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Abstract

Constraint Logic Programming (CLP) and Hereditary Harrop formulas (HH) are two well

known ways to enhance the expressivity of Horn clauses. In this paper, we present a novel

combination of these two approaches. We show how to enrich the syntax and proof theory of

HH with the help of a given constraint system, in such a way that the key property of HH as

a logic programming language (namely, the existence of uniform proofs) is preserved. We also

present a procedure for goal solving, showing its soundness and completeness for computing

answer constraints. As a consequence of this result, we obtain a new strong completeness

theorem for CLP that avoids the need to build disjunctions of computed answers, as well as

a more abstract formulation of a known completeness theorem for HH.
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1 Introduction

Traditionally, the logic of Horn clauses has been considered as the basis for logic

programming (Van Emden and Kowalski, 1976). In spite of its Turing completeness

(Andréka and Németi, 1978), the lack of expressivity of Horn clauses for program-

ming purposes is widely acknowledged. During the last decade, different extensions

of Horn clauses have been proposed, with the aim of increasing expressivity without

sacrificing the declarative character of pure logic programming. Among such ex-

tensions, two important approaches are Constraint Logic Programming (CLP) and

Hereditary Harrop Formulas (HH).

The CLP scheme (Jaffar and Lassez, 1987) goes beyond the limitations of the

Herbrand universe by providing the ability to program with Horn clauses over dif-

ferent computation domains, whose logical behaviour is given by constraint systems.

CLP languages keep all the good semantic properties of pure logic programming,

including soundness and completeness results (Jaffar et al., 1996). Their imple-

mentation relies on the combination of SLD resolution with dedicated algorithms

ã This is a substantially revised and extended version of an earlier paper (Leach, Nieva and Rodrı́guez-
Artalejo, 1997). The authors have been partially supported by the Spanish National Project TIC
98-0445-C03-02 TREND and the Esprit BRA Working Group EP-22457 CCLII.
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for constraint entailment, solving and simplification. Therefore, efficient and yet

declarative programs can be written to solve complex combinatorial problems. See

Jaffar and Maher (1994) for a survey of the foundations, implementation issues and

applications of CLP languages.

On the other hand, the HH approach (Miller, Nadathur and Scedrov, 1987)

overcomes the inability of Horn clauses to provide a logical basis for several

constructions commonly found in modern programming languages, such as scoping,

abstraction and modularity. This is achieved by extending Horn clauses to a richer

fragment of intuitionistic logic that allows us to use disjunctions, implications and

quantifiers in goals. In fact, HH is a typical example of an abstract logic programming

language, in the sense of Miller, Nadathur, Pfenning and Scedrov (1991). Abstract

logic programming languages are characterized by the fact that the declarative

meaning of a program, given by provability in a deduction system, can be interpreted

operationally as goal-oriented search for solutions. Technically, the existence of

uniform proofs for all provable goal formulas permits the search interpretation of

provability. The implementation of programming languages based on HH, such

as λ-Prolog (Miller and Nadathur, 1986; Nadathur and Miller, 1988), requires the

resolution of the problem of unifying terms occurring under the scope of arbitrary

quantifier prefixes. Correct unification algorithms for such problems have been

studied by Miller (1992) and Nadathur (1993). Moreover, Nadathur (1993) shows in

detail the soundness and completeness of a goal solving procedure for the first-order

HH language.

The aim of this paper is to present a framework for the combination of the CLP

and HH approaches, that incorporates the benefits of expressivity and efficiency that

HH and CLP bring to logic programming, respectively. We will enrich the syntax of

first-order HH with constraints coming from a given constraint system. The resulting

language is such that all constructions and results are valid for any constraint system

C, therefore we can speak of a scheme HH(X) with instances HH(C), as in CLP.

We will define an amalgamated proof system that combines inference rules from

intuitionistic sequent calculus with constraint entailment, in such a way that the key

property of an abstract logic programming language is preserved. Moreover, we will

also present a sound and complete procedure for goal solving. As in CLP, the result

of solving a goal using a program will be an answer constraint.

The following simple program ∆, goal G and constraint R belong to the instance

HH(R) given by the constraint system R for real numbers. We will refer to this as

the disc example in the sequel.

∆ ≡ {∀x∀y(x2 + y2 6 1⇒ disc (x, y))}
G ≡ ∀y(y2 6 1/2⇒ disc (x, y))

R ≡ x2 6 1/2

In the example, the formula R turns out to be a correct and computable answer

constraint in the resolution of G from ∆. Due to the soundness and completeness

of the goal solving procedure, G can be deduced from ∆ and R in the amalgamated

proof system. In Figure 1 a uniform proof is presented of the sequent ∆;R |—G,

using the inferences rules of the calculus UC which will be presented in Section 4.
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x2 6 1/2, y2 6 1/2 `R ∃u∃v(x ≈ u ∧ y ≈ v ∧ u2 + v2 6 1)

(CR)

∆; x2 6 1/2, y2 6 1/2 |— ∃u∃v(x ≈ u ∧ y ≈ v ∧ u2 + v2 6 1)

(Clause)

∆; x2 6 1/2, y2 6 1/2 |— disc (x, y)

(⇒CR)

∆; x2 6 1/2 |— y2 6 1/2⇒ disc (x, y)

(∀R)

∆; x2 6 1/2 |— ∀y(y2 6 1/2⇒ disc (x, y))

Fig. 1. Uniform proof of the sequent ∆;R |—G.

From a technical point of view, for the particular case of the Herbrand constraint

system, our completeness result boils down to a more abstract formulation of the

completeness theorem in Nadathur (1993). In the case of CLP programs using only

Horn clauses with constraints, our goal solving procedure reduces to constrained

resolution, and our completeness theorem yields a form of strong completeness for

success that avoids the need to build disjunctions of computed answers, in contrast

to Maher (1997, Theorem 2) (see also Jaffar, Maher, Marriott and Stuckey, 1996,

Theorem 4.12). The reason for this discrepancy is that our amalgamated proof

system uses more constructive inference mechanisms to deduce goals from program

clauses, as we will see.

The rest of this paper is organized as follows. Section 2 shows some programming

examples that illustrate the specific benefits of the combination of CLP and HH.

In Section 3 we recall the notion of a constraint system and we define the syntax

of HH with constraints. In Section 4 we present an intuitionistic proof system for

HH with constraints, and show the existence of uniform proofs; then an equivalent

proof system allowing only uniform proofs is defined. Based on this second calculus,

a sound and complete procedure for goal solving is presented as a transformation

system in Section 5. In Section 6 we summarize conclusions and possible lines for

future research. To improve readability of the paper, some proofs have been omitted

or compressed in the main text. Full proofs appear in the Appendix.

2 Examples

Although simple, the programs of this section exemplify the programming style

in HH(X) languages, combining the characteristic utilities of HH – such as to

add temporarily facts to the program or to limit the scope of the names – with

the advantages of using constraint solvers, instead of syntactical unification. The

syntax used in the examples is basically that of HH languages, with the addition of

constraints in clause bodies and goals. In particular, the notation t ≈ t′ will be used

for equality constraints. More formal explanations will follow in Section 3.

The programs below are based on a constraint system which is defined as a

combination of R (real numbers) and H (Herbrand universe). This constraint

system underlies the well known language CLP(R) (Jaffar, Michaylov, Stuckey and
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Yap, 1992). The elements in the intended computation domain can be represented as

trees whose internal nodes are labelled by constructors, and whose leaves are labelled

either by constant constructors or by real numbers. In particular this includes the

representation of lists, possibly with real numbers as members. We will use Prolog’s

syntax for the list constructors.

Example 2.1 (Hypothetical queries in a database system)

The following program keeps record of the marks of different students in two

exercises they have to do to pass an exam.

exercise1(bob, 4).

exercise1(fran, 3).

exercise2(fran, 6).

exercise1(pep, 5).

exercise2(pep, 6).

pass(X)⇐ exercise1(X,N1)∧exercise2(X,N2) ∧ (N1 +N2)/2 > 5.

