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ABSTRACT

One of the most critical problems in property/casualty insurance is to determine
an appropriate reserve for incurred but unpaid losses. These provisions gener-
ally comprise most of the liabilities of a non-life insurance company. The global
provisions are often determined under an assumption of independence between
the lines of business. Recently, Shi and Frees (2011) proposed to put dependence
between lines of business with a copula that captures dependence between two
cells of two different runoff triangles. In this paper, we propose to generalize this
model in two steps. First, by using an idea proposed by Barnett and Zehnwirth
(1998), we will suppose a dependence between all the observations that belong
to the same calendar year (CY) for each line of business. Thereafter, we will
then suppose another dependence structure that links the CYs of different lines
of business. This model is done by using hierarchical Archimedean copulas. We
show that the model provides more flexibility than existing models, and offers
a better, more realistic and more intuitive interpretation of the dependence be-
tween the lines of business. For illustration, the model is applied to a dataset
from a major US property-casualty insurer, where a bootstrap method is pro-
posed to estimate the distribution of the reserve.

KEYWORDS

Runoff triangles, copula, hierarchical Archimedean copula, maximum likeli-
hood estimation, bootstrap.

1. INTRODUCTION

Reserves are a major component of the financial statements of a financial in-
stitution. With the advent of the new regulatory standards (e.g. Solvency II
in Europe and the upcoming ORSA1 guidelines in North America), insurance
companies must better understand and quantify the risks associated with their
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activities as a whole, not just by risk classes. Thus, it is now necessary for an in-
surance company to not only assess a reserve for each line of business but also
to better estimate the total reserves for all its insurance products. This involves
taking into account dependence between lines of business. In this context, insur-
ance companies must be particularly able to estimate the amount of provisions
for the entire portfolio. For this purpose, different reserving approaches allow-
ing dependence between lines of business must be investigated. We will focus on
the parametric approach.

Parametric reserving methods have often involved copulas to model the
dependence between lines of business. For example, Brehm (2002) uses a
Gaussian copula to model the joint distribution of unpaid losses, while De Jong
(2012) models dependence between lines of business with a Gaussian copula
correlation matrix. Shi et al. (2012) and Wüthrich et al. (2013) have also
used multivariate Gaussian copula to accommodate the correlation due to
accounting years within and across runoff triangles. Bootstrapping is another
popular parametric approach used to forecast the predictive distribution of
unpaid losses for correlated lines of business. Kirschner et al. (2008) use a
synchronized bootstrap and Taylor and McGuire (2007) extend this result to a
generalized linear model context.

In this paper, we propose to use a parametric approach with multivariate
Archimedean copulas and hierarchical Archimedean copulas. In the same vein
as Frees and Shi’s model, and following an idea proposed by Barnett and Zehn-
wirth (1998), we propose a model that allows a dependence relation between all
the observations that belong to the same CY for each line of business using mul-
tivariate Archimedean copulas. We use another dependence structure that links
the losses of CYs of different lines of business. We show that this complex de-
pendence structure can be constructed using hierarchial Archimedean copulas.
For illustration, the model is applied to a dataset from a major US property-
casualty insurer, where we conclude that the proposed model can be considered
as an interesting alternative of the model proposed by Shi and Frees (2011).

In Section 2, we review the modeling of runoff triangles, where notations
are set and copulas briefly introduced. In Section 3, the model of Shi and
Frees (2011) is implemented (again on their dataset from a major US property-
casualty insurer), but with a different parametrization. The CY and hierarchical
dependences are explained and applied to this data in Section 4. In Section 5,
we use a parametric bootstrap to obtain the predictive distribution of unpaid
losses and we propose a new method to simulate hierarchical copulas. Section
6 concludes the paper.

2. PRELIMINARY

2.1. Modeling and reserves

Let us consider an insurance portfolio with � lines of business (� ∈
{1, . . . , L}). We define by X(�)

i, j , the incremental payments of the i th accident year
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(i ∈ {1, . . . , I}), and the j th development period ( j ∈ {1, . . . , J}). To take into
account the volume of each line of business, we will workwith standardized data
which we denote byY(�)

i, j = X(�)
i j /ω

(�)
i , whereω

(�)
i represents the exposure variable

in the i th accident year for the �th line of business. The exposure variable can
be the number of policies, the number of open claims, or the earned premiums.
The latter option is the one chosen in this paper.

A regression model with two independent explanatory variables, accident
year and development period, will be used. Assume that α

(�)
i (i ∈ {1, 2, . . . , I})

and β
(�)
j ( j ∈ {1, 2, . . . , J}) characterize respectively the accident year effect and

the development period effect. In such a context, a systematic component for
the �th line of business can be written as:

η
(�)
i j = ζ (�) + α

(�)
i + β

(�)
j , � = 1, . . . , L,

where ζ (�) is the intercept, I = J = n, and for parameter identification, the
constraint α

(�)

1 = β
(�)

1 = 0 is supposed.
In our empirical illustration, we work with the runoff triangles of cumula-

tive paid losses exhibited in Tables 1 and 2 of Shi and Frees (2011). They cor-
respond to paid losses of Schedule P of the National Association of Insurance
Commissioners (NAIC) database. These are data of 1997 for personal auto and
commercial auto lines of business, and each triangle contains losses for accident
years 1988–1997 and at most ten development years.

