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Viscoelastic properties of complex fluids are usually extracted by applying an
oscillatory shear rate (γ̇ = αγ̇0 cos(ωt), where αγ̇0 is a constant which is small for a
linear response to make sense) to the fluid. This leads to a complex effective viscosity
where its real part carries information on viscous effects while its imaginary part
informs us on elastic properties. We show here theoretically, by taking a dilute vesicle
suspension as an example, that application of a pure shearing oscillation misses several
interesting microscopic features of the suspension. It is shown that if, in addition to
the oscillatory part, a basic constant shear rate is applied to the suspension (so that the
total shear rate is γ̇ = γ̇0(1+ α cosωt), with γ̇0 a constant), then the complex viscosity
reveals much more insightful properties of the suspension. First, it is found that the
complex viscosity exhibits a resonance for tank-treading vesicles as a function of the
frequency of oscillation. This resonance is linked to the fact that vesicles, while being
in the stable tank-treading regime (with their main axis having a steady orientation
with respect to the flow direction), possess damped oscillatory modes. Second, in
the region of parameter space where the vesicle exhibits either vacillating-breathing
(permanent oscillations of the main axis about the flow direction and breathing of
the shape) or tumbling modes, the complex viscosity shows an infinite number of
resonances as a function of the frequency. It is shown that these behaviours markedly
differ from that obtained when only the classical oscillation γ̇ = αγ̇0 cos(ωt) is
applied. The results are obtained numerically by solution of the analytical constitutive
equation of a dilute vesicle suspension and confirmed analytically by a linear-response
phenomenological theory. It is argued that the same type of behaviour is expected for
any suspension of soft entities (capsules, red blood cells, etc.) that exhibit periodic
motion under constant shear flow. We shall also discuss the reason why this type
of behaviour could not have been captured by existing constitutive laws of complex
fluids.

Key words: capsule/cell dynamics, suspensions

1. Introduction
Complex fluids are the rule in nature and in many industrial applications (Larson

1999). Examples are encountered in biology (blood, cartilage, etc.), the textiles,
plastic and food industries, and many other situations. Most complex fluids (colloids,
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emulsions, polymer solutions, blood, etc.) are made of rigid or soft particles that are
suspended in a simple fluid. Understanding the rheology of complex fluids continues
to pose a formidable challenge. The difficulty lies in the inherent coupling between
the microscale (e.g. red blood cell (RBC) dynamics in the case of blood) and the
macroscale (e.g. the scale of a vein). The micro–macro link implies that the laws
describing complex fluids should carry information on the microscale dynamics.

Flow analysis (rheometry) of complex fluids determines several properties that are
essential for building a progressive knowledge about the constitutive laws. The most
commonly used experimental method to extract viscoelastic properties of complex
fluids involves applying an oscillatory shear rate

γ̇ = αγ̇0 cosωt (1.1)

(here αγ0 is a constant amplitude and ω is the frequency) from which the complex
viscosity η(ω) = η′(ω) + iη′′(ω) is extracted (Bird, Armstrong & Hassager 1987;
Larson 1999). Its real part η′ reflects the viscous character of the complex fluid (here
G′′ = ωη′ is called the loss modulus), while the imaginary part η′′ carries information
on the elastic properties (here G′ = ωη′′ is called the storage modulus).

A more advanced, albeit less popular, way is to superimpose a constant shear rate
on top of the oscillatory component

γ̇ = γ̇0(1+ α cosωt), (1.2)

where γ̇0 and α are constant amplitudes. The difference can seem to be insignificant at
the first sight and, indeed, conventional constitutive laws derived from macroscopic
considerations show that the addition of a constant part to (1.2) leads only to
quantitative change of the viscosity spectra. The same effect of superimposed steady
shear rate was observed in experiments on polymer suspensions and melts (Booij
1966a,b; Tirtaatmadja, Tam & Jenkins 1997; Vlastos et al. 1997). A study of vesicle
suspensions under combined oscillating and constant shear rates (Kantsler, Segre &
Steinberg 2008) reported no noticeable effect of varying the constant part of the shear
rate or the frequency of the oscillations. This was attributed to polydispersity of the
suspension.

Recent experimental studies of rheology under constant shear flow of blood (Vitkova
et al. 2008) and vesicle suspensions (Kantsler et al. 2008; Vitkova et al. 2008)
reported that the intrinsic viscosity of these fluids critically depends on the viscosity
of the solvent. This dependence is attributed to the difference in microscopic dynamics
of individual particles: for high viscosity of the solvent, vesicles and RBCs experience
so-called tank-treading (TT) motion, corresponding to a fixed orientation of the RBC
or vesicle whereas the membrane moves like tank treads, while low viscosity of the
solvent favours a tumbling (TB) motion. Remarkably, the stress produced by each
particle oscillates dramatically over the TB cycle, as has been observed in analytical
calculations (Danker & Misbah 2007; Vergeles 2008) and numerical simulations
(Ghigliotti, Biben & Misbah 2010; Zhao & Shaqfeh 2011). An analogous effect
has been observed in numerical simulations of dynamics of elastic capsules with
compressible membranes (Clausen & Aidun 2010; Bagchi & Kalluri 2011). Thus,
averaging over all particles in the suspension (or over time if the ergodicity assumption
is valid) is necessary in order to obtain the effective viscosity. Another type of motion
have been observed for vesicles. This motion couples oscillations of the orientation
with strong ‘breathing’ deformations of the vesicle. This type of motion has been
called vacillating-breathing (VB) (Misbah 2006; Danker et al. 2007; Farutin, Biben &
Misbah 2010; Biben, Farutin & Misbah 2011), trembling (Kantsler & Steinberg 2006;
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Lebedev, Turitsyn & Vergeles 2007; Vlahovska & Gracia 2007; Lebedev, Turitsyn
& Vergeles 2008; Deschamps, Kantsler & Steinberg 2009) or swinging (Noguchi &
Gompper 2007). A similar motion has been observed in simulations of extensible
elastic capsules (Bagchi & Kalluri 2009; Yazdani, Kalluri & Bagchi 2011).

