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SUMMARY
Positioning and navigation data for unmanned surface vehicles (USVs) are extracted using the
Global Positioning System (GPS) and the Inertial Navigation System (INS) integrated with an
inertial measurement unit (IMU). The integration of quaternion with direction cosine matrix (DCM)
with the aim of obtaining high accuracy with complete system independence has been effectively
used to supply position and attitude information for autonomous navigation of marine crafts. A DCM
integrated with a quaternion provided an advanced technique for precise USV attitude estimation
and position determination using low-cost sensors. This paper presents the implementation of an
INS developed by the integration of DCM and quaternion.

KEYWORDS: Inertial measurement unit; Inertial navigation system; Quaternion, Direction cosine
matrix.

1. Introduction
It has become a standard procedure to equip unmanned surface vehicles (USVs) with Global
Positioning System (GPS) to provide accurate position and velocity data for autonomous navigation.1

The convergence of position data management systems and communication technologies has induced
the need for improvement in the development of reliable in-vehicle navigation and guidance systems.1

There has been an increase in the use of automation in boats, ships and other marine vehicles for
scientific, military and commercial purposes. This has led to an improvement in the operational
reliability, efficiency and safety of marine vehicles.2–3 The interest in the use of USVs for the purpose
of search and rescue has been growing with particular emphasis on reliable, accurate and continuous
availability of attitude data for attitude control.4 Enhancing the safety and performance of marine
vehicles is important in the development of marine craft. This has influenced the development of
intelligent systems. These systems are used by marine vehicles to gather actual information from the
environment. The data gathered are used to predict the marine craft motion while ensuring optimal
performance of the craft.5

Different categories of marine vehicles require continuous and precise navigation. They also
require position information, with the integrity of the navigation and positioning system being key
factors in the performance of marine vehicle.6 Different navigation algorithms have been developed
over the years to provide navigation and position data for unmanned systems. These have been used
in the control of autonomous vehicles.7 Interests in developing and using integrated navigational
systems have initiated several navigation support systems that are widely in use today.2,5

Research in navigation algorithms and advancements in control engineering offer techniques
in determining large-scale changes, which may occur in the positioning and navigation of marine
vehicles.3 The angular rates and accelerations computed using Inertial Measurement Unit (IMU)
are integrated by the Inertial Navigation System (INS) algorithm to obtain the position, velocity
and attitude of marine vehicle. As a result of IMU inaccuracies and integration errors, the solutions
obtained diverge quickly.15 This prompts the need for closed-loop systems to stabilize the integration.
Integration of INS is usually done with a Complementary Kalman Filter (CKF) or an Extended Kalman
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Filter (EKF).8 Integrating quaternion with direction cosine matrix (DCM) provides a technique for
obtaining high accuracy in short time intervals with complete system independence. This has been
used to supply position and attitude information for autonomous navigation of marine crafts.20

This paper presents the implementation of DCM and quaternion in providing an advanced technique
for precise USV position, attitude estimation and determination. This was done using low-cost sensors.
The navigation system algorithm was based on the integration of precise INS with GPS using data from
gyros. Drifts in the INS were compensated for by using GPS, digital compass and accelerometers.
The rationale in using DCM in attitude estimation and determination was to attain the next level in
stabilization and control of USV. Thus, an essentially stable marine craft with rudder control was
converted to a USV, controlled using a range of stabilizing sensors.9 A DCM was derived from the
information streaming in from the gyros. This information formed the rotation matrix of marine
vehicle. The coordinate system of marine vehicle was located at the centre of gravity of the craft. A
vector in the body coordinate system of the craft was transformed into another coordinated system
through the multiplication of the vector by the rotation matrix. The reverse transformation of the
vector was achieved through the multiplication of the new vector by the inverse of the rotation matrix.
The quaternion was computed from initial inputs and values arising from the rotation matrix.9 It
should be noted that it is outside the scope of this paper to delve into comparison between Kalman
filter and DCM.