Shi and Frees (2011) show that a lognormal and a gamma distribution pro-
vide a good fit for the Personal Auto and the Commercial Auto line data re-
spectively. To demonstrate the reasonable model fits for the two triangles, the
authors exhibit the qq-plots of marginals for personal and commercial auto
lines. We work with their conclusion and then continue with the same con-
tinuous distributions for each line of business. More specifically, we consider
the form μ

(1)
i j = η

(1)
i j for a lognormal distribution with location (log-scale) pa-

rameter μ
(1)
i j and shape parameter σ . However, for the gamma distribution,

we change the parametrization and we do not use the canonical inverse link
μ

(2)
i j = 1

η
(2)
i j φ

with location (scale) parameter μ
(2)
i j and shape parameter φ. Such a

parametrization can lead to undesirable negative values for the lower right part
of the runoff triangle, especially when one uses the bootstrap technique. To as-
sure positive means of all the cells of the runoff triangle, we use the exponential

link μ
(2)
i j = exp(η

(2)
i j )

φ
, which is always positive, even for the prediction values of

the runoff triangle.
With both parametrizations, the estimated total reserve is∑2

�=1

∑n
i=2

∑n
j=n−i+2 ŷ

(�)
i j ω

(�)
i , where ŷ(�)

i j is the projected unpaid loss ratio,

and ω
(�)
i represents the net premiums earned in the corresponding accident

year i . For the lognormal distribution, we have ŷ(1)
i j = expμ̂

(1)
i j +(γ̂ (1))2/2, and for
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the gamma distribution, ŷ(2)
i j = μ̂

(2)
i j γ̂ (2), where μ̂

(�)
i j and γ̂ (�) are respectively the

scale (location) and the shape parameters. Also, γ̂ (1) = σ̂ and γ̂ (2) = φ̂.

2.2. Copulas

Copulas are a useful and flexible tool to model a dependence relation between
runoff triangles of different lines of business. They allow a separate interpreta-
tion of the relationship (linear and non-linear) between linked random variables
and their marginals. See Joe (1997) for further details. We briefly recall below
definitions and results that will be used later.

A multivariate copula C(u1, u2, . . . , un) is an application from [0, 1]n to
[0, 1], that has the same properties as a joint cumulative distribution. In other
words, a copula is a function that links a multidimensional distribution to its
one-dimensional margins. Let F be a n-dimensional cumulative joint function
with margins F (1), F (2), . . . , F (n). Then, if the margins are all continuous, the
joint distribution of n randomvariables (Y(1),Y(2), . . . ,Y(n)), can be represented
by a unique copula function:

F(y(1), y(2), . . . , y(n)) = C(F (1), F (2), . . . , F (n); θ),

where F (i), with i ∈ {1, 2, . . . , n}, are the respective distribution functions of
Y(i), and θ is the dependence parameter, also called the association parameter.

In this paper, we choose to use the Archimedean family of copulas, given
its several interesting properties. This family of copulas offers a wide choice of
copulas for which many have a closed form expression in a multivariate setting.
This last property will prove to be useful in what follows. Finally, Archimedean
copulas can be constructed easily with a simple generator. Formally, we can
define multivariate Archimedean copulas as

C(u1, u2, . . . , un) = φ−1(φ(u1) + · · · + φ(un)), (1)

where the function φ is called the generator of the copula. From (1), one can
derive the expression for the multivariate density function of an Archimedean
copula. According to McNeil and Nešlehová (2009), an Archimedean copula
C admits a density c if and only if φ(n−1) exists and is absolutely continuous on
(0, ∞). In such a case, c is given by

c(u1, u2, . . . , un) = φ(n)(φ−1(u1) + · · · + φ−1(un))
n∏
i=1

(φ−1)
′
(ui ),

where functions φ(n) and φ−1 correspond to the nth derivative of the generator
function of the copula and the inverse generator respectively. Hofert et al.
(2012) derive closed form expressions for the multivariate density function of
a few Archimedean copulas, notably the Clayton, the Frank and the Gumbel
copula used in this paper.
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3. PAIRWISE DEPENDENCE

Dividing a portfolio into homogeneous sub-portfolios and deriving the total
reserve by summing the reserve for each segment implicitly assumes indepen-
dence between risks. It is generally admitted that common social or economic
factors may affect several lines of business simultaneously. Allowing a possible
dependence relation between the runoff triangles of different lines of business of
a portfolio provides a better representation of the portfolio’s behavior as a whole
and hence permits to take better advantage of diversification. It is also helpful
to risk managers in determining the risk capital for an insurance portfolio.

Shi and Frees (2011) propose a model that incorporates a dependence struc-
ture between two runoff triangles in a pairwise manner. More precisely, the
dependence between two lines of business is based on an identical association
between cells of a given accident year and development period, coming from
different lines of business. This means that two paid loss ratios Y(1)

i, j and Y
(2)
i, j are

correlated for a given couple (i, j). This form of dependence goes back to Braun
(2004). Throughout the paper, we refer to Frees and Shi’s model as the pairwise
dependence model (PWD).

3.1. Modeling

The PWD model associates two elements of the same accident year and devel-
opment period, (Y(1)

i, j ,Y
(2)
i, j )with a bivariate copula.Mathematically, and follow-

ing Sklar’s theorem, the joint distribution of normalized incremental payments
(Y(1)

i, j ,Y
(2)
i, j ) will be represented by the unique copula function:

Fi j (y
(1)
i j , y(2)

i j ) = Pr(Y(1)
i j ≤ y(1)

i j ,Y(2)
i j ≤ y(2)

i j ) = C(F (1)
i j , F (2)

i j ; θ), (2)

where C(., θ) denotes the copula function with parameter θ , that captures the
dependence between two runoff triangles. Also, this model has the flexibility of
choosing a different cumulative density function for each line of business. The
log-likelihood expression can be easily derived from equation (2):

L =
I∑

i=1

I−i+1∑
j=1

log( f (1)
i j ) + log( f (2)

i j ) +
I∑

i=1

I−i+1∑
j=1

log c(F (1)
i j , F (2)

i j ; θ), (3)

where c(.) denotes the probability density function corresponding to the copula
distribution functionC(.), f (�)

i j denotes the density ofmarginal distribution F (�)
i j ,

for � = 1, 2. These marginals are noted as:

F (�)
i j = Prob(Y(�)

i j ≤ y(�)
i j ) = F (�)(y(�)

i j ; η
(�)
i j , γ (�)),

for i = 1, . . . , I, j = 1, . . . J and � = 1, . . . , L. Shi and Frees (2011) choose the
Gaussian and the Frank copula to model dependence, as well as the product
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TABLE 1

FIT STATISTICS OF PWD MODEL.

