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Introduction. In this paper the two-dimensional reflection of surface waves from
a vertical barrier in deep water is studied theoretically.

I t can be shown that when the normal velocity is prescribed at each point of an
infinite vertical plane extending from the surface, the motion on each side of the plane
is completely determined, apart from a motion consisting of simple standing waves.
In the cases considered here the normal velocity is prescribed on a part of the vertical
plane and is taken to be unknown elsewhere. From the condition of continuity of the
motion above and below the barrier an integral equation for the normal velocity can
be derived, which is of a simple type, in the case of deep water. We begin by considering
in detail the reflection from a fixed vertical barrier extending from depth a to some
point above the mean surface.

We consider a two-dimensional motion, in which a vertical plane occupies the line
x = 0, 0 < y <o, where the axis of y is taken vertically downwards and y = 0 is the
mean surface. A regular train of waves advancing from negative infinity will be
partially reflected and partially transmitted, a steady state being finally set up,
whose frequency n\2u is equal to the frequency of the wave train.

I t is assumed that the fluid is incompressible and inviscid, and that the motion is
irrotational and simple harmonic, so that a velocity potential rf>(x, y, t) exists, where

^ 0. (1)

Further g + | ^ = 0. (2)

These two conditions hold throughout the fluid. To find the analytic condition at the
free surface, we assume that the inclination of the waves to the surface is small, which
will be the case if the waves at a great distance are small. I t is easy to see that near the
barrier the surface elevation remains small, by considering the limiting case when
he barrier is infinite. Let t}{x,t) be the surface elevation at the point (a;, 0). Since

the gradient is small, the downward velocity

cy
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From Bernoulli's equation - = gv — ̂ r W-
P at
0 0 OQ> IK\

is constant on the surface, whence - ^ = g^- \°)
otz ay

y dt

on the surface, whence, from (1) K<f> + ̂ - = 0, (?)

where »2

On the barrier, the velocity is zero. Thus

We have the further conditions

^ -nt), as a;->+oo,

™<f>^-A2e~Kv cos(Kx-nt) + B2e~Kv sin(Kx-nt)

+ A3e~ K* cos (Kx + nt) + B3e-K" sin (Kx + nt), as z->--oo.

We begin by stating two lemmas:
COS

LEMMA 1. e~kx(k cos ky — if sin hy) . nt (x^O)
S1X1

satisfies equations (1), (2), (l)for all k.

We attempt to express the disturbance on the positive side of the barrier by a super-
position of such expressions; clearly this tends to zero when x tends to +co. For this
purpose we use the following expansion theorem given by HaveloekU).

LEMMA 2. The solution of (2) satisfying conditions (1) and (7), which is defined for
positive x, which satisfies

lim - ^ =f(y)sinnt (0<y<co),
x-+o9 °x

and which is of the form

-<f> = Ae~K* cos (Kx-nt) + Be~ K* sin (Kx-nt)
if

for large x, is given by

-<f> = Ae-Ky cos (Kx-nt) + Be-K» sin (Kx-nt)

+ [C(k) sin »«+ S (k) cos ra<] c-ftx (k cos % - JL sin ky) dk,
Jo

wAere A = 2 f"/(?/) e~Kvdy, B = 0,
Jo

C(/fc) = - - (iC2 + A;2)-1 it-1 I "/(y) (& cos % - Z sin %) dy, S{k) = 0.
7T Jo
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The lemma is equivalent to the following:
LEMMA 2A. Suppose thatf(y) belongs to L(0,oo). Then

Urn P 0(k) (k cos ky - K sin ky) e~kx dk sf{y) - 2K ["/(«) e-K&+u)du,
x^-0 JO JO

where G(k) = - (K2 + k2)-1 f °°/(y) (k cos % - Z sin ky) dy.
* Jo

To the solution of Lemma 2 may be added waves whose velocity across the imaginary
axis is zero. The only waves of this type which have physical significance are standing
waves of the type ^

— = ae~KvcosKx cos(nt + b).
These waves are excluded by the condition that the motion at infinity consists of
waves of progressive type.

We assume that horizontal motions under the barrier are in phase

^^=f(y)sinnt (x = 0, a<y<oo),

where f(y) is such that the flow near the bottom edge of the barrier is of the same type
as the steady flow past a similar barrier, i.e.