2. Literature Review
Advancements in navigation algorithms use low-cost IMUs to provide position, velocity and
vehicle attitude solutions that are reliable.16,22 Such navigational algorithms make use of different
complementary filters to ensure global stability of the navigation algorithm. A complementary filter
was used in the DCM computational algorithm to provide stability in the navigation algorithm.
Complementary filters provide ways of fusing noisy signals that have complementary spectral
properties.23 A direct complementary filter uses a nonlinear observer obtained from quaternion
formulation. A passive complementary filter uses nonlinear equations to predict angular velocity
components in an estimator frame of ref. [24]. The representation of passive complementary
filter using direct data obtained from an IMU describes an explicit complementary filter. Explicit
complementary filters are used for attitude estimation on low-pass filtering to obtain low-frequency
attitude estimates. The low-pass filter inputs are obtained from accelerometer and the gyro data.10

These filters can be used in special orthogonal groups in attitude estimation and computation.11

The different implementations of the filters can bring about exponential convergence of the navigation
algorithm.12 The performance of filters has proved to be advantageous in DCM algorithm formulation.
There has been an increased use of coupled nonlinear attitude estimation and control for attitude
stabilization using low-cost IMU on USVs.13 To maximize the potential of low-cost IMU, it was
necessary to perform multisensory data fusion DCM computational processes with an IMU and a
GPS. Integrating low-cost IMU into the navigation algorithm for marine vehicle and using DCM as
a computational engine for attitude estimation allowed for fast calibration and alignment of the INS.
The INS was optimized for marine vehicle navigation. The end results from DCM were also achieved
by using the Kalman filtering process.4,6,14 The filtering algorithm can be adaptive to the system.
This makes it possible for errors arising from the algorithm to be reduced.2

3. Numerical Analysis
Marine vehicle motion on open waters was described by its translational and rotational motion
characteristics. The movement of the centre of gravity of marine vehicle was used to describe
the translational motion. Movements around the centre of gravity of marine vehicle were used to
represent the rotational motion.20 A fixed axis placed on the body of marine vehicle enabled an
adequate representation of the orientation of the vehicle with respect to the earth-fixed frame of
reference. The orientation of marine vehicle was indicated through rotations about the fixed axis.19

Orientations of marine craft were generally kept in check through the use of nonlinear differential
equation. The nonlinear differential equation described marine vehicle’s kinematics.9 The marine
vehicle kinematics represented an application of Newton’s laws to the time rate of change of vector
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Fig. 1. USV coordinate system.

rotation with respect to applied torques and moments. This provided insights into the rotation of
marine vehicle as a rigid body. It also expressed different ways in which the rotations transformed
from one coordinate system to another.

The USV maintained the relevant properties of the coordinate system during coordinate system
transformation. Nonlinear differential equations were used to represent the marine vehicle kinematics.
It also expressed the rigid body rotations about the fixed body axis. The time evolution of the
orientation of marine vehicle with respect to its vector rotation rate was represented by the marine
vehicle kinematics.9 Integrating the nonlinear differential equation enabled the use of a series of
matrix compositions. Numerical errors were introduced with the use of numerical integration in
the computational analysis of the marine vehicle kinematics. This does not yield the same result
as symbolic integration. The representation of exact gyro data with precise symbolic integration
produced an accurate rotation matrix. Errors were generated from the use of exact gyro data without
using precise symbolic integration.18

Integration error: The use and implementation of finite step time in sampling IMU data at a
finite sampling rate involved a numerical integration process. This generated numerical errors in the
computation and analysis of IMU data.25 Different methods were used to analyse the process. This
allowed for certain assumptions to be made about the data samples during integration. A constant
rotation rate of marine vehicle over step-time provided a useful assumption and technique in the
analysis of integration error. The error introduced in the computation and analysis of the integration
error was proportional to the rotational acceleration of the vehicle.26

Quantization error: Digital representations of IMU data values were finite. This introduced
quantization errors in the navigation algorithm.27 Quantization errors start at the analog to digital
converter in the microcontroller and build up during the computation of data. These do not preserve
all the navigational data.28

4. Axis Representation
Attitude estimation and determination for marine vehicle was focused on the body-fixed frame of
reference (b-frame). This allowed for approximations and assumptions on the location of the centre of
gravity of marine vehicle. Euler angles were used to represent the angular rotation of marine vehicle
about the b-frame of reference. The frame of reference is shown in Fig. 1. The following rotations
were possible in the body-fixed coordinate system describing Euler angles in the frame of reference:

1. Rotations about the x-axis expresses the roll angle ϕ.
2. Rotations about the y-axis expresses the pitch angle θ .
3. Rotations about the z-axis expresses the yaw angle ψ .

