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We derive the one-dimensional bending—torsion equilibrium model for the junction of
straight rods. The starting point is a three-dimensional nonlinear elasticity
equilibrium problem written as a minimization problem for a union of thin, rod-like
bodies. By taking the limit as the thickness of the three-dimensional rods tends to
zero, and by using ideas from the theory of I'-convergence, we find that the resulting
model consists of the union of the usual one-dimensional nonlinear bending—torsion
rod models which satisfy the following transmission conditions at the junction point:
continuity of displacement and rotation of the cross-sections; balance of contact
forces and contact couples.

1. Introduction

In many real-life structures, such as, for example, certain types of bridges or build-
ings, two (or several) elastic rods are connected at one point. Such points where
several rods meet are called junctions. Such multiple-rod systems may be as small
as two rods joining in a non-smooth way, or as complex as several hundreds of
interconnected rods forming a massive network. In either case, the basic principles
of analysis are the same (although the complexity of the computation depends on
the complexity of the system). Therefore, in the present paper, we limit our study
to the case of one junction point.

We consider the equilibrium problem of a three-dimensional elastic body which
consists of n straight, thin, rod-like bodies connected at a single point. Since the
rods are thin, the behaviour of each rod should be well approximated by the one-
dimensional rod model. In order to obtain a well-defined problem one needs to
prescribe the conditions at the junction point. These conditions can also be seen as
transmission conditions. Since we are interested in the bending—torsion behaviour
of rods, such a rod is expected to be governed by the fourth-order equation [4].
Since this equation can be written as a first-order system in terms of the contact
force, the contact couple, the rotation of the cross-section and the deformation
(displacement), we expect the following four junction conditions (based on the
continuity of the deformation and equilibrium laws) to hold:

1. the sum of all contact forces at the junction is zero;

2. the sum of all contact couples at the junction is zero;
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3. continuity of the rotation of the cross-section (the angles at the junction point
are preserved);

4. continuity of the displacement (deformation/position) at the junction point.

These conditions follow physical intuition and are already used in modelling net-
works of elastic rods (see, for example, [13,31]; in the case of strings see [11]).

In [15] these junction conditions have been mathematically justified for the case
when the starting configuration is that of three-dimensional linearized elasticity.
We justify these junction conditions starting from a three-dimensional nonlinearly
hyperelastic material whose equilibrium problem is given in the energy minimization
formulation. Since the rods are thin, a small parameter h describes their thickness.
The mechanical response of rods strongly depends on the relative magnitude of
the applied load with respect to the rod thickness h. In [24], a bending—torsion
model of a single nonlinearly elastic inextensible rod was derived by the theory
of I'-convergence and the geometric rigidity theorem from [12]. In order to obtain
the bending—torsion model, the main assumption is that the energy of the rod is
of the order h*. For other models see [1,25]. In the present paper, we would like
to obtain junction conditions at the junction of rods for the case when the total
energy functional is of order h*. However, unlike in the case of the single rod studied
in [24], in the case when two or more rods meet at a junction, we cannot rescale
our problem in such a way that the entire problem is defined on a canonical domain
independent of h, at least in a simple way. To deal with the complications related to
the geometry at the junction, we assume that the junction region of the rods forms
a domain that scales with h (say a sphere, in which all the rods are connected).
Then, as h — 0, the junction region converges to a point. This leads to a problem
with no obvious simple canonical domain, and so the results from [24] cannot be
applied directly to this problem. To get around this difficulty we adapt the ideas
from [24] to this new scenario and express the asymptotic behaviour of minimizers
in norms depending on the thickness h.

Following [24], we first prove a compactness result (theorem 3.1) for the sequence
of energy minimizers y deriving the asymptotic behaviour of Vy™. Moreover, we
prove that the rotations of the cross-sections need to be continuous at the junction
point in the limit as A — 0. Since we are considering a pure traction problem for rods
joining at a point, we still need to control the displacement of the entire structure.
Under the assumption that the translation of the whole structure is controlled at the
end of one rod, in lemma 4.1 and corollary 4.2 we derive the asymptotic behaviour
of the minimizing sequence y(™ and we obtain that, in the limit, the displacement
(deformation) of the rods at the junction point is continuous. Finally, in theorem 5.1
we derive the model for the junction of rods.

The junction of elastic rods has been studied by several authors. However, most
results in the literature are restricted to linearized elasticity. The first study of a
junction of two rods was given by Le Dret in [19] (see also [22,30]). For systems
of rods see [27,28] and references therein. The junction of two plates is studied
in [14,20,21], while [29] deals with the junction of beams and plates. The case of
the junction of a three-dimensional domain and a two-dimensional one is explored
in [10] (see also [9] and references therein). For the asymptotic analysis of the
junction between three-dimensional and one-dimensional structures see [5, 18].
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Two efforts in the study of junction problems within nonlinear elasticity are made
in [6] and [16] using the asymptotic expansion method. In [6] the model of a plate
inserted in a three-dimensional elastic body is derived, while in [16] a model of
junction of a rod and a plate is derived. See also [7,23] for the asymptotic analysis
of the problem of junctions of thin pipes filled with a fluid using the asymptotic
expansion method.

2. Setting up the problem

The domain of the junction of rods we define as a union of cylinders and the
‘junction’ part. Let n € N denote the number of rods meeting in junction and let
h > 0. Let ith rod be of length L; with the cross-section h.S;, where S; C R? (open,
bounded, connected). Let the junction part be of the form T" = AT, for T C R?
open, bounded, connected set. Let @; € SO(3), i = 1,...,n. The vector t; = Q;e;
denotes the tangential direction of the ith rod. Then the domain of the junction of
rods is given as

ot=1hulJCr,  CF=Qi((h L) x hS).
=1

We assume that the domain 2" is open, bounded, connected and with the Lipschitz
boundary. We also assume, as in [24], that, for each 1,

/ I’QIgdlEle’g:/ Igdzgdl’gi/ Igdl‘gdl‘gio.
Si S S;

i

We naturally interpret every function y € W'2((a,b);R3) as an element of
W'2((a,b) x R%;R3). We also define the mapping P"): (a,b) x S; — (a,b) x hS;
by P (x1,29,23) = (21, hae, hes) and use it to change between thin and thick
domains.

The starting point of our analysis is the equilibrium problem of the junction of
rods, i.e. the elastic body £2". The internal energy of the junction of rods is given
by

EM(y) = W (Vy(@) de,

for a deformation y € WH2(0Q" R?), where W: M>*3 — [0, +o0] is an internal
energy density function. As in [24], W is supposed to satisfy

o W € CO(M3*3), W is of class C? in a neighbourhood of SO(3),

o W is frame-indifferent, i.e. W(F) = W(RF) for every F € M?*3 and R €

SO(3),

o W(F) > Cy dist?(F,SO(3)), W(F) = 0 if F € SO(3).
We are looking for the one-dimensional bending—torsion model of junction of rods.
Thus, motivated by [24], we assume that the energy E®™) behaves as h*. Then

we analyse the behaviour of E™ (y)/h* and derive the one-dimensional model.
In [24] this is obtained by I'-convergence, but in the junction problem there is no
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obvious and simple domain independent of the thickness h. However, using the
ideas and techniques of I'-convergence we are able to give the asymptotics (in the
form (4.17)) of the infimizing sequence of the total energy functional and the total
energy functional itself.

We shall need the following theorem, which can be found in [12].

THEOREM 2.1 (geometric rigidity). Let U C R™ be a bounded Lipschitz domain,
m > 2. Then there exists a constant C(U) with the following property: for every
v € WL2(U;R™) there is an associated rotation R € SO(m) such that

HV’U — R||L2(U) < C(U)Hdlbt(vv, So(m))||L2(U) (21)

We will apply this theorem in the next section, on subdomains of 2" which are
of size h in each direction. This is possible since the constant C(U) in the estimate
is independent of the translation and dilatation of U. Let us consider the domain
hU, for h > 0. Take v € W12(hU; R™). Then the function

1
v (z) = Zv(hx)
h
belongs to W12(U; R™) and satisfies the estimate

Vo) — Rl 2y < CO)|dist(Vo™, SO(m))]| 2w

Since Vo® = Vo (hz), after the change of variables in the norms we obtain that
the estimate (2.1) holds for v with the same constant C(U). (See also [12].)
Throughout the paper we use the following function space:

WP(2;80(3)) = {R € WHP(2;R**®) | R(z) € SO(3) for a.e. x € 2}.