Copula

Fit Statistics Independence Frank Gaussian

Dependence Parameter . −2.7978 (1.0243) −0.3655 (0.1190)
Log-Likelihood 346.6 350.3 350.5
AIC −613.2 −618.5 −618.9
BIC −505.2 −507.9 −508.3

TABLE 2

RESERVES ESTIMATION WITH THE PWD MODEL.

Copula

Reserves Estimation Independence Frank Gaussian

Personal 6,464,090 6,511,363 6,423,180
Commercial 490,657 487,904 495,989

Total 6,954,747 6,999,267 6,919,169

copula that supposes independence between the cells. Their model selection is
based on a likelihood-based goodness-of-fit measure, namely Akaike’s Informa-
tion Criterion (AIC).

3.2. Empirical illustration

We provide in Tables 1 and 2, the fit statistics and the reserves for the PWD
model. Note that even if the results are close to those obtained in Shi and Frees
(2011), we do not obtain the same estimates because we have changed the link
function of the mean of the gamma distribution to avoid inconsistencies, as
explained in Section 2.2.

On the other hand, even if we have chosen a different parametrization, we
obtain the same conclusion as their and find that the copula that leads to the
smallest AIC is the Gaussian copula. This model generates a reserve of almost
7 million dollars. Interestingly, the dependence parameter obtained for the pair-
wise model with the Gaussian and the Frank copula is negative, meaning that
the model supposes that the two lines of business are negatively correlated.

4. CALENDAR YEAR AND HIERARCHICAL DEPENDENCE

We propose here to further investigate the model of Shi and Frees (2011) to bet-
ter capture the interactions within and between the runoff triangles of different
lines of business. For that purpose, we first propose to consider a dependence
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construction for the different elements of a diagonal of a given runoff triangle
to take into account a CY effect. Second, we add another level of dependence
to capture the dependence between the lines of business.

4.1. Calendar year effect

We propose in this section a model that allows a dependence relation within
paid claims belonging to a diagonal of a runoff triangle. This reflects a CY ef-
fect, more precisely the changes or inflections on paid claims in a CY due to
jurisprudence modifications or inflationary trends for example. A CY effect can
also highlight the impact of strategic decisionsmade in aCY such as an incentive
to increase payments in a particular CY for all lines of business.

This dependence structure assumes that all cells from the same diagonal are
correlated, which implies that the number of cells in the dependence structure
is different for each diagonal. Indeed, the number of cells in the dependence
structure varies from 1 to t for the tth diagonal, with t ∈ {1, . . . , n}, and t =
i + j − 1. Evidently, the first cell at the top left of the runoff triangle is not
linked to any other cell within the triangle.

Such a CY effect has already been analyzed before, for example by Barnett
and Zehnwirth (1998) who added a covariate to capture the CY effect. The sys-
tematic component of such a model can be written as:

η
(�)
i j = ζ (�) + α

(�)
i + β

(�)
j + ϒ

(�)
t , � = 1, . . . , L, (4)

where ζ (�) is the intercept, α
(�)
i (i ∈ {1, 2, . . . , I}) and β

(�)
j ( j ∈ {1, 2, . . . , J})

characterize respectively the accident year effect and the development period
effect, while ϒ

(�)
t (t = i + j − 1) captures the CY effect.

De Jong (2006) modeled the growth rates in cumulative payments in a CY,
and Wüthrich (2010) examined the accounting year effect for a single line of
business.Wüthrich and Salzmann (2012) used amultivariate Bayes chain-ladder
model that allows the modeling of dependence along accounting years within
runoff triangles. The authors showed that they are able to derive closed form
solutions for the posterior distribution, the claims reserves and the correspond-
ing prediction uncertainty. Kuang et al. (2008) have also considered a canon-
ical parametrization with three factors for a single line of business. Each fac-
tor represents time scale, in such way the inflation is taken into account. Also,
they added an assumption ensuring that the forecasts do not depend on these
arbitrary linear trends. They extended this assumption later by combining the
canonical parametrization with a non-stationary time series forecasting model
in Kuang et al. (2011).

In our proposed model, instead of adding an explanatory variable for the
CY effect, the dependence relation between the paid claims of a diagonal will
be based on a multivariate Archimedean copula. More specifically, the same
Archimedean copula with an identical dependence parameter is assumed for
each diagonal of a runoff triangle. Hence, all random variables of the same CY
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t = i + j − 1 and �th line of business are included in the vector Y�t = {Y�i j :
i + j − 1 = t}. The log-likelihood function of this model can be written as:

L =
I∑

i=1

I−i+1∑
j=1

log( fi j ) +
n∑
t=2

log c
(
Ft− j+1, j , . . . , F1,t; θ

)
j=1,...,t , (5)

where f denotes the density of marginal distribution F , and c(.) the probability
density function corresponding to the copula distribution function C(.).

The main advantage of the copula approach instead of adding a CY covari-
ate in the mean specification, lies in the fact that the copula approach allows a
more general structure of dependence between the observations of a given CY
and allowsmore flexibility. Also, the use of covariates would lead to a great num-
ber of parameters to explain the CY effect instead of only one (dependence cop-
ula parameter). For example, for two lines of business, we would have 20 param-
eters instead of 2 (see Equation (4)). This might lead to over-parametrization.
Furthermore, the parameter describing a given CY effect, would not have any
predictive power, as we cannot use it to compute the lower triangle.