TT, TB and VB motions are excited by the presence of a constant shear rate.
Therefore, applying just a pure oscillation (1.1) would make the vesicle undergo small
oscillations without exhibiting the TT, TB or VB motion. Therefore, we expect the
complex viscosity not to carry any information about these dynamics in this case. In
contrast, imposing a flow such as that given by (1.2) would excite (thanks to the
constant term) either TT, TB or VB (depending on structural and control parameters).
Imposing the oscillating part on top of the constant shear rate will then allow us
to distinguish one mode from another by studying the rheological response, as we
show in this paper. In other words, imposing the shear rate (1.2) leads to completely
different results: it allows us to probe the impact of microscopic dynamics (TT, TB
and VB) on the viscoelastic properties of suspensions.

We shall see that application of (1.1) would give always the same type of complex
viscosity in any region of parameter space. In contrast, application of (1.2) will
provide a response (complex viscosity) that depends on the regions in parameter space.
For example, we shall see that in the regions of TT the complex viscosity is entirely
different from that in the TB or the VB regions. In other words, the viscosity carries
information on the microscopic dynamics. With this respect the present theory is quite
distinct from other theories using known constitutive laws for complex fluids. Usually,
macroscopic constitutive laws average contributions over all possible orientations of
particles. If we follow the same approach in our case in order to calculate the complex
viscosity, our results would deliver a complex viscosity which has the same functional
dependence irrespective of the region of parameter space.

Our analysis suggests that the classical constitutive laws (such as the Oldroyd
B model) should be revisited by adopting the following approach: we should first
determine the response of particles to oscillations in each orientation (as discussed
in the present paper) and only then calculate the average. This method, albeit more
difficult, has an important advantage: in general, the state of the suspension is not
defined unambiguously by the stress. Thus the evolution of the stress, which is defined
by the state of the suspension, does not have to depend solely on the stress and the
imposed flow, but can have dependence on hidden variables lost in averaging when the
stress of the suspension is calculated. We show below that, indeed, it is impossible to
express the relaxation of the stress of a suspension of TB vesicles as a function of
the imposed flow and the deviation of the macroscopic stress from a steady-state value.
Instead, we shall take into account the state of each vesicle.

With this approach, we will explicitly show that the complex viscosity reveals
new features. We shall see that the new qualitative features reported here cannot be
reproduced by any reasonable macroscopic averaged constitutive law (e.g. the Oldroyd
B model), in which averages are made before application of shear rate (1.2). This
suggests that under addition of steady shear rate on top of oscillations, we should
perform the average in the sense we suggest in order to extract much more insightful
properties of η(ω).

1.1. The model
Our starting point is based on the microscopic constitutive law that has been recently
derived for a dilute vesicle suspension where the vesicle is close to a spherical
shape (Danker et al. 2007; Danker & Misbah 2007). We expect this analysis to
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capture the essential features not only for vesicles, but also for capsules, and their
biological counterparts, represented by RBCs. Dynamics of vesicles and capsules
have been reviewed recently (Barthès-Biesel 2009; Vlahovska, Podgorski & Misbah
2009). A vesicle is a closed membrane separating two liquids. The membrane is made
of a phospholipid bilayer, which can be regarded as an incompressible ideal two-
dimensional fluid. The internal and external liquids can be taken as Newtonian with
viscosities ηint and ηext , respectively. The volume and the surface area A of the vesicle
are conserved due to the incompressibility of the enclosed fluid and impermeability
and incompressibility of the membrane. This means that vesicles, unlike droplets, can
have non-spherical shapes even at the equilibrium. Weakly deflated vesicles assume an
axisymmetric prolate shape.

The dynamics of a vesicle under steady shear flow (Danker et al. 2007) is governed
by three dimensionless parameters: (i) the viscosity contrast

λ= ηint/ηext; (1.3)

(ii) the excess area

∆= A/r2
0 − 4π, (1.4)

measuring the deflation of the vesicle; and (iii) the capillary number

Ca = ηext γ̇0r3
0/κ, (1.5)

which is the shear rate rescaled by characteristic shape relaxation time. Here r0 is
the radius of a sphere containing the same volume as the vesicle and κ is the
bending rigidity coefficient of the membrane. We chose our units in such a way that
κ = 1, r0 = 1 and ηext = 1. When the viscosity contrast is low enough, the TT motion
prevails under shear flow, i.e. the shape and orientation of the vesicle relax to a certain
steady state, which depends on the parameters λ,∆ and Ca. If the viscosity contrast is
high, the vesicle dynamics under shear flow relaxes to a periodic TB motion, in which
the vesicle experiences almost solid-like rotation in the shear plane. For later purposes,
we found it worthwhile to recall the regions of stability of each motion in figure 1.
The transition from TT to TB region occurs directly via a saddle-node bifurcation for
small Ca. For higher Ca, there is a band between TT and TB regions where vesicle
dynamics relaxes to intermediate VB motion, during which the vesicle lies in the shear
plane and its longest axis oscillates periodically about the flow direction, while the
shape changes accordingly. The transition from TT to VB region occurs via a Hopf
bifurcation (Danker et al. 2007; Lebedev et al. 2007, 2008).

Vesicles are characterized by their conformation (shape and orientation), which is,
to leading order, an ellipsoid. The deviation of the shape from a sphere can thus be
parametrized by a quadratic form rirjFij(t), where ri is the ith Cartesian component
of the position vector r. The conservation of the enclosed volume and excess area ∆
impose (Danker et al. 2007) two relations among the components of F :

Tr F = 0, Tr F 2 = 5
48π

, (1.6)

so that we are left with four independent amplitudes Fij. The question amounts
to determining the evolution equation for Fij(t). This can be achieved by solving
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Figure 2 
Figure 3
Figure 4
Figure 5
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FIGURE 1. (Colour online available at journals.cambridge.org/flm) The phase diagram
distinguishing regions of TT, VB and TB motions for ∆ = 0.25. The marked points denote
the parameters for which the complex viscosity is studied in the present paper. They are
grouped according to the figure on which the spectra are presented. The dashed line separates
the regions of TT motion with underdamped (UD) and overdamped (OD) relaxation.

the Stokes equations with boundary conditions at the membrane, which leads to a
differential equation for Fij(t) (Danker et al. 2007)