Moreover, by || - || (without subscript) we denote the Frobenius matrix norm.

3. Compactness

In this section, following [24], we prove the compactness result (theorem 3.1).
Namely, for y™ that satisfy (3.1) (this will be shown for infimizers y*) of the
energy of order h*) we obtain asymptotics of Vy™ . Moreover, it turns out that
rotations of the cross-sections in the limit, when A — 0, need to be continuous at
the junction point.

THEOREM 3.1. Let (yM) c WH2(02" R3?) be such that

1
lim sup 4/ dist*>(Vy™, S0(3)) dz < +oo. (3.1)
h—o N 0k
Then there exist a subsequence (not relabelled) and R; € WH2((0, L;),S0(3)), i =
1,...,n, such that R;(0) = Ry(0) = --- = R,(0) in the sense of traces and
— h) 24y =
Jim Z/ V9 () R - )| dwr = 0. (32)
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Proof. We follow the proof of [24, theorem 2.2].

Now we cover 2" with subdomains of size h in each direction and apply theo-
rem 2.1 to each of them. For every h >0 andi=1,...,n let k‘f € N be such that
h < Lz/kf < 2h and let

a,k? = (a,a + ]@{")7 a < [O, L’L) n EN
We apply theorem 2.1 to domains Q;((a,a + 2h) x hS;) (when a = L; — L;/k!' we
take (L; — 2h, L;)) and T" UJ;_; Qi((h,2h) x hS;). Note that Q;(I’,, x hS;) C
Qi((a,a + 2h) x hS;). Then there exist a constant C' (independent of 4, as there is a
finite number of domains, and h, by the remark after theorem 2.1) and a piecewise

constant map
n

R™M: | ) Qi([0, L] x {0} x {0}) = SO(3),

i=1

constant on each [a,a + L;/kl) for a € [0, L;) N (L;/k*)N and on

™ul Q({h@) x hSi),
i=1 i

such that for every i € {1,...,n} we have, for every a € [0, L;) N (L;/kMN,

/ V5™ — R®|2 dg
QiI} ,, xhS:)

<C / dist?(Vy™,S0(3)) dz
Q; ((a,a+2h)xhS;)
and

/ 7™ — RO d
ThulUJlr, Qi((h,Li/kl)xhS;)

sC dist*(Vy™, S0(3)) da.
ThUU™; Qi((h,2h)xhS;)

By summing all these estimates, since only neighbouring subdomains overlap, we
obtain the inequality

[Vy™ — RM |2 dz < 2 dist>(Vy™, S0(3)) dz < C1h2,  (3.3)
h

h2 Jon nz

where the last inequality holds for sufficiently small h by (3.1).

In the following we show that on a subsequence R") converges to a W12 func-
tion. In order to do that, we first estimate the difference of R(") on neighbouring
subdomains.

Let a; € (0,L; —4h) N (L;/EM)N, b; = a; + L;/kP. Now we apply theorem 2.1 on
the set Q;((a;,a; +4h) x hS;). We obtain that there exists R € SO(3) such that

[Vy™ — R|?dz < Oy / dist*>(Vy™, S0(3)) da.

*/C)i((ai;ai+4h)><hsi) Qi((ai,a;+4h)xhS;)
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Then using the fact that I’ kD and [ g Are contained in (a;, a; + 4h) x hS;, we
1
have, for every 1,

i\ p(h h 2
I?fHR( )(aiti) — R )(biti)H

L, _ _
2 IR (o) = RIP + |R = RO b))
2 _
<ol IRt - R
QI xhS:)

2 _
b [ IR-ROG)P
4

<wl. IR (asts) — Ty 2 + Vg™ — R|?
i ( n XhS;)

4

= IR — Vy|? + [ Vy™ — RM(b;t,)|2
h Q,;(I;Ykhxhsi)

4
<3 IR (ait) ~ vy
h Qu(I% ) xhS:)
4 _
. vy~ RJ?
((ai,a;+4h)xhS;)

4
+ ﬁ/ . IVy™ — R (bit;)|1>.

All the terms on the right-hand side of the estimate can be estimated by theorem 2.1,
S0 we obtain

Gs

; dist?(Vy™,S0(3)) dz, (3.4)
h* JQi((as,ai+4h)xhss)

L,
ﬁ||R(h)(aitz‘)*R(h)(biti)HQ <
1

and similarly, as IL Skl b

RUI(0) — R <k:ht >

h)

and T}, are contained in 7" U Q;((h,4h) x hS;), we obtain

I 2
kP

7

Cs

h% J i, ((h,an)xhss)

dist?(Vy™,S0(3)) da

(3.5)
Thus, we have (since R™) is piecewise constant) for every 0 < &€ < L;/kP and every
i and for every a € (0, L;) N (L;/k?)N such that (a,a + 4h) C (0, L;):

/ CRY (2 + E)t5) — RO (a18,)]? day
:

;,két
CS /
h Qi((a,a+4h)><hSi)

since x1 + £ and x; belong to the same or neighbouring subdomains and we can
apply estimate (3.4). In the same way we can show that, for every ¢ and a such

< dist?(Vy™,80(3))dz,  (3.6)
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that (a —2h,a + 2h) C (0, L;) and every —L;/k? < ¢ <0,

/ O IRM (@1 + O)t) — RO (a1t) [ day

<&

<= dist*>(Vy™, SO(3))de.  (3.7)
h* JQ,((a—2h,a+2h) xhS;)

Let us now look at cylinders C} and C». By summing estimates (3.4)-(3.7), for
every open interval I’ compactly contained in (—Lq, Lo) and ¢ € R which satisfies

h
i

€l <l {~Ir, L)), Jel< b foralli,
we have that
/I/ R (21 + €) — R (21)]| dary < % /m dist?(Vy™,S0(3))dz,  (3.8)
where ROV : (—=L1, Ly) — SO(3) is defined by

R (21) = R (arty) if oy € (~Ly,0) (3.9)
m U= ROV agty) i 2y € (0, Ly). |

By the iterative application of (3.8) and use of the inequality (x1 + -+ + x,)? <
n(x? 4+ -+ + 22) and the assumption (3.1) for every open interval I’ compactly
contained in (—L1, Lo) and & € R, which satisfies |£| < dist(I’,{—L1, L2}), we have

R (x1 + &) — R ()% day < ('5 + 1) = / dist?(Vy™,S0(3)) dz
I/
< Cs(|¢]+ h)?. (3.10)

Note here that the factor (|¢|/h + 1)? is the upper estimate of the number of
terms by which the left-hand side of (3.10) has to be estimated. Using the Fréchet—
Kolmogorov criterion [2, theorems 2.21, 2.22], one can deduce from this that, for

any sequence h; — 0, there exists a subsequence (R,(: jl’z)) strongly converging in
L?(=Ly, Ly) to some R € L?(—Ly, Ly) with R(z1) € SO(3) for a.e. z1 € (—Ly, Ly).
We define Rli (O,Ll) — SO(?)), RQZ (0, L2) — SO(S) as

Pl(xl) = I_?(—xl) if z1 € (—LhO),
RQ(xl) = F\)(Jq) if 1 € (O,L2).

We shall prove that R € W12((—Ly, Ly); R3*3). Using the estimate (3.10) and
letting h — 0, we obtain that, for every I’ compactly contained in (—L1, L) and
every & which satisfies |¢| < dist(I’,{—L1, L2}), there exists a constant C' indepen-
dent of I’ and & such that

[R(z1 +€) —

R 2
e @I 4, < o (3.11)
I/
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From standard theorems we obtain that R € W1?((—Ly, Ly); R**3). This is equiva-
lent to the fact that Ry € W2((0, L1); R3*3), Ry € W2((0, Ly); R¥*®) and Ry (0) =
R>(0) in the sense of traces. In the same way, one can take cylinders C} and CP

fori=3,...,n (by choosm% every time a subsequence Ra1.) of the previously
chosen sequence R, ), so we obtain existence of R; € W2((0, L;); R*3).
Moreover, the definition of R; is not ambiguous and R;(0) = Rz(0) = --- = R,,(0).
Now,

2 [ 19 Rl b

2 2 _
(M) _ R |12 (- ) — RM ()2
<13 /Q VY™ = R dv + o ?_1:/0? IRi(x - £:) — R™ (x)||* da.