While the goal G ≡ pass(bob) fails, G′ ≡ exercise2(bob, 6.5) ⇒ pass(bob) succeeds.

To resolve this last goal, the fact exercise2(bob, 6.5) is added to the program, but not

permanently. If we again put the query G ≡ pass(bob) it would fail again.

Suppose now we want to know the requirements a student has to fulfil to pass,

then we add to the program the clauses:

need-to-pass(A, [])⇐ pass(A).

need-to-pass(A, [ex1(X)|L])⇐ (exercise1(A,X)⇒ need-to-pass(A,L)).

need-to-pass(A, [ex2(X)|L])⇐ (exercise2(A,X)⇒ need-to-pass(A,L)).

The goal G ≡ need-to-pass(bob, L) will produce an answer equivalent in the constraint

system to ∃N(L ≈ [ex2(N)] ∧N > 6).

To get this answer, the intermediate goal exercise2(A,X) ⇒ need-to-pass(A,L1)

should be solved with the constraint A ≈ bob. This would require:

1. To introduce the fact exercise2(A,X) in the base. Note that the effect is

different to adding a clause in Prolog with assert, since this implies the

universal quantification of A and X.

2. Try to solve the goal need-to-pass(A, []) with the first clause of this predicate,

so to solving pass(A), with the constraint A ≈ bob and L1 ≈ []. This will add

the constraints X ≈ N, (4 +N)/2 > 5.

A similar example is shown in Hodas (1994). Here the benefit is in the use of

constraints allowing us to write conditions about the real numbers that help to solve

the goal more efficiently.

Example 2.2 (Fibonacci numbers)

Cohen (1990) uses the computation of Fibonacci numbers as a simple example to

illustrate the advantages of constraint solving w.r.t. built-in arithmetic (as available

in Prolog). The recursive definition of Fibonacci sequence immediately gives rise to

the following CLP(R) program:
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fib(0, 1).

fib(1, 1).

fib(N, F1 + F2)⇐ N > 2 ∧ fib(N − 1, F1)) ∧ fib(N − 2, F2).

Thanks to the abilities of the constraint solver, this program is reversible. In addition

to goals such as fib(10, X), with answer X ≈ 89, we can also solve goals as fib(N, 89)

with answer N ≈ 10. However, the program is based on an extremely inefficient

double recursion. As a consequence, it runs in exponential time, and multiple

recomputations of the same Fibonacci number occur.

In HH(R) we can avoid this problem by using implications in goals to achieve

the effect of tabulation. At the same time, the program remains reversible and close

to the mathematical specification of the Fibonacci sequence.

fib(N,X)⇐ (memfib(0, 1)⇒ (memfib(1, 1)⇒ getfib(N,X, 1))).
getfib(N,X,M)⇐ 0 6 N ∧ N 6M ∧ memfib(N,X).

getfib(N,X,M)⇐ N > M ∧ memfib(M − 1, F1) ∧ memfib(M,F2) ∧
(memfib(M + 1, F1 + F2)⇒ getfib(N,X,M + 1)).

A predicate call of the form getfib(N,X,M) assumes that the Fibonacci numbers fibi,

with 0 6 i 6 M, are memorized as atomic clauses for memfib in the local program.

The call computes the Nth Fibonacci number in X; at the same time, the Fibonacci

numbers fibi, with M < i 6 N are memorized during the computation.

Let us consider two simple goals for this program:

1. G1 ≡ fib(2, X). To solve G1, memfib(0, 1) and memfib(1, 1) are added to the

local program, and the goal getfib(2, X, 1) is solved. Since 2 > 1, the first clause

for getfib fails. The second clause for getfib puts memfib(2, 2) into the local

program and produces the new goal getfib(2, X, 2), which is solved with answer

X ≈ 2 by means of the first clause.

2. G2 ≡ fib(N, 2). Analogously, G2 is solved by solving getfib(N, 2, 1) after adding

memfib(0, 1) and memfib(1, 1) into the local program. The first clause for getfib

fails. Therefore, the constraintN > 1 is assumed and the new goal getfib(N, 2, 2)

must be solved, after putting the atom memfib(2, 2) into the local program.

Now, the first clause for getfib leads easily to the answer N ≈ 2.

In general, all goals of the two forms:

1. fib(n,X), n given,

2. fib(N, f), f a given Fibonacci number,

can be solved by our goal solving procedure. Moreover, goals of the form (1)

can be solved in O(n) steps. Miller (1989) showed that implicational goals can

be used to store previously computed Fibonacci numbers, thus leading to an HH

program that runs in time O(n). Later Hodas (1994) gave another memorized version

of the computation of Fibonacci numbers, closer to the naive doubly recursive

algorithm. Hodas’ version combines implicational goals with a continuation-passing

programming style which relies on higher-order predicate variables. The benefit of

our version w.r.t. that of Miller (1989) and Hodas (1994) is the reversibility of the

predicate fib that is enabled by constraint solving.
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Example 2.3 (Relating some simple parameters in a mortgage)

The following program ∆ is presented by Jaffar and Michaylov (1987) as an appli-

cation of CLP(R).1

mortgage(P , T , I,M, B)⇐ 0 6 T ∧ T 6 3 ∧ TotalInt ≈ T ∗ (P ∗ I/1200)∧
B ≈ P + TotalInt − (T ∗M).

mortgage(P , T , I,M, B)⇐ T > 3 ∧ QuartInt ≈ 3 ∗ (P ∗ I/1200)∧
mortgage(P + QuartInt − 3 ∗M,T − 3, I,M, B).

where P stands for principal Payment, T for Time in months, I for Interest rate, M

for Monthly payment, and B for outstanding Balance.

In CLP(R) the goal G ≡ mortgage(P , 6, 10,M, 0), produces the answer 0 ≈
1.050625 ∗ P − 6.075 ∗ M. From this answer we can deduce that P/(T ∗ M) ≈
P/(6 ∗M) ≈ 0.9637 (the number 0.9637 is calculated as an approximation), where

P/(T ∗M) represents the quotient of loss for delayed payment.

We consider now a more complicated problem, namely to find Imin, Imax (with

0 6 Imin 6 Imax) such that any mortgage whose quotient of loss lies in the interval

[0.9637 . . 0.97] can be balanced in six months with some interest rate I lying in the

interval [Imin . . Imax]. This problem can be formulated in HH(R) by the goal:

G ≡ ∀M∀P (0.9637 6 P/(6 ∗M) 6 0.97⇒
∃I(0 6 Imin 6 I 6 Imax ∧ mortgage(P , 6, I,M, 0))).

Using the goal transformation rules (1)–(8) of Section 5, we can show a resolution

of G from ∆ that computes the answer constraint:

Imax ≈ 10 ∧ Imin ≈ 8.219559 (approx.).

More details on the resolution of this goal will be given in Example 5.3 at the end

of Section 5.

3 Hereditary Harrop formulas with constraints

As explained in the introduction, the framework presented in this paper requires the

enrichement of the syntax of Hereditary Harrop Formulas (HH) (Miller, Nadathur

and Scedrov, 1987; Miller et al., 1991) with constraints coming from a given constraint

system. Following Saraswat (1992), we view a constraint system as a pair

C = (LC,`C), where LC is the set of formulas allowed as constraints and

`C ⊆ P(LC) × LC is an entailment relation. We use C and Γ to represent a

constraint and a finite set of constraints, respectively. Therefore, Γ `C C means that

the constraint C is entailed by the set of constraints Γ. We write just `C C if Γ

is empty. In (Saraswat, 1992), LC and `C are required to satisfy certain minimal

assumptions, mainly related to the logical behaviour of ∧ and ∃. Since we have to

work with other logical symbols, our assumptions must be extended to account for

their proper behaviour. Therefore, we assume:

1 This example is considered anew in Jaffar et al. (1992).
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(i) LC is a set of formulas including > (true), ⊥ (false) and all the equations

t ≈ t′ between terms over some fixed signature, and closed under ∧,⇒, ∃, ∀
and the application of substitutions of terms for variables.

