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G� SETS IN �-IDEALS GENERATED BY COMPACT SETS

MAYA SARAN

Abstract. Given a compact Polish spaceE and the hyperspace of its compact subsetsK(E), we consider
G� �-ideals of compact subsets of E. Solecki has shown that any �-ideal in a broad natural class of G�
ideals can be represented via a compact subset of K(E); in this article we examine the behaviour of G�
subsets of E with respect to the representing set. Given an ideal I in this class, we construct a representing
set that recognises a compact subset of E as being “small” precisely when it is in I , and recognises a G�
subset of E as being “small” precisely when it is covered by countably many compact sets from I .

§1. Introduction. Let E be a compact Polish space and let K(E) denote the
hyperspace of its compact subsets, equipped with the Vietoris topology. A basis for
this topology consists of sets of the form

{F ∈ K(E) : F ⊆ U0, F ∩Ui �= ∅ ∀i = 1, . . . , k}
for some k ∈ N andopen setsU0, . . . , Uk ⊆ E, withUi ⊆ U0 for each i . A nonempty
set I ⊆ K(E) is an ideal of compact sets if it is closed under the operations of
taking compact subsets and finite unions. An ideal I is a �-ideal if it is also closed
under countable unions whenever the union itself is compact. Such families arise
commonly in analysis out of various notions of smallness.
It is now long established that the condition of being an ideal or �-ideal of
compact sets is strongly related to the complexity of I considered as a subset of
K(E). By a result of Dougherty–Kechris and Louveau (see [2]), we know that if I is
a G� ideal, it must in fact be a �-ideal, and by results of Kechris–Louveau–Woodin
proved in the seminal article [4, Section 1], we know that if a �-ideal is coanalytic
or analytic, it must be either complete coanalytic or simply G� . Having established
this dichotomy [4] focused more on coanalytic ideals than on the class of G� ideals;
however the latter includes rich examples and its theory is far from trivial.
In this article we consider G� �-ideals of compact sets that also satisfy the follow-
ing condition, formulated by Solecki in [7]: a collection of compact sets I ⊆ K(E)
has property (∗) if, for any sequence of sets (Kn)n∈N ⊆ I , there exists aG� setG such
that

⋃
n Kn ⊆ G andK(G) ⊆ I . While property (∗) is stronger than the condition of

being a �-ideal, it holds in all natural examples of G� �-ideals, including the ideals
of compact meager sets, measure-zero sets, sets of dimension ≤n for fixed n ∈ N,
and Z-sets. (See [7] for these and other examples and a discussion of property (∗).)
Received April 10, 2018.
2010Mathematics Subject Classification. 03E15, 28A05, 54H05.
Key words and phrases. descriptive set theory, ideals of compact sets.

c© 2019, Association for Symbolic Logic
0022-4812/19/8402-0016
DOI:10.1017/jsl.2019.6

781

https://doi.org/10.1017/jsl.2019.6 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.6


782 MAYA SARAN

Solecki has shown that any such ideal is represented via the meager ideal of a closed
subset ofK(E), as follows. ForA ⊆ E, we defineA∗ as the set of all compact subsets
of E that intersect A, i.e.,

A∗ = {K ∈ K(E) : K ∩ A �= ∅}.
The representation theorem ([7, Section 3]) says that, if I ⊆ K(E) is coanalytic and
nonempty, then I has property (∗) if and only if there exists a closed set F ⊆ K(E)
such that

∀K ∈ K(E), K ∈ I ⇐⇒ K∗ is meager in F .
Here when we say thatK∗ is meager in F , we mean thatK∗ ∩F is relatively meager
in F . (This representation is a ‘category analogue’ to a result of Choquet (see [1])
that establishes a correspondence between alternating capacities of order∞ on E
and probability Borel measures on K(E).) We have shown in [5] that as long as I
has no nonmeager sets the set F can be assumed to be upward closed, i.e., it contains
all compact supersets of its members. The upward closedness of F ensures that the
map K → K∗ ∩ F , a fundamental function in this context, is continuous.
Motivated by results on G� ideals with property (∗), Solecki has framed in [7,
Section 7] some natural further questions about the relationship of G� subsets of E
to a representing set F . (Another question asks if every thin G� ideal has property
(∗).) The present article takes up the following particular question: given a G� ideal
I with property (∗), does I have a representing set F for which, given a G� set
G ⊆ E, G∗ will be meager in F precisely when G is covered by countably many
compact sets in I ? We answer in the affirmative, and if the ideal under consideration
contains only sets with empty interiors, we construct a representing set F that is
also upward closed. (The other questions remain open.)

Theorem 1.1. Let E be a compact Polish space and let I ⊆ K(E) be a G� ideal
of compact sets, with property (∗). Then there exists a compact set F ⊆ K(E) such
that any G� subset G of E is covered by countably many sets in I if and only if G∗ is
meager in F .
Further, if I contains only meager sets, then there exists a setF as above that is also
upward closed.
In fact a stronger statement is true: we can replace G� subsets of E by analytic
sets by invoking Solecki’s theorem from [6], viz., given a family of compact subsets
of a Polish space E, an analytic subset of A of E cannot be covered by countably
many sets from the family if and only ifA has aG� subset that cannot be so covered.
We give this stronger result as a corollary.