4.2. Line of business dependence

A natural extension to the model behind (5) is to introduce a dependence struc-
ture between lines of business based on copulas, more precisely here with the
Gaussian copula and hierarchical Archimedean copulas.

Another way to add dependence between lines of business is by modifying
Equation (4) and use the same CY covariate for the two lines of business, i.e.
ϒt = ϒ

(1)
t = ϒ

(2)
t . The correlation induced by common CY effects would then

be introduced through the mean specification. Also, as done in Shi et al. (2012),
in addition to the commonCY covariate, a pairwise correlation between the two
runoff triangles can be added. This approach has the disadvantage however of
adding a new parameter for each diagonal (ϒt).

4.2.1. Multivariate Gaussian copula. Wefirst propose to use theGaussian cop-
ula to capture the dependence within and between runoff triangles. The Gaus-
sian copula which arises from the multivariate normal distribution is the most
widely known copula of the elliptical family of copulas. Such a copula allows
great flexibility to model dependences simply by modifying its correlation ma-
trix.

Let us suppose, for a given CY t, the following set of observations ut =
(u(1)

t− j+1, j , . . . , u
(1)
1,t , u

(2)
t− j+1, j , . . . , u

(2)
1,t) j=1,...,t, with multivariate Gaussian copula

density:

c (ut) = |�t|−1/2 exp
(

−1
2
ξTt

(
�−1
t − I

)
ξ t

)
,
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FIGURE 1: Dependence implied by hierarchical dependence. (Color online)

where ξ t = (−1(u(1)
t− j+1, j ), . . . , 

−1(u(1)
1,t), 

−1(u(2)
t− j+1, j ), . . . , 

−1(u(2)
1,t)))

T
j=1,...,t.

The correlation matrix �t for the CY t can be represented as a block matrix as
follows, given the assumptions of the model:

�t =
(

�11 �21
�21 �12

)
. (6)

In (6), the matrices �11 and �12 are correlation matrices with unit main di-
agonal and off-diagonal parameters θ1,1 and θ1,2 corresponding to the CY de-
pendence for the first and second line of business respectively. �21 is a matrix
filled with parameter θ2,1 representing the dependence between the two lines of
business.

Numerical results obtained with the Gaussian copula are presented in the
empirical illustration of Section 4.3.

4.2.2. Hierarchical Archimedean copulas. Hierarchical Archimedean copulas
permit to have different levels of dependence within our framework. We use
them here to add another level of dependence to the one proposed in Section
4.1. With this second level of dependence, we capture the dependence between
two different runoff triangles in a pairwise manner between corresponding diag-
onals, instead of between cells. Pairing diagonals instead of cells with a copula
has the advantage of being applicable even in a case of missing data in one of
the runoff triangles.

The hierarchical approach allows us to visualize the multi-level dependence.
Indeed, this dependence structure is illustrated in Figure 1, where a dependence
structure between cells of the same CY is supposed as well as a dependence
structure between the two lines of business. In the next section, we will also be
interested in comparing the hierarchical copula approach with the multivariate
Gaussian copula approach, as the latter is often considered as a benchmark
model.

The CY effect has not been often studied with more than one line of busi-
ness. Two recent examples are De Jong (2012), where the CY effect was intro-
duced through the correlation matrix and Shi et al. (2012), who used random
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effects to accommodate the correlation due to accounting year effects within
and across runoff triangles. In Shi et al. (2012), they work with a Bayesian per-
spective, using a multivariate lognormal distribution, along with a multivari-
ate Gaussian correlation matrix. The predictive distributions of outstanding
payments are generated through Monte Carlo simulations. The CY effect is
taken into account through an explanatory variable. A discussion of this pa-
per is suggested in Wüthrich (2012), and where it is also explained that for the
method it does not really matter whether we consider incremental or cumula-
tive claims, as long as we have a multivariate Gaussian structure. Also, still with
a Bayesian framework, Wüthrich et al. (2013) used a multivariate lognormal
chain-ladder model and derived predictors and confidence bounds in closed
form. Their analytical solutions are such that they allow for any correlation
structure. Their models allow a dependence between and within runoff trian-
gles, and for any correlation structure. It has also been shown in this paper that
the pairwise dependence form is a rather weak one compared to CY depen-
dence. More recently, Shi (2014) captures the dependencies introduced by var-
ious sources, including the common CY effects via the family of elliptical cop-
ulas, and use a parametric bootstrapping to quantify the associated reserving
variability.

In this paper, to model the complex dependence structure between two
runoff triangles, we introduce models based on hierarchical Archimedean copu-
las. The idea is to use Archimedean copulas at each level, from the lowest (CYs)
to the highest (lines of business). Hierarchical Archimedean copulas have first
been mentioned in the literature by Joe (1997), and appeared in more details in
Savu and Trede (2010).More recently, Okhrin et al. (2013) provided amethod to
estimate multivariate distributions defined through hierarchical Archimedean
copulas.

The main advantage of using Archimedean and hierarchical Archimedean
copulas is that they can be explicitly defined in terms of a one-dimensional func-
tion called the generator of the Archimedean copula. Elliptical copulas, used in
Shi (2014), do not possess this nice property; they do not have a closed form.
Archimedean copulas are also flexible and allow tomodel many kinds of depen-
dencies, while Elliptical copulas, have equal lower and upper tail dependence
coefficients. In high dimensions, Archimedean copulas are restricted given the
exchangeability of the components. This assumption is relaxed with hierarchical
Archimedean copulas.

