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ABSTRACT
The effect of inertial forces on the Structural Dynamics (SD) behaviour of Elastic Flapping
Wings (EFWs) is investigated. In this regard, an analytical modal-based SD solution of EFW
undergoing a prescribed rigid body motion is initially derived. The formulated initial-value
problem is solved analytically to study the EFW structural responses, and sensitivity with
respect to EFWs’ key parameters. As a case study, a rectangular wing undergoing a prescribed
sinusoidal motion is simulated. The analytical solution is derived for the first time and helps
towards a conceptual understanding of the overall EFW’s SD behaviour and its analysis
required in their designs. Specifically, the EFW transient and steady response in on-off servo
condition is also attended.

Keywords: Elastic flapping wing; structural dynamics; analytical solution; modal approach

Received 4 May 2017; revised 11 March 2018; accepted 25 May 2018; first published online 4 July 2018.

https://doi.org/10.1017/aer.2018.74 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2018.74
mailto:pourtak@sharif.edu
https://doi.org/10.1017/aer.2018.74


Zare ET AL 1177Analytical structural behaviour of elastic flapping wings...

NOMENCLATURE
an normal acceleration of the mass element
A1, A2, A3 motion amplitude parameters
C damping matrix
C̃ transformed damping matrix
D domain
dFI the applied inertial force by the mass element
dm mass element
DOF Degree-Of-Freedom
E modulus of elasticity
F force vector
F̃ transformed force vector
FI inertial force vector
fd damping force
fi j applied forces to the mass element
FEM Finite Element Method
G shear modulus
K stiffness matrix
K̃ transformed stiffness
m mass
M mass matrix
M̃ transformed mass matrix
Nr generalised force
P arbitrary point of domain
PE point position after wing deformation
PR point position before wing deformation
r mode number
s laplace variable
SPE I , SPRI , SPE PR displacement vectors
t time
tfinal final time of simulation
tglide gliding time
v0 initial velocity
w0 initial displacement
W displacement vector
zE elastic displacement
γ flapping angle
γo initial angle before gliding phases
γInput desired flapping angle
γglide gliding angle
γmax maximum flapping angle
�r generalised inertial moment
ζr structural damping ratio
ζs control damping ratio
η vector of generalised coordinate
ηr generalised coordinate
ηr0 initial generalised coordinate
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η̇r0 initial generalised coordinate derivative
ρ density
φr mode shape vector
� matrix of mode shapes
� non-linear matrix
�̃ transformed non-linear matrix
ωc control natural frequency
ωdc control damped frequency
ωdr structural damped frequency
ω f flapping frequency
ωr structural natural frequency

1.0 INTRODUCTION
Flapping Aerial Vehicles (FAVs) have attracted worldwide interest for their possible
applications in a wide range of activities, such as monitoring and surveillance. FAVs use
flapping wing mechanism to fly, while simultaneously producing thrust and lift. Both bird-
like and insect-like flyers utilise flexible flapping wings which have anisotropic flexibilities
in chordwise and spanwise directions(1). Based on their structures, flapping wings undergo
moderate to large flexible deformation during flight(2).