Corollary 1.2. Let E be a compact Polish space and let I ⊆ K(E) be a G� ideal
of compact sets, with property (∗). Then there exists a compact set F ⊆ K(E) such
that any analytic subset A of E is covered by countably many sets in I if and only if
A∗ is meager in F .
Further, if I contains only meager sets, then there exists a setF as above that is also
upward closed.
Note that the set F (of both the theorem and the corollary) will indeed be a
representing set for I , i.e., for any compact K ⊆ E, the membership of K in I will
be characterized by the meagerness ofK∗ inF . (The trivial proof of this is indicated
in Proposition 2.1.)
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We remark that the condition that I contain only meager sets is necessary if the
set F of Theorem 1.1 is to be upward closed (indeed, if any representing set for
I is to be upward closed). For if F ⊆ K(E) is nonempty and upward closed and
U ⊆ E is nonempty and open, the setU ∗∩F , an open subset ofF , is automatically
nonempty. Thus if any set K ⊆ E has nonempty interior, K∗ will have nonempty
interior in F .
A final remark on a consequence of Theorem 1.1. In some cases, the notion of
smallness that defines I can also be applied in a naturalway toG� sets. (For example,
I might consist of compact nullsets with respect to Lebesgue measure on [0, 1]; here
the notion of being a nullset applies to G� sets as well.) Theorem 1.1 implies that a
representing set F that works to identify small compact sets K (via the meagerness
of K∗ in F) need not work to identify small G� sets. (Continuing with the same
example, the theorem gives us a set F such that, if K ⊆ E is compact then K∗ is
meager in F exactly when K is a nullset—but given a G� set G , the meagerness of
G∗ in F depends not at all on whether G is null, but only on whether G is covered
by countably many compact nullsets. And certainly [0, 1] does haveG� nullsets that
cannot be so covered, for example, comeager nullsets.)

§2. Preliminaries. We will say that a set A ⊆ K(E) is downward closed if A
contains all compact subsets of its members. We will use the notationG�(E) for the
collection of all G� subsets of E.
The next proposition indicates the approach we will take in proving Theorem 1.1:
if F ⊆ K(E) is known to be a representing set for I , it suffices to consider G� sets
all of whose nonempty open subsets have closure not in I .

Proposition 2.1. LetE be a compactPolish space and let I ⊆ K(E) be a nonempty
G� ideal of compact sets, with property (∗). Let F ⊆ K(E). Then the following holds
∀G ∈ G�(E), (

G ⊆
⋃
n∈N

Kn for some Kn ∈ I
)

⇐⇒
(
G∗ meager in F

)
(1)

if and only if the two conditions below hold :

∀K ∈ K(E), K ∈ I ⇐⇒ K∗ is meager in F , (2)

and

∀ nonemptyG ∈ G�(E),(
∀ open U, U ∩ G �= ∅ ⇒ U ∩G /∈ I

)
=⇒

(
G∗ is nonmeager in F

)
. (3)

Proof. Let (1) hold. The forward implication of (2) is immediate because com-
pact sets are G� ; the converse is immediate in light of property (∗). To prove (3),
suppose that G is a nonempty G� set such that for every nonempty relatively open
subset of G has closure not in I . By (1), to show that G∗ is nonmeager in F , it
suffices to show that G cannot be covered by countably many sets in I . So suppose
G ⊆ ⋃

n Fn for some Fn ∈ I . Since G is nonempty and Polish and each Fn ∩ G is
relatively closed in G , for some n ∈ N, Fn ∩G contains a nonempty relatively open
subset, say U , of G . Now U ⊆ Fn ∩ G ⊆ Fn ∈ I , a contradiction.
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Now let (2) and (3) hold. The implication from left to right in (1) is immediate
because if G ⊆ ⋃

n Kn then G
∗ ⊆ ⋃

n Kn
∗. To prove the other direction, suppose

G is a G� set not covered by the countable union of any sets in I . Set G0 = G and
recursively define for successor ordinals α + 1 and limit ordinals � the sets

Gα+1 = Gα \
⋃{
U : U ⊆ Gα relatively open in Gα and U ∈ I};

G� =
⋂
α<�

Gα.

For each ordinal α, Gα is a closed subset of G . So for some α0 < �1, Gα0 = Gα0+1.
If Gα0 were empty, then G would be covered by a countable number of sets U with
U ∈ I , a contradiction. (Countability can be obtained by considering open sets
only from some countable basis.) So Gα0 is nonempty, and the closure of every
relatively open nonempty subset of it is outside I . Now by (3), G∗

α0
is nonmeager in

F and therefore so is G∗. �
We will say that a subset of E is “everywhere big with respect to I ” if all of its
nonempty relatively open subsets have closure not in I . We make a remark for later
use. The transfinite process described in the proof above can be carried out on any
closed subset F of E. At each stage, the set we are removing from F can be written
as the countable union of closed sets in I . So we can write F as

F = F ′ ∪
⋃
n∈N

Fn,

where each Fn is a compact set in I , and F ′ is a closed subset of F , which, if
nonempty, is everywhere big with respect to I .
In light of Proposition 2.1, to prove Theorem 1.1, we may find a compact F ⊆

K(E) that serves as a representing set for I and then simply show (3). To examine
the meagerness in F of some subset A of F , we will employ the Banach–Mazur
game in F onA, which proceeds thus. Players I and II take turns playing nonempty
open subsets of F as follows:
Player I V0 V1 . . .
Player II W0 W1 . . .
satisfying V0 ⊇ W0 ⊇ V1 ⊇ W1 ⊇ · · · . Player II wins this run of the game if⋂
nWn(=

⋂
n Vn) ⊆ A. The key fact about this game is that Player II has a winning

strategy if and only if A is comeager in F ; see, for example, Section 8.H of [3] for a
proof.
We will make use of theHausdorffmetric for the topology onK(E), derived from
some fixed complete metric onE thus. For x ∈ E, letB(x, r) denote the open ball of
radius r around x. The Hausdorff distance between nonempty compact sets F and
K is then the infimum of all ε such that F ⊆ ⋃

x∈K B(x, ε) andK ⊆ ⋃
x∈F B(x, ε).