(ii) `C is compact, i.e., Γ `C C holds iff Γ0 `C C for some finite Γ0 ⊆ Γ. `C is also

generic, i.e. Γ `C C implies Γσ `C Cσ for every substitution σ.

(iii) All the inference rules related to ∧,⇒, ∃, ∀ and ≈ valid in the intuitionistic

fragment of first-order logic are also valid to infer entailments in the sense of

`C.

The notation Cσ used above means application to a constraint C of a substitution

σ = [t1/x1, . . . , tn/xn], using proper renaming of the variables bound in C to avoid

capturing free variables from the terms ti, 1 6 i 6 n. Γσ represents the application

of σ to every constraint of the set Γ. In the sequel, the notation Fσ will also be used

for other formulas F , not necessarily constraints.

Note that the three conditions (i)–(iii) are meant as minimal requirements. In

particular, the availability of the equality symbol ≈ is granted in any constraint

system, and it will always stand for a congruence. However, other specific axioms

for equality may be different in different constraint systems.

Observe also that item (iii) above does not mean that `C is restricted to represent

deducibility in some intuitionistic theory. On the contrary, our assumptions allow

us to consider constraint systems C such that LC is a full first-order language with

classical negation, and Γ `C C holds iff AxC ∪ Γ ` C , where AxC is a suitable set

of first-order axioms and ` is the entailment relation of classical first-order logic

with equality. In particular, three important constraint systems of this form are:H,

where AxH is Clark’s axiomatization of the Herbrand universe (Clark, 1978); CFT,

where AxCFT is Smolka and Treinen’s axiomatization of the domain of feature trees

(Smolka and Treinen, 1994); and R, where AxR is Tarski’s axiomatization of the

real numbers (Tarski, 1951). In these three cases, the constraint system is known to

be effective, in the sense that the validity of entailments Γ `C C , with finite Γ, can

be decided by an effective procedure.

The previous systems include the use of disjunctions. In CLP there is a well

known completeness theorem due to Maher (1987), which relies on the possibility

of building finite disjunctions of computed answer constraints. As we will see in

Section 5, disjunctions are not needed to prove completeness of goal solving in our

setting. This is the reason why we do not enforce LC to be closed under ∨ in the

general case.

In the sequel, we assume an arbitrarily fixed effective constraint system C. By

convention, the notation Γ `C Γ′ will mean that Γ `C C holds for all C ∈ Γ′,
and C àC C ′ will abbreviate that C `C C ′ and C ′ `C C hold. In addition to

this, we will say that a constraint C with free variables x1, . . . , xn is C-satisfiable iff

`C ∃x1 . . . ∃xnC .

To define the syntax of the first-order formulas of HH(C), we shall assume a set

PS =
⋃
n∈IN PS

n of ranked predicate symbols (which is disjoint from the symbols

occurring inLC), which are used to build atomic formulas A of the form P (t1, . . . , tn),

with P ∈ PSn.
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Definition 3.1

The set of definite clauses, with elements noted D, and the set of goals, with elements

noted G, are defined by the following syntactic rules:

D := A |D1 ∧ D2 |G⇒ A | ∀xD
G := A |C |G1 ∧ G2 |G1 ∨ G2 |D ⇒ G |C ⇒ G | ∃xG | ∀xG

This syntax is the natural extension of first-order HH as presented in Nadathur

(193). The novelty is that constraints can occur in goals of the forms C and C ⇒ G,

and therefore also in definite clauses of the form G ⇒ A. Some variants could be

considered, such as dropping D1 ∧ D2 or replacing G ⇒ A by G ⇒ D, but these

changes would render a logically equivalent system. In the rest of the paper, by a

program we understand any finite set ∆ of definite clauses. This includes both CLP

programs and first-order HH programs as particular cases.

As usual in the HH framework (e.g. see Nadathur, 1993), we will work with

a technical device (so-called elaboration) for decomposing the clauses of a given

program into a simple form. This is useful for a natural formulation of goal solving

procedures.

Definition 3.2

We define the elaboration of a program ∆ as the set elab(∆) =
⋃
D∈∆ elab(D), where

elab(D) is defined by case analysis in the following way:

– elab(A) = {> ⇒ A}.
– elab(D1 ∧ D2) = elab(D1) ∪ elab(D2).

– elab(G⇒ A) = {G⇒ A}.
– elab(∀xD) = {∀xD′ |D′ ∈ elab(D)}.

Note that all clauses in elab(∆) have the form ∀x1 . . . ∀xn(G ⇒ A), n > 0. We

still need another technicality. A variant of such a clause is any clause of the form

∀y1 . . . ∀yn(Gσ ⇒ Aσ) where y1, . . . , yn are new variables not occurring free in the

original clause, and σ = [y1/x1, . . . , yn/xn].

4 Proof systems

In this section we present an amalgamated proof system IC that combines the

usual inference rules from intuitionistic logic with the entailment relation `C of a

constraint system C. We will derive sequents of the form ∆; Γ |—G where ∆ is a

program, Γ represents a finite set of constraints and G is an arbitrary goal. We

also show that IC enjoys completeness of uniform proofs, and we present a second

proof system UC which is equivalent to IC in deductive power, but is tailored to

build uniform proofs only.

4.1 The calculus IC
IC stands for an Intuitionistic sequent calculus for HH(C) that allows to deduce a

goal from defined clauses in the presence of Constraints.

The intuitionistic calculus with constraints `IC is defined as follows. ∆; Γ `IC G
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if and only if the sequent ∆; Γ |—G has a proof using the rules of the proof system

IC that we introduce in the following. A proof of a sequent is a tree whose nodes

are sequents, the root is the sequent to be proved and the leaves match axioms of

the calculus. The rules regulate relationship between child nodes and parent nodes.

In the representation of the rules, we have added to the premises the side conditions

relating to the existence of proofs in the constraint system; these entailment relations

are not considered as nodes of the proofs seen as trees. This notation simplifies the

reading of both inference rules and proof trees.

• Axioms to deal with atomic goals or constraints:

Γ `C C
∆; Γ |—C

(CR)
Γ `C A ≈ A′
∆, A; Γ |—A′

(Atom)

In (Atom), A,A′ are assumed to begin with the same predicate symbol. A ≈ A′
abbreviates t1 ≈ t′1 ∧ . . . ∧ tn ≈ t′n, where A ≡ P (t1, . . . , tn), A

′ ≡ P (t′1, . . . , t′n).
• Rules introducing the connectives and quantifiers of the Hereditary Harrop for-

mulas:
∆; Γ |—Gi

∆; Γ |—G1 ∨ G2
(∨R) (i = 1, 2)

∆, D1, D2; Γ |—G

∆, D1 ∧ D2; Γ |—G
(∧L)

∆; Γ |—G1 ∆; Γ |—G2

∆; Γ |—G1 ∧ G2
(∧R)

∆; Γ |—G1 ∆, A; Γ |—G

∆, G1 ⇒ A; Γ |—G
(⇒L)

∆, D; Γ |—G

∆; Γ |—D ⇒ G
(⇒R)

∆; Γ, C |—G

∆; Γ |—C ⇒ G
(⇒CR)

∆; Γ, C |—G[y/x] Γ `C ∃yC
∆; Γ |— ∃xG (∃R)

y does not appear free in the sequent of the conclusion.

∆, D[y/x]; Γ, C |—G Γ `C ∃yC
∆, ∀xD; Γ |—G

(∀L)
∆; Γ |—G[y/x]

∆; Γ |— ∀xG (∀R)

in both, y does not appear free in the sequent of the conclusion.