Using the estimate (3.3) and R — R; in L?(0, L;) we obtain that

Jim hQZ/ Vg™ (2) — Rilx - )% de = 0.

O
4. I'-convergence
In the proof of theorem 3.1 we obtained the asymptotics of Vy"). However, as we
are considering the pure traction case, in order to obtain the asymptotics of y(*)
one needs to control the constant. Thus, we additionally assume that the mean

value at the end of the first rod behaves nicely. Then we obtain that, in the limit
at the junction point, displacements from different rods must be equal.

LEMMA 4.1. Let (h?) be a sequence that converges to 0 and (yh)) C W12 (0hi;R3)
such that

1
lim sup - vy |2 dz < oco. (4.1)
: 12 Jor,

Let there exist y? € WH2((0, L;); R3) such that y?(0) = 0 in the sense of traces and
let us suppose that, for every i,

lim IV (5" 0 Q0 PU)) — ((37)']0/0)|| dz = 0. (4.2)
J—roo (hiji)XSi

Let us also suppose that there exists

lim yhi) o Qo PMi) dg .= O, € R, (4.3)
J—00 {L1}><S1

Then for Cy := Cr, — yY(L1) we have
lim ||y o Q0 P") — Cyllp2(in,yxs) =0, i=1,...,n, (4.4)
j—o0

and

lim, > Iy 0 Qo PU) — yflwia(n, Liyxs,) =0,
=1

where y£(x1) = Co + y3 (21).
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Proof. By applying the Poincaré inequality [8, Theorem 6.1-8(b)] to the cylinders
(0,1) x.S; we have that there exists a constant K3 such that, for every i € {1,...,n}
and every y € W2((0,1) x S;;R3), one has

e,
{1} x5;

By applying this estimate to functions of the form g(x) = y((L; — h)z1 + h, 22, x3),
we obtain that there is a constant Ko = max{1, L; — h}K; such that, for all i €
{1,...,n}, all A > 0 (small enough) and all y € W2((h, L;) x S;; R3), one has

< K1 VYll2(0,1)x 55:R3) -

L2((0,1)xS;;R3)

Hy —][ ydz < KalIVyllz2((h,0.)xs:m3)- (4.5)
{L,_}XS'L L2((h,L1)><SL,R‘3)
In a similar way, we obtain
Hy —][ yda < K[Vl L2 ((h.Liy x5, m3)- (4.6)
{h}xS; L2((h,L;)x S;i;R3)

Moreover, by using the same rescaling of the domain, from continuity of traces we
obtain that there is a constant K3 such that, for all i, h and y € W12((h, L;) x
S;;R?), one has

lyll2(gnyxs:me) + 1YLz ((z:y xs:m2) < Ksllyllwrz(n,n.)xs:r3)- (4.7)

By applying the Poincaré inequality (of the same form as before) to the domain
T on functions given by g(z) = y(hz), we have that there exists a constant Ky
such that, for all i,h and y € W2(T";R?), one has

o7
Qi({h}xhS;)

In the similar way as before we conclude that there exists a constant K5 = 2K,
such that, for all i, [, h and y € W2(T";R?), one has
K

< VYl zairnze)- (4.8)

ydz —]l ydz
H][x{h}xhsi) \({h}xRS)) Vh

We now apply inequality (4.5) to the sequence y*i) o Q; o P("3) — y§ to obtain

< hK4||Vyll L2 (rngs).-
L2(ThR?)

Hywn 0 Qo Pyt <][ ) 6 Qo P dx—CLl)
{L1}x5: L2((h;,L1)x S1;R3)
< K| V(") 0 Qo PM)) — ((y])1010) 2 ((hy L) x 51559 -
Now, using the assumptions (4.2) and (4.3), we obtain that
[y 0 Q1o P — yf|lwr2((n;. L) 5y m3) — 0.
The estimate (4.7) now implies

Jim, [y 0 Qo P") — Cy|lp2n,yxsims) = 0. (4.9)
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By applying (4.8) for I = 1 and i # 1 to the sequence y("), we obtain

H][ ) dz 7][ ) dz| <« K5
i ({hj}xh;Si) Q1({h;}xh;S1)

h;
Now we change the variables in the integrals on the left-hand side (also note that
Thi C ") to obtain

S ”vy(hj)||L2(Thj;R3)'

H][ y<hj>oQiop<hj>dz7][ g 6 @y 0 P g
{h;}xS; {hj}x5S1

K5

< IV [ L s sy -
Vi

Therefore, (4.1) and (4.9) imply

][ y(hj) 0Q; o P") dy — Cy for all i.

{h;}=S;

By applying the inequality (4.6) to the sequence y(") o Q; 0 P(s) — yi for i # 1
we obtain that

Iy 0 Q0 P — yflwr2((n, L) xs.m3) = O
Then (4.4) follows immediately from (4.7) for ¢« = 1 and using the fact that

lys = Collz2(gnyyxsims) = [Sil 2§ (hy) = Coll = 0.

In the following we use the notation

(ya d27 d3) = ((yla d?a dil)))v ey (yna d72L7 di))

to collect deformations of all rods.
Combining the results of theorem 3.1 and lemma 4.1, we obtain the following
result.

COROLLARY 4.2. Let (y™) c W12(02"R3) be such that

1
limsup 2 / dist2(Vy ™, SO(3)) d < 400, (4.10)
h—0 nh
lim y") o Qo PM) dz = Cp, € R®. (4.11)

J0 (L1} xS,
Then for every sequence in Ry converging to 0 there exist a subsequence (h;) and
yi € W22((0, L;);R3), d2,d® € WH2((0, L;); R®) such that for R; = (y}|d?|d3) one
has (y,d?,d3) € A, where
A= {((y1, d%v d?)a oo (Yn,s d72w di))
€ (W22((0, L1); R?) x WH2((0, L1); R?) x WH2((0, L1); RY)) x -+ -
x (W22((0, L,); R?) x WH2((0, Lp); R*) x WH2((0, Ly, ); R?)):
R; € SO(3) a.e. and y1(0) = --- =4,(0), RI(0)Qf =--- =R, (0)Q}
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and

lim — Z ||y(hJ 0 Qi — Di(yi, d127 Z)||W1 2((hj,L;)xh;Si;R3) — 0, (4.12)

g%oo
where
Dz(yz, d%, d?)(xl,xg,xg) = yz(«xl) —+ x2d?($1) —+ .’ﬂgd?(l’l) fOT’ T € (hj, Lz) X hJSl

Proof. From (4.10) it follows that the assumption of theorem 3.1 is satisfied. There-
fore, there exist a subsequence (h;) converging to 0 and R; € W2((0, L;), SO(3)),

i=1,...,n, such that Ry (0) = Ry(0) = --- = R,(0) in the sense of traces and
1 O -
S (hy) V2 de —
Jiam 72 E_l /cf”' IVy""(z) = Ri(w - £:)||* do = 0.