The flexibility has a significant effect on the FAVs aerodynamic loading(3-10) which has
frequently been validated, experimentally(11-19). The importance of this phenomenon has
led many researches to study the modelling aspects of EFW SD behaviour. Larijani and
Delaurier(20), developed a non-linear aeroelastic model for flapping-wing flight based on
structural Finite Element Formulation (FEM) and an unsteady aerodynamics approach. Singh
and Chopra(21), performed an aeroelastic analysis for hover-capable, bio-inspired flapping
wings using unsteady aerodynamics and FEM with plate elements, while the Hamilton’s
principle was utilised to derive the equations of motion. Gogulapati et al(22) presented a
non-linear aeroelastic model for flapping wings undergoing prescribed rigid body motion
with moderate to large flexible deformation. Banerjee and Patil(23), employed a Vortex
Lattice Method (VLM) to analyse aeroelastics of membrane wings supported by a rigid
frame. Kim and Han(24) also suggested a structural dynamic model for flexible wings for
application to flapping via an improved modified strip theory, where a modal approach
is utilised for structural analysis. Chimakurthi et al(25) used a computational aeroelasticity
framework to analyse FAVs. Their structural model comprised of an in-house developed
UM/NLABS software that decomposes 3D elasticity equations into cross-sectional and
spanwise groups for slender wings using a pressure-based flow-solver algorithm implemented
in STREAM(26). Aono et al(27) presented a numerical framework to simulate rigid and flexible
flapping wings. They utilise a Navier-Stokes solver and a flexible multi-body type FEM with
triangular facet shell elements to analyse the EFW. Su and Cesnik(28) analysed non-linear
aeroelasticity of a FAV. They incorporated two types of unsteady aerodynamic formulations,
where geometrically non-linear deformations were modelled via non-linear strain-based
beam formulation. Pourtakdoust and Karimain Aliabadi(29) developed an aeroelastic model
of a typical EFW to evaluate propulsive efficiency. They employed the Euler–Bernoulli
torsion beam with quasi-steady aerodynamic model to study the effect of mass, inertia,
elastic properties as well as the flapping amplitude and frequency of the FMAV. De Rosis
et al(30) conducted an aeroelastic study of flexible flapping wings using a coupled lattice
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Boltzmann-finite element approach, where fluid-structure interface conditions were handled
using an immersed boundary method. Lakshminarayan and Farhat(31) used a recently
developed ALE-embedded method to perform high-fidelity aeroelastic analysis of extremely
flexible flapping wings. Nogar et al(32) developed a computationally efficient approximate
aeroelastic model suitable for control applications in which aerodynamic loads are calculated
via a quasi-static model and the structural model is generated using an implicit condensation
approach. Ha et al(33) presented a computational approach to investigate fluid structural
coupling of EFWs. They used a geometrically exact beam model for the structural analysis
and a preconditioned Navier-Stokes solver for aerodynamic analysis. Their study revealed that
a limited degree of flexibility is beneficial, while high-flexibility leads to thrust deterioration.
Djojodihardjo(34) recently conducted a comprehensive study on aerodynamics, aeroelasticity
and flight dynamics of birdlike flapping wing ornithopter in forward flight. Using an unsteady
aerodynamic approach, author-incorporated viscous effects and leading-edge suction together
with a simplified two-dimensional beam theory to gain some insight over the effect of
aeroelasticity via low-cost methods.

With respect to the existence of several loads in flapping flight including aerodynamics,
gravitation, structure and inertia, some researchers have compared the effect of these forces
in flexibility, implicitly or explicitly. For instance, Combes and Daniel(11) experimentally
investigated the contributions of aerodynamic and inertial elastic forces for an specific
wing. They compared wing-bending results for normal air versus helium and showed that
contribution of fluid-dynamic forces to wing deformations is significantly reduced. This
relatively huge reduction in air density produced only slight changes in the pattern of the
wing deformations, suggesting that fluid-dynamic forces have minimal effect on the wing
bending. However, they emphasised that this claim is reliable for certain combinations of
wing stiffness, wing motions, and fluid density(35). This conclusion proposes that in some
conditions, the inertial forces effect in EFW behaviour is of premier importance. In this
regard, some researchers focused on inertial forces. Barut et al(36) utilised FEM concepts
in conjunction with non-linear theory of elasticity and rigid-body dynamics to investigate
the effect of prescribed dynamic motion and flexibility on the EFW deformation in absence
of aerodynamic loads. Their study included the effect of inertial forces due to centrifugal
and Coriolis accelerations caused by wing flapping and pitching motions as well as the stress-
induced forces due to considerable stretching and bending deformations occurring in the wing.
Wilson and Wereley(37) experimentally investigated the performance of an insect-like EFW
and quantified the lifting force in hover condition. They used an experimental test-stand to
flap the wings with 1 and 2 degrees of freedom and measured the wing loadings. Additionally,
to identify the non-aerodynamic forces, they performed their tests in a vacuum chamber as
well. Yeo et al(38) also used a vacuum chamber to measure non-aerodynamic forces of a
EFW.

The current study is focused on derivation of an analytical solution for SDE of EFW that
has not yet been attempted in the literature. Due to importance of inertial forces(11) for bird-
like structures, only the inertial forces are considered. Further, the effect of servo dynamics
for resonance behaviour is also considered. For this purpose, the SDE governing an EFW
is derived using the modal approach that is widely used for elasticity analysis of various
flying vehicles including EFWs(24,39), missiles(40,41), aircrafts(42) and airships(43). In all latter
studies, deflections are expanded in terms of the normal structural modes where the final
governing equations are derived using the orthogonality conditions. In this scheme, the EFW
natural frequencies and mode shapes are obtained via FEM analysis. To develop an analytical
solution, it is assumed that the structure responses lie within the linear range. This is valid
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for a low flapping frequency range that in turn yields a low flapping-to-structure frequency
ratio. Considering this assumption, the coupling effects between various structural modes
can be ignored and the governing SD equations become linear and uncoupled. The resulting
analytical solution enables one to assess and evaluate the coupling between the imposed
forcing, structure and the servo dynamics, thus providing a conceptual understanding for
the overall EFW SD behaviour in the presence of inertial forces plus the servo dynamics
effects.