Note that the rule of contraction seems to be absent from this system, but

in fact it is implicitly present because ∆ and Γ are viewed as sets (rather than

sequences) in any sequent ∆; Γ |—G. In many respects, the inference rules of UC
are similar to those used for HH in the literature (e.g. see Miller et al. (1991) and

Nadathur (1993)). However, the presence of constraints induces some modifications.

Of particular importance are the modifications introduced to (∃R) and (∀L). A simple

reformulation of the traditional version of (∃R), using a constraint y ≈ t instead of

a substitution [t/x], representing an instance of x, could be:

∆; Γ, y ≈ t |—G[y/x]

∆; Γ |— ∃xG
if y does not occur in t, and it does not appear free in the conclusion.
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In our constraint-oriented formulation of (∃R) we allow any satisfiable constraint

C (not necessary of the form y ≈ t) instead of the substitution, to guess an instance

of x. The next example shows that this extra generality is necessary.

Example 4.1

This example is based on HH(R). Consider

∆ ≡ {∀x(x2 ≈ 2⇒ r(x))},
G ≡ ∃x r(x).

The sequent ∆; |—G is expected to be derivable. However, the traditional formulation

of (∃R) does not work, because no term t in the language LR denotes a square root

of 2. With our (∃R), choosing the R-satisfiable constraint C ≡ x2 ≈ 2, the problem

is reduced to the easy derivation of the sequent ∆; x2 ≈ 2 |— r(x).

Our definition of (∀L) is dual to (∃R) and follows the same idea, since (∀L) also

relies on guessing an instance for x. On the other hand, rule (∀R) has a universal

character. Therefore, the traditional formulation by means of a new variable has

been kept in this case.

For technical reasons, we need to measure the size of proofs. We formalize this

notion as the number of sequents in it, that coincides with the number of nodes of

the proof seen as a tree.

In the sequel we will use some technical properties of IC-provability. Let us state

them in the following lemmas, the proofs of which can be found in the Appendix.

The first lemma guarantees that substitution of a term for a variable in a sequent,

preserves IC-provability.

Lemma 4.1

For any ∆,Γ, G, x and t, if ∆; Γ `IC G, then there is a proof of the same size of

∆[t/x]; Γ[t/x] |—G[t/x].

The next lemma shows that a sequent continues to be provable if we strengthen

the set of constraints.

Lemma 4.2

For any ∆,Γ, G, if Γ′ is a set of constraints such that Γ′ `C Γ, and ∆; Γ `IC G,

then ∆; Γ′ |—G has a proof of the same size.

Corollary 4.3

For any ∆,Γ, G, x and u, if ∆; Γ `IC G, then ∆[u/x]; Γ, x ≈ u |—G[u/x] has a proof

of the same size.

Proof

By Lemma 4.1, ∆[u/x]; Γ[u/x] |—G[u/x] has a proof of the same size as ∆; Γ |—G.

Hence, applying Lemma 4.2, ∆[u/x]; Γ, x ≈ u |—G[u/x] has a proof of the same size,

because Γ, x ≈ u `C Γ[u/x]. q

The next lemma ensures that free variables that appear only in the set of con-

straints of a sequent can be considered as existentially quantified in the proof of the

sequent.
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Lemma 4.4

For any ∆,Γ, C, G, if ∆; Γ, C `IC G and x is a variable that does not appear free in

∆,Γ, G, then ∆; Γ, ∃xC |—G has a proof of the same size.

4.2 Uniform proofs

We are aiming at an abstract logic programming language in the sense of Miller

et al. (1991). This means that uniform proofs must exist for all provable sequents.

In our setting, the idea of uniform proof consists of breaking down a goal into its

components until obtaining an atomic formula or a constraint, before using the rules

for introduction of connectives on the left or resorting to constraint entailment.

More formally, the notion of uniform proof is as follows.

Definition 4.1

An IC-proof is called uniform proof when each internal node in the proof tree is

a sequent whose right-hand side G is neither a constraint nor an atomic formula.

Moreover, the inference rule relating this node to its children must be one of

the right-introduction rules (∨R), (∧R), (⇒R), (⇒ CR), (∃R), (∀R), according to the

outermost logical symbol of G.

To prove that uniform proofs exist for all IC-provable sequents, we follow the

same approach that in Miller et al. (1991), showing that any given IC-proof can be

transformed into a uniform proof. This is achieved by the next lemma.

Lemma 4.5 (Proof transformation)

If G is a goal, ∆ a program and Γ a set of constraint formulas, such that ∆; Γ |—G

has a proof of size l, then:

1. For G ≡ A, there are n constraint formulas C1, . . . , Cn (n > 0) and a formula

∀x1 . . . ∀xn (G′ ⇒ A′) that is a variant of some formula in elab(∆) such that

x1, . . .,xn are new distinct variables not appearing free in ∆,Γ, A, where xi does

not appear free in C1, . . .,Ci−1, for 1 < i 6 n, and A′ begins with the same

predicate symbol as A. In addition it holds:

(a) Γ `C ∃x1C1; Γ, C1 `C ∃x2C2; . . . ; Γ, C1, . . . , Cn−1 `C ∃xnCn.
(b) Γ, C1, . . . , Cn `C A′ ≈ A.
(c) ∆; Γ, C1, . . . , Cn |—G′ has a proof of size less than l, or G′ ≡ >.

2. If G ≡ C , then Γ `C C .

3. If G ≡ G1 ∧G2, then ∆; Γ |—G1 and ∆; Γ |—G2 have proofs of size less than l.

4. If G ≡ G1 ∨ G2, then ∆; Γ |—Gi has a proof of size less than l for i = 1 or 2.

5. If G ≡ D ⇒ G1, then ∆, D; Γ |—G1 has a proof of size less than l.

6. If G ≡ C ⇒ G1, then ∆; Γ, C |—G1 has a proof of size less than l.

7. For G ≡ ∃xG1, if y is a variable not appearing free in ∆,Γ, G, then there is a

constraint formula C such that:

(a) Γ `C ∃yC .

(b) ∆; Γ, C |—G1[y/x] has a proof of size less than l.

8. If G ≡ ∀xG1, then ∆; Γ |— G1[y/x] has a proof of size less than l, where y is

a variable that does not appear free in ∆,Γ, G.
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Proof

We reason by induction on the size l of the proof of ∆; Γ |—G, analysing cases

according to the last inference rule applied in the proof of the sequent ∆; Γ |—G. A

detailed proof can be found in the Appendix. As novelties w.r.t. Miller et al. (1991),

we must deal with constraints and with the new formulation of rules (∃R), (∀L). Here

we only sketch the case where (∀L) is the last inference rule applied and G ≡ ∃wG1.

Let us show graphically the proof transformation, in which we will essentially switch

the applications of (∀L) and (∃R). By the induction hypothesis, the initial proof has

the form:

∆′, D[u/x]; Γ, C ′ ∧ C, u ≈ y |—G1[z/w]

↑ Cor. 4.3, Lem. 4.2

∆′, D[y/x]; Γ, C ′, C |—G1[z/w] Γ, C ′ `C ∃zC
(∃R)

∆′, D[y/x]; Γ, C ′ |— ∃wG1 Γ `C ∃yC ′
(∀L)

∆′, ∀xD; Γ |— ∃wG1

where:

– y is not free in ∆′, ∀xD, Γ, ∃wG1.
– z is not free in ∆′, D[y/x], Γ, C ′, ∃wG1.
– u is a new variable.