At the lowest level, and for the CY t, we have 2 × t standard uniformly dis-
tributed random variables U(1)

t− j+1, j , . . . ,U
(1)
1,t ,U

(2)
t− j+1, j , . . . ,U

(2)
1,t where j desig-

nates the development period ( j = 1, . . . , t).
The joint distribution function is evaluated at u =

(u(1)
t− j+1, j , . . . , u

(1)
1,t , u

(2)
t− j+1, j , . . . , u

(2)
1,t) ∈ [0, 1]2t. Let there be H hierarchy

levels indexed by h. For example, the set of elements u is located at level h = 0.
At each level h = 0, . . . , H we have nh distinct objects with index k = 1,
. . . , nh .
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At level h = 1, the u(1)
t− j+1, j , . . . , u

(1)
1,t , u

(2)
t− j+1, j , . . . , u

(2)
1,t are grouped into n1

ordinarymultivariateArchimedean copulasC1,k, k = 1, . . . , n1 (in our case with
two lines of business, we have n1 = 2), of the form

C1,k(u1,k) = φ−1
1,k

⎛
⎝∑

u1,k

φ1,k(u1,k)

⎞
⎠ ,

where φ1,k denotes the generator of the copula C1,k. Let u1,k denote the set of
elements of u(k)

t− j+1, j , . . . , u
(k)
1,t belonging to the copula C1,k for k = 1, . . . , n1,

which represents the elements of a given CY for a single line of business �. At
this level only, k corresponds to �. In our model, we have three levels, i.e. H = 2.
At the highest level, we have a single object (n2 = 1), which is the hierarchical
Archimedean copula C2,1, that aggregates the multivariate Archimedean copu-
las of the previous level, and can be represented as

C2,k(C2,k) = φ−1
2,k

⎛
⎝∑

C2,k

φ2,k(C2,k)

⎞
⎠ ,

where φ2,k denotes the generator of the copula C2,k and C2,k represents the set
of all copulas from level h = 1 entering copula C2,k for k = 1, . . . , n2.

Obviously, there are numerous conditions to be satisfied for the existence of
a hierarchical Archimedean copula. The number of copulas must decrease at
each level, i.e. nh < nh−1, as well as the degree of dependence, i.e. θh+1,k′ < θh,k
for all h = 0, . . . , H and k = 1, . . . , nh , k′ = 1, . . . , nh+1 such thatCh,k ∈ Ch+1,k′

where θh,k is the parameter belonging to the generator φh,k. This means that for
runoff triangles, elements of a same line of business can have a higher degree
of dependence than elements of different lines of business. Mathematically, the
conditions that have to be verified by a hierarchical Archimedean copula are
summarized as follows:

1. All inverse generator functions φ−1
h,k are completely monotone.

2. The composite φh+1,k′ ◦ φ−1
h,k are convex functions for all h = 0, . . . , H and

k = 1, . . . , nh , k′ = 1, . . . , nh+1 such that Ch,k ∈ Ch+1,k′ .

In our application, we will limit the number of levels to three, and the number of
lines of business to two. This means that we will have at the highest level (h = 2),
one (hierarchical) bivariate Archimedean copula between lines of business, and
for h = 1, two (ordinary) multivariate Archimedean copula within a runoff
triangle.

As an illustration, let us consider a dependence structure between two runoff
triangles for the second CY. The resulting hierarchical Archimedean copula has
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the following analytical form

C2,1 = C2,1(u
(1)
2,1, u

(1)
1,2, u

(2)
2,1, u

(2)
1,2)

= C2,1(C1,1(u
(1)
2,1, u

(1)
1,2),C1,2(u

(2)
2,1, u

(2)
1,2))

= φ−1
2,1

(
φ2,1 ◦ φ−1

1,1[φ1,1(u
(1)
2,1) + φ1,1(u

(1)
1,2)]

+ φ2,1 ◦ φ−1
1,2[φ1,2(u

(2)
2,1) + φ1,2(u

(2)
1,2)]

)
.

This hierarchical Archimedean copula will be applied to each CY, with the
dataset described in Section 3.2. The CY t takes values from 1 to 10 because the
runoff triangles both have 10 diagonals, i.e. I = J = 10. The resulting hierar-
chical Archimedean copula for our model has the following general analytical
form:

C2,1 = C2,1(u
(1)
t− j+1, j , . . . , u

(1)
1,t , u

(2)
t− j+1, j , . . . , u

(2)
1,t)

= C2,1(C1,1(u
(1)
t− j+1, j , . . . , u

(1)
1,t),C1,2(u

(2)
t− j+1, j , . . . , u

(2)
1,t))

= φ−1
2,1

(
φ2,1 ◦ φ−1

1,1[φ1,1(u
(1)
t− j+1, j ) + · · · + φ1,1(u

(1)
1,t)]

+ φ2,1 ◦ φ−1
1,2[φ1,2(u

(2)
t− j+1, j ) + · · · + φ1,2(u

(2)
1,t)]

)
.

Finally, the log-likelihood function of the hierarchical model can be written as
follows:

L =
2∑

�=1

I∑
i=1

I−i+1∑
j=1

ln( f (�)
i j ) +

n∑
t=2

{ln c1,1
(
F (1)
t− j+1, j , . . . , F

(1)
1,t ; θ1,1

)
j=1,...,t

+ ln c1,2
(
F (2)
t− j+1, j , . . . , F

(2)
1,t ; θ1,2

)
j=1,...,t

+ ln c2,1
(
C1,1(F

(1)
t− j+1, j , . . . , F

(1)
1,t ; θ1,1),

C1,2(F
(2)
t− j+1, j , . . . , F

(2)
1,t ; θ1,2); θ2,1

)
j=1,...,t

}. (7)

The simpler form of hierarchical dependence is to suppose a product copula
between the two runoff triangles, meaning independence between lines of busi-
ness. In this situation, the log-likelihood of the model is simply L = L(1) + L(2),
where L(�), � = 1, 2 is simply the log-likelihood obtained by (5). Of course, it is
very easy to extend this model to more than two lines of business.
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TABLE 3

FIT STATISTICS OF INDEPENDENT CALENDAR YEAR DEPENDENCE MODEL.