Finally, we shall make use of the following equivalence proved by Solecki in [7,
Section 5]. Solecki has shown that for a nonempty set I ⊆ K(E), I is a G� set with
property (∗) if and only if there exists a sequence of open, downward closed sets
Un ⊆ K(E), n ∈ N, such that I =

⋂
n Un and the sets Un satisfy the condition that

∀K ∈ Un ∃m ∈ N ∀L ∈ Um K ∪ L ∈ Un. (4)
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By taking the obvious finite intersections, we may in fact assume that (Un) is a
decreasing sequence. For many G� ideals with property (∗), the sets Un ⊆ K(E)
refered to here present themselves naturally. For example, for the ideal of closed
null sets for an outer regular Borel measure �, we may define the sets Un by setting

Un =
{
K ∈ K(E) : K ⊆ U for some open U such that �(U ) < 1

n

}
.

It is straightforward to see that the sets Un satisfy (4) and their intersection is I .

§3. Proving the theorem. The principal part of the proof of Theorem 1.1 is the
construction of a suitable closed and upward closed set F for the case where I
contains only meager sets. This construction requires E to have infinitely many
limit points, and also requires the existence of at least one meager compact set with
at least three points that is everywhere big with respect to I . This necessitates the
treatment of two relatively trivial special cases in a separate proposition, which we
shall dispense with:

Proposition 3.1. Let E be a compact Polish space and let I ⊆ K(E) be aG� ideal
of compact sets, with property (∗), containing only meager sets. If either one of the
following conditions holds:
1. E has only finitely many limit points, or
2. every meager compact subset of E that is everywhere big with respect to I has
at most two points,

then the conclusion of Theorem 1.1 holds.
Proof. Since I has only meager sets, I has some closed and upward closed set
representing set F ⊆ K(E). Let G ⊆ E be a G� set that is everywhere big with
respect to I ; we show that G∗ is nonmeager in F .
Suppose that E has only finitely many limit points. If G contains any isolated
point, then G has nonempty interior and so G∗ is nonmeager in F . On the other
hand, if G contains no isolated point of E, it must be a finite, and therefore closed,
set (and it is nonempty). So we have G = G /∈ I , and again G∗ is nonmeager in F .
Coming to the other condition, suppose that every meager compact subset of E
that is everywhere big with respect to I has at most two points. If x ∈ E belongs to
some such finite everywhere big meager set, then clearly {x} is not in I . Note that
there can be at most two points altogether, say x1 and x2, that show up in such sets.
(If there were three distinct points making an appearance in finite everywhere big
meager sets, then the three points together would comprise another such set.)
Take now our nonempty G� set G which is everywhere big with respect to I . If
G contains one of the xi , then {xi}∗ ⊆ G∗, and so G∗ is not meager in F . On the
other hand, ifG contains no such xi , then by replacingG with a suitable nonempty
relatively open subset of itself if necessary, we may assume thatG contains no such
xi either. Now write G as

G = G ∪
⋃
n∈N

Fn,

where each Fn is a relatively closed and relatively meager subset of G . Each Fn is
also a closed meager subset of E, and by the remark following Proposition 2.1, can
be written as
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Fn = F ′
n ∪

⋃
m

F nm,

where F ′
n is either empty or a meager compact subset of E that is everywhere big

with respect to I , and each F nm is in I . Since F
′
n is disjoint from {x1, x2}, it must

simply be empty. We now have

G = G ∪
⋃
n,m

F nm,

and so
G

∗
= G∗ ∪

⋃
n,m

F nm
∗.

Since each F nm
∗ is meager in F , but G∗

is nonmeager in F , it must be the case that
G∗ is nonmeager in F . �
Note that the preceding proposition has covered the case of the ideal of meager
compact sets (denotedMGR(E)), because this ideal satisfies the second condition:
there are no nonempty meager compact subsets of E that are everywhere big with
respect to I .
We now turn to the construction of a set F as in Theorem 1.1 in the case where
I has only meager set. The construction has two stages. First, we construct suitable
representing sequences of closed and upwards closed sets for I . Second,we join these
countably many sets into a single F that will satisfy the conclusion of Theorem 1.1.
For ease of exposition we separate the first stage into a proposition of its own. But
first, a lemma:
Lemma 3.2. Let F be a meager compact subset of a Polish space E. Then we may
find a sequence of pairwise disjoint regular closed sets (Fn) converging to and disjoint
from F .
Proof. Since F is meager, for each ε > 0 we can find a finite nonempty set
disjoint from F whose Hausdorff distance from F is less than ε, and of course
positive. This allows us to successively construct a sequence of pairwise disjoint
finite sets Fn converging to and disjoint from F . By successively replacing each
finite set Fn with a set of the form

⋃
x∈Fn B(x, �n) for a suitably chosen positive �n,

we obtain a sequence satisfying the required conditions. �
Proposition 3.3. Let E be a compact Polish space and let I ⊆ K(E) be aG� ideal
of compact sets, with property (∗), containing only meager sets. Let U , V be open
subsets of E with disjoint closures and suppose that V contains a compact meager set
M that is everywhere big with respect to I . Then there exist closed and upward closed
sets Fm ⊆ K(E), m ∈ N, such that:

∀K ∈ K(U ), K /∈ I =⇒ ∃mFm ⊆ K∗; (5)

∀K ∈ K(E), K ∈ I =⇒ ∀mK∗ is meager in Fm; (6)

∀ nonempty G ∈ G�(U ),(
G is everywhere big w.r.t. I

)
⇒

(
∃mG∗ is comeager in Fm

)
. (7)

Additionally,
∀m ∈ N, Fm ⊆ V ∗

; and (8)
∀m ∈ N, ∀openW ⊆ E, V ∪U ⊆W =⇒ K(W ) ∩ Fm �= ∅. (9)
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Proof. Fix a decreasing sequence of open, downward closed sets Un ⊆ K(E)
such that

