar.

Lemma 2.2. Let G be a d-regular graph with n vertices and set λ = λ(G). For any two

partitions (A,Ac), (B,Bc) of the vertex set with

|A \ B| + |B \ A| = x,

we have

|δ(A,Ac) − δ(B,Bc)| � 4λ
√
xn.
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Proof. For any two partitions (A,Ac), (B,Bc),

|δ(A,Ac) − δ(B,Bc)| �
∣∣∣∣E(A ∩ B,Ac ∩ B) − d|A ∩ B||Ac ∩ B|

n

∣∣∣∣
+

∣∣∣∣E(A ∩ B,A ∩ Bc) − d|A ∩ B||A ∩ Bc|
n

∣∣∣∣
+

∣∣∣∣E(Ac ∩ Bc, A ∩ Bc) − d|Ac ∩ Bc||A ∩ Bc|
n

∣∣∣∣
+

∣∣∣∣E(Ac ∩ Bc, Ac ∩ B) − d|Ac ∩ Bc||Ac ∩ B|
n

∣∣∣∣
� 4λ

√
xn,

where the last inequality follows from Lemma 2.1.

3. The proof of the main result

In this section we prove Theorem 1.5, that is, we show that a d-regular graph G = (V , E)

with a large spectral gap and no dense neighbourhoods, with d � d0 for some positive

integer d0, has a partition (V+, V−) of V with |V+| = |V−| = n/2, where n = |V | is even,

such that the condition (1.2) holds for any S ⊆ V . Note that for S = V+ (or S = V−) this

gives

|E(V+, V−)| �
(
d

2
+ c3

√
d

)
|V+| =

dn

4
+ Ω(

√
dn).

Therefore, it is natural to start with a proof that there is such a dense bisection.

We need the following result proved in [3].

Lemma 3.1 ([3]). There are two absolute constants b1, b2 > 0 such that the following holds.

Any d-regular graph in which the neighbourhood of any vertex contains at most b1d
3/2 edges,

has a cut of size at least dn
4

+ b2n
√
d.

Note that, in particular, the condition of the theorem holds for any graph in which no

edge is contained in more than b1

√
d triangles. Using this lemma, we prove that in fact

one can always ensure a large bisection, that is, a cut in which the two vertex classes are

of equal size.

Theorem 3.2. There are absolute constants d0, b1, b3 > 0 such that the following holds. Let

G = (V , E) be a d-regular graph on an even number of vertices n, where d � d0, in which

the neighbourhood of any vertex contains at most b1d
3/2 edges. Then V has a cut (V+, V−)

such that |V+| = |V−| = n/2 and

|E(V+, V−)| �
(
d

4
+ b3

√
d

)
n.
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Proof. By Lemma 3.1 there is a cut (A,B) of G of size |E(A,B)| � nd
4

+ b2n
√
d. Without

loss of generality assume that |A| � |B|. Define b′
2 = min{ b2

4
, 1

4
} and b3 =

b′
2

2
. If |A| = |B|,

there is nothing to prove. Otherwise, we prove the existence of the required bisection by

shifting vertices from A to B until they have equal sizes. For each vertex v ∈ A, let dC (v)

denote the degree of the vertex v in the cut (A,B), that is, its number of neighbours in B.

Starting with the cut (A,B) consider, first, the case |A| �
(

1
2

+ 1√
d

)
n. In this case, if for

every v ∈ A, dC (v) � d
2
, then after shifting any vertex from A to B, the size of the new cut

is still at least (
1

2
+

1√
d

)
n
d

2
− d � dn

4
+ b′

2

√
dn.

Otherwise, there is a vertex v ∈ A with dC (v) < d
2
, and we can shift it to B and increase

the size of the cut. Keeping this process we obtain a cut (A,B) (with the modified sets

A,B generated), which is of size at least dn
4

+ b′
2

√
dn, in which |B| � |A| �

(
1
2

+ 1√
d

)
n.

If, now, for any vertex v ∈ A, dC (v) � d
2

+ b2

√
d, then after shifting an arbitrary vertex

from A to B we obtain a new cut of size at least

n

2

(
d

2
+ b2

√
d

)
− d >

dn

4
+ b′

2

√
dn.

Else, we can shift a vertex v with dC (v) < d
2

+ b2

√
d from A to B, decreasing the size of

the cut by less than 2b2

√
d. As there are at most n√

d
required steps until A and B are of

the same size, and at the end of each step either the size of the cut is above dn
4

+ b′
2

√
dn or

the size decreases by at most 2b2

√
d, we conclude that there is a bisection of size at least

dn

4
+ b′

2

√
dn − n√

d
2b2

√
d =

dn

4
+ b′

2

√
dn − 2b2n >

dn

4
+ b3

√
dn,

where we used the fact that d > d0 and b3 =
b′

2

2
. This completes the proof.

We can now prove the main result of this note.

Proof of Theorem 1.5. Fix a sufficiently large positive integer d0, and consider an (n, d, λ)

graph G = (V , E) with d > d0, λ < c1d
2/3, and no neighbourhood with more than c2d

3/2

edges, where c1, c2 > 0 are small absolute constants to be chosen later, and n is even.