Copula-Estimates and Standard Errors

Gaussian Frank Clayton Gumbel

θ1,1 0.6091 (0.1366) 8.1249 (1.4959) 2.2680 (0.4463) 2.7267 (0.6360)
θ1,2 0.7634 (0.0983) 14.0604 (1.8180) 2.9748 (0.5743) 4.6339 (1.0385)
Log-Lik. 391.5 404.7 403.9 400.4
AIC −699.0 −725.4 −723.9 −716.8
BIC −585.6 −612.0 −610.4 −603.4

TABLE 4

RESERVES ESTIMATION OF INDEPENDENT CALENDAR YEAR DEPENDENCE MODEL.

Copula

Reserves Estimation Gaussian Frank Clayton Gumbel

Personal 6,175,574 6,015,229 6,158,971 6,676,692
Commercial 751,725 901,641 662,929 769,428
Total 6,927,299 6,916,870 6,821,900 7,446,120

4.3. Empirical illustration

Hierarchical models based on different copulas have been applied to the runoff
triangles used in Section 3.2. For this model, the CY dependence has been mod-
eled with five different copulas (product, Frank, Gumbel, Clayton and Gaus-
sian). In our empirical study, we first use a model that supposes independence
between lines of business, i.e. a product copula between runoff triangles. We
call this model ICYD, for independence CY dependence. Fit statistics as long
as dependence parameters of this model are shown in Table 3, while the esti-
mated reserves are presented in Table 4. In terms of AIC, we observe that all
Archimedean copula models offer a better fit than the multivariate Gaussian
copula. Note that a CY dependence with a product copula within and between
the two lines of business is simply a cell-by-cell modeling. The empirical results
of this simple model have already been given in Section 3.2, for the PWDmodel
with a product copula.

Three copulas (Frank, Clayton and Gumbel) have been considered in a hier-
archical model to investigate dependence between the two lines of business. The
same copula is used for each level, meaning for example that if a Frank copula
is chosen within a runoff triangle, then it is also used between the business lines.
This is due to the convexity condition on hierarchical Archimedean copulas.We
call this model HCYD, for hierarchical CY dependence. The fit statistics and
the reserves obtained for this model are shown in Tables 5 and 6 respectively. To
compare the degree of dependence between different copulas, we also provide
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TABLE 5

PARAMETER ESTIMATION OF THE CALENDAR YEAR DEPENDENCE MODEL BETWEEN LOB’S.

Copula-Estimates and Standard errors

Gaussian Frank Clayton Gumbel

θ1,1 0.5989 (0.1396) 8.6648 (1.2668) 1.9343 (0.8738) 3.1292 (0.2962)
θ1,2 0.7586 (0.0997) 16.3327 (2.1025) 2.3357 (0.7781) 3.4505 (0.5443)
θ2,1 −0.1727 (0.2384) 6.0999 (3.0045) 0.2217 (0.2981) 1.8052 (0.5253)
ρS −0.1651 0.7166 0.1491 0.6186
τK −0.1105 0.5193 0.0997 0.4460
LogLik. 391.7 406.2 404.2 404.9
AIC −697.4 −726.4 −722.4 −723.7
BIC −581.3 −610.3 −606.3 −607.7

TABLE 6

RESERVES ESTIMATION OF THE CALENDAR YEAR DEPENDENCE MODEL BETWEEN LOB’S.

Copula

Reserves Estimation Gaussian Frank Clayton Gumbel

Personal 6,103,937 6,253,043 6,263,024 7,144,724
Commercial 740,747 1,095,438 720,353 1,222,431
Total 6,844,684 7,348,481 6,983,377 8,367,155

the two non-linear association measures Spearman’s rho ρS and Kandall’s tau
τK for the four copulas, see Table 5. We notice that the Clayton copula captures
a smaller dependence than the Frank and Gumbel copulas, whose association
measures are higher. Indeed, the Clayton family is characterized by a lower tail
dependence. Also, once again, the hierarchical Archimedean copula models of-
fer a better fit than the multivariate Gaussian copula as shown by the values
of the log-likelihood function. The Frank copula offers the best fit between all
HCYDmodels. Additionally, by looking at the values of the AIC, the hierarchi-
cal model with a Frank copula provides the best fit between all models studied
in this paper. As previously mentioned, the choice of the PWDmodel was based
on the AIC criterion.

4.3.1. Analysis of dependence. It is interesting to note that, unlike the pair-
wise model of Shi and Frees (2011) and the multivariate Gaussian copula model
which generate negative dependence, hierarchical models generate positive de-
pendence between loss triangles with our dataset. For the multivariate Gaussian
copula, we can observe that the parameter θ2,1 is not statistically significant (es-
timate of −0.1727 with standard error of 0.2384), which means that this nega-
tive associationmight therefore bemisleading. The hierarchical bivariate copula
C2,1 is not restricted, and allows for positive and negative dependence.
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We observe that the parameter θ2,1 is not statistically significant for the Clay-
ton copula model (estimate of 0.2217 with standard error of 0.2981). However,
it is significantly greater than 0 for the Gumbel and the Frank copulas, which
favors models with positive dependence, as opposed to the conclusion of Shi
and Frees (2011). This analysis highlights the fact that the choice of the models
can lead to different conclusions for the dependence structure. This was also
well illustrated in Figure 4 of Shi et al. (2012).

When we incorporate a CY correlation within the lines of business (level
1), the residual dependence becomes positive. Intuitively, this can be explained
by the trends and common effects that are detected with the introduction of
the proposed dependence structure but not with the chain-ladder coefficients.
In a given CY, exogenous common factors such as inflation, interest rates, ju-
risprudence or strategic decisions such as the acceleration of the payments for
the entire portfolio can have simultaneous impacts on all lines of business of a
given sector, such as the two lines of business considered in the present paper.
These effects may as well result in trends in the development period parameters.
It is important to note that these trends can detect both positive and negative
associations.