We rewrite this convergence to obtain

_ P (0.7 — RAO. 7 - 1.)]I2
O—jh_gl<> 2 E / s, IVy' (Qix) — Ri(Qix - ;)||° da
= lim V(y"i) o Q; inTfl'_?ix-e 2dx
Jim g le / P Q@A Riz-e)]
lim / \% y(hJ)OQZ- x) — R;(z1)Q;? dz. 4.13
w,ﬂ}j I (@) - @)@l (413)

Now we define

(7)) = Ri(z1)Qien,
y; (0) =0,
d? = _i(CUl)Qiez,
d;} = Ri(z1) Qies,
R = _i(iUl)Qi~

Since R; € W12(( ,L;),S0(3)), it follows that y? € W22((0,L;);R3) and R; €
Wh2((0, L;),SO(3)). By the trace property of R; we obtain

In the following we want to apply lemma 4.1. Therefore, we check its assumptions.
First, we estimate the norm of a matrix by the distance of the matrix to SO(3) and
the norm of an arbitrary rotation to obtain

/h |Vy)]12 dz < Q/h distz(Vy(hJ)(x),SO(S))dx—i—Ch?.
Qhi Q"

Using (4.10) we obtain that (4.1) is satisfied.
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Changing the coordinates in (4.13), we obtain
0= lim Z/ [V (y") o Qo P1i))(2)VP ") — Ry(z1)Q;]|% da.
J—roo (hj,Li)x5S;

This implies that (4.2) is satisfied with y? defined above. The assumption (4.3) is
satisfied by (4.11). Therefore, we can apply lemma 4.1 to obtain that for Cy :=
Cr, —y)(L1) we have (4.4) and

Jlggoz Iy 0 Q0 ") — yillwriz(h, 1.)xs) =0, (4.14)
i=1

where

yi(z1) = Co + 57 (21).
Since y; = (y?) from (4.14) and (4.13), we obtain (4.12). From (4.12) and the
estimate

Iy 0 Q0 PU) — gy Laqn,yxs) < Cliy'™ o Qo P —willwrz (a2 xs)
(for details see the proof of lemma 4.1) we obtain

j@o [y 0 Qio PM) —yil|pa(gnyxs) =0, i=1,...,n. (4.15)
Now, (4.4) and (4.15) imply

1S:"2|lyi(hy) = Coll = llyi — CollLz(gn, s, — 0

for all i = 1,...,n. This implies that y1(0) = --- = y,,(0) = Cp.
Thus, we obtain that (y,d?,d?) € A. O

REMARK 4.3. The structure of the functions D;(y;,d?,d?) defined after (4.12) is
essentially one dimensional. It stands as the limit deformation for the ith rod. The
function y; describes the deformation of the middle curve of the ith rod, while
the vectors d? and d} span the normal plane of the deformed middle curve (since
Ri = (y|d?|d?) € SO(3)). Since the rod is assumed to be thin, variables zo and
x3 (cross-sectional coordinates of hS;) are of order h, so the terms involving these
terms can be considered as first correctors to the leading-order approximation y;
of the ith rod. Note also that the convergence (4.12) will be the one which will be
used to formulate the asymptotics of the infimizing sequence.

PROPOSITION 4.4. Let the functional I be defined by

Z / YRIR)N dxy  if (y,d?,d°) € A,

otherwise,

I(y,d?, d*) =

where R; = (y;|d7|d}), while the class A is given in corollary 4.2. The quadratic
forms g M?’XS — [0,00) are defined by

skew

0

q5(A) == aew{gi(r}g“w)/& g | A zg |O2c|O5x | dzg das, (4.16)
3
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where

82
OF?
Then the following two statements hold.

3(6) = 2 (Q1)(6QT. 6aP).

o lim inf inequality. Lety; € WH2((0, L;); R3), d?,d3 € L*((0, L;); R3). Then
for every sequence (hj) C (0,00) converging to 0 and every sequence (yh))
WL2(0hi; R3) such that

J]—00

1§ .
lim h? Z ly™ 0 Qi = Di(yir df, &) [§s 2y Loy eny simey = 0 (4:17)
where D; are defined in (4.12), we have that

I(y,d? d?) < hmlnf vl Ehi) (y(ha))y,

— :
Jj—roo j

(0 oo) converging to 0 and for

o lim sup inequality. For every sequence (h;) C
((0, L;); R?) there exists a sequence

every y; € WH2((0,L;);R?), d?,d? € L?
(y"h))y c Wh2(02":R3) such that

1
Jlggo 72 5 Y [y 0 Qi = Dilyi, &7, d) 3y, 1.y, 513y = O

J i=1

and

1
lim — E™) (y ")) = I(y,d*, d%).

—>.
goo]

REMARK 4.5. As noted in [24, remark 3.4.], each minimization problem in (4.16)
has a solution and this can be equivalently computed on the class of functions

V; = {a e Wh2(S;R3): / adrydrs = /Vadx2 dag = 0}.
Si

It can also be shown that for every i the minimizer is unique in V; and that the
minimizer in V; depends linearly on the entries (a;;) of A. Hence, ¢} is in fact a
quadratic form of A. In the isotropic case (W (F) = W(FR) for every F € M3*3
and R € SO(3)) for every i we have

O*wW

4(C) = 5

(4)(G, G).
In this case there are also some explicit formulae for ¢} [24, remarks 3.5 and 3.6].
Proof. Let us first prove the liminf inequality.

Let (y,d?,d®) € Aand let 0 < h; — 0 and y") € Wh2(0hi; R3) satisfy (4.17).
Let us also fix § > 0. Then, after rescahng each convergence in the sum (4.17) to
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the fixed domain (4, L;) X S;, we obtain that for every i € {1,...,n} one has

x
h

J

ly"+) 0 Qio P") — y;lw1.2((5,.L,) x5,:89) — 0,

(ag(y(hj) 0Q;0 P(hj)),

05(y ") 0 Qio PM))) — (df, dY) - 0.

L2((8,L;)x S;;R3 xR3)

Now, by using [24, theorem 3.1] on each rod separately (applying it to the energy
density functions W' (F) := W(FQF)), we conclude that for every § and for every
i we have

j—o00

L.
R a1 T A ,
5/ a5 (R R}) day < hmlﬂfj/ W (Vi (y") 0 Qo PM))) da
8 (6,L;)x S
1 .
— liminf — / W vy (Qz)QQF) dx
(6,L;)xh;S,

j—00 h

Lo 1 hj
= hmlnf—4/ W(Vyf J)(af))dx;
i 7 Qi((8,Li)xh;S:)

j—oo
1
L)

By summing all these inequalities, we obtain that for every § > 0 one has

n L;
L[ T L p(hy) (g (h9)
22/5 ¢ (R R;) day < hmgolf h4 (y'"7).

where we have used the notation

1
Vh - <61 Eag

By letting 6 — 0 we obtain

I(y,d? d*) < liminf o E(hj)(y(hj)).
j

j*}OO

Let us now suppose that (y,d?,d*) ¢ A. We must show that for every sequence
(yha)) ¢ Wh2(0"s; R3) such that (4.17) holds, one has

lim inf —E(h 1) (yhi)) = 4oo.
j—oc hj

Let us suppose to the contrary that

1
liminf — B (y(")) < oo,
Jj—oo hj

Using the property of the stored energy function W, we estimate

1
CWh4/ dist?(Vy ") (), S0(3)) dz < ﬁE(hJ’)(y(hi)) < 0. (4.18)
J
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From the convergence (4.17) one can easily conclude, using the continuity of the
trace operator and the fact that we can control the change of the domain (analo-
gously to lemma 4.1 and corollary 4.2), that

lim y") 0 Qo P Az := gy (Ly).
IO xS

Thus, the assumptions of corollary 4.2 are satisfied and we can conclude, by the
uniqueness of the limit, that (y,d?, d?) € A, which is a contradiction.