These are represented in the vector form as follows:

�nb�

⎡
⎣ ϕ

θ

ψ

⎤
⎦ , (1)
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and the rotation matrix is expressed as

R (�nb) =
⎡
⎣ cψcθ −sψcϕ + cψsθsϕ sψsϕ + cψcϕ sθ

sψ cθ cψcϕ + sϕsθsψ −cψsϕ + sψcϕsθ

−sθ cθsϕ cθcϕ

⎤
⎦ . (2)

Considering the linear transformation of marine vehicle which expressed vehicle dynamics in 3-
degree-of-freedom, the position and heading of marine vehicle is expressed as:

η = [x, y, ψ]T . (3)

The velocity vector is expressed as:

ν = [u, v, r]T . (4)

The rotation matrix expressed as a function of the marine vehicle heading is

R (ψ) =
⎡
⎣ cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0
0 0 1

⎤
⎦ . (5)

The rotation of the velocity vector in the earth-fixed coordinate system is represented as:

•
η = R(ψ)ν. (6)

5. DCM Formulation
Nonlinear differential equations of motion provided the platform in which DCM was computed. The
time rate of change of direction cosines has a distinct relationship with the gyro signals. The aim
in using inputs from gyro to compute direction cosines was to make appropriate approximations.
The approximations maintained and kept in check the nonlinearity of the equations of motion. A
mechanical gyro has the disadvantage of being fixed in a particular position and space. Electronic
gyros provided the required outputs as they rotated with marine vehicle. Outputs from the electronic
gyros were proportional to the turning rates of marine vehicle. A direct integration and implementation
of gyro signals did not produce the required results as gyro rotations are not commutative. This is
due to the importance of the sequence of rotation in the computation of DCM.18 The kinematics of
rotations indicates that the rate of change of a rotating vector due to its rotation is denoted as:

dr(t)

dt
= ω(t) × r(t), (7)

where ω(t) represents the rotation rate of the vector. This is equivalent to the rotation rate of the
rotation matrix. The following observations were made in the use of Eq. (7).

1. Equation (7) is a nonlinear differential equation whose nonlinearity was maintained in the DCM
computation. Rotation vector inputs were cross-multiplied with a variable that was integrated
at a later stage in the computation of DCM. Linear methods were used in Eq. (7) by applying
appropriate approximations.

2. The vectors in Eq. (7) were measured in the same coordinate system or frame of reference.
3. The order of the resulting components of the matrix was reversed and the signs changed. This

was because the cross products of the vectors in Eq. (7) were anti-commutative.

Information from the initial conditions and time history of the rotation vector facilitated the
numerical integration of the cross product of rotating vectors. This was used to track the rotating
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vector in the following process:

r(t) = r(0) +
∫ t

0
dθ(τ ) × r(t), (8)

where

dθ(τ ) = ω(τ )dτ, (9)

r(0) indicates the starting value of the vector,
∫ t

0 dθ(τ ) × r(t) is the change in the vector.
The elements of the rows and columns of the rotation matrix were regarded as rotating vectors.

This assumption created a model that resolved the differences in rotations that occur in a body-fixed
coordinate system and an earth-fixed coordinate system. The symmetry property in the rotation matrix
was used while considering the above assumption. The earth-fixed coordinate system rotated in equal
and opposite directions to the rotation of the body-fixed coordinate system in the earth-frame of
reference. The earth-frame of reference was tracked from gyro signals by simply changing the signs
of gyro signals. The rotation matrix elements resulting from the cross-product computations were
interchanged and the signs changed back again,9

rearth(t) = rearth(0) +
∫ t

0
rearth(τ ) × dθ(τ ), (10)

where dθ(τ ) = ω(τ )dτ and rearth(t) indicates the earth axis as seen by marine vehicle. By using
and implementing the same matrix manipulation used by Euston and Mahony,10,11,13 Eq. (10) was
represented as:

rearth(t + dt) = rearth(t) +
∫ t

0
rearth(t) × dθ(t), (11)

where dθ(t) represents ω(t)dt . The correction made to the rotation rate of gyro measurements was
taken from the proportional and the integral elements of the drift compensation feedback controller.
This was done to produce an adequate estimate of the true rotation rate of marine vehicle,

ω(t) = ωgyro(t) + ωcorrection(t). (12)