The remainder of this paper is organised as follows: Section 2.0 describes the formulation
of the SDE, inertial forces and servo motor dynamics. Sections 3.0 and 4.0 are devoted to the
development of the analytical solution of rigid and elastic wing motion. Section 5.0 delivers
the verification and simulation results for a typical EFW under various loading scenarios,
followed by conclusions in Section 6.0.

2.0 FORMULATION
2.1 Structure model

Accurate prediction of large amplitude structural deformations is feasible via non-linear
finite element models. However, representation of complex system equations of motion in
finite element nodal space requires large degrees of freedom and computational cost that is
impractical for design applications(44). The governing structural equations of motion for a
multiple Degree-Of-Freedom (DOF), geometrically non-linear system with viscous damping
can be written as(45):

MẄ (t) + CẆ (t) + KW (t) + � (W (t)) = F (t) … (1)

where M, C and K are the mass, damping, and stiffness matrices, respectively; W is the
displacement vector and F represents the force excitation vector. The non-linear forcing term
�(W(t)) is a non-linear vector function of W.

An alternative solution approach of the above equation is via transformation to a reduced
basis modal coordinate system that dramatically reduces the number of DOFs(46). The
generalised coordinate transformation approach is implemented to obtain a set of coupled
modal equations, with reduced DOF:

W = �η, … (2)

where η and � are time-dependent vectors of generalised coordinates and a subset of linear
eigenvectors (assumed mode shapes vectors), respectively. Via the above transformation, the
modal equation results:

M̃η̈ + C̃η̇ + K̃η + �̃ (η) = F̃, … (3)

where

M̃ = �TM� = [I ] … (4)

C̃ = �T C� = [2ζrωr] … (5)

K̃ = �T K� = [
ω2

r

]
… (6)
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�̃ (η) = �T� (η) … (7)

F̃ = �TF = [Nr] , … (8)

where ωr, ζr and Nr are the undamped natural frequencies, damping coefficient and
generalised forces, respectively, for the rth mode. As seen in Equation (3), �̃(η) brings about
the non-linearity and as well as coupling in to the system of equations. However, in absence
of large structural displacement, it can be ignored and thus resulting in an uncoupled, linear
system of equations as follows:

η̈r (t) + 2ζrωrη̇r (t) + ω2
r ηr (t) = Nr (t) ; r = 1, 2, ... … (9)

in which the generalised forces are defined as:

Nr (t) =
∫

D
φr (P) F (P, t) dD (P) , r = 1, 2, . . . … (10)

where P is an arbitrary point within the domain D.
Equation (9) is subject to the initial generalised displacements and velocities, given below:

ηr (0) =
∫

D
m (P) φr (P) w0 (P) dD (P) , r = 1, 2, ... … (11)

η̇r (0) =
∫

D
m (P) φr (P) v0 (P) dD (P) , r = 1, 2, ..., … (12)

where w0 and v0 are initial displacement and velocity, respectively.

2.2 Inertial force modelling

Due to accelerated motion of the EFW, centrifugal and normal forces are applied to each
element. Considering the inherent in-plane tensile strength of the EFW, centrifugal forces are
neglected. This is justified as natural frequencies of in-plane modes are normally a few orders
of magnitude higher than the natural frequencies of the out-plane ones. Thus, omission of the
apparent centrifugal forces is not due to their smaller values, but because of their small effects
on structural displacements.

According to Fig. 1, the summation of normal inertial forces applied to an element due to
angular acceleration is:

∑
i, j

Fzi j = andm = y [−γ̈ (t)] dm, … (13)

where Fi j is the applied force caused by neighboring elements, an and y are the linear
acceleration and position of the mass element dm, respectively, and γ̈(t) is the angular
acceleration of the EFW. Please note that the minus sign in Equation (13) is due to the
reference definition of the γ. Thus, according to the Newton’s third law of reaction, the applied
inertial force from this element to EFW will be:

dFI = −y [−γ̈ (t)] dm = yγ̈ (t) dm … (14)
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Figure 1. Overall scheme of the inertial forces applied to an element.

Referring to Equation (14), one we can define generalised forces as follows:

Nr (t) =
∫

D
φrdFI =

∫
A

φryγ̈ (t) dm =
∑
i, j

φri, j yi, j γ̈ (t) dmi, j = γ̈ (t) �r, … (15)

where

�r =
∑
i, j

fri, j yi, jdmi, j … (16)

It is realized that, �r turns out as a structural property that depends on the structure mass
distribution and is motion independent. In this sense, it can be referred to as ‘Generalised
Inertial Moment’ or GIM.