«J(y2 — a2) f(y) is bounded near y — a,

and the total flow under the barrier in a half-period is bounded, i.e.
(-00

f(y) dy exists.
Jo

We assume that the integral is absolutely convergent.
The assumption about phase will be justified if a solution satisfying all the boundary

conditions can be found.
The solution proceeds on the following lines. Given the form of the motion for

large (positive and negative) values of a; and the velocity on x = 0, we can, from Lemma
2, find a corresponding potential <f>+ defined in the region x > 0 and a similar potential
<j>_ defined in the region x < 0. If we consider the potential function equal to 0+ for
positive x, and equal to <j>_ for negative x, then by construction 3 /̂9a; is continuous
across x = 0, but in general there is a discontinuity in the vertical velocity. The
condition for continuity in this component

<f>+ = <j>- (x = 0,a<y<co)

provides an integral equation for f(y). We put

- 0 + = A1e-Kvcos{Kx-nt) + B1e-Kvain.(Kx-nt)
y

ran
+ [C(k) sin nt + 8(k) cos nt] e~kx (k cos ky — K sin ky) dk (x > 0),

Jo
- (f>_ = A 2 e~

 Kv cos (Kx - nt) + Bz e~ K* sin (Kx - nt)

+ A3e~Kv cos (Kx + nt) + B3e~K» sin {Kx + nt)
r">

+ [C(k) sin nt + S(k) cos nt]ekx(k cos ky — K sin ky)dk (x<0),
Jo
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-^=f(y)sinnt (0<y<co), f(y) = 0 (0<y<a),

whence, from Lemma 2,

C(k) = -

S(k) = - £(fcj = 0.

Substituting in the equation

/•oo

)~* f(y) (&cos ky - K sin fey) %,
Jo

(9)

(10)

we have

= 0, a<y <co),

43 = 0,
C 00

Jo cos % -

(kcosky — Ksinky)(kcosku-Ksinku)
dk

1 /*» I"

= - - f(u)du log
rK(y+u)ev ~\

(11)

Formally differentiating the last equation with respect to y, we obtain

1 r°° r 1 1 rK(y+u) ev -1
-KBze-Kv = - - /(-u)dw — + 2Ke-K<*+*> -dv\,

"Jo L y+u y-u J-« w J '
whence, by addition,

I™f(u)du\K\og V— —"I = 0 (o<«<oo).
Jo L y - « y+u y-uj v * '

Now f(y) = 0 (0 < y < a);
ev

by hypothesis -F(y) = f(u) du
Ja

exists and ^(00) is finite. By integration by parts

y-u

and the integral equation becomes
/ * 0

y —
(12)

(The integrals in the last equations are to be understood as Cauchy principal values.)
We now solve integral equations of this type in another lemma. An allied type occurs

in the theory of aerofoils.
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LEMMA 3. The equation

]¥^= V) {a<y<co)

has for suitable A(y) a solution /i(u) such that *J(u2 — a2)/i(u) is bounded near u = a, this
solution being ^ _ Cu 4 uz ^X{y)^-a

2)dy

y{y2-u2)

where C is an arbitrary constant.

Put u = a sec 0, y = a sec a (0 < 0 < \u, 0 < a < £77-).

By hypothesis, ft(a sec 0) sin 6 is bounded near 9 = 0, and we assume that

^(a sec 6) sin 0 = £a0 + 2 «2rcos 2 r# (0 < 0 < JTT),

series is unifor

asec2aA(aseca) =

Jo

2
I

where the infinite series is uniformly convergent.

ju,(a sec 6) sin ddd
cos2 6 — cos2 a,

cos2rddd
cos2 6 — cos2 a

7T co

sin 2a x

whence, by uniqueness of trigonometric series,

a2r = —- A(aseca)tana sin2rarfa.
* Jo

Substituting in the cosine series, the sum being defined as
03

lim '£airR
2T cos 2r9,

we
, , . . ., . _ 4a ri"A(a sec a) (1 — cos2 a) 7obtain w.(a sec 61) sui (9 = — — ^ - ^ 5 rfa + const.,f v 2Jo cos2#-cos2a

, 4

In the integral equation (12) considered here A(y) = 0, so that

We normahze/(w) so that C = 1. Then

on solving the differential equation and noting that
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We can now easily complete the solution, substituting in equation (10):

- %n(K2 + £2) kC(k) = f °°/(y) (k cos ky-K sin ky) dy
J a

V) C(k) = | J ^ L _ ij coskydy_
s^, (14)

I t can be shown (cf. Watson, Bessel Functions, § 13-42) that

Jx(ak) cos kudk = - (u < a)
o a

whence, by Fourier transforms,

fa 1 1 f00 / w \
i77-J,(a&) = - cos kudu I -r—z ^ — 11 cos kudu,

Jo a aja W(M ~a ) /

so that, from (14), C(k) = ^ | |

B3 can now be evaluated from (11) and Ax from (9).
Let L be the contour consisting of the real axis and a large semicircle in the upper

half-plane, the centre of the circle being at the origin. Then

f " C{k) (k cos ky-K sin ky) dk = I f ^ ^ efc* ̂ 3 (^ > o)
Jo 2JLz — iA

= -naIx{aK)e-Kv = jBae-s"

from (11), so that _B3 = —naIx{aK).