We can transform this into the following proof:

∆′, D[u/x]; Γ, C ′ ∧ C, u ≈ y |—G1[z/w] Γ, C ′ ∧ C `C ∃u(u ≈ y)

(∀L)

∆′, ∀xD; Γ, C ′ ∧ C |—G1[z/w]

↓ Lem. 4.4

∆′, ∀xD; Γ, ∃y(C ′ ∧ C) |—G1[z/w] Γ `C ∃z∃y(C ′ ∧ C)

(∃R)

∆′, ∀xD; Γ |— ∃wG1

where:

– z is not free in ∆′, ∀xD, Γ, ∃wG1.
– u is not free in ∆′, ∀xD, Γ, C ′ ∧ C , G1[z/w]. q

The next main theorem follows now as a straightforward consequence of the Proof

Transformation Lemma 4.5.

Theorem 4.6 (Uniform proofs)

Every IC-provable sequent has a uniform proof.

Proof

Given an IC-provable sequent with a proof of size l, the existence of a uniform

proof is established reasoning by induction on l, using Lemma 4.5. q
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4.3 The calculus UC
Now we know that uniform proofs are complete for IC, and their goal-oriented

format renders them close to the goal solving procedure we are looking for. However,

as an intermediate step we will present a second proof system UC for HH(C), which

will enjoy three properties:

(a) UC and IC have the same provable sequents.

(b) UC builds only Uniform proofs, and it is parameterized by a given Constraint

system.

(c) `UC replaces the left-introduction rules by a backchaining mechanism.

UC-derivations are very close to our intended computations. Therefore, the UC
system will be very useful for designing a sound and complete goal solving procedure

in the next section.

Provability in UC is defined as follows. ∆; Γ `UC G if and only if the sequent

∆; Γ |—G has a proof using the following rules:

• Axiom to deal with constraints:

Γ `C C
∆; Γ |—C

(CR)

• Backchaining rule for atomic goals:

∆; Γ |— ∃x1 . . . ∃xn((A ≈ A′) ∧ G)

∆; Γ |—A′
(Clause)

where A, A′ begin with the same predicate symbol and ∀x1 . . . ∀xn(G ⇒ A) is

a variant of a formula of elab(∆), where x1, . . . , xn do not appear free in the

sequent of the conclusion.

• Rules introducing the connectives and quantifiers of the goals:

(∨R), (∧R), (⇒R), (⇒CR), (∃R), (∀R).

Defined as in the system IC.

The structure of the rule (Clause), which encapsulates a backchaining mechanism,

corresponds to the method by which atomic goals, A′, will be solved by the goal

solving procedure, which to be presented in Section 5 below. As is usual in logic

programming, an ‘instance’ of a clause with a head A and a body G is searched, in

such a way that A ≈ A′ and G can be proved. By the definition of UC, the existential

quantification on the right-hand side of the premise sequent forces a search for this

‘instance’ (managed by means of constraints in our system). Note that a similar

behaviour would result from the application of (∀L), if we were to make use of IC.

The next auxiliary lemma is needed to show that UC and IC have the same

deductive power. It can be viewed as a particular kind of cut elimination for IC,

where the cut formula is taken from the elaboration of the program in the left-hand

side of the sequent. We cannot apply directly any classical cut elimination result,

because constraint entailment is embedded into our proof system.
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Lemma 4.7 (Elaboration)

For any ∆,Γ, A and F ∈ elab(∆): if ∆, F; Γ `IC A, then ∆; Γ `IC A.

Proof

It appears in the Appendix. q

Now we can prove the promised equivalence between UC and IC.

Theorem 4.8

The proof systems IC and UC are equivalent. That means, for any program ∆, for

any set of constraints Γ, and for any goal G it holds:

∆; Γ `IC G if and only if ∆; Γ `UC G.
Proof

We prove both implications by induction on the size of proofs.

⇒ Assuming ∆; Γ `IC G, we prove ∆; Γ `UC G by case analysis on the structure

of G.

If G ≡ A, by the Proof Transformation Lemma (4.5) there are n (n > 0)

constraints C1, . . . , Cn, a variant ∀x1 . . . ∀xn(G′ ⇒ A′) of some formula of

elab(∆), with x1, . . . , xn new distinct variables, xi not appearing free in C1,. . . ,

Ci−1, for 1 < i 6 n, and A, A′ beginning with the same predicate symbol, such

that:

(a) Γ `C ∃x1C1; Γ, C1 `C ∃x2C2; . . . ; Γ, C1, . . . , Cn−1 `C ∃xnCn.
(b) Γ, C1, . . . , Cn `C A′ ≈ A.

(c) ∆; Γ, C1, . . . , Cn `IC G′, with a shorter proof, or G′ ≡ >.

By (b) and (CR), ∆; Γ, C1, . . . , Cn `UC A′ ≈ A. By (c) and the induction hy-

pothesis, ∆; Γ, C1, . . . , Cn `UC G′. Note that if G′ ≡ >, the proof of this sequent

is a direct consequence of the rule (CR). So applying (∧R), ∆,Γ, C1, . . . , Cn `UC
(A′ ≈ A) ∧G′. Now, in accordance with (a) and the conditions on x1, . . . , xn, it

is possible to apply (∃R) n times obtaining ∆; Γ `UC ∃x1 . . . ∃xn((A′ ≈ A)∧G′).
Therefore, using (Clause), ∆; Γ `UC A.

The cases for non-atomic formulas are immediate due to the Proof Transfor-

mation Lemma (4.5), the definition of UC and the induction hypothesis.

⇐ Let us also prove only the atomic case, the others are proved using the

induction hypothesis and the definition of the calculi UC, IC.

Assume ∆; Γ `UC A, then by the definition of UC the rule (Clause) has been

applied and ∆; Γ `UC ∃x1 . . . ∃xn((A′ ≈ A) ∧ G′), with a shorter proof, where

∀x1 . . . ∀xn(G′ ⇒ A′) is a variant of a formula of elab(∆) with x1, . . . , xn new

variables and A, A′ beginning with the same predicate symbol. Because of

the form of UC’s inference rules, the only way to derive this sequent is by n

successive applications of (∃R). Since x1, . . . , xn are new2, we can assume:

(a) Γ `C ∃x1C1; Γ, C1 `C ∃x2C2; . . . ; Γ, C1, . . . , Cn−1 `C ∃xnCn.

2 Without loss of generality we can consider that xi does not appear free in C1, . . . , Ci−1, for 1 < i 6 n.
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(b) ∆; Γ, C1, . . . , Cn `UC (A′ ≈ A) ∧ G′, with a shorter proof.

Then by (b) and according to the definition of UC, ∆; Γ, C1, . . . , Cn `UC A′ ≈A
and ∆; Γ, C1, . . . , Cn `UC G′ with shorter proofs. Therefore, by the induction

hypothesis,

∆; Γ, C1, . . . , Cn `IC A′ ≈ A (†) and

∆; Γ, C1, . . . , Cn `IC G′ (‡).
(†) implies Γ, C1, . . . , Cn `C A′ ≈ A, by the Proof Transformation Lemma (4.5).

Then, by (Atom),

∆, A′; Γ, C1, . . . , Cn `IC A (�),
so applying (⇒L) to (‡) and (�),

∆, G′ ⇒ A′; Γ, C1, . . . , Cn `IC A.
Now by n applications of (∀L), using (a) and the conditions on x1 . . . , xn, we

obtain

∆, ∀x1 . . . ∀xn(G′ ⇒ A′); Γ `IC A.
Therefore by the Elaboration Lemma (4.7) ∆; Γ `IC A. q

The properties stated in Lemma 4.2 and Lemma 4.4 hold also for UC-derivability.

This is ensured by the next two lemmas that are proved in the Appendix.

Lemma 4.9

For any ∆,Γ, G, if Γ′ is a set of constraints such that Γ′ `C Γ, and ∆; Γ `UC G,

then ∆; Γ′ |—G has a UC-proof of the same size.

Lemma 4.10

For any ∆,Γ, C, G, if ∆; Γ, C `UC G and x is a variable that does not appear free in

∆,Γ, G, then ∆; Γ, ∃xC |—G has a UC-proof of the same size.

From now on we will work only with the calculus UC.