2.3 Servo motor dynamics

The objective of the servo systems is to control the position of a mechanical system in
accordance with a prescribed position. The difference between the input command angular
position and the output angular position is the error signal(47). To model the servo actuator
effects on the dynamic response of the EFW, a second order servo dynamics is considered
(see Equation (17)) whose transfer function is suggested(47), with adjustable parameters ζc
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and ωc defined in the nomenclature.

G (s) = ω2
c

s2 + 2ζcωcs + ω2
c

… (17)

3.0 ANALYTICAL SOLUTION OF RIGID WING MOTION
In analogy with actual flying EFWs like a bird, it is possible for the flapping motion to stop
in a gliding phase of flight. Accordingly, the desired flapping motion can be broken in to a
sinusoidal part followed by a command to stop the flapping at a static value. In this respect,
the following subsection presents the analytic results of such commands as implemented via
a servo actuator.

3.1 Sinusoidal flapping command

Since a part of the EFW motion is sinusoidal, this section will present an analytical solution
for the controller output (Equation (17)). As already discussed in Section 2.0, considering a
second order transfer function for the controller, will yield,

γ

γInput
(s) = ω2

c

s2 + 2ζcωcs + ω2
c
, … (18)

where

γInput (t) = γmaxsin
(
ω f t

)
… (19)

Subsequently, the controller output is determined via Laplace transformations that results in:

γ (s) = γ

γInput
(s) γInput (s) = γmaxω f ω

2
c(

s2 + 2ζcωcs + ω2
c

) (
s2 + ω22

f

) … (20)

γ (t) = e−ζcωctA22sin (ωdct + φ22) + A11sin
(
ω f t + φ11

)
… (21)

with the following parameters that are intelligently defined for sensitivity analysis of the EFW
response,

ωdc = ωc

√
1 − ζ 2

c , … (22)

A21 =
γmax

ω f

ωc(
ω f

ωc

)4
− 2

(
1 − 2ζ 2

c

) (ω f

ωc

)2
+ 1

, … (23)

A22 = A21

√√√√(
1√

1 − ζ 2
c

[(
ω f

ωc

)2

− (
1 − 2ζ 2

c

)])2

+ (2ζc)2, … (24)
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A11 = A21

√√√√((
ω f

ωc

)−1

− ω f

ωc

)2

+ (2ζc)2, … (25)

φ22 = tan−1

⎛
⎜⎝ 2ζc

√
1 − ζ 2

c(
ω f

ωc

)2
− (

1 − 2ζ 2
c

)
⎞
⎟⎠ , … (26)

φ11 = tan−1

⎛
⎜⎝−

2ζc
ω f

ωc

1 −
(

ω f

ωc

)2

⎞
⎟⎠ … (27)

Noting Equation (21), the controller response (to sinusoidal input) contains a transient
fading part plus a time varying portion that can be regarded as a steady forcing on the EFW
that is obtained as follows:

limγ (t)
t→∞

= lim
t→∞

[
e−ζcωctA22sin (ωdct + φ22) + A11sin

(
ω f t + φ11

)]
= A11sin

(
ω f t + φ11

)
= γmax

ω f
ωc

√((
ω f
ωc

)−1− ω f
ωc

)2

+(2ζc )2

(
ω f
ωc

)4−2(1−2ζc
2 )

(
ω f
ωc

)2+1
sin

(
ω f t + φ11

) … (28)

Comparing the above analytic controller output with the sinusoidal input (Equation (19)),
one can realize the effect of servo dynamics on both amplitude and phase shift of the
sinusoidal forcing motion. In other words, for a very fast actuator with a high operating
frequency sufficiently greater than EFW flapping frequency, the flapping motion will be close
to the commanded value.

limγ (t)
t→∞,

ω f
ωc

→0

= γmaxsin
(
ω f t

)
… (29)

3.2 Stopping command

In this case, it is assumed that the EFW flapping is suddenly commanded to perform a stopping
manoeuver towards a fixed flapping angle at ti, such that:

γInput = �γglide; �γglide = γStop − γ(ti ), … (30)

where γ(ti ) and γStop are the current and final flapping angles of the EFW for a final
glide operation, respectively. Again, via Laplace transformation, one can show the actual
commanded result due to the servo dynamic to be as follows:

γ (s) = γ

γStop
(s) γStop (s)

= �γglideω
2
c

s
(
s2 + 2ζcωcs + ω2

c

) , … (31)

γ (t) = γStop − e−ζcωctB11sin (ωdct + ψ11) , … (32)
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where

B11 = �γglide√
1 − ζ 2

c

; ψ11 = tan−1

(√
1 − ζ 2

c

ζc

)
… (33)

Additionally, similar to Section 3.1, one can observe that limiting desired value is eventually
reached after some elapsed time.

limγ (t)
t→∞

= γStop … (34)

It is realized from Equations (32) and (34) that the controller dynamics does not have any
effect on the final steady result and the actuator will finally place the EFW at the desired
flapping position. The resulting graphical summary of the above cases are shown in Fig. 4 as
a part of the simulation scenario presented in Section 5.0.