ωgyro(t) in Eq. (14) is the three-axis gyro measurements and ωcorrection(t) is the gyro correction
component fed back to the controller. In the computation of DCM components, accelerometers and
GPS were used as reference vectors. They were used to compute rotational error. The result from
the rotational error computation was then fed back into the computation. This was also fed into the
rotation matrix update sequence through a feed back controller. Equation (10) was used in the feed
back control process. The computation of Eq. (10) was repeated for each of the earth fixed axes and
the result is presented as:

R(t + dt) = R(t)

⎡
⎣ 1 −dθz dθy

dθz 1 −dθx

−dθy dθx 1

⎤
⎦ , (13)

where dθx = ωxdt , dθy = ωydt , dθx = ωxdt . Equation (13) was used in updating the DCM
components using inputs from gyro signals. The above result can be compared with the result
obtained by Euston and Mahony.10,11,13 The terms having the value of one in the diagonal of the
matrix in Eq. (13) indicate the first term in Eq. (11). The second term in Eq. (11) indicates smaller
off-diagonal components of the matrix. The implementation of Eq. (13) was done through repeated
matrix multiplications with short time steps. Twenty-seven matrix multiplications and 18 additions
were required for each matrix multiplication.10,11,12,18 To maintain the integrity of the matrix in each
time step, approximations were made to shorten the time steps to about 0.015 s. A maximum change
in the components of the rotation matrix were made within 1.5 to 2% of the time step such that the
second-order terms that arose were ignored within the same time range. The use of Eq. (13) by itself
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without gyro signals accumulated gain errors, gyro drift offset and numerical round-offs. Using Eq.
(11), the gyro signals yielded the desired result with very low gyro drift and improved performance.

5.1. Renormalization of matrix
Numerical errors reduce the orthogonal properties of the rotation matrix to approximations rather
than identities.29 The effect of this reduction is that the earth coordinate system and the body-fixed
coordinate system are no longer describing the motion of marine craft in space. Numerical errors
accumulate at a very slow rate and this creates the conditions that enforce and reinforce the conditions
of matrix orthogonality.10 This process is the renormalization of the rotation matrix. This is done
by computing the dot product of X and Y rows of the rotation matrix. The computation effectively
measures by how much X and Y rows are rotating towards each other,11

X =
⎡
⎣ rxx

rxy

rxz

⎤
⎦ Y =

⎡
⎣ ryx

ryy

ryz

⎤
⎦ , (14)

error = X • Y = XT Y = [
rxx rxy rxz

]
⎡
⎣ ryx

ryy

ryz

⎤
⎦ . (15)

Each of the X and Y rows are allocated half of the errors, and they are also rotated in the opposite
direction by cross coupling,

⎡
⎣ rxx

rxy

rxz

⎤
⎦

orthogonal

= Xorthogonal = X − error

2
Y, (16)

⎡
⎣ ryx

ryy

ryz

⎤
⎦

orthogonal

= Yorthogonal = Y − error

2
X. (17)

Allocating equal gain values to each of the X- and Y-row vectors resulted in lower residual error after
correcting and updating the matrix. This was not the case if the error was allocated only to the row
vectors of the matrix. The next stage of computations involved the adjustment of the Z row of the
rotation matrix to comply with the orthogonality requirement of the matrix. The Z row was adjusted
such that it was orthogonal to both X and Y rows. This was done by equating the Z row to the cross
product of X- and Y-row vectors,

⎡
⎣ rzx

rzy

rzz

⎤
⎦

orthogonal

= Zorthogonal = Xorthogonal × Yorthogonal. (18)

The last step in the rotation matrix renormalization process involved scaling the row vectors in the
rotation matrix. This was done to achieve a magnitude of unity in each of the components of the
matrix. To scale the matrix elements, each of the row components were divided by the square root
of the sum of the squares of the elements in that row. Taylor’s expansion was applied to the scaling,
bearing in mind that the magnitudes of the matrix components may not be greater than one. This
resulted in magnitude adjustment equations for row vectors,

Xnormalized = 1

2

(
3 − Xorthogonal • Xorthogonal

)
Xorthogonal, (19)

Ynormalized = 1

2

(
3 − Yorthogonal • Yorthogonal

)
Yorthogonal, (20)
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Znormalized = 1

2

(
3 − Zorthogonal • Zorthogonal

)
Zorthogonal. (21)

The result generated by the above equations implied that the magnitude of each row vector was
adjusted to unity. The row vector adjustment was done by subtracting the dot product of the vector
from itself, subtracted from three, multiplied by a half and then multiplying each element by the
result. The computations for each step of the integration are within 0.020 s.18