Finally, a hierarchical copula model requires a higher degree of dependence
for variates linked at a lower level than those linked at a higher level. In our
context, thismeans that the degree of dependencewithin lines of business should
be greater than between lines of business, as illustrated in Figure 1. One can
observe in Table 5 that this condition is respected with a dependence parameter
θ2,1 lower than the dependence parameters θ1,1 and θ1,2.

4.3.2. Fitted values. It can be interesting to analyse how the new models pro-
posed in this paper adjust the data. We examined fitted values ŷi, j , for i+ j ≤ n,
with the HCYD model using a Frank copula. The fitted values are compared
to observed loss ratios in Figure 2. We observe that despite the fact the HCYD
model offers the best fit, it generates outliers. We analyzed in details this situa-
tion and observed that these outliers come from the last CY of the commercial
line. For this CY, smaller incremental amounts are observed, compared to the
previous CYs. We observed that the individual development factors of the last
CY are all smaller than the median development factor for each development
period. This could be due to a policy reform, where it was decided to acceler-
ate payments, causing a decrease in the payments for the last diagonal. HCYD
model allowed us to clearly identify these outliers. For this dataset used as an il-
lustration, we think that othermethods can be used to evaluate the impact of the
possible administrative change. For example, new methods attributing weights
to outliers could be investigated. But even in this situation, a generalization of
the ICYD and the HCYD should be used.

When we look at the difference in the reserves between the models, this can
be explained in part by analyzing the values of the estimated parameters. One of
the most sensitive parameters is α

(�)

10 , which comes from the last accident year.
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FIGURE 2: Scatter plots of fitted value between the observed data and HCYD model for the personal auto and commercial auto lines. (Color online)
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β
(�)

10 , from the most recent development period, significantly drives the reserves.
Given that the idea behind a model with two explanatory variables, accident
year and development period, is the chain-ladder model, one can compare or
relate the sensitivity of the parameters α

(�)

10 and β
(�)

10 to the sensitivity of the top
right and bottom left parts of the triangle with the chain-ladder model.

The reserve’s difference between models can also be explained by the dispro-
portional size of the two sub-portfolios. The dominating size of the personal
auto line in the insurance portfolio can drive the results, as it was stated in one
of the conclusions ofWüthrich (2013): Strong portfolio growth or decrease needs
a careful analysis because change of volume often conceals other effects. This
conclusion would be even stronger for a risk capital analysis. This difference
of reserves has also been noticed previously in Table 9 of Shi and Frees (2011)
when they compare the prediction of unpaid losses of the insurance portfolio
from the copula model with various existing approaches.

Other interesting avenues are also raised in Meyers (2013), where it is indi-
cated that such situations could be explained by the fact that the insurance loss
environment is too dynamic to be captured in a single stochastic loss reserve
model. This may also be due to the data used to calibrate the model in which
can be missing crucial information. Examples of such changes could include
changes in the way the underlying business is conducted, such as changes in
claim processes or changes in the direct/ceded/assumed reinsurance composi-
tion of the claim values in triangles.

5. PREDICTIVE DISTRIBUTION

In practice, actuaries are interested in knowing the uncertainty of the reserve.
A parametric technique, the bootstrap, not only provides such information but
most importantly lets one determine the entire predictive distribution, rarely
obtained for non-Bayesian models. The predictive distribution notably allows
assessment of risk capital for an insurance portfolio. Bootstrapping is also ideal
from a practical point of view, because it avoids the complex theoretical calcu-
lations and can easily be implemented. Moreover, it tackles the potential model
overfitting, typically encountered in loss reserving problems, due to the small
sample size.

The bootstrap technique is increasingly popular in loss reserving, and al-
lows a wide range of applications. It was first introduced in a loss reserving
context with a distribution-free approach by Lowe (1994). For a multivariate
loss reserving analysis, Kirschner et al. (2008) used a synchronized parametric
bootstrap to model dependence between correlated lines of business, and Taylor
and McGuire (2007) extended this result to a generalized linear model context.
Shi and Frees (2011) and more recently Shi (2014) have also performed a para-
metric bootstrap to incorporate the uncertainty in parameter estimates, while
modeling dependence between loss triangles using copulas.
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5.1. Parametric bootstrap

The parametric bootstrap allows us to obtain the whole distribution of the re-
serves. We follow the same bootstrap algorithm of Taylor and McGuire (2007),
and summarized in Shi and Frees (2011).

5.1.1. Copula simulation. The first step of the parametric bootstrap is to gen-
erate pseudo-responses of normalized incremental paid losses y∗(�)

i j,r , for i, j such

that i + j ≤ I and � = 1, 2. We know that y∗(�)
i j,r = F (−1)(�)(u(�)

i j , μ̂
(�)
i j , γ̂ (�)), with

μ̂
(�)
i j and γ̂ (�) already estimated. Therefore, a technique to generate the realiza-

tions of the copula u(�)
i j , with � = 1, 2 should be used.

Given that the Frank copula generates the best fit for many models in this
paper, we have decided to focus on this copula for the bootstrap. Belowwe study
the Frank PWDmodel, the Frank independentmodel (a Frank copula is chosen
for each CY dependence, and a product-copula between lines of business), and
the Frank hierarchical model.

To generate a multivariate Frank copula, we follow the method based on the
inversion of the Laplace transform, an idea that can be traced back toMarshall
and Olkin (1988).