4.0 ANALYTICAL SOLUTION OF EFW
In this section, the analytical solution for the structural behaviour of the EFW is presented.
The analytical solution is developed in two parts that includes response to a pure flapping
command as well as the EFW response to a flap angle command.

4.1 Sinusoidal flapping response

As a requirement for the solution of the governing structural equations, Equations (9) and
(15), γ̈(t) is required to calculate the generalised forces. In this respect, one can obtain the
flapping angular acceleration via Equation (21), to be:

γ̈ (t) = e−ζcωct [Â22sin
(
ωdct + φ̂22

)] + Â11 sin
(
ω f t + φ11

)
, … (35)

where

Â22 = −A22ω
2
c; Â11 = −A11ω

2
f ; φ̂22 = φ22 + tan−1

(
2ζc

√
1 − ζ 2

c

1 − 2ζ 2
c

)
… (36)

Substituting Equation (35) in Equation (15) and Equation (9) yields the desired Ordinary
Differential Equation (ODE) for dynamic behaviour of the EFW under sinusoidal actuation.

η̈r (t) + 2ζrωrη̇r (t) + ω2
r ηr (t) = Â22�re−ζcωctsin

(
ωdct + φ̂22

) + �rÂ11sin
(
ω f t + φ11

)
ηr (0) = ηr0; η̇r (0) = η̇r0

… (37)
The analytical solution of this ODE is determined using the specified initial conditions.

ηr (t) = A1 sin
(
ω f t + φ1

) + e−ζcωctA2 sin (ωdct + φ2)

+ e−ζrωrtA3 sin (ωdrt + φ3) , r = 1, 2, . . . , … (38)
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where

ωdr = ωr

√
1 − ζ 2

r , … (39)

A3 = ηr0 − A2 sin (φ2) − A1 sin (φ1)
sin (φ3)

, … (40)

φ3 = tan−1

{
ωr
ωc

√
1−ζr

2[ηr0−A2 sin(φ2 )−A1 sin(φ1 )]
η̇r0
ωc

−A1
ω f
ωc

cos(φ1 )+ζcA2 sin(φ2 )−
√

1−ζ 2
c A2 cos(φ2 )+ζr

ωr
ωc

[ηr0−A2 sin(φ2 )−A1 sin(φ1 )]

}
,

… (41)

A2 = − �rA22√[(
ωr
ωc

)2
− (

1 − 2ζ 2
c

) − 2ξrζc

(
ωr
ωc

)]2

+
[
2ζr

(
ωr
ωc

)√
1 − ζ 2

c − 2ζc
√

1 − ζ 2
c

]2
,

… (42)

A1 =
−�r

(
ω f

ωr

)2
A11√(

1 −
(

ω f

ωr

)2
)2

+
(

2ζr

(
ω f

ωr

))2
, … (43)

φ2 = tan−1

(
2ζc(1−ζ 2

c )(
ω f
ωc

)2−(1−2ζ 2
c )

)
+tan−1

(
2ζc

√
1−ζ 2

c

1−2ζ 2
c

)
−tan−1

(
2ζr

ωr
ωc

√
1−ζ 2

c −2ζc

√
1−ζ 2

c

( ωr
ωc )2−2ζrζc

ωr
ωc

−(1−2ζ 2
c )

)
,

… (44)

φ1 = tan−1

⎛
⎜⎝−

2ζc
ω f

ωc

1 −
(

ω f

ωc

)2

⎞
⎟⎠ − tan−1

⎛
⎜⎝ 2ξr

ω f

ωr

1 −
(

ω f

ωr

)2

⎞
⎟⎠ … (45)

The resulting analytical solution (Equations (38) to (45)) indicates that larger natural
frequencies of the structural mode shapes tend to have no significant effect on the EFW
dynamic behaviour, as shown below:

lim
ωr→∞ ηr (t) = 0 … (46)