5.2. The quaternion
Due to the usage of Euler angles in rotation matrix computations, singularities occur in the
rotation matrix computations. Singularities can be avoided if the rotation matrix is treated as having
orthonormal row vectors as discussed in earlier sections. Singularities can also be avoided by using
quaternion to compute the elements of the rotation matrix. Quaternion arose from the transformation
between Euler angles and Euler parameters. The transformation resolves the problem of singularity
that existed with the use of Euler angles even though they were more intuitive and readily available to
use.13 Given that Euler angles θ , ϕ, ψ are known, the quaternion q = [ε1, ε2, ε3, η]T was computed
through the following matrix manipulations19:

R1 =
⎡
⎣R11 R12 R13

R21 R22 R23

R31 R32 R33

⎤
⎦ , (22)

R44 =
3∑

i=j

Rjj , (23)

|P4| =
√

1 + 2R44 − R44, (24)

P1 = R32 − R23

P4
P2 = R13 − R31

P4
P3 = R21 − R12

P4
, (25)

e = [e1, e2, e3, e4]T = [ε1, ε2, ε3, η]T . (26)

Hence,

e1 = ε1 = P1

2
e2 = ε2 = P2

2
, e3 = ε3 = P3

2
e4 = η = P4

2
, (27)

and the new rotation matrix free of singularities is presented as:

E(e) =

⎡
⎢⎣

1 − 2
(
ε2

2 + ε2
3

)
2 (ε1ε2 − ε3η) 2 (ε1ε3 + ε2η)

2 (ε1ε2 + ε3η) 1 − 2
(
ε2

1 + ε2
3

)
2 (ε2ε3 + ε1η)

2 (ε1ε3 + ε2η) 2 (ε2ε3 + ε1η) 1 − 2
(
ε2

1 + ε2
2

)

⎤
⎥⎦ . (28)

Equation (28), which represents the new rotation matrix, was used as the basis of DCM computation.

5.3. Euler parameters and singularities
Euler angles and Euler parameters were used to describe the orientation of marine vehicle as they
were more intuitive and are frequently used parameters in the description of rigid body orientation.
It was convenient to use the Euler angle representation. The three Euler parameters correspond to
roll, pitch and yaw angles of marine vehicle. These parameters were not global in their usage without
matrix singularities. As a result of singularities being present and also a property of Euler angles,
pitch angles, θ = ± 90◦ , were not defined. For practical purposes, these angles cannot be reached as
a result of the meta-centric restoring forces of marine vehicle. The “wraparound” effect associated
with the Euler angle representation implied that Euler angles can be integrated up to the values outside
the ± 90◦ range of pitch and θ = ± 180◦ range of roll and yaw. This problem was addressed with
the described matrix renormalization procedure that was adopted.

https://doi.org/10.1017/S026357471400201X Published online by Cambridge University Press

https://doi.org/10.1017/S026357471400201X


1002 USV attitude estimation

Drift Adjustment

Fig. 2. DCM block diagram.18

To avoid singularities and “wraparound” problems, a parameter description known as quaternion
based on Euler parameters was applied to the rotation matrix. The advantage of using quaternion was
in the representation and computational efficiency of the rotation matrix. The computations involved
sets of numerical integrations using sets of nonlinear differential equations.19

5.4. Drift correction
Gyro signal drift correction, as shown in Fig. 2, used the orientation of the reference vector with no
drift characteristics. The feedback loop shown in Fig. 2 indicated the model and pattern in which the
microcontroller was programmed to achieve real time results. The reference vectors were provided
with accelerometers and the GPS system. The transient properties of gyro signals were the point
of focus in drift correction process. Hence, little or no attention is paid to the transient properties
of the reference vector. The performances of gyros were manageable with an uncorrected offset
in the order of few degrees per second. The detection of gyro offsets involved the comparison of
orientation references with gyro signals. This provided a negative feedback loop to gyro to account
and compensate for errors in gyro signals as shown in Fig. 2. The procedure used in the gyro drift
correction is as follows:

1. Data are first received from gyro.
2. Rotation vectors were aligned, measured and computed. Values of reference vectors were

computed. This enabled the use of orientation reference vectors to detect orientation error.
3. The detected orientation error vectors were fed back into the loop through a PI feedback controller

to produce the required rotation rate adjustment for gyros.
4. Depending on the sign convention of the rotation error, the output from PI controller was added

or subtracted to real gyro signals.
5. The procedure was repeated again in a loop.