I =
⋂
n

Un

and (4) holds for the sets Un. For K ∈ K(E) and n ∈ N, we will say that “K is
n-small” if K ∈ Un, else, we will say that “K is n-big”. Clearly K ∈ I if and only if
K is n-small for all n, and as each Un is downward closed, an n-big set cannot be
contained in an n-small set.
Fix a countable basisB forE, closed under finite unions. By Lemma 3.2, insideV
wemay find a sequence of pairwise disjoint regular closed sets (Mi), say, converging
to and disjoint from M . Note that the union of finitely many members of the
sequence (Mi ) will have an open superset that is disjoint from all other members of
the sequence. With eachB ∈ B we associate a subsequence of (Mi), whosemembers
we shall denoteM (B, n), n ∈ N, in such a way that for each i the setMi appears in
the sequence (M (B, n))n for exactly one set B ∈ B.
For F ∈ K(E), we introduce some useful terms. For B ∈ B, we will say that “F
allows B” if F ∩M (B, n) has nonempty interior for every n ∈ N. For i ∈ N we will
say that “F is blank inMi” if F ∩Mi = ∅. We will say that “F has k blanks before
Mi” if k of the sets F ∩M1, F ∩M2, . . ., F ∩Mi−1 are empty.
Now form ∈ N, we will define a setAm ⊆ K(E) thus. For F ∈ K(E), we will say
that F ∈ Am if the following conditions hold:
Cond. 1. There exists r ∈ N such thatF ∩Mi has nonempty interior for all i ≥ r.
Cond. 2. The set F ∩M is not in I .
Cond. 3. There exist p ∈ N and B1, B2, . . . , Bp ∈ B, arranged in the order in

which the first terms of their associated subsequences occur within the
sequence (Mi ) (so that, for example, M (B1, 1) occurs in (Mi) earlier
thanM (B2, 1) does) such that:
(3a) F allows each Bi ;
(3b) the union of the sets Bi is m-small, i.e.,

p⋃
1

Bi ∈ Um;

(3c) for each j = 1, . . . , p, if F has kj blanks beforeM (Bj, 1) then

p⋃
i=j

Bi ∈ Ukj ;

(3d) finally,

E \ F ∩U ⊆
p⋃
i=1

Bi .

We will say that the tuple 〈B1, B2, . . . , Bp, r〉 witnesses the membership of F in
Am. Note that Cond. 1 implies that F allows all but finitely many basic sets. Note
also that from Cond. (3d) we have that F and the sets Bi cover U .
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It is easy to see that Am is upward closed. (If some set F in Am has witness
〈B1, B2, . . . , Bp, r〉, then the same witness will work for any compact superset of F .
Here we make use of the fact that the sequence (Un) is decreasing.)
Set Fm = Am. This is still an upward closed set.
Our goals are now to show that (5)–(9) hold.We start with the last two. Certainly
(8) is immediate (each F in Fm intersectsM ). To see (9), fixm ∈ N and fix an open
superset W of V ∪ U . We want to show that K(W ) ∩ Fm �= ∅. Let W ′ be open
such that V ∪U ⊆W ′ ⊆W ′ ⊆W. It is clear that the setW ′ satisfies Cond. 1 and
Cond. 2, and thatW ′ allows all basic sets and has no blanks at all in (Mi). Since

E \W ′ ∩U = ∅,
we can simply take any basic set B whose closure is in Um to get a witness 〈B, 1〉 for
the membership ofW ′ inAm. (Certainly Um will contain the closures of some basic
sets, just because any member of the open set Um is the limit of a sequence of the
closures of basic sets.)
We move on to (5). Fix a compact set K ⊆ U not in I , and fix m0 such that
K /∈ Um0 . For F ∈ Am0 , we have E \ F ∩ U ⊆ ⋃p

1 Bi for some basic sets Bi
satisfying the condition that

⋃p
1 Bi is m0-small. The sets F and

⋃p
1 Bi cover U and

therefore coverK . SinceK ism0-big it cannot fit inside
⋃p
1 Bi , and so must intersect

F . Thus Am0 ⊆ K∗; the latter being closed we also get Fm0 ⊆ K∗.
Next, (6). Fix K ∈ I , m ∈ N and ε > 0. Let F ∈ Am and let the tuple

〈B1, B2, . . . , Bp, r〉witness themembership of F inAm. We will find a set inAm \K∗

within ε of F ; this will suffice to show thatK∗ is nowhere dense, and hence meager,
in Fm.
The sets Bi satisfy the condition that

p⋃
i=1

Bi ∈ Um,

and they also satisfy the following p many conditions: for each j = 1, . . . , p, if F
has kj blanks beforeM (Bj, 1) then

p⋃
i=j

Bi ∈ Ukj .

We may now pick a q ∈ N large enough so that:

• we can add a q-small set to⋃p1 Bi and stay in Um;
• for each j = 1, . . . , p, we can add a q-small set to⋃pj Bi and stay in Ukj ;
• if F has a total of t blanks in the sequence (Mi), then q > t.
Now, F ∩M � K because F ∩M /∈ I . Let x ∈ F ∩M \K . Pick a positive � < ε
such thatB(x, �) is disjoint fromK . SinceM is in B(x, �)∗, which is an open subset
of K(E), we may fix i0 ∈ N such that ∀i ≥ i0,Mi ∈ B(x, �)∗, i.e.,Mi ∩B(x, �) �= ∅.
As the interior of eachMi is dense in it, we have ∀i ≥ i0, (Mi)◦ ∩ B(x, �) �= ∅.
Now consider the finitely many setsMi for i < i0. For each of these setsMi we
define an open subset Vi thus. If F ∩Mi �= φ, then, recalling thatMi is regular and
K is meager, we fix a nonempty open set Vi ⊆Mi such thatVi ⊆

⋃
y∈F B(y, �) and

Vi ∩K = ∅. If on the other hand F ∩Mi = φ, then we simply set Vi = ∅.
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Now consider a sequence of basic open sets containingK whose closures converge
to K . As K belongs to the open set Uq , these closures eventually lie in Uq . Pick a
member B of this sequence such that:

• M (B, 1) occurs in the sequence (Mi) afterMi0 and afterM (Bp, 1), and
• B ∈ Uq .
Now let B ′ be an open set such thatK ⊆ B ′ ⊆ B ′ ⊆ B, and set

F ′ = (F \ B ′) ∪ B(x, �) ∪
⋃
i<i0

Vi,

which is clearly disjoint from K . We now claim that F ′ is in Am.
Cond. 1 is satisfied asB(x, �)∩Mi has nonempty interior for all i ≥ i0. Cond. 2 is
satisfied as B(x, �)∩M contains B(x, �) ∩M , which is not in I asM is everywhere
big with respect to I .
The tuple 〈B1, B2, . . . , Bp, B, i0〉 witnesses the membership of F ′ in Am. To see
this, first note that F ′ ∩Mi has nonempty interior for every i where F ∩Mi had
nonempty interior, so F ′ allows any basic set that F allowed, including each Bj .
The basic set B is allowed as the entire sequence (M (B, n))n lies in the i0-tail of
(Mi). Hence Cond. (3a) holds. Cond. (3b) holds for this witness by choice of q.
Cond. (3c) now consists of p + 1 conditions. For j = 1, . . . , p, if F ′ has k′j blanks
beforeM (Bj, 1), then k′j ≤ kj , and by choice of q we have

⋃p
j Bi ∪ B ∈ Ukj ⊆ Uk′j .

The p+1st condition is that we must haveB ∈ Uk , where k is the number of blanks
thatF ′ has beforeM (B, 1). Now, F ′ can have nomore than t blanks beforeM (B, 1)
because it has no more than t blanks anywhere, and thus B ∈ Uq ⊆ Ut ⊆ Uk . So
Cond. (3c) holds. Finally, for Cond. (3d) note that, by definition of F ′, we have
F \ B ′ ⊆ F ′, and thus E \ F ′ ⊆ E \ (F \ B ′) = B ′ ∪ E \ F . So

U ∩ E \ F ′ ⊆ U ∩
[
B ′ ∪ E \ F

]
⊆ B ′ ∪

p⋃
i=1

Bi ⊆ B ∪
p⋃
i=1

Bi .

So we have F ′ ∈ Am \K∗. It remains to examine the distance of F ′ from F . We
first note that the set F ∪B(x, �) ∪ ⋃

i<i0
Vi is within ε of F . (This follows from the

fact that x ∈ F and � < ε, and by the choice of Vi ’s.) In forming the set F ′ we have
removed some points from this set and may have obtained a set that is more than ε
away from F . Recalling again that K is meager and Am is upward closed, this can
be remedied by adding to F ′ a finite set of points, all outside K , to obtain a set in
Am \K∗ once again within ε of the original set F .
Thus we have shown thatK∗ is meager in Fm.
Having establised that the sets Fm determine membership of compact sets K in
I , we now address (7):
Let G ⊆ U be a nonempty G� set that is everywhere big with respect to I . Let
(Hn) be an increasing sequence of closed sets that are relatively meager in G such
that G = G \⋃n Hn .
Fix m0 such that G /∈ Um0 , so that Fm0 ⊆ G∗

. In order to show that G∗ is
comeager in Fm0 , we will play the Banach–Mazur game in Fm0 , on the set G∗; we
will describe a winning strategy for Player II, i.e., if Player I is playing sets Vn and
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Player II is playing setsWn, (all open subsets of Fm0 satisfying the inclusions of the
game) we will show that

⋂
nWn ⊆ G∗.

Player I starts the game by playing some V1. If F is a set in V1 ∩Am0 with witness
〈B1, B2, . . . Bp, r〉, then we know that G \⋃p1 Bi is nonempty. (In fact, this is why
we know that G intersects F .) If Player II can construct W1, a further nonempty
open subset of Fm0 , and D1, a nonempty relatively open subset of G , such that
• D1 ∩H1 = ∅, and
• W1 ⊆ D1∗,
and if Player II can keep going in this way, producing with each successiveWn that
it plays, an open subset Dn of G , such that

• Dn ⊆ Dn−1 for n > 1,
• Dn ∩Hn = ∅, and
• Wn ⊆ Dn∗,
then Player II will have a winning strategy.
Therefore it suffices to show the following.

Claim. Let D andH be nonempty subsets of G , with D relatively open in G , and
H relatively meager and closed in G . Suppose that V is a nonempty relatively open
subset of Fm0 such that for any F ∈ V ∩ Am0 , if 〈B1, B2, . . . , Bp, r〉 witnesses the
membership of F in Am0 , then

D \
p⋃
j=1

Bj �= ∅.

Then there exists a further nonempty relatively open subset V ′ of Fm0 , contained in V ,
and a further nonempty relatively open subsetD′ ofG , such thatD′ ⊆ D \H and, for
any F ∈ V ′ ∩ Am0 , if 〈B1, B2, . . . , Bp, r〉 witnesses the membership of F in Am0 , then

D′ \
p⋃
j=1

Bj �= ∅.

(This then implies that F ∈ D′∗, and thus we have V ′ ⊆ D′∗.)
We prove the claim.
Without loss of generality, we may assume that V has the form

V = {K ∈ Fm0 : K ⊆ V0, K ∩Vi �= ∅∀i = 1, . . . , l},
where the sets V1, . . . , Vl are nonempty open subsets of the open set V0. We can
further assume that each Vi is an ε-ball for some fixed ε.
Fix F ∈ V ∩ Am0 , with witness 〈B1, B2, . . . , Bp, rF 〉, say. Since the open set

E \
p⋃
j=1

Bj

intersects D, it intersects D. As H is meager in G , within D we can find a further
open subset of G , sayD′, such that

D′ ⊆ D \
( p⋃
j=1

Bj ∪H
)
.
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Since G is everywhere big with respect to I , we know thatD′ /∈ I. Fix a k such that
D′ /∈ Uk .
For each j = 1, . . . , p, we have that F allows Bj . In the remainder of the proof,
the idea is to find an open neighbourhood of F in K(E) within which the specific
sets B1, . . . , Bp remain allowed, but basic sets B other than these are not allowed
unless the closure of their union is k-small. This will force any member of Am0 in
this neighbourhood to intersect D′, which is k-big.
Recall that Bp is the last basic set in the witnessing tuple. Pick r such that

• Mr appears in (M (Bp, n))n , the subsequence of (Mi ) associated with Bp;
• r is large enough so that for i ≥ r, the Hausdorff distance betweenMi andM
(the limit of (Mi )) is less than ε.