By Theorem 3.2 there is a dense bisection cut (V+, V−) of G with

|E(V+, V−)| � dn

4
+ b3

√
dn.

Fix such a partition (V+, V−). We proceed to show that the condition (1.2) holds for all

S ⊆ V .

Without loss of generality, we may assume that |S | � n/2. Indeed, if (1.2) holds for S ,

then it holds for Sc as well, as both sides of the inequality do not change when replacing S

by Sc. Moreover, we may assume that |S | �
(

1
2

− λ
d

)
n since otherwise it follows from (2.1),
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(2.2) and the facts that λ < c1d
2/3 and d > d0, that

|E(S, Sc)| � (d − λ)|S ||Sc|
n

� (d − λ)

(
1

2
+

λ

d

)
|S |

=
d

2

(
1 − λ

d

)(
1 +

2λ

d

)
|S | =

d

2

(
1 +

λ

d
− 2λ2

d2

)
|S |

>
d

2

(
1 +

λ

2d

)
|S | � d

2

(
1 +

1

2
√
d

)
|S |

=

(
d

2
+

√
d

4

)
|S | �

(
d

2
+

√
d

4

)
||S ∩ V+| − |S ∩ V−||,

supplying the desired inequality. Hence, it suffices to consider sets S with
(

1
2

− λ
d

)
n �

|S | � n/2.

Without loss of generality, we may assume that |S ∩ V+| � |S ∩ V−|. Suppose, first, that

|S ∩ V−| � λ
d
n. Then by (2.1)

|E(S, Sc)| � (d − λ)|S ||Sc|
n

� d

2
|S | − λ

2
|S | �

(
d

2
+

λ

2

)
|S | − λ|S |

�
(
d

2
+

λ

2

)
|S | − λ

2
n >

(
d

2
+

λ

2

)
(|S | − 2|S ∩ V−|)

=

(
d

2
+

λ

2

)(
||S ∩ V+| − |S ∩ V−||

)
�

(
d

2
+

√
d

2

)(
||S ∩ V+| − |S ∩ V−||

)
,

where the last inequality follows from (2.2). Thus condition (1.2) holds in this case.

It therefore remains to show that the condition holds for sets S with |S ∩ V+| �(
1
2

− 2λ
d

)
n, |S ∩ V−| � λ

d
n. For such sets |V+ \ S | + |S \ V+| � 3λ

d
n and hence one can

apply Theorem 3.2 and Lemma 2.2 with x = 3λ
d
n to get that

|E(S, Sc)| =
d|S ||Sc|

n
+ δ(S, Sc) � d

2
|S | + δ(V+, V−) − 4λ

√
xn

� d

2
|S | + b3n

√
d − 4λn

√
3λ

d
� d

2
|S | + b3n

√
d − 4

√
3(c1d

2/3)3/2

√
d

=
d

2
|S | + b3n

√
d − 4

√
3c

3/2
1

√
d >

d

2
|S | +

b3

2
n
√
d,

where the last inequality holds for an appropriate choice of c1 > 0. Taking c3 = b3, we

conclude that the last quantity is at least(
d

2
+ c3

√
d

)
|S | �

(
d

2
+ c3

√
d

)
||S ∩ V+| − |S ∩ V−||,

completing the proof.

4. Modular orientation of random regular graphs

The value of λ for random d-regular graphs has been studied extensively. A major result

due to Friedman [9] is the following.
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Lemma 4.1 ([9]). For every fixed ε > 0 and for G ∈ Gn,d, a.a.s.

λ(G) � 2
√
d − 1 + ε.

Since it is easy and well known that for any fixed d, a.a.s. the random d-regular graph

on n vertices does not contain two triangles sharing an edge (and hence certainly does not

contain a neighbourhood with c2d
3/2 edges), the assertion of Theorem 1.6 follows from

Theorem 1.5 and Lemma 4.1.

5. Concluding remarks and open problems

(1) The assertion of Theorem 1.5 shows that there is an absolute positive constant a

such that for all sufficiently large p, a d-regular graph with d � (4p − a
√
p) satisfying

the conditions of the theorem has a mod (2p + 1)-orientation. In particular this holds

a.a.s. for a random regular graph of this degree. Note that such a graph is not 4p-edge

connected, as its minimum degree is smaller than 4p. This is similar to the main result of

Sudakov in [18] that asserts that as soon as the (non-regular) random graph G(n, p) has

minimum degree 2, it has a.a.s. a nowhere-zero 3-flow (although it is obviously not 4-edge

connected.)

(2) The proof of Theorem 1.3 here holds only for p > p0 for some fixed p0, and we have

made no serious attempts to optimize its value (or optimize the constants in Theorem 1.5).

This can be done but will make the computation more tedious, and will not lead to a

proof that works for all values of p. It will be interesting to formulate and prove a version

of the theorem for p = 1, which corresponds to the conjecture of Tutte mentioned here

as Conjecture 1.1. For the special case of random 5-regular graphs this has been proved

very recently by the second author and Wormald [16].
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