Global Positioning System and accelerometers were important devices used as reference vectors.
Accelerometer provided the reference vector for the roll and pitch axis of marine vehicle. The yaw axis
reference vector was provided by GPS. The cross products of estimated and measured vectors from
DCM were used for the computation and detection of orientation error. Cross products of vectors were
computed. The magnitude of the cross products was proportional to the sine of the angle between the
vectors and the direction of the product perpendicular to the vectors. The result indicated the amount
of rotation required by the measured vector to be parallel to the estimated vector. The result was fed
back for comparison with gyro signals through PI controller. This indicated an equivalent negative
orientation error. It forced the estimated orientation to track reference vectors.

Drifts in gyro signals were corrected from these processes.21 The cross product of the measured
reference vector computed with an equivalent vector from DCM indicated the orientation error.
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An approximate equivalence to the rotation matrix was required to bring the reference vector into
alignment with the computed vector.18 The number of rotations required for vector alignment is
an important factor in computations. The correctional rotation vector was computed from the cross
product of estimated and reference vectors mapped in DCM. The PI feedback controller also has
a functional requirement of cancelling thermal drift with zero residual orientation error and gyro
offsets. The mapping of reference vectors with gyro signals through DCM was dependent on the
orientation of IMU,22

Total Correction = WRP Roll/Pitch Correction Plane. (29)

This is then fed into PI controller,

ωP Correction = KP Total Correction, (30)

ωI Correction = ωI Correction + KIdt Total Correction, (31)

ωCorrection = ωP Correction + ωI Correction. (32)

5.5. Accelerometer
Acceleration and gravity quantity were measured with an accelerometer. This measurement device
enabled the measurement of linear movements in the fixed-body reference frame of marine craft.
Accelerometer was important in the correction of roll and pitch drifts because it has zero drift in its
outputs. The implementation of accelerometer in navigation algorithm provided forward acceleration
and deceleration of marine craft, in addition to roll-pitch drift correction. Accelerometer signals
shown in Fig. 4 have the characteristic of not accumulating errors in the same manner as gyro signals
in Fig. 3. There are no drifts in the output of an accelerometer. The properties of accelerometer
allowed it to produce direct measurement of orientation instead of time-rate of change of orientation.
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5.6. Ocean waves and wind
The effects of wind and waves on the DCM navigation algorithm played an important role in keeping
the marine vehicle on course. The effects of ocean waves and wind were regarded as drifts in
navigation algorithm. These forces in nature gradually cause marine vehicle to rotate and go off
course. Feedback gains were used to adapt the controller to counteract the effects of winds and waves
in situation where marine vehicle was off course.9

6. DCM Navigation and Control
The guidance, navigation and control of marine vehicle in the Cartesian frame of reference were
achieved by implementing cross products and dot products of vectors generated in the frame of
reference by the following procedure:

1. The data representing the pitch attitude were used to control the pitch of marine vehicle. This was
computed from the dot product of the roll axis of marine vehicle with the vertical axis associated
with the earth-centered frame of reference. The dot product of the roll axis with the yaw axis
represented the direction matrix component, rzx . This was also represented by the sine angle
between the pitch axis and the earth-fixed reference plane.

2. The roll of marine vehicle was controlled from the roll attitude data. The roll attitude data were
computed from the dot product of the pitch axis on marine vehicle with the earth-centered vertical
axis. The direction matrix component rzy represented the dot product of the pitch axis with the
vertical axis. This was also represented by the sine angle between the pitch axis and the horizontal
in the earth-fixed frame of reference.

3. Data from yaw attitude were used in navigating the marine vehicle in the desired course. The
yaw attitude was computed from the cross product of the roll axis of marine vehicle with a vector
in the desired course and heading. The dot product of the roll axis taken with the desired course
yielded the opposite motion of marine vehicle in the opposite direction of the desired course.
Negative values from the computation indicated 90◦ off course by marine vehicle.