∂Fij

∂t
= fij[Fi′j′, γ̇ (t)] (1.7)

where fij is a nonlinear function determined in Danker et al. (2007).
Let the imposed flow be V(x, y, z) = (γ̇ y, 0, 0). Then the effective viscosity is

defined as

η =Σxy/γ̇ , (1.8)

where the stress tensor of the composite fluid Σ is a function of the vesicle
conformation. It can be written as

Σij = ηext(∂iVj + ∂jVi)+ φ〈σij〉, (1.9)

where ηext(∂iVj + ∂jVi) is the stress of the pure solvent, while φ〈σij〉 accounts for the
vesicle contribution (φ is the volume fraction of the vesicles; we consider the dilute
regime) and 〈〉 refers to averaging over a large number of independent vesicles. The
stress produced by each vesicle is a function of its conformation and the imposed
shear rate

σij(t)= sij[Fi′j′(t), γ̇ (t)], (1.10)

i.e. the effective viscosity of a suspension of VB/TB vesicles appears to be
independent of time only as a consequence of averaging over a large number of
particles whose phases of VB/TB motion are randomly distributed. The functions fij

and sij are nonlinear and quite lengthy but their exact expressions are not important for
our purposes. They are listed in the appendices A and B for completeness.
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Assuming that amplitude of the oscillations (1.2) αγ̇0 is small, we can expect that
the stress of the suspension can be expanded in powers of α :

Σxy(t)=Σ (0)
xy + αΣ (1)

xy (t)+ O(α2), (1.11)

where

Σ (0)
xy = ηext γ̇0 + φ〈σ (0)xy 〉, (1.12)

Σ (1)
xy (t)= ηext γ̇0 cos(ωt)+ φ〈σ (1)xy (t)〉. (1.13)

Note that, as discussed above, we shall first expand σ in powers of α and then take the
averaging in order to calculate 〈σ (1)xy (t)〉.

We shall see in the appendix C when this expansion is appropriate. Substituting (1.2)
and (1.11) into (1.8), we get

η(t)= Σ
(0)
xy

γ̇0
+ α

(
Σ (1)

xy (t)

γ̇0
− Σ

(0)
xy

γ̇0
cos(ωt)

)
+ O(α2)

= η(0) + α
(
Σ (1)

xy (t)

γ̇0
− η(0) cos(ωt)

)
+ O(α2), (1.14)

where η(0) is the effective viscosity of the suspension under steady shear flow, which
has been already analysed by Danker et al. (2007), Danker & Misbah (2007) and
Vergeles (2008). We are interested here in the part of the viscosity that is linear in the
amplitude of the oscillations (i.e. is proportional to α) and has the same frequency ω.
Extracting the Fourier component of η(t) corresponding to the frequency ω, we get

η′(ω)= αφ
(
〈σ ′(1)xy (ω)〉

γ̇0
− η0

)
, η′′(ω)= αφ 〈σ

′′(1)
xy (ω)〉
γ̇0

, (1.15)

where η0 = 〈σ (0)xy 〉/γ̇0 is the intrinsic viscosity of the suspension under steady shear
flow. The value of σ (1)xy (ω)= σ (1)′xy (ω)+ iσ (1)′′xy (ω), the Fourier component of the α term
in the expansion of σxy(t), is obtained by numerical solution of (1.7) and (1.10). For
simplicity, below we shall use intrinsic complex viscosity defined by

η1(ω)= η(ω)/(αφ). (1.16)

2. Analysis of rheology in the TT phase
The results are presented in figures 2 and 3 (all calculations were performed for

∆ = 0.25). We have investigated η1(ω) both for a small shear rate, γ̇0 = 0.02, and
a larger one, γ̇0 = 2. Comparison of figure 2 (low γ̇0) and figure 3 (higher γ̇0)
reveals an important qualitative difference: in the TT regime the vesicle behaviour is
qualitatively the same for both shear rates (from the conformational point of view)
while the complex viscosities are entirely different. Rheology thus highlights subtle
hidden features that cannot be deduced by simply visualizing the vesicle conformation.

The understanding of this behaviour is related to the fact that in the TT regime
the vesicle, when driven away from its steady regime, relaxes to its fixed point (TT
regime) either in a monotonous way (OD, overdamped relaxation) or by exhibiting
damped oscillations (UD, underdamped relaxation). The dependence of the relaxation
type on the vesicle parameters has been found by Lebedev et al. (2007, 2008). Here
we confirm these findings using our model: oscillations take place at high enough
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FIGURE 2. (Colour online) Complex viscosity in the TT phase for lower γ̇0.
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FIGURE 3. (Colour online) Complex viscosity in the TT phase for higher γ̇0.

shear rates and viscosity contrast. The phase diagram in figure 1 shows the region
of parameter space where damped oscillations occur. As it happens for macroscopic
constitutive laws, the complex viscosity η1(ω) of TT vesicles is defined by the way
vesicle motion relaxes to the steady-state behaviour. The microscopic law, however,
allows the characteristic relaxation times to be related to the properties of vesicle
dynamics. As seen above, vesicles relax to TT motion monotonously in weak flows
and after a transient of damped oscillations for strong flows and high enough viscosity
contrasts. When the frequency of the imposed oscillations is close to the frequency
of the damped oscillations, a resonance occurs. The closer the TT/VB phase border
is (by increasing λ), the slower the decay of the damped oscillations is and the
more pronounced the resonance peaks are. In region where the TT regime is OD, no
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resonance can take place. This explains qualitatively the major difference between the
behaviour of η1(ω) at low and high shear rate.