In addition, it is also seen that at Structure-Actuator Frequency Ratio (SAFR) close to one,
i.e. ωr/ωc → 1, existence of the actuation damping, ζc effectively bounds A2 (Equation (42))
that in turn prevents the second term of the EFW dynamic response (Equation (38)) from
growing. To check the conditions for other resonance behaviours, other coefficients will also
be examined. In this respect, when there is insignificant or zero structural damping, ζr → 0,
A1 and consequently A3 tend towards infinity at Structure-Flapping Frequency Ratio (SFFR)
close to one i.e. ω f /ωr → 1. Figure 2 shows the variation of A1 for two different values of
ζr as a function of SAFR and SFFR. According to this figure, it is seen that A1 achieves its
pick value for resonance conditions of both frequency ratios i.e. ω f /ωr → 1 and ωr/ωc → 1.
Finally, Fig. 3 shows the variation of A1 at resonance conditions as a function of the EFW
structural damping, ζr.
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Figure 2. The variation of A1 values versus frequency ratios at (a) ζr = 0.07 and (b) ζr = 0.00001.

Figure 3. The variation of A1 values versus structural damping ratio at ωr/ωc = ωf /ωc = 1.

4.2 Response to flap angle (glide) command

In analogy with the sinusoidal forcing discussed in Section 4.1, flapping acceleration actuator
output is again required to calculate generalised forces. Using Equation (32), it can be shown
that:

γ̈ (t) = B̂11e−ζcωctsin
(
ωdct + ψ̂11

)
, … (47)

where

B̂11 = B11ω
2
c; ψ̂11 = ψ11 + tan−1

(
2ζc

√
1 − ζ 2

c

1 − 2ζ 2
c

)
… (48)

Substituting Equation (47) in Equation (15) and next in Equation (9), the ODE governing
EFW structural dynamic response as well as its solution are analytically computed.

η̈r (t) + 2ζrωrη̇r (t) + ω2
r ηr (t) = �rB̂11e−ζcωctsin

(
ωdct + ψ̂11

) ;
ηr (0) = ηr0; η̇r (0) = η̇r0, … (49)
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ηr (t) = e−ζrωrtB2 sin (ωdrt + ψ2) + B1e−ζcωct sin (ωdct + ψ1) , r = 1, 2, . . . , … (50)

where

ψ2 = tan−1

{
ωr
ωc

√
1 − ζ 2

r (ηr0 − B1 sin (ψ1))
η̇r0
ωc

− B1
√

1 − ζ 2
c cos (ψ1) + ζcB1 sin (ψ1) + ζr

ωr
ωc

(ηr0 − B1 sin (ψ1))

}
,

… (51)

B2 = ηr0 − B1 sin (ψ1)
sin (ψ2)

, … (52)

B1 =
�rγglide√

1−ζ 2
c√[

2
(

ωr
ωc

)
ζr
√

1 − ζ 2
c − 2ζc

√
1 − ζ 2

c

]2
+

[(
ωr
ωc

)2
− (

1 − 2ζ 2
c

) − 2
(

ωr
ωc

)
ζrζc

]2

… (53)

ψ1 = tan−1

(√
1−ζ 2

c

ζc

)
+ tan−1

(
2ζc

√
1−ζ 2

c

1−2ζ 2
c

)
− tan−1

(
2( ωr

ωc )ζr

√
1−ζ 2

c −2ζc

√
1−ζ 2

c

( ωr
ωc )2−(1−2ζ 2

c )−2( ωr
ωc )ζrζc

)
… (54)

The result indicates that higher structural modes have insignificant effect on the final static
position of the EFW, pending higher modes are not initially excited, or in other words:

lim
ωr→∞ ηr (t) = 0 … (55)

5.0 CASE STUDY
To better understand the EFW dynamic behaviour subsequent to commanded flapping, a
case study is performed in this section where the commanded flapping consists of two parts
whose analytical solutions have already been developed. It needs to be mentioned that the
EFW natural frequencies and mode shapes are required for dynamic response analysis and
calculated via FEM.

5.1 Flapping scenario

To analyse the EFW structural response, a flapping scenario is considered where the actuator
initially commands a sinusoidal behaviour (from rest) to be stopped at a certain glide angle.
The commanded flapping angle as well as the corresponding servo output are shown in
Fig. 4. Subsequently, the EFW corresponding analytical solutions (Equations (38) and (50))
are determined based on the following initial conditions:

{
ηrphase I (t = 0) = 0
η̇rphase I (t = 0) = 0

, … (56)

{
ηrphase II

(
t = tglide

) = ηrphase I

(
t = tglide

)
η̇rphase II

(
t = tglide

) = η̇rphase I

(
t = tglide

) … (57)
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Figure 4. Flapping angle, influenced by the controller dynamics.

Figure 5. Flapping wing coordinates systems definition.