The above cited algorithms allow us to generate the set of realizations u(1)
1,1

and u(2)
1,2 for the first level of hierarchy (CY level at h = 1) from the ordi-

nary multivariate Archimedean copulas C1,1 and C1,2, for a given CY t and
development period j ( j = 1, . . . , t), with u(1)

1,1 = (u(1)
t− j+1, j , . . . , u

(1)
1,t) and

u(2)
1,2 = (u(2)

t− j+1, j , . . . , u
(2)
1,t). To generate realizations with a Frank copula at the

highest level of the hierarchy (line of business level at h = 2), we propose to use
a new algorithm.We will start from the last step where uniform realizations of a
Frank copula are generated for a given CY (CY level), and transform them into
two sets of standard exponential variables, with Z(�)

2,1 = −ln(U(�)

1,�), for � = 1, 2.
Thus, the algorithm for a hierarchical model with a Frank copula between the
lines of business is as follows:

1. Generate realizations of random variables Z(�)

2,1 = −ln(U(�)

1,�), with Z2,� ∼
Exp(1), for � = 1, 2.

2. Generate a realization y2,1 of a logarithmic random variable Y2,1, with pa-
rameter η2,1 = 1 − exp(−θ2,1).

3. Calculate the set U(�)

2,1 = ln(1−η2,1 exp(− Z(�)
2,1
Y ))

ln(1−η2,1)
, for � = 1, 2.

Consequently, we have obtained the set of realizations u(1)
2,1 and u(2)

2,1 for the
second level of hierarchy (business line level at h = 2) from the hierarchical
Archimedean copula C2,1.
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TABLE 7

BOOTSTRAP BIAS FOR VARIOUS MODELS.

Model Copula Reserve Bootstrap Reserve Bias Std Error

Frank PWDModel 6,999,267 7,042,276 0.61% 352,825
Frank Independent Model 6,916,870 7,011,597 1.35% 565,001
Frank Hierarchical Model 7,348,481 7,291,707 0.77% 886,364

5.1.2. Bias and MLE. The maximum likelihood estimation technique is
known to be asymptotically unbiased. In practice, we work with a finite number
of observations, particularly with runoff triangles. Indeed, in our empirical il-
lustrations, only 55 observations have been used in each triangle. Consequently,
regardless of the number of simulations, our estimation is done each time on
limited datasets of 55 observations.

The impact of the bias on the estimation has been analyzed. Recently, the
lognormal MLE bias has been studied in Johnson et al. (2011), along with the
gamma and Weibull distributions. Consequently, inter alia, a bias is necessar-
ily observed in the bootstrapping procedure. In our empirical illustration, the
bootstrap bias obtained for various models is exhibited in Table 7.

5.2. Reserve indications

In Table 7, we exhibit the bootstrap results for all three models (PWD model,
CY dependence model with independence between lines of business and the
hierarchical model). We show a histogram of the reserve distribution, with the
corresponding percentiles. Figure 3 is important and useful for actuaries, when
they want to select a reserve at a desired level of conservatism. The Frank inde-
pendentmodel captures the dependencewithin a runoff triangle but not between
the two lines of business. This explains why the prediction error is smaller than
the Frank hierarchical model but greater than the Frank PWD model. It has
been shown in Wüthrich et al. (2013) that the CYmodeling is more performant
than the PWDmodeling. One sees for example that the PWDmodels can under-
estimate the variability because they implicitly assume an independence between
accident years. The introduction of accounting year dependence may substan-
tially increase the prediction uncertainty (see Table 7). Note that to compute the
mean square error of prediction, the process uncertainty must be added to this
prediction error (see England and Verrall (2002)).

Note that to obtain the lower triangle (step 3 of the Bootstrap procedure
described in Section 5.1.1), we can either calculate the projected mean for each
cell of the lower triangle, as shown in this paper (projected mean approach),
or generating (by simulation) each cell of the lower triangle starting from
the new estimates obtained for each bootstrap sample. The second approach
(the simulation based approach) offers a wider range of possible reserves, and
will consequently have a larger standard error. This second approach can be
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FIGURE 3: Percentiles of total unpaid losses (in millions)-complete hierarchical model. (Color online)
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particularly interesting from a capital risk standpoint where extreme loss events
have to be considered. Both bootstrap approaches (projected mean approach
and simulation based approach) are relevant information for property-casualty
insurers.

6. CONCLUSION

In this paper, we have studied different approaches to model the dependence
between loss triangles using multivariate copulas. If losses in different lines of
business are correlated, aggregate reserves must reflect this dependence. To al-
low a complex dependence relation, we propose the use of new models using
hierarchial Archimedean copulas. To illustrate the model, an empirical illus-
tration was performed using the same data as the one used by Shi and Frees
(2011). Despite the fact that the commercial line generates outliers with ICYD
and HCYD models, we identified this situation by the inflexion of the last CY.
Based on the AIC and on the BIC, we show that the hierarchical Archimedean
models provide a better fit than PWD models.

With the proposed models, we can derive analytically the value of the re-
serve. However, to obtain the distribution of the reserve, in taking into account
the estimation errors of all parameters, we proposed a bootstrap method where
an algorithm to simulate a hierarchical copula model is proposed. From this
bootstrap method, we can observe, as expected, that the dependence assump-
tion between lines of business increase significantly the prediction uncertainty.

These new models that use hierarchical copula theory constitute a new
way to model the dependence structures of runoff triangles. Those models are
promising tools to better take into account dependencies within and between
business lines. Indeed, this approach can easily be generalized to more than two
lines of business because hierarchical Archimedean copulas are flexible and al-
lowmore refined possible dependence constructions. Because of their flexibility,
hierarchical copula models should also be considered in other areas of actuarial
science.
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NOTE

1. ORSA: Own Risk and Solvency Assessment.
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WÜTHRICH, M. (2012) Discussion of “A Bayesian log-normal model for multivariate loss reserv-
ing” by Shi-Basu-Meyers. North American Actuarial Journal, 16(3), 398–401.
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Quebec City (Quebec)
E-Mail: anas.abdallah.1@ulaval.ca

JEAN-PHILIPPE BOUCHER (Corresponding author)
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