Actually, it is possible to gain more insight with phenomenological approach: the
exact expression for η1(ω) in the TT phase can be found using linear response
approximation (i.e. by assuming the amplitude α of the applied oscillating shear
rate to be small enough). For ease of presentation, we use complex shear rate
γ̇ (t) = γ̇0(1 + αeiωt). In order to obtain the various quantities (e.g. the viscosity)
corresponding to the real shear rate (1.2) we simply need to rake the real part of the
solutions thanks to the linear response approximation. We write

Fi,j(t)= F(0)
i,j (t)+ αF(1)

i,j (t), (2.1)

where F(0)
i,j (t) is the solution for the constant shear rate γ̇0. Substituting (2.1) into (1.7)

and (1.10) and expanding in α, we get

Ḟ(1)
i,j (t)=

∂fi,j

∂Fi′,j′
(t)F(1)

i′,j′(t)+ γ̇0
∂fi,j

∂γ̇
(t)eiωt + O(α), (2.2)

σ
(1)
i,j (t)=

∂si,j

∂Fi′,j′
(t)F(1)

i′,j′(t)+ γ̇0
∂si,j

∂γ̇
(t)eiωt + O(α). (2.3)

The partial derivatives in (2.2) and (2.3) should be evaluated using the solution of
(1.7) for γ̇ (t) = γ̇0. This means that they are independent of time for TT motion
(since the vesicle conformation function, F(0)

i,j (t), which enters the above derivative, is
independent of time). TT vesicles possess mirror symmetry z→−z about the shear
plane, implying that Fxz = Fyz = 0. The oscillations of the shear rate do not break
this symmetry and thus cannot excite Fxz and Fyz. The constraints (1.6) leave us with
only two possible linearly independent deviations of Fij, denoted as ϕ1

i,j and ϕ2
i,j. Now

F(1)
i,j , ∂fi,j/∂Fi′,j′ϕb

i′,j′ and ∂fi,j/∂γ̇ can be represented as linear combinations of ϕa
i,j,

(a, b ∈ {1, 2}):

F(1)
i,j (t)= ξaϕ

a
i,j,

∂fi,j

∂Fi′,j′
ϕb

i′,j′ = Jabϕ
a
i,j,

∂fi,j

∂γ̇
= Gaϕ

a
i,j. (2.4)

Using this notation and the fact that the matrices ϕa
i,j form a basis in the subspace of

possible deviations, we can rewrite the (2.2) in a simpler way:

ξ̇a(t)= Jabξb(t)+ γ̇0Gaeiωt. (2.5)

Substituting ξa(t)= ξa(ω)eiωt, we get

ξ(ω)= γ̇0 [iωI − J]−1
· G, (2.6)

where I is the identity matrix. Denoting

Ha = ∂sxy

∂Fi,j
ϕa

i,j, (2.7)

we can write

σ (1)xy (t)= γ̇0

[
H · (iωI − J)−1

· G+ ∂sxy

∂γ̇

]
eiωt. (2.8)

The Jacobian matrix has in principle two distinct eigenvalues ν1 and ν2. Diagonalizing
J and using primes to refer to the components of vectors in the basis in which J is
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FIGURE 4. (Colour online) Complex viscosity in TB phase for low enough γ̇0.

diagonal, we get

η1 = η1∞ +
2∑

j=1

Xj

iω − νj
, (2.9)

where Xa = G′aH′a (no summation implied) and η1∞ = ∂sxy/∂γ̇ − η0 are independent of
frequency. The overdamping of the relaxation occurs when both eigenvalues are real,
while the relaxation is UD for complex eigenvalues. In the UD region, the non-zero
imaginary part of νi implies, in light of (2.9), a resonance in the spectrum. Note
that the extreme value attained by η1 is located close to ω = |Im(ν1)|. Finally, η1(ω)
diverges for ω = |Im(ν1)| if Re(νi)→ 0. When this condition is met, this means that
the TT regime is at the border of the loss of its stability against the VB mode. In
other words, the analysis of the effective viscosity can be used as a ‘blind’ probe to
detect the bifurcation from the TT into the VB regime. We have found that one of the
eigenvalues becomes equal to zero at the border of transition from TT to TB motion
(in agreement with Lebedev et al. (2007, 2008)), but η1(ω) remains finite for any ω.

Finally, we have checked that by solving the full nonlinear (1.7) we find a good
agreement with our linear response theory.

3. Analysis of rheology in the VB/TB phases
The results for VB and TB phases are presented in figures 4 and 5. Motion of

VB/TB vesicles is periodic and thus can be represented as a Fourier series. Each
harmonic in this series can be excited by the imposed oscillations. This leads to
spectra with resonances not only at the VB/TB frequency Ω but also at its multiples.

The (2.2) is not as easy to solve for VB/TB vesicles as in case of TT motion.
Nevertheless, an expression for η1(ω) can be derived by exploiting the periodicity of
VB/TB motions.

Let us first consider a homogeneous equation

Ḟ(1)
i,j (t)=

∂fi,j

∂Fi′,j′
(t)F(1)

i′,j′(t). (3.1)
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FIGURE 5. (Colour online) Complex viscosity in TB/VB phases for higher γ̇0.

The partial derivatives ∂fi,j/∂Fi′,j′ are calculated at the limit cycle of the VB/TB motion
and are thus periodic. Using the Floquet’s theorem, we express the solutions of the
(3.1) as

F(1)
i,j (t)= ξaetRabϕb

i,j(t), (3.2)

where ξa are constants defining the particular solution, Rab is a constant matrix and
ϕb

i,j(t) is some function having the same period as the VB/TB motion,

ϕb
i,j(t)= ϕb

i,j(t + T), T = 2π/Ω. (3.3)

The indices a, b run from 1 to 6 for a general problem, but the basic solutions
eRabtϕb

i,j(t) can be chosen in such a way that exactly two of them, eRabtϕb
i,j(t) with a and

b running from 1 to 2, will satisfy the constraints

F(1)
i,i (t)= 0, F(1)

i,j (t)F
(0)
i,j (t)= 0, F(1)

xz (t)= 0, F(1)
yz (t)= 0, (3.4)

which represent the fact that the perturbed solution describes a vesicle of the same
volume, surface area and z→−z symmetry as the unperturbed solution does. Later we
will only consider these two deviations because the others cannot be excited by the
oscillations of the shear rate.

The relaxation of the solutions (3.2) to zero is defined by the eigenvalues of the
matrix Rab. It is known (and can be checked by a straightforward substitution) that
the time derivative of the undisturbed limit-cycle solution, Ḟ(0)

i,j (t), satisfies the (3.1).
Since this function has the same periodicity in time as the limit-cycle solution F(0)

i,j (t)
itself, we conclude that this solution is an eigenvector of eTRab and the corresponding
eigenvalue is equal to 1. The second eigenvalue of eTRab must be real and comprised
between 0 and 1. The upper boundary comes from the fact that the limit cycle is
stable. The lower one comes from the fact that F(1)

i,j (t) lie in the tangent bundle of an
ellipsoid defined by the constraints (1.6) and Fxz = Fyz = 0. Ellipsoid is an orientable
surface and, consequently, det eTRab > 0. The solution (3.2) can thus be rewritten as

F(1)
i,j (t)= ξ1Ḟ(0)

i,j (t)+ ξ2eνtϕi,j(t), (3.5)
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where eTν and ϕi,j(t) are the second eigenvalue and the second eigenvector of eTRab .