To prove the lim sup inequality we have to construct the appropriate sequence.
Let us take (y,d?,d3) € A. Let us in addition suppose that y; € C%([0, L;]; R3),
d?,d? € C([0, L;]; R?) (note that y; € C%(]0, L;]; R3) is an immediate consequence

(R K2

of d?,d? € C'([0, L;];R?) and R; € SO(3)). Let us define y*3) in the following way:
y") (2) = y;(0) + Ri(0)QFz  for x € T
(the definition is not ambiguous),
y"(QP")(x)) = yi(w1 — hy) + hyy;(0)

+ hywa(df (1 — hy) — o) (21)(d7)'(0))
+ hys(di(er — hy) — o) (21)(d}) (0)) + 13 6] (x),

for x € (hj, L;) x S;, where a'hi) € C1([h;, L;]; R?) are such that

" (h) =0, (@")(h) =1, (")) (2hy) =
o) (1) =0 for x; > 2h;, sup [|a") ||, < Chy;, sup || (@m9)) ]| oo < o0
J J
(e.g. ahi)(z)) = (1/h2)x1 (5/hj)x? + 8x1 — 4h;, for z1 € [hj,2h;] and O other-

wise). The functions ,33 [0, L;] x S; — R3 are chosen such that 87 (z) =~/ (1)8;(x),
where v/ € C1([0, L;]; R) are such that

’yf(xl):O for z1 < hy, %j(ml)zl for z1 > 2hj,
, , C
illee <G 1) lloe < 7~
j

(e.g. vl (z) = —(2/h3)a® + (9/h3)x* — (12/h;)x 4 5) and B; € C*([0, L] x Si;R?).
Then we have
Vyhi) (z) = Ri(0)QF for x e T,

and
vy (QP™M) () Q;
= Ri(wy = hy) = (0" (21)(d?)' (0)[a ") (21)(d) (0)) L, <ar <20,
+ hy(wa(d) (@1 — hy) + w3(d}) (z1 — hy)[028] (2)|08] (x))
= hy(x2(a™) (21)(d7) (0) + @3(a")) (21)(d})' (0)[0]0) L1, <oy <2n,
+h3(018](2)[0]0) for z € (hj, L) x S;.
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Note that y(*) € C1(02";R3). It can be easily seen, by the dominated convergence
theorem, that for every i we have

.1 _
jh;go Fj"y(’LJ) °© Qi = YillL2((h;.L.)xh; 8,m5) = 0

and
hm iHVy(hJ) o QQ - R'”LZ h:. L h'S"R3 = 0
Jj—o0 h’] v 4 (( 3o i)x VESEE) ) I

which together imply that y(*i) satisfies (4.17). Now we have to prove the lim sup
inequality for this sequence.
For z € (hj,L;) x S;, let us define

Ri(z1 — h;)TVy ) (QP") (z)) — QF
h; '

Bi(hj)(x) _ (4.19)

Then
B! (2)Qi = Ri(w1 — hy)T(w2(d?) (x1 — hy) + 23(d3) (w1 — hy)|0B (2)|0381 (x)

(hj) (hj)
— Rz(xl _ hj)T (0 o h(l‘l) (d?)/(O) o h(l‘l) (d?)/(0)> 1hj<$1§2hj
J J

— Ri(w1 — hy) " (z2(a")) (z1)(d?)' (0)
+ 23(a ™)) (21)(dF)'(0)[0[0)1n, <o, <2,
+ thi(xl — h])T(alﬂf(x)|O|0)

Note that for every § > 0 one has
B (2)Qi — Ri(x1)T (wa(d?) (21) +a3(d2) (21)]028i(2)|3:8i () ae. x € (8, Ly).

For every i, we look at the sequence (f}); of functions f7: (0, L;) x S; — [0, +00)
defined by

f;(x) =0 forz € (0,h;) xS;,

L] | |
fi(@) = 5 W (Vy " (P (2)))
J
= SW(QT + 1B (@) for x € (hy, L) x S,

J

where the equality in the second line holds by the objectivity of W. Since W is C?
in the neighbourhood of SO(3) and has extreme on SO(3) and BZ-(hj ) is bounded,
by the Taylor theorem, for every ¢, one has

fi(@) = Sa5(RM (wa(d?) + 23(d)'|023:]038;))  ae. x € (0,L;) X S;.
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Since BZ-(hj) is bounded, the sequence f; is bounded in L>°((0, L;) x S;; R3), also by
the Taylor theorem. Thus, by the dominated convergence theorem, we have

1 1
lim — [ W (Vyhi))dz = lim —QW(Vy(hf)(QiP(hj)(z)))dx

J]—00 5 C J Jj—oo (hj,Li)XSi j

= lim f]’ (z) dz
J—o0 (O,Li)XSi

1

5 [ GRT () + aald?) |00,
(0,L;) xS,

Also note that, for the chosen sequence y("3), for every j, one has
W(Vy(hj) ‘T’LJ‘) =0,

and thus

- Z;/(OL )x S g5 (RN (22(d7) + 23(d3)'|023:1053:)).

Thus, for (y,d? d?) € A. such that y; € C*([0, L;];R®), d?,d? € C'([0, L;]; R?)
and arbitrary @; € C([0,L;] x S;;R3), we have that there exists a sequence
su

(yhi)) WLQ(Q’%‘-R ) such that
Z ly™ o Qi — Di(yi, d2,d) 1312 (n, 1y, 51m5) = 0 (4.20)
and
1
1 = go(hy) (hy) 2\/ 3\/ ) )
i PO =13 [ R 0280058
(4.21)

Let us now consider the general case and take an arbitrary (y, d?, d®) € A. For every
i we choose a sequence (R, RY) ) € C*([0, L;}; M®*3) such that RU) — (yl|d?|d3) = R;
in W1H2((0, L;); M3*3). By making a slight correction, namely taking

RY) — Ri(O)R(j)(O)_l R

(this can be done for j large enough, due to the Sobolev embedding theorem), we
also have

(RY) € M0, LM, RY = R = (yld?|d) i WH2((0, L,); MP)
(this follows from the trace theorem) and /A?i(j )(O) = R;(0). Now take RZ-(j ) =11 Z-(j )
where IT: M3*3 — M3*3 is a smooth function in the neighbourhood of SO(3)
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defining projection from the neighbourhood of SO(3) to SO(3). We define

. T1 . i (4 .
y (21) == 9 (0) +/ R (s)erds, ) = R (z1)ey for k=2,3.
0

Then ‘ A ‘ , 4 '
((y (J),df’(J) d&(a)) L (YD), d>o) d3u))) e A
and y in C2([0, L;]; R3), d> -0 ,d> ) € C*([0, L;]; R?) and we also have that

)

((y(J))/’d?a(J)

is converging to R; = (y!|d?|d3) in W12((0, L;); M3*3). The functions B; are cho-
sen in the following way. We choose a;(z1,:) € V; (see remark 4.5) to be the
solution of the minimum problem defining qf((RZT (x1)R}(z1)) (the affine function
of RT(z1)R!(x1)). Now take B; = Ria; and 3}’ ) e CL([0, L;] x S;;R3) defined by
convolutlon (first by the first variable and then by the last two variables) such that
B, @ B; and i 0; W OxB; (for k = 2,3) in L?(§2;R3). By an application of the
Nemytskii operator theory [3, p. 15] we have that, for every 4,

4>y = )

[ RO o) (10,8 058
- [OL]qg’((szRiT(d?)/+$3R1T(df’)/|5zai|33ai))d$
Therefore, we can assume (by tal;irlg a subsequence) that
’I(y, d*, d?)

(RD)T (25 (@2 >9Y19,8910,69)) de| < L
QZ/OL] ) a2l + >\ﬁ|ﬁ>>sc<J

From (4.20) and (4.21) for a given j, we can find y(") € Wh2(£2";R3) such that

1
2
52 ZH?JUL ) oQi—D; (y(J) d; ) d ]))”Wl 2((hy,Li)xh; SyR3) < j
] i=1

and

L o)) (g ()

—4E P (y'")

j

~2 Z / s, SR (wa(d? DY + as(d)) 1026 10:87)) | <
X
By the triangle inequality we have that y("s) satisfies (4.17) and

1
B0 (y M) — I(y, &2, )| 0

J

The case (y,d?, d?) ¢ A is obvious. O
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5. Minimization

Since we cannot formulate the junction problem on a canonical domain in a simple
way, we have to adapt techniques of I'-convergence and use the asymptotics of the
infimizing sequence in the form (4.17).

We suppose that the external body force is given by the density fr(h) € L?(N";R3)
and that the external surface force is given by the density gﬁh) € L2(002";R?) (we
assume both are dead loads). As is usual in lower-dimensional modelling, the scaling
of the surface force densities is different at the rod ends and the lateral boundary.
Therefore, we introduce the notation

(h) _ (0 (R) — g(h)
91 =G \am\ugb:l Qi ({L:}xhS;)> Gre” = 9y |U;;1 Qi({Li}xhS;)-
We give the result for the Neumann boundary condition on the whole domain,
i.e. for the pure traction problem. Therefore, we suppose that the resultant of all
forces is zero, i.e.