5 A goal solving procedure

We now turn to the view of HH(C) as a logic programming language. Solving a

goal G using a program ∆ means finding a C-satisfiable constraint R such that

∆;R `UC G.
Any constraint R with this property is called a correct answer constraint. For instance,

R ≡ x2 6 1/2 is a correct answer constraint for the disc example, as shown in the

introduction.

We will present a goal solving procedure as a transition system. Goal solving will

proceed by transforming an initial state through a sequence of intermediate states,

ending in a final state. Each state will conserve the goals that remain to be solved

and a partially calculated answer constraint. The final state will not have any goal

to be solved. In the following we will formalize these ideas and show soundness and

completeness of the proposed procedure.
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Definition 5.1
A state w.r.t. a finite set of variables V , written S, has the form Π[S�G], where G
is a multiset of triples 〈∆, C, G〉 (∆ local program, C local constraint formula and G

local goal). Π is a quantifier prefix Q1x1. . .Qkxk where x1, . . . , xk are distinct variables

not belonging to V , and every Qi, 1 6 i 6 k, is the quantifier ∀ or ∃. S is a global

constraint formula.

This complex notion of state is needed because the goal solving transformations,

presented below, introduce local clauses and local constraints. Of course, local

clauses also arise in HH (see Nadathur (1993)). Initial states are quite simple as can

be seen in Definition 5.3.

We say that a state Π[S�G] is satisfiable iff the associated constraint formula ΠS ,

also called partially calculated answer constraint, is C-satisfiable.

If Π′, Π are quantifier prefixes such that Π′ coincides with the first k elements of

Π, 0 6 k 6 n, where n is the number of elements of Π, then Π −Π′ represents the

result of eliminating Π′ of Π. For instance ∀x∀y∃z∀u∃v − ∀x∀y∃z ≡ ∀u∃v.
To represent a multiset G, we will simply write its elements separated by commas,

assuming that repetitions are relevant but ordering is not. In particular, the notation

G, 〈∆, C, G〉 stands for any multiset which includes at least one occurrence of the

triple 〈∆, C, G〉.
Definition 5.2 (Rules for transformation of states)
The transformations permitting to pass from a state S w.r.t. a set of variables V ,

to another state S′ w.r.t. V , written as S‖—S′, are the following:

(1) Conjunction

Π[S�G, 〈∆, C, G1 ∧ G2〉] ‖— Π[S�G, 〈∆, C, G1〉, 〈∆, C, G2〉].
(2) Disjunction

Π[S�G, 〈∆, C, G1 ∨ G2〉] ‖— Π[S�G, 〈∆, C, Gi〉], for i = 1 or 2

(don’t know choice).
(3) Implication with local clause

Π[S�G, 〈∆, C, D ⇒ G〉] ‖— Π[S�G, 〈∆ ∪ {D}, C, G〉].
(4) Implication with local constraint

Π[S�G, 〈∆, C, C ′ ⇒ G〉] ‖— Π[S�G, 〈∆, C ∧ C ′, G〉].
(5) Existential quantification

Π[S�G, 〈∆, C, ∃xG〉] ‖— Π∃w[S�G, 〈∆, C, G[w/x]〉],
where w does not appear in Π nor in V .

(6) Universal quantification

Π[S�G, 〈∆, C, ∀xG〉] ‖— Π∀w[S�G, 〈∆, C, G[w/x]〉],
where w does not appear in Π nor in V .

(7) Constraint

Π[S�G, 〈∆, C, C ′〉] ‖— Π[S ∧ (C ⇒ C ′)�G].

If Π(S ∧ (C ⇒ C ′)) is C-satisfiable.
(8) Clause of the program

Π[S�G, 〈∆, C, A〉] ‖— Π[S�G, 〈∆, C, ∃x1 . . . ∃xn((A′ ≈ A) ∧ G)〉].
Provided that ∀x1 . . . ∀xn(G⇒ A′) is a variant of some clause in elab(∆) (don’t

know choice), x1, . . . , xn do not appear in Π nor in V , and A′, A begin with the

same predicate symbol.
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Note that every transformation can be applied to an arbitrary triple 〈∆, C, G〉
within the state, since G is viewed as a multiset. Moreover, all choices involved

in carrying out a sequence of state transformations are don’t care, except those

explicitly labelled as don’t know in transformations (2) and (8) above. One can

commit to don’t care choices without compromising completeness. In other words:

at the implementation level, backtracking is needed only for don’t know choices.

The following definition formalizes the setting needed for goal solving.

Definition 5.3

The initial state for a program ∆ and a goal G is a state w.r.t. the set of free variables

of ∆ and G consisting in S0 ≡ [>�〈∆,>, G〉].
A resolution of a goal G from a program ∆ is a finite sequence of states w.r.t. the

free variables of ∆ and G, S0, . . . ,Sn, such that:

• S0 is the initial state for ∆ and G.

• Si−1‖—Si, 1 6 i 6 n, by means of any of the transformation rules.

• The final state Sn has the form Πn[Sn�∅].
The constraint ΠnSn is called the answer constraint of this resolution.

Example 5.1

Using ∆, G and R as given in the disc example (see the Introduction) it is possible

to build a resolution of G from ∆ with answer constraint R as follows:

[>�〈∆,>, ∀y(y2 6 1/2⇒ disc (x, y))〉] ‖—(6)

∀y[>�〈∆,>, y2 6 1/2⇒ disc (x, y)〉] ‖—(4)

∀y[>�〈∆, y2 6 1/2, disc (x, y)〉] ‖—(8)

∀y[>�〈∆, y2 6 1/2, ∃u∃v(x ≈ u ∧ y ≈ v ∧ u2 + v2 6 1/2)〉] ‖—(7)

∀y[y2 6 1/2⇒ ∃u∃v(x ≈ u ∧ y ≈ v ∧ u2 + v2 6 1)�∅]
since ∀y(y2 6 1/2⇒ ∃u∃v(x ≈ u ∧ y ≈ v ∧ u2 + v2 6 1)) is R-satisfiable.

So the answer constraint is

∀y(y2 6 1/2⇒ ∃u∃v(x ≈ u ∧ y ≈ v ∧ u2 + v2 6 1)) àR
∀y(y2 6 1/2⇒ x2 + y2 6 1) àR x2 6 1/2. �

For CLP programs, the goal transformations (2), (3), (4) and (6) can never be

applied. Therefore, the state remains of the form Π[S�G], where Π includes only

existential quantifiers and G is a multiset of triples 〈∆, C, G〉 such that ∆ is the

global program. For states of this kind, the goal transformations (1), (5), (7) and

(8) specify constrained SLD resolution, as used in CLP (e.g. see Jaffar and Maher

(1994) and Jaffar et al. (1996)). On the other hand, traditional HH programs can

be emulated in our framework by using the Herbrand constraint system H and

avoiding constraints in programs and initial goals. Then transformation (4) becomes

useless, and the remaining goal transformations can be viewed as a more abstract

formulation of the goal solving procedure from Nadathur (193). Transformation

(8) introduces equational constraints in intermediate goals, and in transformation

(7) the local constraint C is simply >. Therefore, Π(S ∧ (C ⇒ C ′)) is equivalent to

Π(S ∧C ′), where S ∧C ′ can be assumed to be a conjunction of equations. Checking
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H-satisfiability of Π(S ∧ C ′) corresponds to solving a unification problem under a

mixed prefix in Nadathur (1993).

Admittedly, the labelled unification algorithm presented in Nadathur (1993) is

closer to an actual implementation, while our description of goal solving is more

abstract. Note, however, that the goal solving transformations are open to efficient

implementation techniques. In particular, when (7) adds a new constraint to the

global constraint S , the satisfiability of the new partially calculated answer constraint

should be checked incrementally, without repeating all the work previously done for

ΠS . Of course, delaying the constraint satisfiability checks until the end is neither

necessary nor convenient.