4. The turning rate of marine vehicle about the z-axis was determined from the transformation of
the gyro rotation vector to the earth-fixed reference frame. Dot product of the result was then
computed with the vertical axis. The computation of marine vehicle’s turning rate was represented
by

ωxrzx + ωyrzy + ωzrzz. (33)

6.1. GPS navigation
Global Positioning System provided drift-free reference vector required for yaw orientation
correction. Every second GPS provided data representing the magnitude and direction of marine
vehicle. Orbiting satellites in space transmitted GPS signals containing information about the location
and velocity of marine vehicle. The GPS receiver transmitted data in NMEA format, which was
delimited by commas in readable ASCII format. Accurate data regarding marine craft heading were
achieved as the GPS receiver was also in motion with marine vehicle. The marine vehicle velocity
vector was transmitted to microcontroller from GPS at per second interval. This represented change
in the position of GPS antenna per second. The GPS unit provided velocity and position of marine
vehicle in two coordinates. The first coordinate has GPS signals containing the longitude, latitude,
altitude, velocity and course over ground. The angle of the desired course measured in clockwise
direction from North represented the course over ground. This was also equivalent to the angle
computed mathematically in counter-clockwise direction around the z-axis of the marine vehicle
body fixed frame of reference. The GPS sent position and velocity data with the origin of the X, Y,
and Z frames of reference at the centre of the earth.

6.2. GPS signal characteristics and dynamics
The following properties were exhibited by the transmitted GPS signals:
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1. Latency: In certain operational conditions, the GPS unit took 10 s or more before transmitting
any data. This resulted in the delay in the transmission of position data.

2. Filtering: GPS units had an embedded filter. The filter improved the accuracy of position and
velocity data estimation. This provided a smoothing effect on the transmitted data when GPS
changed its position or velocity. The new data were received in 2 ms as a result of smoothing
effect.

3. Static navigation and path smoothing: GPS had a radio embedded in its design. This radio enabled
GPS to ignore abrupt changes in position and velocity data. This provided path smoothing effect
for navigation setup. The option of static navigation was used in situations where perceptible
variations in location were concealed, given that the velocity fell below a certain value. These
two options were mostly set as default by the manufacturer.

In 1 s, an exponential response of GPS unit was produced from its dynamic response. The step
change took roughly about 3 s for completion. A small error was introduced in GPS computation if
the dynamic response of GPS was ignored. To compensate for this error, a filter was designed with
GPS and introduced between DCM and input to yaw drift correction. The GPS navigation algorithm
assumed that the marine craft moved or followed the specified heading and direction. Transient errors
in the above assumption physically do not have any impact on the performance of the algorithm. Drift
correction in the DCM algorithm was not only achieved through the use of GPS signal. This was
also achieved by using a magnetometer or a digital compass. Strong winds and ocean waves violated
this assumption. To ensure that the assumption was accurate, moderate feedback gains were applied
to the control system. The error at the input of the drift correction feed back was represented by the
difference between the desired heading of marine vehicle and current heading. This allowed DCM to
adapt to changes caused by wind and waves. The marine vehicle was rotated by the amount required
to keep it travelling along the desired course.9

7. DCM versus Kalman Filter
Kalman filter is a variant of an optimal mean square error algorithm.17 It utilized state space methods
in the determination and computation of estimates and predictions. State space definitions of problems
allowed for the implementation of Kalman filter in discrete domain. Kalman’s recursive algorithm
allowed for state space estimates as shown in Fig. 3. USV attitude estimates were determined using
Kalman filter. Results from Kalman filter are shown in Figs. 9 and 10. The DCM algorithm when
compared with a known algorithm, such as Kalman filter, used 5% of microcontroller capacity. The
floating point computations associated with the Kalman filter algorithm were usually intense for
the microcontroller running at low megahertz. The DCM algorithm performed more efficiently than
the simple Kalman filter algorithm. It is matched in efficiency only by the extended Kalman Filter
algorithm. The results shown in Figs. 6 and 7 are appreciated more when the results were compared
with the actual physical rotation of marine vehicle in real time.

Figure 8 shows the performance of a complementary filter included in the DCM algorithm. Rotation
in the yaw axis from +180◦ to −180◦ degrees depicted the smoothing effect of the complementary
filter included in the algorithm. Low-pass filtering of IMU data required the fusion of complementary
filter data with low-frequency certainty of the marine vehicle attitude and raw gyro data. To provide
for a more reliable data and measure of improvement, the IMU data were averaged. Ideally, the
average error should be zero. A non-zero average error indicated low frequency. This reduced the
performance of complementary filter.