There are up to r many basic setsB whose associated subsequences have appeared
within the initial r terms of the sequence (Mi). These include the sets B1, . . . , Bp.
For each of these finitely many basic sets B other than B1, . . . , Bp, find one member
of the associated sequence that occurs afterMr and tag it. Now again find r′ ∈ N
such thatMr′ lies within the subsequence (M (Bp, n))n and alsoMr′ occurs after all
the up to r − p tagged sets. Ensure also, by choosing a larger r′ if necessary, that
there are at least k setsMi with r < i < r′ that do not occur in (M (Bj, n))n for any
j = 1, . . . , p. Now let R be the union of all the sets Mi for r < i < r′ except for
those that are associated with the specific basic sets B1, . . . , Bp ., i.e.,

R =
⋃{
Mi : r < i < r′,Mi does not occur in (M (Bj, n))n for 1 ≤ j ≤ p

}
.

R is a closed set that contains all the tagged sets and it is a finite union of at least
k many members of (Mi ). It is disjoint from all members of (Mi) that it does not
contain, and also from M . We also know that R cannot completely contain any
ε-ball. (Any such ball that it did contain would be forced to intersectM as well as
be disjoint fromM .) In particular,R cannot completely contain any of the sets Vi .
For 1 ≤ i ≤ l , fix yi in Vi \R.
Set

V ′ = K(V0 \R) ∩ V .
We show that the sets D′, V ′ satisfy all the required conditions. We already have
D′ ⊆ D \H . We now show that V ′ �= ∅. Since F ∈ V we have that F ⊆ V0. Let O
be an open superset of R so chosen that it does not contain any of the points yi for
i = 1, . . . , l and also so that it does not intersect any setMj that is disjoint from R.
We may also ensure thatO ∩U = ∅, as R is a closed set disjoint from U . Now let

F ′ = (F \O) ∪ {yi : i = 1, . . . , l}.
It is clear that F ′ ⊆ V0 \R and F ′ ∩ Vi �= ∅ for 1 ≤ i ≤ l . To show that F ′ ∈ Am0 ,
it suffices to show that F \ O ∈ Am0 , since the addition of points does not affect
membership in Am0 . First note that since O meets only finitely many of the setsMi ,
the sequence (Mi ∩ (F \O))i still has a tail with nonempty interiors (starting at say
rF ′), so that Cond. 1 holds. Next, note that F \O allows each of B1, . . . , Bp , which
already satisfy Cond. (3b) and Cond. (3c), and that

E \ (F \O) ∩U = E \ F ∩U.
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Therefore the tuple 〈B1, B2, . . . , Bp, rF ′〉 witnesses the membership of F \O inAm0 .
Thus V ′ is nonempty.
We now show that for any L ∈ V ′ ∩ Am0 , if the membership of L in Am0 is
witnessed by 〈B ′

1, B
′
2, . . . , B

′
p′ , rL〉, then

D′ \
p′⋃
j=1

B ′
j �= ∅.

So let L ∈ V ′ ∩ Am0 . What are the basic sets B that L can allow? (This is the
dénouement!) If B is not one of the original Bi obtained from the set F , then
M (B, 1) cannot occur beforeMr . (If it did, some member of its associated sequence
is a tagged set included in R, but L is disjoint from R.) M (B, 1) cannot occur
between Mr and Mr′ as in this range the only Mi remaining in V0 \ R were part
of the sequences associated with the original Bi . Therefore the sequence associated
with B is entirely contained in the r′-tail of (Mi).
With this in mind, any witness of the membership ofL inAm0 must have the form

〈Bi1 , Bi2 , . . . , Bis , B ′
1, B

′
2, . . . , B

′
s′ , rL〉, where the sets Bi1 , Bi2 , . . . , Bis are taken from

B1, B2, . . . , Bp andM (B ′
1, 1) lies in the r

′-tail of (Mi).
Note also that L, missing the whole of R, has at least k many blanks occuring
beforeM (B ′

1, 1) in the sequence (Mi ). Therefore by Cond. (3c),

s′⋃
j=1

B ′
j ∈ Uk,

while D′ /∈ Uk . We also know that the whole of D′ lies outside
⋃p
j=1 Bj . So

D′ \
( s⋃
j=1

Bij ∪
s′⋃
j=1

B ′
j

)
= D′ \

s′⋃
j=1

B ′
j �= ∅.

Thus the sets V ′ and D′ satisfy all the required conditions, and the Claim holds,
completing the proof. �
We nowwish to construct a single upward closed setF satisfying Theorem 1.1 for
ideals that contain only meager sets. We first find pairs of disjoint open sets Un,Vn
such that the setsUn coverE and for each pairUn,Vn , we can apply Proposition 3.3
to get representing sequences (Fnm)m. We then want to obtain a single representing
set F that does the job for the whole space E. The idea is that we form F by taking
some manner of union of all the Fnm, in such a way that for a fixed n,m we are able
to find an open subset of K(E) within which all the members of F come only from
this particular Fnm. The essence of the construction of F is that we marry each Fnm
to a particular ‘permission set’ before throwing them all into a common union, in
such a way that permission sets can be excluded or included from our desired open
set as needed.
We proceed.