The Floquet exponent ν is defined modulo iΩ and, for convenience, we choose it to be
real. In this case, the matrix ϕi,j(t) is also real. Since eTν < 1, we conclude that ν is
negative.

Now we can use the classical method of variation of the coefficients ξa in order to
solve the inhomogeneous system (2.2). Owing to the symmetry of the flow and volume
and surface area conservation, the values of ∂fi,j/∂γ̇ satisfy the constraints equivalent
to (3.4):

∂fi,i

∂γ̇
(t)= 0,

∂fi,j

∂γ̇
(t)F(0)

i,j (t)= 0,
∂fxz

∂γ̇
(t)= 0,

∂fyz

∂γ̇
(t)= 0. (3.6)

Because Ḟ(0)
i,j (t) and ϕi,j(t) make a basis in the space of matrices satisfying the

constraints (3.4) at each moment of time t, we can write

∂fi,j

∂γ̇
(t)= G1(t)Ḟ

(0)
i,j (t)+ G2(t)ϕi,j(t), (3.7)

where Ga(t) are certain periodic functions. Now we consider ξa to be functions of time
and plug (3.5) into (2.2), after using the fact that Ḟ(0)

i,j (t) and eνtϕi,j(t) are solutions of
the homogeneous system (3.1) to cancel some terms, we get

[ξ̇1(t)− γ̇0eiωtG1(t)]Ḟ(0)
i,j (t)+ [ξ̇2(t)eνt − γ̇0eiωtG2(t)]ϕi,j(t)= 0. (3.8)

Because Ḟ(0)
i,j (t) and ϕi,j(t) are linearly independent (as matrices) at each moment of

time t, we find that

ξ1(t)= ξ (0)1 + γ̇0

∫ t

0
G1(τ )eiωτ dτ, ξ2(t)= ξ (0)2 + γ̇0

∫ t

0
G2(τ )e(iω−ν)τ dτ. (3.9)

The functions Ga(t), being periodic in time, can be expanded into Fourier series:

Ga(t)=
∞∑

k=−∞
ga,keikΩt. (3.10)

Substituting (3.10) into (3.9), we get

ξ1(t)= ξ (0)1 + γ̇0eiωt
∞∑

k=−∞

g1,keikΩt

i(ω + kΩ)
,

ξ2(t)= ξ (0)2 + γ̇0e(iω−ν)t
∞∑

k=−∞

g2,keikΩt

i(ω + kΩ)− ν .

 (3.11)

Now we substitute (3.11) into (3.5) and the result into (2.3). We get

σ (1)xy (t)=
∂sxy

∂Fi,j
(t)

[
Ḟ(0)

i,j (t)

(
ξ
(0)
1 + γ̇0eiωt

∞∑
k=−∞

g1,keikΩt

i(ω + kΩ)

)

+ ϕi,j(t)

(
ξ
(0)
2 eνt + γ̇0eiωt

∞∑
k=−∞

g2,keikΩt

i(ω + kΩ)− ν

)]
+ γ̇0

∂sxy

∂γ̇
(t)eiωt. (3.12)
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To simplify this expression, we calculate the time derivative of the stress in
undisturbed VB/TB motion

ṡ(0)xy (t)=
∂sxy

∂Fi,j
(t)Ḟ(0)

i,j (t), (3.13)

and note that ξ (0)2 eνt can be omitted because eνt decays with time. The resulting
expression is

σ (1)xy (t)= ξ (0)1 ṡ(0)xy (t)+ γ̇0eiωt

[ ∞∑
k=−∞

ṡ(0)xy (t)g1,keikΩt

i(ω + kΩ)

+
∞∑

k=−∞

H(t)g2,keikΩt

i(ω + kΩ)− ν +
∂sxy

∂γ̇
(t)

]
, (3.14)

where H(t)= ϕi,j(t)∂sxy/∂Fi,j(t). As can be seen from (3.14), the suspension of VB/TB
vesicles shows linear response not only at the input frequency ω, but also at integer
multiples of the VB/TB frequency Ω (coming from the first part of (3.14)) and
frequencies of the form ω+ kΩ with integer k (coming from the second part of (3.14)).
Nevertheless, we only calculate the response at the frequency ω, for which we assume
that ω/Ω is not an integer. In practice, the closer ω is to a multiple of Ω, the longer
is the period of time over which σ (1)xy (t) needs to be measured in order to extract the
response at the frequency ω. Using the periodicity of ṡ(0)xy (t) and H(t), we set

ṡ(0)xy (t)=
∞∑

k=−∞
h1,keikΩt, H(t)=

∞∑
k=−∞

h2,keikΩt. (3.15)

Substituting these definitions into (3.14) and extracting the Fourier component at the
frequency ω, we get

η1 = η1∞ +
∞∑

k=−∞

X1,k

i(ω + kΩ)
+

∞∑
k=−∞

X2,k

i(ω + kΩ)− ν , (3.16)

where Xa,k = ha,−kga,k (no summation implied) and

η1∞ = 1
T

∫ T

0

∂sxy

∂γ̇
(τ ) dτ − η0. (3.17)

The expression (3.16) diverges as ω tends to an integer multiple of Ω. This effect
is a consequence of the linear response approximation: the deviations of Fi,j, that
diverge, correspond to the motion on the limit cycle. In other words, the application
of the oscillating shear rate makes the VB/TB motion irregular, such that the phase of
VB/TB oscillates in time. Because the effective viscosity produced by VB/TB vesicles
is finite, η1(ω) does not diverge even for large oscillations of the phase of VB/TB
motion. A more detailed discussion of this fact can be found in the appendix C.

The following method is used to obtain the spectra numerically for VB/TB phases:
the exciting frequencies are chosen to be commensurate with the frequency of VB/TB
motion. Then the period of time, over which the viscosity has to be measured, is
the least positive common multiple of Ω and ω. We chose the step of ω to be
Ω/2000, which requires to integrate the response in the viscosity over 2000 periods
of VB/TB motion in order to extract the corresponding Fourier component of the
stress. On experiment, such long integration is meaningless, since the periodicity of
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FIGURE 6. (Colour online) Complex viscosity for vesicles perpendicular to the shear plane
when γ̇0 = αγ̇0 cos(ωt).