ﬁWwM+/ o™ (z) dz = 0,
nh onh

and look for the minimum that satisfies

][ y " (z)dz = 0.
Ql({Ll}thl)

THEOREM 5.1. For every h we define the functional
10w = [ WEe@)de- [ £ v~ [ gP@) o) ds
on ol a0k

in the space

vh = {'u € Wh2(0h R?) ‘][Q v(z)de = 0}.

1 ({L1}xhS1)
Let the scaling of loads be as follows:

h h h
fr(2) (h) _ 951) (h) _ gr(e)
h

’ gl h3 ’ ge h2 9

f(h) —

where

1 1 1.
E||f(h)||L2(Qh;R3)7 EHgéh)||L2(U;L:1{L,1}thi;R3)7 E”gl()||%2(3Qh\ug:1{Li}xhsi;R?’)

are bounded. Moreover, let us suppose that

[ i@t [ gP@d=o (6
on onh

h—0

i3 s [, 1560 - SR @E)Par =0, 52)
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N~ 1 -
im > | ot ) = gu((P") (@) Pde =0, (53
i ((h,Li)xhdS;)

h—0 4 h
1=1

"1
li — (r) pM T2 de = 0, 5.4
im % /i({Li}XhSi) 19" (2) = ges (P) (@ 2)) || da (5.4)

h—0 4
=1

where fz c LZ((O, Ll) X Si;RS), gl € L2((O,Lz) X 851,]1%3), gei € LQ({LZ} X Si;RS)
fori=1,.

Then we have that |inf,cyn JM (v)| < Ch*. Let us take the sequence yM € V!
that satisfies

T (yMy < inf JW () + o(h?), (5.5)
veVh

(o(h*) means that limp_,0 o(h*)/h* = 0). Let the sequence (hj) converge to 0. Then
there exist a subsequence of (h;) (still denoted by h;) and (y,d?,d*) € A such that

lim 2 Z ly®) o Q; — Di(yi, &7, &) [fr1.2((h, 1) ¢, 50003y = O- (5.6)

J—}OO

The limit (y,d?,d?) minimizes the functional

J(y,d* d’) = I(y,d* d°) — Z/ / fi(z) dzy das - yi(21) das
i=17/0 /S
— Z/ / gii(x)ds - y;(z1) day
= Jo Jos,

_Z/ Gei Lz7x27x3) dzg dzs - yz(LL)
L;}xS;

in the space Vi = {(y,d?,d3) € A: yi1(L1) = 0}. Moreover, the energies converge
to the energy of the limit

(1) (M)} — 2 g3
,{lg})hﬂ (y") = J(y,d*, d”).

Proof.
STEP 1 (a priori estimate for the total energy and y)). Let us estimate
0+ ),

where ¢ is the identity mapping and a(™ € R? is chosen such that i + a® € V"
(such an a™ exists and is unique). Using (5.1) and W (/) = 0, we obtain

1T (i + o) = ‘
nh

h) (z)-i(z)dz + /8(2h gr(h)(z) -i(x) dx

< OB F® | p2amy + CR 29" || L2 00m Ur, @ (10 xhs0))

+ CR3) g2, @iz} xhsi))
< Ch.
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Then from (5.5) we conclude that (1/h*)J™ (y(") < C. From this we want to
conclude that

1
— [ dist*(Vy™,;S0(3))? dz < oo,
ht Jon

so we have to estimate the energy from below:

1

1
*J(h)(y(h)) = CWﬁ

. 1
hA /m dlStQ(V’y(h),SO@)) - ﬁ”f(h)||L2(Qh)||y(h)HL2(m)

L. (n (h)
= ez @i, taxns 19 2 0em i, ez xnso))

1
- ﬁ”géh) le2qur, @iz xnsp Iy ™ 2, @uqzayxnsi)

1
> Cw oy / dist?(Vy ™, S0(3))
Qh

1 1
- C<h||y(h)||L2(Qh) + W||y(h)||L2(a(2h\(LJ;;1 Qi ({Li}xhS;)))

1
+ 2yl oi<{Li}xhsi>>>-
(5.7)
In the same way as in lemma 4.1, we conclude that there exists a constant C'

independent of h (using rescaling o™ (x1,29,23) = (21, hao, has)) such that for
every i and every y € W12(2";R?) we have

Hy—][ ydx
Qi({Li}xhS;)

Hy—][ ydx

From this we conclude that there exists a constant C' independent of h such that

‘ ][ ydx 7][ ydx g|
Qi ({h}xhsS;) Q:({L:}xhS;) h

By using scaling o™ (1, z9, 23) = (ha1, haa, has) we conclude that there exists C'
independent of h such that, for every 1, [,

< ClIVYll2cnips), (5.8)
12(ChR?)

< CHV?JHH(C{L;W)- (5.9)
L2(C}SR3)

<

IVYllL2(onps)- (5.10)

Hy_][ ydx < hC||VyHLz(Th;R3), (5_11)
Qi ({h}xhS;) L2(Th;R3)
H][ d ][ yds| < vyl (5.12)
yar — S L2(Th;R3)- .
(({h}xhS)) Q({h}xhS) Vh (T"R?)

Using estimate (5.8) for i = 1 and the fact that y» € V", we conclude that

”y(h)HL2(C’{1;R3) < C||Vy(h)||L2(C{L;R3) < C(||dist(Vy ™, SO) z2(nrr3) + h)-
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Using estimate (5.10) we conclude that

C
H][ y || < E”vy(h)”LQ(Cf;H@)
Qi ({h} xhS1)
1
<COf -

Using estimate (5.11) we conclude that

][ g™
Ql({h}thl)

dist(Vy ™, S0(3))

+ 1>.
LQ(C{L;R3)

||y(h)HL2(Th;R3) < B2 +Ch||vy™ L2 (rn ) -

Since
||Vy(h)||L2(Th;R3) < C(HdiSt(Vy(h)7SO@))HL?(m;RS) +h3/?), (5.13)
we conclude that
ly ™ llzz (e < C(hY2) dist(Vy ™, SOB))l|c2(anms) + 0¥ (5.14)
Using estimates (5.9) and (5.12) for | = 1 we conclude that, for every i,
||y(h)||L2(cgb;R3) < C(||dist(Vy"™, SO(3)) | L2 (n;ms) + h).-
Thus, we have
1yl 20 sy < CI1dist(Vy ™, SO(3))| 2 (nrs) + h)- (5.15)

In the same way, one can analyse traces. First we start from the trace inequality on
the cylinder C; = (0,1) x ;. For every y € W12(C;; R?) we have that there exists
a constant C' such that

‘y—][ Yy
{1}xS;
{O}><Si

By using appropriate scaling and rotation, we have that there exists a constant C'
such that for every C* and y € W12(CP; R?) we have

< CHy _][ yH < O|Vyllzz,msy, (5.16)
L2(8Cy) {1}xS; W1.2(C;;R3)

<4@—f yH < ClIVyllms). (5.17)
L2(8C;) {0}xS; llwi2(Cy;R3)

< ClIVyYll2(onips), (5.18)
L2(Qi({Li}xhS;);R3)

< ClIVyYllL2ongs), (5.19)
L2(Qi({Li}xhS;);R3)

< C||Vy||L2(Cih;R3), (520)
L2(Qi({h}xhS;);R3)

< CI9ylls(cp an (5.21)
L2(Q;({h}xhS;);R3)
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and

1
v/ y R P
Qi({h}xhSi) 1L2(Q;((h,Li)xdhsS;);R3)

1
v y T T
Q:({Li}xhS;) L2(Q; ((h,L;)x8hS;);R3)

1
Hy][ Yy CWHV?JHLZ(C{I;RS)a
Qi({h}xnSi) L2(Q;((h,L;)x8hS;);R3)

1
- y T T
Q:({Li}xhS;) L2(Q; ((h,L;)x8hS;);R3)