Theorem 3.4. Let E be a compact Polish space and let I ⊆ K(E) be a G� ideal
of compact sets, with property (∗), containing only meager sets. Then there exists a
compact upward closed set F ⊆ K(E) such that any G� subset G of E is covered by
countably many sets in I if and only if G∗ is meager in F .
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Proof. By Proposition 2.1, it suffices to construct a set F ⊆ K(E), closed and
upward closed, such that

∀K ∈ K(E), K /∈ I =⇒ K∗ is nonmeager in F ; (10)

∀K ∈ K(E), K ∈ I =⇒ K∗ is meager in F ; (11)

∀ nonempty G ∈ G�(E),(
G is everywhere big w.r.t. I

)
=⇒ (

G∗ is nonmeager in F)
. (12)

By Proposition 3.1, we may assume that E has infinitely many limit points, and
E has some meager compact subset with at least three points that is everywhere
big with respect to I . We first construct nonempty open subsets U1, U2, U3 and
V1, V2, V3 of E such that

1. the sets U1, U2, U3 form an open cover of E;
2. the following strict inclusions hold:

V1 � U2 \ (U3 ∪U1), V2 � U3 \ (U1 ∪U2), V3 � U1 \ (U2 ∪U3),
and, in each of the three set inclusions above, if the smaller set is removed from
the larger one then at least one limit point of E is left behind;

3. for each n = 1, 2, 3, there exists a sequence of closed and upward closed sets
(Fnm)m, such that the sets U = Un , V = Vn and Fm = Fnm all satisfy (5), (6),
(7), (8), and (9).

To do this, fix a meager compact subsetM of E, with at least three points, that is
everywhere big with respect to I . We may assume thatE \M contains at least three
limit points of E. (Why? IfM contains all but perhaps two of the infinitely many
limit points of E, we can pick a suitable relatively open subset U of M such that
U contains at least three of these points and omits another three. The set U is still
both meager and everywhere big with respect to I , so we can replaceM with U .)
Let us say that a1, a2, and a3 are limit points of E not inM .
Since M contains at least three points, we may find open sets V1, V2, V3 with
disjoint closures, all of which intersect M , and none of which contains any point
ai . Now let U1 and U2 be open sets with disjoint closures such that

U1 ⊇ V3 ∪ {a3}, U2 ⊇ V1 ∪ {a1}, and
(
U1 ∪U2

) ∩ (
V2 ∪ {a2}

)
= ∅,

and let U3 be an open set such that

U3 ∩
(
V1 ∪ V3 ∪ {a1, a3}

)
= ∅ and U1 ∪U2 ∪U3 = E.

Now note that the closure of any nonempty open subset ofM retains the proper-
ties of being meager and being everywhere big with respect to I . So for each n, since
Vn intersects M , we may find a set Mn ⊆ Vn such that Mn is a meager compact
set that is everywhere big with respect to I . For each n, the sets U = Un, V = Vn,
andM =Mn now satisfy the hypothesis of Proposition 3.3, which we apply to get
a sequence (Fnm)m as described in that proposition.
It remains to construct the single set F . Having obtained the setsUi and Vi , now
fix open setsW1,W2,W3, each containing a limit point, such that

W1 ⊆ U3 \ (U1 ∪U2 ∪V2),W2 ⊆ U1 \ (U2 ∪U3 ∪V3),W3 ⊆ U2 \ (U3 ∪U1 ∪V1).
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Note that we have ensured that if {i, j, k} = {1, 2, 3}, the sets Ui , Vi , andWi are
pairwise disjoint and their union Ui ∪ Vi ∪Wi is disjoint from either Vj ∪Wk or
from Vk ∪Wj .
We now build ‘permission sets’ inside the setsWn thus. Inside each open setWn
we may find a sequence of nonempty open sets (Pni )i such that the sets P

n
i are

pairwise disjoint, and for any j, it is possible to find an open superset of Pnj that is
disjoint from Pni for all i �= j. (For example, we may take a convergent sequence of
distinct points in Wn and put suitable open balls around the points to get the sets
Pni .)
We now define F . For n = 1, 2, 3 and m ∈ N, define

Bnm = Fnm ∩ Pnm∗.

Since Fnm is upward closed, so is Bnm. Also, recalling that Fnm ⊆ V ∗
n and P

n
m ⊆ Wn,

we note that any set in Bnm must meet both Vn andWn. Now define

F =
⋃
n,m

Bnm,

which is still an upward closed set.
Claim: For any n ≤ 3 and m ∈ N, there exists an open set O ⊆ E such that

∅ �= K(O) ∩ F ⊆ Fnm ∩ Pnm∗.

Proof of claim: Fix n,m. Fix an open set P such that ∅ �= P ⊆ Pnm. For the
appropriate distinct i and j, both different from n,Un ∪Vn ∪Wn does not intersect
Wi ∪ Vj . Let O′ be an open superset of Un ∪ Vn disjoint fromWi ∪ Vj ∪Wn, and
let O = O′ ∪ P. Note thatO ∩Wn = P and so O is disjoint from Pnk for k �= m.
To see that this O is as required, first note that (9) holds for the sets U = Un,
V = Vn and Fm = Fnm, so there exists some F ∈ K(O) ∩ Fnm. Fixing any point
x ∈ P, the set F ∪ {x} is now a member of K(O) ∩ Bnm, so that K(O) ∩ F �= ∅.
For the required set inclusion, we will actually show that

K(O) ∩ F ⊆ Fnm ∩ P∗
.