5.1 Soundness

Soundness of the goal solving procedure means that if R is the answer constraint

of a resolution of a goal G from a program ∆, then the sequent ∆;R |—G has a

UC-proof.

The soundness theorem is based on two auxiliary results. The first one ensures

that states remain satisfiable along any resolution.

Lemma 5.1

Let S0, . . . ,Sn be a resolution of a goal G from a program ∆, and V the set of

free variables of ∆ and G. Then, for any i, 0 6 i 6 n, if Si ≡ Πi[Si�Gi], then the

following properties are satisfied:

1. The free variables of the formulas of Gi, and Si are in Πi or in V .

2. Si is satisfiable.

Proof

The first property is a consequence of the procedure used to build the prefix of a

state. The initial state satisfies it by definition, and when passing from state Si−1

to state Si, 1 6 i 6 n, if we include new free variables, these will be quantified

universally or existentially by Πi.

For the second property, note that S0 ≡ > by definition. Moreover, for each

transformation step Si−1‖—Si, one of the three following cases applies:

• Si ≡/ Si−1. Then the transition must correspond to the transformation (7) which

requires C-satisfiability of Πi(Si).

• Si ≡ Si−1 and Πi ≡ Πi−1. This case is trivial.

• Si ≡ Si−1 and Πi ≡ Πi−1Qw, where Q is ∀ or ∃ and w is a new variable not

free in Si−1, and not occurring in Πi−1. Under these conditions,

ΠiSi ≡ Πi−1QwSi−1 àC Πi−1Si−1,

and C-satisfiability propagates from Πi−1Si−1 to ΠiSi. q

The second auxiliary lemma means that correct answer constraints are preserved by

any resolution step.
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Lemma 5.2

Assume S ≡ Π[S�G] and S′ ≡ ΠΠ′[S ′�G′] are two states w.r.t. a set of variables

V , such that S‖—S′. If R′ is a constraint with its free variables in ΠΠ′ or in V , and

such that R′ `C S ′ and for any 〈∆′, C ′, G′〉 ∈ G′, ∆′;R′, C ′ `UC G′, then Π′R′ `C S
and for any 〈∆, C, G〉 ∈ G, ∆; Π′R′, C `UC G.

Proof

We analyse the different cases, according to the transformation applied. We show

here the first case, the other cases appear in the Appendix.

(i) Conjunction. Π′ is empty and S ≡ S ′, so Π′R′ `C S obviously. On the other

hand, let 〈∆, C, G〉 ∈ G: If 〈∆, C, G〉 ∈ G′, then ∆; Π′R′, C `UC G by hypothesis,

since Π′R′ ≡ R′. If 〈∆, C, G〉 /∈ G′, then G ≡ G1∧G2 and 〈∆, C, G1〉, 〈∆, C, G2〉 ∈
G′. Therefore ∆; Π′R′, C `UC G1 and ∆; Π′R′, C `UC G2, by hypothesis, since

Π′R′ ≡ R′,
and consequently ∆; Π′R′, C `UC G, by applying (∧R). q

Theorem 5.3 (Soundness)

Let ∆ be any program. If G is a goal such that there is a resolution S0, . . . ,Sn of G

from ∆ with answer constraint R ≡ ΠnSn, then R is C-satisfiable and ∆;R `UC G.
Proof

The proof is direct from the previous lemmas. C-satisfiability of R is a consequence

of item 2 of Lemma 5.1. Besides using Lemma 5.2 we can prove, that for 0 6 i 6 n,
∆; (Πn − Πi) Sn, C `UC G, for any 〈∆, C, G〉 ∈ Gi, and (Πn − Πi) Sn `C Si. The

case i = 0 of this result assures the theorem. Let us prove it by induction on the

construction ofS0, . . . ,Sn, but beginning from the last state. The base case is obvious

because Gn = ∅ and (Πn −Πn) Sn `C Sn holds trivially. For the induction step, we

suppose the result for Si+1, . . . ,Sn, and we prove it for Si. Taking (Πn −Πi+1) Sn
as the constraint R′ of Lemma 5.2, the induction hypothesis for i+ 1 indicates that

the conditions of Lemma 5.2 are satisfied for S′ ≡ Si+1, then this lemma affirms

that the result is true for Si as we wanted to prove. q

5.2 Completeness

Completeness of the goal solving procedure states that given a program ∆, and a

goal G such that ∆;R0 `UC G for a C-satisfiable constraint R0, there is a resolution

of G from ∆ with answer constraint R that is entailed by R0 in the constraint system

C, i.e. R0 `C R. Of course, this entailment means that the computed answer R is at

least as general as the given correct answer R0.

In order to prove this result, we introduce a well-founded ordering which measures

the complexity of proving that a given constraint is a correct answer for a given

state. The ordering is based on multisets.

Definition 5.4

Let ∆ be a program, G a goal, and C , R, constraints such that ∆;R,C `UC G, then

we define τR(∆, C, G) as the size of the shortest UC-proof of the sequent ∆;R,C |—G.
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Let G be a multiset of triples 〈∆, C, G〉. We define MGR as the multiset of

sizes τR(∆, C, G), where the multiplicity of τR(∆, C, G) in MGR coincides with the

multiplicity of 〈∆, C, G〉 in G.

We use the notation << for the well-founded multiset ordering (Dershowitz and

Manna, 1979) induced by the ordering < over the natural numbers.

Next, we show that as long as a state can be transformed, the transformation can

be chosen to yield a smaller state with respect to <<, while essentially keeping a

given answer constraint R.

Lemma 5.4

Let S ≡ Π[S�G] be a non-final state w.r.t. a set of variables V , and let R be

a constraint such that ΠR is C-satisfiable and R `C S . If ∆;R,C `UC G for all

〈∆, C, G〉 ∈ G, then we can find a rule transforming S in a state S′ ≡ Π′[S ′�G′]
(S‖—S′) and a constraint R′ such that:

1. ΠR `C Π′R′ and R′ `C S ′.
2. ∆′;R′, C ′ `UC G′ for all 〈∆′, C ′, G′〉 ∈ G′. Moreover MG′R′ <<MGR .

Proof

By induction on the structure of G, where 〈∆, C, G〉 ∈ G, analyzing cases. We show

here an illustrative case, the proof for the other cases appears in the Appendix.

If G has the form ∃xG1, applying the transformation v) we obtainS′. Let w be the

variable used in the substitution involved in this transformation. w does not appear

in Π, V , and we can choose it also not free in R. By hypothesis ∆;R,C |— ∃xG1 has

a proof of size l, then by the definition of UC, there is a constraint formula C1 such

that ∆;R,C, C1 |—G1[w/x] has a proof of size less than l and R,C `C ∃wC1. Let

R′ ≡ R ∧ (C ⇒ C1).

1. R `C ∃w(R ∧ (C ⇒ C1)), since w is not free in R, C , and R,C `C ∃wC1,

therefore ΠR `C Π∃w(R ∧ (C ⇒ C1)) ≡ Π′R′. Moreover, S ′ ≡ S , R′ `C R

and R `C S implies R′ `C S ′.
2. Let 〈∆′, C ′, G′〉 ∈ G′. If 〈∆′, C ′, G′〉 ∈ G, then ∆′;R,C ′ `UC G′ by hypoth-

esis, and therefore, using R′ `C R and Lemma 4.9, ∆′;R′, C ′ `UC G′ and

τR′(∆
′, C ′, G′) 6 τR(∆′, C ′, G′).