In the same way, we conclude that

Hy _][ Yy
Qi({h}xhS;)

Now, by using y® € V", we have from (5.19) and (5.23) that

< Ch1/2||Vy||L2(Th;R3)-

L2(8TH;R3)

Y™ |20y ({21 y xhsnis) < CUVYP |2 (on ms)
< C(||dist(Vy™, SO(3))l| p2(nrey + h),

1y ™ ll22(Qu (b 1y xoms 1)) < hl/zﬂvy Mz epsmo)

655

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

<C ( 7 ldist(Ty ™, SO(3)) | (onzs) + h/>

From (5.18) and (5.19) we conclude that

oiran?
Ql({h}thl)

From this and (5.12) we conclude that, for every i,

H][ Y
i ({h}xhS;)

From (5.22) and (5.15) we conclude that

(h)

HVy )||L2 ChR3)-

< EHVZI(’"”)HL%WL;RP»w

Y™ | 22(Qi ((h,1.1) x0RS:)iR2)

< C<h1/2||Vy( )||L2 _Qh]RS)—‘rh 1/2

< W”Vy(h)”L?(()h;RS)

1 .
< C(hl/z”dlst(vy(h), SO(3))l| L2 (2nsms) + h1/2>.
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From (5.26) for ¢ = 1, (5.27) and (5.13) we conclude that

”y(h)HL?(aTh;]RS) < CHVy(h)HB(Th;RS) < C(||dist(Vy ™, SO@3)) |l L2(onrsy + h3/2).

(5.30)
From (5.18) and (5.28) we conclude that, for every i,
19"\ 120Qi ((1s) xhs:) Ry < C”vy(h)HLZ(C}};IW)
< C(||dist(Vy ™, SO(3)) || 12 (can:psy + h). (5.31)

From (5.29)—(5.31) we conclude that
Iy ™ 2 @om Uz, @itz xhsiy)

1 .
< C(hl/szlst(Vy(h), SO(3)) || L2 (q2n ey + h1/2>,

(5.32)
Iy ™ 2, @y xnsoy < C(ldist(Vy™, SOB))l|r2(anre) +h). (5.33)
By using (5.7), (5.15), (5.32) and (5.33), we conclude that there exist Cy and Cj
such that
1 .
Cwig /Q ) dist*>(Vy ™ (z),80(3)) dz
1 1/2
—o( L / dist?(Vy™ (2),50(3)) dor ) +1
h\ Jon
1
< ﬁj(h)(y(h))
< Cs. (5.34)

Using the fact that, for A < 1,

llz</m dist?(Vy™ (2),50(3)) dx>1/2 < h12</m dist?(Vy ™ (z), 50(3))dm>1/2

we conclude from (5.34) that
Cwa® — Caa < Cs,
which implies that o2 is bounded, i.e, there exists C' > 0 such that
1
o / dist?(Vy™ (2), S0(3)) dz < C, (5.35)
nh
which implies that the left-hand side of (5.34) is bounded as well. This implies

inf J®(v)| < Ch*.
veVh

STEP 2 (the convergence proof for y*) and the scaled total energy). The esti-
mate (5.35) implies that the assumptions of theorem 3.1 (the compactness theorem)

https://doi.org/10.1017/50308210510000491 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210510000491

Nonlinear bending—torsion model for a junction of elastic rods 657

are satisfied. Therefore, the assumptions of corollary 4.2 are satisfied as well (with
Cr, = 0). Therefore, we conclude that for every sequence h; there exists a subse-
quence (still denoted by h;) and (y,d? d®) = ((y1,d?,d3),..., (yn,d2,d32)) € A
such that

hm ) Z 1y 0 Qi — Dy(yi, &, &) |[f1.2((ny, 1.y, 51,05y = O- (5.36)
From this convergence it is obvious that
y1(L1) = lim yha) (z) de = 0.
T2 Qu({L1} xh;S1)

Thus, we have proved that (y,d?,d3) € Vi. What is left to be proven is that
it minimizes the functional J in Vj. We can use a standard argument from the
I'-convergence, although we have variable domains (and cannot apply the I-con-
vergence directly). Let (y,,d?,d3) € Vi and (yq,d?,d3) # (y,d?, d3). We have to
prove that J(y,d?, d?®) < J(ya,d?,d3). From the liminf inequality from proposi-
tion 4.4 we conclude that

I(y,d?,d%) < <hm1nfh— Eha) (y(hi)), (5.37)

j—oo j
By using (5.14), (5.30) and (5.35) we have
1 ) ) 1 A .
Wy, £ (@) -y (@) da < hf?nf(hﬂ||L2(Th,.)Hy<hﬂ>||L2(Thj)
1 i 3/2
< }T?”f(h])”[,%ghj)c(h? + hj/ ) — 0, (5.38)

1

il 9 (2) ™) )]
3 JoT UL (ks xhy S

(hj)
< g le e ornun, tny o)
J

hj
x Iy )||L2<6T’1f\uz':1{hj}xhjsi>
<O + hy) — (5.39)
From this and (5.2)-(5.4), (5.15), (5.32), (5.33), (5.36) and (5.37) we conclude that

J(y,d?, d*) < liminf h—J(h ) (yha)). (5.40)

— 00 .
J J

Let us, by the lim sup inequality from proposition 4.4, choose yt(lhj) such that
hm 3 Z 1y 0 Qs = Di(Yiard o d ) I3, 2((hy,Li)xh; Sy =0 (5.41)

and 1
lim — BC9) (y)) = I(y,, d2, d2). (5.42)
J

Jj—oo
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Let us choose ¢") € R3 such that z(h ) ((th) + c¢hi) € Vi From the conver-
gence (5.41) we conclude that

lim chi) = 0.
J—00

Thus, we have that (5.41) is also satisfied for the sequence z(ghj ). We also see that
(5. 42) is also satisfied for 20", Therefore, using the lower bound on W it follows
that there exists a constant C' such that

sup hl4 / dist?(Vz{") (z),50(3)) dz < C.
In the same way as before we conclude
) = i eI ) (5.43)
Finally, from (5.5), (5.40) and (5.43) we have

J(y,d? d*) < liminf — 3 J(h ) (yhi)) < liminf — J(h D (ylh)y = J(y,,d?, d3).

—oo RS —oo h4
J—roo N j—roo N

That the energies converge can be easily seen by a standard argument in the I'-
convergence. (We first take the sequence 1) such that

1 4 .
2/ 0) = J(y, d?, d)
J
and then, by using (5.5), conclude that
lim e J0D(A0)) = lim g0 (),
Jj—o0 4 j—o0 >
J J
Since this can be done for any arbitrary sequence, we have the claim.) O
REMARK 5.2. In the proof of the strong convergence of the deformations (5.36) we
have only used the assumed boundedness of the external loads. Therefore, we can

weaken the assumption of strong convergence of the loads given in (5.2)—(5.4) in
the following way:

F®oQoP™xryxs, — fi  weakly in L2((0, L;) x S;), (5.44)
91( ) o Q; 0o P )X(h,Li)xasi — gi; weakly in L2((0, L;) x 95;), (5.45)
9" o QioPMy 1 x5 — gei weakly in L2({L;} x S;), (5.46)

where by x we have denoted the characteristic function of the appropriate set.

REMARK 5.3. Using (5.38) and (5.39), by a straightforward calculation from (5.1),
we obtain

n

Z </OL (/S fi(x)dedxﬁ/@S_gu(x)ds) +/S gei(Li,xQ,xg)dzgdx3> = 0.

=1 g i i

This means that in the limit model the total force is zero as well. This can also be
concluded under the assumptions of remark 5.2.
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REMARK 5.4. Adding a constant to the solution of a pure traction problem gives
a solution again, i.e. the set of solutions is closed under translations. Therefore,
we had to control behaviour of this constant in the three-dimensional problem in
order to obtain the limit. We did this by ensuring that the mean deformation at
the end of the first rod (indexed by 1) vanishes. As expected, a consequence of this
constraint in the limit model is the constraint that the end of the first rod is fixed
at the origin (y1(L1) = 0). In the limit model we can also consider this constraint
as the one which just fixes the translation, since again the set of solutions of the
pure traction problem is closed under translations.