VB/TB motion will be compromised by many factors, such as thermal noise and
hydrodynamic interactions. Reduction of the integration time leads to the appearance
of noise in the vicinity of the resonance frequencies.

4. Discussion
Our results have shown that the application of an oscillating part αγ̇0 cosωt (as is

done in several classical analyses of complex fluids) plus a constant shear rate reveals
several resonances in the complex viscosity. This expresses the fact that intrinsic
oscillating modes are excited whenever the oscillating frequency is equal to an integer
value of the intrinsic frequency of the TB or VB modes. In addition to the importance
for rheology itself, this idea can be used as a probe to determine the period of
oscillations of isolated entities. This will be valid as long as one considers dilute
enough suspensions for the pair hydrodynamic interaction to be negligible. In the
semi-dilute regime one expects interaction to shift and broaden resonance peaks.

The main message is the importance of the superposition of a constant shear flow to
the pure oscillation. For that purpose, consider the case where only a sinusoidal shear
rate γ̇ = αγ̇0 cos(ωt) is retained (this form of shear rate is the commonly used one
in analysis of viscoelastic effects of many complex fluids) and analyse the resulting
viscosity from our constitutive equations. The results are shown in figure 6. The
results of that figure differ markedly from those in figures 3–5. Imposing a standard
excitation, γ̇ = αγ̇0 cos(ωt), induces no preferable orientation of the vesicles regardless
of the value of the control parameters in the phase diagram of figure 1. Consequently,
the vesicles oscillate about their initial positions with the proviso that αγ̇0 be small
enough (in addition, the amplitude of these oscillations is small if αγ̇0 � ω). The
response of the suspension is averaged over all possible orientations of the vesicles in
this case.

The results for VB/TB motions can not be explained within the framework of
conventional phenomenological constitutive laws: such laws predict steady-state stress
under a constant shear rate, which is not the case for VB/TB vesicles. The response
of such systems to an application of small oscillation is defined by their relaxation
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towards the steady state. We would like to illustrate our remark on a popular Oldroyd
B model (Bird et al. 1987; Larson 1999). This model is widely used in many contexts,
and especially for dilute polymer solutions. The constitutive law in the Oldroyd model
is given by

τ [σ̇ − σ ·∇ ⊗ V − (∇ ⊗ V)T · σ ] + σ = η0(∇ ⊗ V +∇ ⊗ VT), (4.1)

where the dot stands for material derivative, τ is a characteristic relaxation time (the
relaxation of the Hookean spring of the dumbbell model) of the system, σ is the
intrinsic stress produced by the polymers and η0 is a characteristic viscosity associated
with the polymers. For the imposed flow V(x, y, z)= (γ̇ y, 0, 0), we get

τ σ̇xy − γ̇ τσyy + σxy = η0γ̇ (4.2)
τ σ̇yy + σyy = 0. (4.3)

Equation (4.3) shows that σyy relaxes to 0 regardless of the initial value. This allows us
to exclude it from (4.2):

τ σ̇xy + σxy = η0γ̇ . (4.4)

We see that (4.4) is linear despite the nonlinearity of the initial equation (4.1). This is
a consequence of particulate configuration of the flow, e.g. the nonlinear terms survive
if the oscillations are applied perpendicularly to the steady part. Under steady shear
flow, the viscosity is η0. If only oscillating shear rate γ̇ = αγ̇0eiωt is applied, the stress
has only oscillating part as well:

σxy(t)= αγ̇0η0

1+ iωτ
eiωt. (4.5)

If we divide the stress by the shear rate, we get a quantity that is independent of time:

η(ω)= σxy(t)

γ̇ (t)
= η0

1+ iωτ
. (4.6)

When steady and oscillating shear flows are combined γ̇ = γ̇0

(
1+ αeiωt

)
, the

oscillating part of the stress is the same as under the imposed flow γ̇ = αγ̇0eiωt

because of the linearity of (4.4): σxy(t)= σ (0)xy + ασ (1)xy (t), where

σ (0)xy = γ̇0η0, σ (1)xy (t)=
γ̇0η0

1+ iωτ
eiωt. (4.7)

That is, the oscillating part of the stress tensor is the same in both cases (compare
(4.5) and (4.7)). Since the rheometric devices deliver the torque (proportional to the
stress), one would a priori see no difference between the two situations. However, we
can still see theoretically some differences on the viscosity as shown below.

Calculating the complex viscosity, we get

η(ω)= σxy(t)

γ̇ (t)
= η0

[
1+ α eiωt

(1+ iωτ)

]
(1+ αeiωt)

−1 = η0 − α iωτη0

1+ iωτ
eiωt. (4.8)

From which we get (cf. (1.16)),

η1(ω)=− iωτη0

1+ iωτ
. (4.9)

Actually, the degeneracy of the results in stresses (equations (4.5) and (4.7)) is a
consequence of the simplicity of the Oldroyd B model. The situation is different if we
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take another constitutive equation, e.g. if we replace the upper convective derivative in
(4.1) with the Jaumann derivative, the half-sum of the upper and the lower derivatives
(see appendix A):

τ
Dσ

D t
+ σ = η0(∇ ⊗ V +∇ ⊗ VT). (4.10)

Equation (4.10) can be regarded as a very simple constitutive equation for a dilute
emulsion (cf. Cox 1969; Frankel & Acrivos 1970). The intrinsic time τ defines the
characteristic time of relaxation of droplet shape to a sphere when no flow is applied.