8. Results
The research results showed and demonstrated the practical efficiency of quaternion and matrix
renormalization in the DCM computation of the marine vehicle attitude for autonomous navigation.
Integrating low-pass complementary filters with accelerometers provided faster response from the
algorithm. This allowed gyro data to be obtained efficiently as shown in Fig. 8. The results were
accessed in real time. The results shown in Figs. 4 to 8 were obtained from making rotation
predominantly along the yaw axis.
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Fig. 5. Accelerometer values.
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Fig. 6. Corrected marine craft attitude.
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Fig. 7. Uncorrected marine craft attitude.

A
ng

le
s 

in
 D

eg
re

es

Time in Seconds

Filtered  IMU Data

Fig. 8. Filtered IMU data.

Figures 4 and 5 showed the extent of noise present in raw signals streaming in from gyro and
accelerometer. Figure 6 showed the corrected Euler angles using accelerometer for roll and pitch
correction and GPS or magnetometer for yaw correction. Figure 7 showed the uncorrected Euler
angles. The corrections were the result of the implementation of matrix renormalization and quaternion
in matrix manipulations. The corrections were also the consequences of drift corrections using
accelerometer, magnetometer and GPS data.

The model presented in Fig. 2 indicated that the rotation matrix was constantly checked for errors,
singularities and drifts. The feedback loop was used to ensure that the nonlinearity of the matrix
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Fig. 9. Kalman filter without any unbiased gyro rate.
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Fig. 10. Kalman filter with unbiased gyro rate.

elements was maintained. The results were used to check whether the computational efficiency of the
DCM algorithm was fast enough to be used in the autonomous marine craft navigation. The speed at
which the results were accessed in real time was relative to the type of microcontroller used. Sample
rate was also dependent on the type of microcontroller used. Results from Kalman filter as shown in
Figs. 9 and 10 were used in validating the performance of DCM algorithm.

9. Discussion
The platform used for testing the software code and algorithm implementation was Atmega328 chip
running at 20 MHz maximum speed. At ADC free running mode of 8 MHz, the sampling rate for
DCM algorithm was 40 Hz. Averaging the readings made by ADC improved the sampling rate to
500 Hz. The execution time for DCM algorithm was 5 ms on Atmega328 operating at 8 MHz. The
computational efficiency of quaternion and normalized rotation matrix generated results that were
reliable in the development of an autonomous navigation algorithm for an unmanned marine craft.
In Fig. 7, the Euler angles contained elements of drift and uncertainty. They were not reliable in the
development of autonomous navigation algorithm.

The raw gyro results in Fig. 4 were used for the comparison of results in ensuring that the
computational integrity of the algorithm was maintained. Rotation of IMU was predominantly in the
yaw axis as indicated in Figs. 6 and 7. This was done by comparing the values from the normalized
rotation matrix or quaternion with the values from raw gyro. The process was important in the
evaluation of the performance of PI controller. The normalized rotation matrix or quaternion facilitated
the tuning of PI controller to obtain optimum results. Equations (21–23) were scaled by PI values
during the process of drift cancellation. The results shown in Figs. 9 and 10 were from the Kalman
filter used for USV attitude computation. Figure 9 showed results from USV attitude computation
without unbiased gyro rate, and Fig. 10 showed results from USV attitude computation with unbiased
gyro rate.

10. Conclusions
The paper presented the integration of normalized rotation matrix derived from quaternion. This
provided an efficient tool in the marine vehicle attitude estimation and determination devoid of
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microcontroller processing capacity reduction. DCM derived from raw gyro values provided data
which were unreliable as drift was present in the representation of navigation data. Quaternion and
normalization of DCM eliminated singularity issues in Euler angles. The computational efficiency
of quaternion and normalized DCM enabled IMU to be rotated up to and above angles which had
properties of singularities in them.

The research showed that the marine vehicle navigational algorithms can be developed using data
from quaternion and normalized DCM. The computational efficiency of DCM eliminated rigorous
floating points associated with Kalman filter in programming microcontrollers for use in marine
autonomous motion applications. The floating points in the Kalman filter computation introduced
lag factors to microcontroller efficiency. The contribution made included the provision for another
efficient technique in the marine vehicle attitude, heading and reference determination in real time. The
use of complementary filters in the algorithm improved the accuracy of data from IMU. Integrating
quaternion into DCM computations increased the computational efficiency of the USV navigational
algorithm.
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