6. Differential formulation of the model

In this section we formulate the weak and the differential formulations of the model.
This enables us to interpret the limit model as a model of one-dimensional rods with
the transmission conditions at the junction point (see (6.6)—(6.12)).

Let us define

fi(xl):/sv fi(fﬂ)dwzdafs-i-/a Vgli(iﬂ)d&

E':/ gei(Li, x2, x3) dzo dzs.

k3

Then the total energy of the limit model is given by
n 1 L; Li N
o)=Y (3 [ bRERY @~ [ f o - B ).
i=1 0 0

for (y,d?,d?) € A and +oco otherwise.

First, performing partial integration in the force terms in the total energy func-
tional, in a similar way to that in [26], we remove appearance of y; from the energy
functional. In order to do that let us define

and note that the force equilibrium, according to remark 5.3, can be expressed by

p:(0) = 0. (6.2)
=1
Then
n I‘7 n n n L7
Z/ Pi-yider =3 Pi(Li) - yi(Li) = > Pi(0) - ;(0) — Z/ p; - yidry
i=170 i=1 i=1 i=170

n n Li _
ZZE'yi(Li)—Zﬁi(o)'yi(0)+2/o Ji-yiday
i=1 i=1

n n Li
S Rew)+ Y [ fwdn,
i =1
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since, in A, deformations satisfy y;(0) = - -+ = y,(0). Thus, the total energy func-
tional can be expressed in terms of R;, i = 1,...,n, only, by
5 morq (Ll L;
J(R) = J(y,d* d’) = Z <2/ ¢ (RYR)) day —/ pi - Riex d361>,
i=1 0 0
where we have used the notation R = (Ry,...,Ry,). Thus, we can split the mini-

mization of J into two steps. In the first step we minimize .J in the space

R:={R=(Ry,...,R,) € W"2((0,L1);SO(3)) x - -

x WH2((0, Ln); SO(3)): Ri(0)Q1 =+ = Ra(0)Qy }
and in the second step we determine deformations y;, i = 1,...,n, from the equa-
tions

y; = Riela yt(o) = Yo, 1= 17"'7”7 (63)

where the constant vector yg € R is freely determined from an additional constraint
(e.g. y1(L1) = 0; see remark 5.4).
Now we want to find the weak formulation of the problem

min J(R).

First note that R’ R/ are a.e. antisymmetric matrices. Therefore, they possess axial
vectors s; = 8;(R;) € L?((0, L;); R?), i.e.

T pr .
RR, =As, i1=1,...,n,

where the notation A, stands for the matrix such that Asz = s x z. Since ¢4
are quadratic forms of the elements of RTR!, there are positive definite matrices
H; (positive definiteness of the matrices H; follows from the fact that the second
derivative of W is greater or equal to 0 and equal to 0 exactly on antisymmetric
matrices) such that

& (RFR!) = H;s; - s;.

Thus, the total energy functional can be written as

n

J(R) =Y (; /OL Hisi(R;) - si(R;) dary — /OLi Bi- Riex dxl).

i=1

In order to obtain the weak and differential formulation of the model we need to
find the Gateaux derivative of the functional J over R. Let R € R, e > 0 and v; €
C*>([0, L;];R3), i = 1,...,n. Let us choose a perturbation R = (R{,...,R5) € R
of R in the following form:

RE =R, i=1,...,n.

In order for R® to be in R, one only needs to satisfy the condition that

R (0)Q = ™ Ri(0)Q
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is independent of i. Since R;(0)QF is independent of i, Rf(0)QF is independent of
i if and only if

v1(0) = -+ = v,(0).
Thus, in the following, we take v € R;, where
Ry ={(v1,...,v,) € C([0,L1];R?) x - - - x C([0, L J; R?*): v1(0) = - -+ = v, (0)}.
Next we need to compute the axial vectors s of (RF)T(RF):
(R)T(RY) = RFe™vi (1 Ry + e R))
= R (I — Ay, + O(?))(eAv; + O(€*))R: + R R]
=R'R +eR"Ay R + O(c%).
Since R Ay Rix = Ri'v; x & (as R;(z1) € SO(3) a.e.), we obtain
s =s8;+eRMv, +0(?), i=1,...,n.
Now, we plug this perturbation into the functional J:

n

L;

i=1

L;
- / D (I +5Av7;)Riel d$1> + 0(52).
0

Thus, the stationary point of the functional J satisfies

n

L; L;
> (/ His; - R v} da —/ Pi - Ay, Rie1 dw1> =0, vERy,
0 0

i=1
i.e.

n

Z (/ R’LHlS'L . ’U; dl‘l — / v; - Riel X ]52 dxl) = 0, v E Rt.
1 0 0

1=

Thus, by the partial integration on every rod, we obtain differential equations and
the boundary condition

(Rszsz)l + Riel X i)i = 07 RZ(L’L)H’LS’L(LZ) =0. (64)
Moreover, since v € R, we obtain just one condition in the junction point:

i RZ(O)HZSZ(O) =0. (65)

Let us now define
3; = Rysy, G = RiH;R}"3,.
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Then the problem given by (6.1)-(6.5) can be formulated as

P+ fi=0, pi(Li)=Fi, i=1,...,n, (6.6)

q; + Rie; x p; =0, qi(Li) =0, i=1....n, (6.7)
G = RiHiR' 5;, i=1,...,n, (6.8)

Rl = As.R:, i=1,...n, (6.9)

Y = Rier, i=1,...n, (6.10)

and
n

> pi(0)=0, 3 ai0)=0, (6.11)

R(OQF = = Ru0)QT,  31(0) = --- = g (0). (6.12)

Equations (6.6)—(6.10) are the equilibrium equations of the nonlinear inextensible
rod model (see [24] for the derivation of the model from the three-dimensional non-
linear elasticity and [4] for the direct foundation of the theory of nonlinear rods;
see also [17,30] for the rod model obtained by linearization of the present one).
The model is written as a first-order system of ordinary differential equations. The
introduced unknowns p; and q; are the contact force and contact couple, respec-
tively, corresponding to the ith rod. Equations (6.6) and (6.7) are the equilibrium
equations together with the boundary conditions; (6.8) is the constitutional law;
(6.9) and (6.10) are material restrictions of unshearability and inextensibility. The
conditions (6.11), (6.12) are conditions at the junction. The two conditions in (6.11)
are the equilibrium conditions and say that the sum of all contact forces and the
sum of all contact couples in the junction are both zero. The conditions in (6.12)
are continuity conditions. The first says that the rotation of the cross-section in
the junction is the same looking from all rods. Note here the difference between R;
and R;QF. The matrix R;(0) gives the actual position of the tangent vector R;(0)e;
and the cross-section (spanned by R;(0)ez, R;(0)es); R;(0)Q}! is the rotation of the
cross-section ‘in the junction’ of the rod for the ith rod (the ‘difference’ between the
undeformed @; and deformed R;(0) configuration). The second equation in (6.12)
says that the deformation at the junction point is the same for all rods.

Thus, we conclude that junction (transmission) conditions for the junction of rods
are given by the equilibrium of contact forces and couples as well as by continuity
of the deformations and rotations at the junction.

REMARK 6.1. The minimization problem for the total energy J on A has at least
one solution by theorem 5.1. Thus,

yi € W2((0,L;);R?), R € WH2((0,L;);SO(3)).

From the differential formulation for each rod we can conclude a certain regularity
result. For f; € L%((0, L;); R?) one has that p; € W12((0, L;); R3). Therefore,

Rie1 x p; € WH2((0, L;); R?)

as well, so g; € W22((0, L;); R?). Using (6.8) this implies §; € W12((0, L;); R?).
Now, using (6.9), we obtain that R, € W22((0, L;); SO(3)). Returning to (6.8),
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we obtain that §; € W?22((0, L;); R?), which, again using (6.9), implies that R; €
W32((0, L;);SO(3)) and y; € W42((0, L;); R®). This is the most that can be con-
cluded for L? loads in this fashion.
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