5.2 Simulation considerations

In this study, only the right wing is modelled and simulated, while the EFW body is considered
motionless and fixed to an Inertial Coordinate System (ICS). Therefore, one can specify the
EFW rigid motion via a single flapping angle with respect to the ICS. Accordingly, EFW
elements will experience a vibrating motion in addition to the aforementioned prescribed rigid
body motion, as shown in Fig. 5. As a result, the total inertial position of EFW elements can be
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Figure 6. Rear view of the wing in flapping cycle.

computed via superposition of its rotational position plus an elastic deformation emanating
from the EFW analytical solutions presented. Additionally, the origin of the ICS is taken
at the EFW hinge located at the wing-root leading-edge point, where xI points forward, zI

points downward within the EFW plane of symmetry and yI axis is perpendicular to the
previous directions to form a right-handed orthogonal system (see Fig. 5). Moreover, a rigid
body coordinate system is defined that shows the EFW elements rigid motion via the flapping
angleγ whose transformation matrix is given below:

[T ]IR =
⎡
⎣1 0 0

0 cos (−γ) sin (−γ)
0 −sin (−γ) cos (−γ)

⎤
⎦ … (58)

Finally, instantaneous position of any point PE within the deformed EFW with respect to
ICS will be:

sPE I = sPE PR + sPRI , … (59)[
sPE I

]I = [
sPE PR

]I + [
sPRI

]I = [T ]IR[sPE PR

]R + [T ]IR[sPRI
]R

… (60)

where

[
sPRI

]R =
⎡
⎣xR

yR

zR

⎤
⎦ ; [

sPE PR

]R =
⎡
⎣ 0

0
zE

⎤
⎦ ; zE =

∑
r

ηr (t) φr (P) … (61)

The subscript I, R and E are indicative of ICS, rigid EFW local body coordinate system and
the elastic local deformation of a typical point on R, respectively. Finally, one can obtain the
coordinates of any arbitrary point, PE with respect to the ICS as, (see Fig. 6).

⎡
⎣xI

yI

zI

⎤
⎦ =

⎡
⎣1 0 0

0 cos (−γ) sin (−γ)
0 −sin (−γ) cos (−γ)

⎤
⎦
⎡
⎣xR

yR

zE

⎤
⎦ =

⎡
⎣ xR

yRcos (γ) − zE sin (γ)
yRsin (γ) + zE cos (γ)

⎤
⎦ … (62)
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Table 1
Natural frequencies of first 10 structural modes

Mode Number Natural frequency (Hz)

1 2.56
2 6.81
3 16.57
4 27.11
5 44.33
6 57.50
7 59.24
8 68.65
9 71.97
10 102.52

Figure 7. Wing displacement along z-axis regarding a) 1st and b) 2nd structural mode.

5.3 Structural considerations

Given the employed modal approach in dynamic modelling of the structure, the developed
equations are valid for all elastic wings with different geometrical shape and features as
long as its modal properties, including natural frequencies and mode shapes are available.
However, in order to better understand the implementation procedure, a rectangular wing case
is investigated in this study.

The considered rectangular wing, Fig. 5, is modelled as cantilever structure. This is because
the wing structure is practically being carried by the servomotor connector bar where the
EFW is fixed to this connector bar at the junction. As discussed earlier, structural vibrations
are obtained around the rigid instantaneous position of the wing and subsequently the inertial
position of the wing elements will be computed via Equation (61)

Despite the fact that the extracted relations in Section 3.0 are independent of the structural
elements type for FEM analysis, the EFW structure is considered as a Reinforced Rectangular
Structure (RRS). The RRS is modelled as a flat plate with dimensions of 1(mm) ×
300(mm) × 500(mm), reinforced at the Leading Edge (LE) by a tubular beam of radius 2 mm
that adds to the flexural strength about the xR axis Further, the RRS Aluminium wing has
stiffness properties E = 70 GPa, G = 26 GPa and a mass density of ρ = 2710 kg/m3(48).

The modal properties are determined via FEM for 25 × 15 elements EFW, where the first 10
modes are taken into account, see Table 1 and Fig. 7. The pertinent values of the Generalised
Inertial Moments are computed and tabulated in Table 2.

Generally in a beam-based modelling approach, the elastic axis is a line along which
transverse loads only produce bending, while causing no sectional torsion at any spanwise
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Table 2
Generalised inertial moment of first 10 structural modes

Mode Number Value (kg.m)

1 0.1837
2 − 0.0334
3 − 0.0178
4 0.0092
5 0.0064
6 0.0000
7 0.0007
8 0.0027
9 − 0.0011
10 − 0.0032

Figure 8. Elastic displacement of point c, from analytical solution versus the transient response in NASP.

station. Considering this concept, it can be deduced from Fig. 7 that both bending as well as
torsional wing behaviours occur along an oblique line for the 1st and 2nd structural modes. This
oblique line, in fact, shows the position of the elastic axis along the beam length or spanwise
direction. This is an important issue often not attended to by researchers(28,30,39) utilizing the
beam assumption in which the spanwise displacement of the elastic axis is neglected.