Writing in coordinates, we get

τ(σ̇xx − γ̇ σxy)+ σxx = 0, (4.11)

τ

[
σ̇xy + γ̇2 (σxx − σyy)

]
+ σxy = η0γ̇ , (4.12)

τ(σ̇yy + γ̇ σxy)+ σyy = 0. (4.13)

Under constant shear rate γ̇ = γ̇0, we get

σ = η0γ̇0

1+ τ 2γ̇ 2
0

, η = η0

1+ τ 2γ̇ 2
0

. (4.14)

Under pure oscillating shear flow γ̇ (t)= αγ̇0eiωt, we get

σ(t)= αη0γ̇0eiωt

1+ iωτ
, η(ω)= η0

1+ iωτ
. (4.15)

Under combined steady and oscillating shear flows γ̇ (t)= γ̇0(1+ αeiωt), we get

σ(t)= η0γ̇0

1+ τ 2γ̇ 2
0

(
1+ α 1+ iωτ − τ 2γ̇ 2

0

[1+ iτ(ω + γ̇0)][1+ iτ(ω − γ̇0)]e
iωt

)
, (4.16)

η(t)= η0

1+ τ 2γ̇ 2
0

(
1+ α −iωτ + ω2τ 2 − 2τ 2γ̇ 2

0

[1+ iτ(ω + γ̇0)][1+ iτ(ω − γ̇0)]e
iωt

)
, (4.17)

η1(ω)= η0

1+ τ 2γ̇ 2
0

−iωτ + ω2τ 2 − 2τ 2γ̇ 2
0

[1+ iτ(ω + γ̇0)][1+ iτ(ω − γ̇0)] . (4.18)

One can check that there is a resonance in the spectrum (4.18) located close to the
constant part of the shear rate γ̇0. Therefore, this model shows different responses to
oscillating shear rate (1.1) and to oscillations (1.2) imposed on top of steady shear
flow. We see that the spectra for TT vesicles in both relaxation regimes (OD and UD;
see figures 2 and 3) can be reproduced by a macroscopic constitutive equation. It is
not clear whether there is such a macroscopic constitutive law for a suspension of
VB/TB vesicles that reproduces the spectra on figures 4 and 5. It will be an interesting
task for future investigation to consider this question in detail.

The reported results on the complex viscosity are not devoid of experimental
testability. Recent experiments on suspension of vesicles (Kantsler et al. 2008; Vitkova
et al. 2008) and RBCs (Vitkova et al. 2008) under a constant shear flow agree with the
behaviour of the viscosity as a function of the viscosity contrast (excluding the case of
viscosity contrast less than 1, for which there is no agreement between experimental
observations by Kantsler et al. (2008) and Vitkova et al. (2008)). However, the studies
using small oscillations of the shear rate are much more demanding to the precision
of the rheometer: it is necessary to extract correctly a small oscillating signal from
the main constant (yet noisy) background. Another limitation comes from the fact that
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vesicles in suspensions have different values of capillary number (due to difference
in size) and excess area. Thus dilute suspensions of RBCs, which are naturally much
more homogeneous, are more promising targets for rheological studies under combined
steady and oscillating shear flows.

Finally, let us emphasize that the main outcome of the present analysis does not
depend on the precise form of the evolution equations. The spectra for the complex
viscosity reported here should arise in any other situation where the suspended entities
exhibit damped oscillations or periodic motions under constant shear rate. Known
examples of this categories are, in addition to vesicles, capsules and RBCs.

Acknowledgement
We acknowledge financial support from CNES and the ANR ‘MOSICOB project’.

Appendix A. Shape evolution equations
The evolution equation derived in Danker et al. (2007) (equation (52) of [3]) can be

written in a compact form as

DF

D t
= λ1e + λ2(Z0 + 6κ)F + λ3Sd(F · e)+ (λ4Z0 + λ5κ)Sd(F · F ) (A 1)

with

Z0 =−λ1F :e + λ̄2κ + λ3F :(F · e)+ λ5κF :(F · F )
λ̄′2 + λ4F :(F · F )

(A 2)

where we have adopted the abbreviation Sd[bij] = 1/2[bij + bji − (2/3)δijbll] and set

λ1 = 20

Λ
√
∆
, Λ= 23λ+ 32, λ2 =−24κ

Λ
, λ3 = 4800(λ− 2)

Λ2
(A 3)

λ4 = 288
√
∆(49λ+ 136)
Λ2

, λ5 = 41472
√
∆(3λ+ 7)

7Λ2
,

λ̄2 = 5λ2

32π
, λ̄′2 =

5λ2

192π
,

 (A 4)

and

e = ∇ ⊗ V + (∇ ⊗ V)T

2
. (A 5)

The application of the Jaumann (or corotational) derivative D/D t on a tensor M is
defined by

DM

D t
= 1

2
[M (1) + M (1)], (A 6)

where M (1) and M (1) are the upper and lower convected derivatives (known also as the
contravariant and covariant derivatives, respectively), and are defined as

M (1) = DM

D t
− M · (∇ ⊗ V)− (∇ ⊗ V)T · M (A 7a)

M (1) = DM

D t
+ (∇ ⊗ V) ·M + M · (∇ ⊗ V)T, (A 7b)

where DM/D t is the usual material derivative (equal to Ṁ in our case).
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Appendix B. The average stress tensor
The stress produced by a particle σij in (1.9) is calculated from the Batchelor

formula (Batchelor 1970):

σij =
∫
[f m

i xj + (ηint − ηext)(nivj + vinj)] dA, (B 1)

where f m is the force exerted by the vesicle membrane on surrounding fluids, n is
the normal vector and dA is the surface area element. Using the solution provided in
(Danker et al. 2007), the stress tensor as a function of the vesicle conformation can be
calculated. It is found to be

σ

3ηext
= 5

3
23λ− 16
23λ+ 32

e + 96
23λ+ 32

√
∆(Z0 + 6κ)F

+√∆ 5

14 (23λ+ 32)2
(529λ2 − 1008λ− 256)Sd(F · e)

−∆ 192

7 (23λ+ 32)2
[(1056+ 174λ)κ + (112− 17λ)Z0] Sd(F · F ). (B 2)

Appendix C. Discussion of the divergence of η1 in VB/TB phases
Here we discuss why the complex viscosity for VB/TB vesicles remains bounded in

the vicinity of a resonance frequency for a given amplitude of the imposed oscillations.
As was discussed, the divergence of η1(ω) in the linear response approximation in
VB/TB phases is related to the excitation of oscillations of the offset of the phase of
VB/TB motion. To study this problem, we use the following ansatz:

Fi,j(t)= F(0)
i,j (t

′)+ αξ2(t
′)eνt′ϕi,j(t

′), (C 1)

where ν and ϕi,j are the same as used in (3.5). The difference from the ansatz (3.5) is
that we use effective time t′ instead of the actual time t to absorb the term diverging
in linear response approximation. The difference, δt(t′) = t′ − t reflects the drift of
the phase of VB/TB motion under the effect of the imposed oscillations and no
assumption about its smallness will be made. Nevertheless, the time derivative of δt is
proportional to the amplitude of the imposed oscillations and thus will be considered
to have smallness O(α). Taking the time derivative of (C 1), we get

dFi,j(t)

dt
= dF(0)

i,j (t
′)

dt′

(
1+ dδt′(t′)

dt

)
+ α d(ξ2(t′)eνt′ϕi,j(t′))

dt

= dF(0)
i,j (t

′)
dt′

(
1+ dδt′(t′)

dt′

)
+ α d(ξ2(t′)eνt′ϕi,j(t′))

dt′
+ O(α2), (C 2)

where we used that dt′/dt = 1+O(α). Now we substitute (C 1) into the right-hand side
of (1.7):

fi,j(Fi′,j′(t))= fi,j(F
(0)
i′,j′(t

′), γ̇0)+ α ∂fi,j

Fi′,j′
(t′)ξ2(t

′)eνt′ϕi′,j′(t
′)

+αγ̇0
∂fi,j

∂γ̇
(t′)eiωt + O(α2). (C 3)
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All of the partial derivatives are evaluated for unperturbed motion but at the time t′.
Equating (C 2) and (C 3), we see that the O(1) terms cancel out. At order O(α) we get

1
α

dδt(t′)
dt′

F(0)
i,j (t

′)
dt′

+ dξ2(t′)
dt′

eνt′ϕi,j(t
′)= γ̇0

∂fi,j

∂γ̇
(t′)eiωt = γ̇0

∂fi,j

∂γ̇
(t′)eiω(t′−δt(t′)), (C 4)

where we have used the fact that eνtϕi′,j′(t) is a solution of the homogeneous
equation (3.1). Now we remember the decomposition (3.7), which allows us to
separate the equations of δt and ξ2 :

1
α

dδt(t′)
dt′
= γ̇0G1(t

′)eiω(t′−δt(t′)), (C 5)

dξ2(t′)
dt′
= γ̇0G2(t

′)e−νt′−iω(t′−δt(t′)). (C 6)

Since these equations have a solution, our initial ansatz (C 1) is justified. Equation
(C 5) can actually be integrated:

eiωδt(t′) = eiωξ (0)1 + αγ̇0

∫ t′

0
G1(τ )eiωτ dτ (C 7)

but, since we are not interested in the computation of η1(ω) in the general case, we
will not use this solution. Instead, we substitute the ansatz (C 1) into the expression for
the stress of the suspension (1.10):

σxy(t)= σxy(t
′)+ α ∂σxy

∂Fi,j
(t′)ξ2(t

′)eνt′ϕi,j(t
′)+ αγ̇0

∂σxy

∂γ̇
(t′)eiωt + O(α2) (C 8)

and use the straightforward definition to calculate σxy(ω):

σxy(ω)= lim
t0→∞

1
t0

∫ t0

0
σxy(t)e−iωt dt. (C 9)

The terms, diverging in the linear response approximation, are now combined into the
σxy(t′) term. Nevertheless, we shall also prove that O(α) terms remain bounded. The
proof is straightforward

|σxy(ω)| = lim
t0→∞

1
t0

∣∣∣∣∫ t0

0
σxy(t)e−iωt dt

∣∣∣∣6 lim
t0→∞

1
t0

∫ t0

0
|σxy(t)| dt

= lim
t0→∞

1
t0

∫ t0

0

∣∣∣∣σxy(t
′)+ α ∂σxy

∂Fi,j
(t′)ξ2(t

′)eνt′ϕi,j(t
′)+ αγ̇0

∂σxy

∂γ̇
(t′)eiωt

∣∣∣∣ dt

6 lim
t0→∞

1
t0

∫ t0

0

[
|σxy(t

′)| + α
∣∣∣∣ ∂σxy

∂Fi,j
(t′)ξ2(t

′)eνt′ϕi,j(t
′)
∣∣∣∣+ αγ̇0

∣∣∣∣∂σxy

∂γ̇
(t′)
∣∣∣∣] dt

6 max
06t<T
|σ (0)(t)| + αγ̇0 lim

t0→∞
1
t0

∫ t0

0

∣∣∣∣ ∂σxy

∂Fi,j
(t′)ξ2(t

′)eνt′ϕi,j(t
′)
∣∣∣∣ dt

+αγ̇0 max
06t<T

∣∣∣∣∣∂σ (0)xy (t)

∂γ̇

∣∣∣∣∣ . (C 10)
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The first and the third terms are clearly bounded because of the continuity of σ (0) and
its derivative, the second term can be evaluated using (C 6):∣∣∣∣ ∂σxy

∂Fi,j
(t′)ξ2(t

′)eνt′ϕi,j(t
′)
∣∣∣∣=
∣∣∣∣∣ ∂σxy

∂Fi,j
(t′)

[
ξ
(0)
2 +

∫ t′

0
G2(τ )e−ντ−iω(τ ′−δt(τ ′)) dτ

]
eνt′ϕi,j(t

′)

∣∣∣∣∣
6

∣∣∣∣ ∂σxy

∂Fi,j
(t′)ϕi,j(t

′)
∣∣∣∣
[
|ξ (0)2 | +

∫ t′

0
|G2(τ )|eν(t′−τ) dτ

]

6 max
06t<T

∣∣∣∣ ∂σxy

∂Fi,j
(t)ϕi,j(t)

∣∣∣∣ [|ξ (0)2 | +
1
|ν| max

06τ<T
|G2(τ )|

]
. (C 11)

This expression and, consequently, its average over long time is bounded, which
proves that oscillations of the stress in the suspension are finite but can become large
even for very small amplitude of the oscillations of the imposed shear rate.

Finally, the amplitude of the oscillations of δt(t′) is proportional to α/δω, where
δω =mink |ω−kΩ| is the difference between the frequency of the imposed oscillations
and the nearest integer multiple of the VB/TB frequency. We have to demand that
α/δω be small if we want the linear response approximation and the expansion (1.11)
to be valid.
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