From equation (9), by integration by parts,

Ai =

so that finally

- ^ + = aK^aK) e~ Ky cos (iTa; - nt)

" jĵ  jl e~kx(k cos % - K sin %) dA; sin nt (x > 0),
J 0 " + *

- ^ _ = aiC^aA^e- '̂" cos (Kx-nt)
y

e~K'J sin (Kx — nt) - nal^aK) e~Kv sin (Kx + nl)

J 0 -^2 + k~
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The transmission and reflection coefficients are given by

These are shown in Fig. 1.
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Fig. 1. Reflection and transmission coefficients for a vertical barrier extending
upwards from depth a to the surface. 2n/n is the period of the motion.

The same method can be used to obtain the potential for an infinite vertical sub-
merged barrier whose upper edge is at depth b.

-<

Jo

e-Kv cos (Kx-nt)

x-nt)-0_ = nbI0(bK)e-

+ bK0{bK) e~Ry sin (Kx - nt) - bK0(bK) e~K» sin (Kx + nt)

f
Jo

**{k cos ky - K sin ky) dk sin nt (x < 0),

This problem has been solved by a different and simpler method by W. R. Dean (2).
Phase change at a barrier in the surface. The motion of the surface near the barrier
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is easily found. I t is of interest to compare the relative phase of the motions on the
two sides of the barrier, using the integral

J, W M ^ - h(aK)l

where L_1(x) is an associated Struve function defined by

lK) i »
The relative phase 6 is given by

tan 0 = nK^aK) [I^aK) + L^a
K\{aK) + n

For very long waves there is no phase change; for very short waves the change of
phase is two right angles.

DISCUSSION

In the two problems discussed here the velocity at the edge of the barrier becomes
infinite. An infinity of this type can be removed by rounding the edge of the barrier.
In experimental work it is found that when the barrier extends from the surface
downwards, the steady state corresponding to the foregoing solution is rapidly esta-
blished outside a thin layer provided that the barrier extends far enough near the
rounded edge to prevent breaking of waves over it. When the barrier extends upwards
from the bottom, the reflection is small, unless the edge of the barrier is very near the
surface, as has been shown by Dean. As the edge of the barrier approaches the surface,
the character of the wave motion near the top of the barrier is no longer oscillatory;
there is a rapid flow over the barrier when a crest arrives. It can be shown by computa-
tion that the part of the potential defined by the infinite integral is negligible at a
distance of more than two wave-lengths from the barrier.

Other positions of the barrier. When the barrier occupies the whole of the imaginary
axis except for a gap between ai and bi, the problem is solved by a trivial extension
of Lemma 3, but the resulting solution is complicated. A simple solution can be
obtained for the allied problem in which a barrier occupies the part of the imaginary
axis between ai and bi. Following Dean, we shall attempt to find a complex potential

w = <j> + irjr
7L1D i Cz \

of the form — = {AeiKls + eiKl! R(z)e-iKzdz)coant + BeiKzBmnt.
9 \ Jia I

The pressure condition on the surface requires that 9ft(z) should be real on the real
axis; on the barrier, the imaginary part of w is zero, i.e.

'VR(iy)e*»dyf
J amust be pure imaginary, when y lies between a and 6. A suitable function is therefore

B(Z):
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c2 is determined from the condition that dwjdz is one-valued in the half-plane y > 0
cut from ai to bi, whence

f
J a

= 0.

For large x the potential represents a progressive wave travelling away from the
origin; this condition determines A and B. The problem will not be considered in
detail here.

Extension of the method. When the normal velocity on the barrier is prescribed, the
resulting wave motion can be determined from the general solution given in Lemma 3.
If the motion in shallow water is to be determined, Lemma 2 must be replaced by the
corresponding series expansion, which is of the form

n °°
- 0 = A0cosh.k0(k — y) cos{k^x — nt)+ £ Aee~k'x cos ks(k —y) sin nt,
9 8=1

where K = kot&nhkoh,

and klt k2, ..., ks, ... are the real roots of

k sin kh + K cos kh = 0

in increasing order of magnitude, and
rh

2 f(y) cosh ko(h-y)dy
Jo

koh + sinh fc0h cosh &0A '

/•ft
- 2 I f{y)cosks(h-y)dy

s ksh + sinksh cos ksh '

The amplitude at infinity is ^40coshA;0A. An integral equation can then be derived,
which may be solved by numerical methods. Lemma 2 gives the limiting form of the
series expansion when the depth h tends to infinity.

I am indebted to the Board of Admiralty for permission to publish this paper.
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