In order to verify the analytical structural solution of the EFW, the commercial Nastran-
Patran(49) (NASP) FEM code is utilised whose transient response results for a time-dependent
point force, ( f (t) = 0.1 sin(2πt)) where 0 < t < 1 applied to point c (see Fig. 9) of the EFW,
is shown in Fig. 8. This figure compares the analytically calculated elastic displacement of
point c against the transient response result of NASP. As demonstrated in this figure, both
results coincide and thus the proposed analytical solution is accurate and compatible with
no-planner-displacement assumption.
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Table 3
EFW simulation parameters

Parameters Value

tGlide(sec) 4.2

ω f (rad/sec) 2π

γmax(deg) 30
γGlide(deg) 5
ζc 0.5

ωc(rad/sec) 6
ζr 0.07

Table 4
Calculated solution parameters

Mode Number Value (kg.m)

A21 0.4958
A22 0.6020
φ22 0.9675
A11 0.4979
φ11 − 1.6628
B11 0.1008
ψ11 1.0472

5.4 Simulation and results

The EFW simulation parameters are listed in Table 3 that has resulted in the solution
parameters (using Equations (21) and (32)) given in Table 4.

According to the aforementioned flight scenarios, simulations of the EFW flapping and
gliding motion are performed continuously and consecutively. It needs to be mentioned that
the number of required modes is problem dependent and it is shown that three modes are
sufficient. The effects of taking additional modes numbers for some typical wing nodes shown
in Fig. 9 are analytically studied and reported in Figs 10 and 11. As can be seen from Fig. 9,
point c is of highest displacement whose value sufficiently converges with only three modes
with an accuracy level of better that 0.5 percent as demonstrated in Fig. 11.

Finally, the EFW motion is animated under the influence of the controller dynamics in
Fig. 12 at different time steps. Another important observation that emanates out of Fig. 7,
indicates that the selected EFW actually undergoes its bending and torsional motion along
an oblique elastic axis. This observation demonstrates the complexity and dependency of
the EFW dynamic behaviour on its geometric and structural features. Thus, in general, a
one-dimensional beam-type model, usually chosen by many researchers(29,39), is improper for
dynamic modelling of EFW behaviour unless the variation of elastic axis at each spanwise
section is carefully considered. Still, this alone would not guarantee proper accuracy of EFW
structural dynamic analysis, as chordwise geometric fluctuations have a great influence on
aerodynamic properties of the aerofoil sections and consequently, the whole wing.
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Figure 9. Sample selected nodes.

Figure 10. Cycle elastic displacements of the selected sample nodes using 10 modes.

Figure 11. Displacement of point c versus number of modes.
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Figure 12. Wing status at first cycle in nine different step times.

6.0 CONCLUSION
An analytical SD solution of an EFW in Transient phase of Flapping and Gliding is presented
using a modal approach. The solution is verified under a time-varying loading scenario. Due
to the importance of the derivation of an analytical solution for EFW structural in order
to conceptually analyse the effect of wing elasticity, the linear-motion range assumption is
stipulated.

A common flight scenario of birds flying is simulated in which a wing starts a sinusoidal
motion that is subsequently commended to stop at a fixed angular position while the servo
dynamics is accounted for. As expected, the results show that the servo dynamics cause a delay
as well as a change in the EFW motion amplitude. In the undamped systems, it is realized that
resonance occurs if SFFR reach to one. On the other hand, the resonance won’t happen in the
damped system, but the maximum amplitude occurs when both frequency ratios i.e. SAFR and
SFFR equal to one. Elastic sensitivity analyses reveals that one does not need to consider all
structural modes, since the amplitudes pertinent to generalised coordinates of high-frequency
modes tend towards zero. Another observation using FEM for the mode shapes indicated that
both EFW bending and torsion behaviour occur about oblique lines. This is important when
using beam assumption to model the elastic behaviour of the EFWs. The study also shows that
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one may substitute expensive numerical solution approaches by elegant mathematical based
derivations for analysis. Although, because of importance and derivation of analytical results
only inertial forces was considered, due to periodic nature of aerodynamic, they can be also
taken into account using a similar mathematical methodology using a periodic series forcing
such as the Fourier.
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