Suppose that there is some F ∈ K(O) ∩ F that is not in Fnm ∩ P∗
. This means

that the open set K(O) \ (Fnm ∩ P∗
) intersects F . This open set must then contain

a set F ′ in Bn1m1 for some n1, m1 (since F =
⋃
i,j Bij). Any set in Bn1m1 meets Vn1 , and

Pn1m1 . However, since F
′ ⊆ O, the only possibility is that n1 = n and m1 = m; all

other possibilities have been excluded fromO. This is a contradiction. So the claim
holds.
Now (10) is immediate: let K be a compact set not in I . Since I is closed under
countable union, and theF� setsUn forma cover ofE, wemay simply assume thatK
is contained in one of the setsUn, sayUn0 . Takem0 such thatFn0m0 ⊆ K∗. To establish
(10), use the claim above to find an open setO such that ∅ �= K(O)∩F ⊆ Fn0m0 ⊆ K∗.
To see (11), let K ∈ I . We show that K∗ is nowhere dense and hence meager in

F . Recalling the definition of F , let F ∈ Bnm for some n,m, and let ε > 0; we show
that there is a compact set in Bnm \K∗ within ε of F .
Since F ∈ Fnm and K∗ is meager in Fnm, there is some F ′ in Fnm \ K∗ within ε of
F . If F ′ ∩ Pnm �= ∅, we are done. If F ′ ∩ Pnm = ∅, the addition to F ′ of a suitable

https://doi.org/10.1017/jsl.2019.6 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.6


G� SETS IN �-IDEALS GENERATED BY COMPACT SETS 795

point in Pnm \ K (using the fact that K is meager and F intersects Pnm) gives a set
still within ε of F and in Bnm, and we are done.
Finally, we turn to (12). Let G ∈ G�(E) be a set that is everywhere big with
respect to I . Again, since the sets Un form a cover of E, by replacing G with a
suitable relatively open subset of itself, we may assume that G is contained in one
of the sets Un, say Un0 . Now (since (7) holds with Fm = Fn0m and U = Un0 ) there
exists m0 such that G∗ is comeager in Fn0m0 . Take an open set O ⊆ E such that
∅ �= K(O) ∩ F ⊆ Fn0m0 ∩ Pn0m0∗. The set G∗ is comeager in K(O) ∩ F . To see this
precisely, let G be a G� subset of K(E) such that G ∩ Fn0m0 is dense in Fn0m0 and
contained in G∗. Now consider the set G ∩ K(O) ∩ F , and note that:
• it is a G� subset of F ;
• it is contained in G∗ as anything in K(O) ∩ F is actually from Fn0m0 ;• it is dense inK(O)∩F . To see this, letU be an open set that intersectsK(O)∩F .
Then

∅ �= U ∩ K(O) ∩ F ⊆ U ∩K(O) ∩ Fn0m0 ∩ Pn0m0∗.
The rightmost set being an open subset of Fn0m0 , it must contain a member of G,
which will automatically be in U ∩ K(O) ∩ F .
This proves (12). �
It remains to prove the theorem for ideals that may contain nonmeager sets.

Theorem 3.5. Let E be a compact Polish space and let I ⊆ K(E) be a G� ideal
of compact sets, with property (∗). Then there exists a compact set F ⊆ K(E) such
that any G� subset G of E is covered by countably many sets in I if and only if G∗ is
meager in F .
Proof. Starting with the whole space E, we once again carry out the transfinite
procedure of Proposition 2.1 to obtain E as the disjoint union of two sets:

E = U ∪ E ′

where E ′ is a closed subset of E that satisfies the condition that

∀F ∈ K(E ′), F ∈ I =⇒ F is relatively meager in E ′,

and U is an open set that may be written as

U =
⋃
n

Fn,

where each Fn is in I . This form of U together with the fact that I is closed under
countable union makes it immediate that K(U ) ⊆ I . It is also immediate that any
compact subset K of E is in I if and only if K \U is in I .
Now let I ′ = I ∩ K(E ′). It is easily checked that I ′ is a G� ideal with property
(∗), both when E and when E ′ are considered as the underlying space. For a set
A ⊆ E ′, let

A∗ = {K ∈ K(E) : K ∩ A �= ∅}
as usual and let

A∗′ = {K ∈ K(E ′) : K ∩ A �= ∅}.
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Since I ′ contains only meager subsets of E ′, the space E ′ and the ideal I ′ satisfy
the hypothesis of Theorem 3.4. So there exists a nonempty compact set F ⊆ K(E ′)
such that

∀ nonempty G ∈ G�(E ′),(
G ⊆

⋃
n∈N

Kn for some Kn ∈ I ′
)

⇐⇒
(
G∗′ meager in F

)
. (13)

We remark that Theorem 3.4 has given us the upward closedness of F only as a
subset of K(E ′). In any case, we have

F ⊆ K(E ′) ⊆ K(E).
We now claim that:

∀ nonempty G ∈ G�(E),(
G ⊆

⋃
n∈N

Kn for some Kn ∈ I
)

⇐⇒
(
G∗ meager in F

)
. (14)

So let G be a nonempty G� subset of E. Suppose G∗ is meager in F . Since
(G ∩ E ′)∗′ ⊆ G∗, we must have that (G ∩ E ′)∗′ is meager in F . So by (13),

G ∩E ′ ⊆
⋃
n∈N

Kn for some Kn ∈ I ′,

and now
G = (G ∩E ′) ∪ (G ∩U ) ⊆

⋃
n∈N

Kn ∪
⋃
n∈N

Fn,

where each Kn and each Fn is in I .
To prove the converse of (14), suppose that G ⊆ ⋃

n Kn for some Kn ∈ I . For
each n, since Kn ∈ I we have (Kn ∩ E ′) ∈ I ′.Now,

G∗ ∩ F ⊆
⋃
n∈N

(
Kn

∗ ∩ F)
=

⋃
n∈N

(
(Kn ∩E ′)∗′ ∩ F

)
.

(The last equality comes from the fact that every set in F is wholly contained in
E ′ already.) Now since (Kn ∩ E ′)∗′ is meager in F for every n, we have that G∗ is
meager in F . This concludes the proof. �
Theorems 3.4 and 3.5 together give Theorem 1.1.
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