If 〈∆′, C ′, G′〉 /∈ G, then G′ ≡G1[w/x], ∆′ ≡∆ and C ′ ≡C . ∆;R′, C |—G1[w/x] will

also have a proof of size less than l, since ∆;R,C,C1|— G1[w/x] has such a proof, due

to R′, C `C R,C, C1 and Lemma 4.9. So ∆′;R′, C ′ `UC G′ for all 〈∆′, C ′, G′〉 ∈ G′,
τR′(∆

′, C ′, G′) < τR(∆, C, G), and MG′R′ <<MGR . q

Theorem 5.5 (Completeness)

Let ∆ be a program, G a goal and R0 a C-satisfiable constraint such that ∆;R0 `UC
G. Then there is a resolution of G from ∆ with answer constraint R such that

R0 `C R.

Proof

Using Lemma 5.4, we can build a sequence S0‖—S1‖— . . . ‖—Sn of state transfor-

mations, (Si ≡ Πi[Si�Gi], 0 6 i 6 n), that is a a resolution of G from ∆, and a

sequence of constraints R0, . . . , Rn satisfying that for all i, 1 6 i 6 n:
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• R0 `C ΠiRi,

• Ri `C Si,
• ∆′;Ri, C ′ `UC G′, for all 〈∆′, C ′, G′〉 ∈ Gi.

We use an inductive construction that is guaranteed to terminate thanks to the

well-founded ordering <<. Let S0 ≡ [>�〈∆,>, G〉] be the initial state for ∆ and G,

which we know is not final, if we take R0 as the constraint given by the theorem’s

hypothesis, we obtain R0 `C Π0R0 and R0 `C S0, since Π0 is empty and S0 ≡ >.

Moreover, by hypothesis, ∆;R0 `UC G is satisfied, and then also ∆;R0,> `UC G

because of R0,> `C R0 and Lemma 4.9.

Assume the result true for S0, . . . ,Si, if the state Si is not final, then Si and Ri
fulfill the hypothesis of Lemma 5.4, thus there will be a stateSi+1 (Si‖—Si+1) and a

constraint Ri+1 such that Ri+1 `C Si+1 and ΠiRi `C Πi+1Ri+1 (†) Furthermore, for

all 〈∆′, C ′, G′〉 ∈ Gi+1, ∆′;Ri+1, C
′ `UC G′ and MGi+1Ri+1

<<MGiRi . Therefore, by the

induction hypothesis, R0 `C ΠiRi, and with (†) we obtain R0 `C Πi+1Ri+1. By suc-

cessive iteration, as << is well-founded, we must eventually get a final state Sn that

will in fact satisfy R0 `C ΠnRn and Rn `C Sn and so R0 `C ΠnSn, where ΠnSn ≡ R
is the answer constraint of S0, . . . ,Sn. In this way we conclude R0 `C R. q

For HH(H) programs such that constraints appear neither in the left-hand side

of implications nor in initial goals, Theorem 5.5 implies an alternative formulation

of the completeness theorem given in Nadathur (1993) for a goal solving procedure

for first-order HH. In our opinion, using constraints and constraint satisfiability

instead of substitutions and unification under a mixed prefix, that requires low level

representation details, we gain a more abstract presentation. For CLP programs,

Theorem 5.5 becomes a stronger form of completeness, in comparison to the strong

completeness theorem for success given in Maher (1987, Theorem 2) (see also

Jaffar et al., 1996, Theorem 4.12). There, assuming ∆;R |=C G, the conclusion is

that R `C ∨m
i=1 Ri where R1, . . . , Rm are answer constraints computed in m different

resolutions of G from ∆. Example 5.2 was used in Maher (1987) to illustrate the need

of considering disjunctions of computed answers. In fact, there is no single computed

answer R0 such that R `H R0. However, this fact doesn’t contradict Theorem 5.5,

because ∆;R|—G is not UC-derivable, as we will see immediately.

Example 5.2

This example is borrowed from Maher (1987). It belongs to the instance HH(H)

given by the Herbrand constraint system. Consider

∆ ≡ {D1, D2}, with D1 ≡ p(a, b), D2 ≡ ∀x(x ≈/ a⇒ p(x, b)),

G ≡ p(x, y),

R ≡ y ≈ b.
Up to trivial syntactic variants, this is a CLP(H)-program. According to the model

theoretic semantics of CLP(H), we get ∆;R |=H G, because either x ≈ a or x ≈/ a

will hold in eachH-model of ∆∪{R}. In contrast to this, in UC we only can derive

∆;R ∧ x ≈ a |—G (using D1) and ∆;R ∧ x ≈/ a |—G (using D2). And it is easy to

check that both answers R ∧ x ≈ a and R ∧ x ≈/ a can be computed by the goal
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solving transformations. But we do not obtain ∆;R `UC G. Since R /̀H x ≈ a,

R /̀H x ≈/ a, neither D1 nor D2 can be used to build a UC-proof.

The example shows a difference between the model-theoretic semantics used in

CLP (Maher, 1987) and our proof-theoretical semantics, based on provability in

the calculus UC. The latter deals with the logical symbols in goals and clauses

according to the inference rules of intuitionistic logic. Therefore, UC-provability

turns out to be more constructive than CLP’s model-theoretic semantics, and thus

closer to constrained resolution. This is the ultimate reason why our completeness

Theorem 5.5 involves no disjunction of computed answers.

As an illustration of the goal solving procedure, we show next the detailed

resolution of the second goal from Example 2.3.

Example 5.3

Let us recall the program and goal from Example 2.3. As usual in programming

practice, we write program clauses ∀x1 . . . ∀xn(G⇒ A) in the form A⇐ G3.

∆ ≡ { mortgage(P , T , I,M, B)⇐ 0 6 T ∧ T 6 3 ∧
TotalInt ≈ T ∗ (P ∗ I/1200) ∧ B ≈ P + TotalInt − (T ∗M),

mortgage(P , T , I,M, B)⇐ T > 3 ∧ QuartInt ≈ 3 ∗ (P ∗ I/1200)∧
mortgage(P + QuartInt − 3 ∗M,T − 3, I,M, B)

}
G ≡ ∀M∀P (0.9637 6 P/(6 ∗M) 6 0.97⇒

∃I(0 6 Imin 6 I 6 Imax ∧ mortgage(P , 6, I,M, 0))).

We present a resolution of G from ∆, using the state transformation rules (1)–(8)

from Definition 5.2:

[>�〈∆,>, G〉]
‖—(6)

∀M∀P [>�〈∆,>, 0.9637 6 P/(6 ∗M) 6 0.97⇒ ∃I(0 6 Imin 6 I 6 Imax ∧
mortgage(P , 6, I,M, 0))〉]

‖—(4)

∀M∀P [>�〈∆, 0.9637 6 P/(6 ∗M) 6 0.97,

∃I(0 6 Imin 6 I 6 Imax ∧ mortgage(P , 6, I,M, 0))〉]
‖—(5)

∀M∀P∃I[>� 〈∆, 0.9637 6 P/(6 ∗M) 6 0.97,

0 6 Imin 6 I 6 Imax ∧ mortgage(P , 6, I,M, 0)〉]
‖—(1),(8)

∀M∀P∃I[0.9637 6 P/(6 ∗M) 6 0.97⇒ 0 6 Imin 6 I 6 Imax�
〈∆, 0.9637 6 P/(6 ∗M) 6 0.97,mortgage(P , 6, I,M, 0)〉]

‖—(8)

∀M∀P∃I[0.9637 6 P/(6 ∗M) 6 0.97⇒ 0 6 Imin 6 I 6 Imax�
〈∆, 0.9637 6 P/(6 ∗M) 6 0.97,

∃P ′∃T ′∃I ′∃M ′∃B′∃QuartInt(P ≈ P ′ ∧ 6 ≈ T ′ ∧ I ≈ I ′︸ ︷︷ ︸
3 In fact, we have already followed this convention in Section 2.
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∧M ≈M ′ ∧ 0 ≈ B′ ∧ T ′ > 3 ∧ QuartInt≈3∗(P ′ ∗I ′/1200)︸ ︷︷ ︸
∧mortgage(P ′+QuartInt−3 ∗M ′, T ′−3, I ′,M ′, B′))︸ ︷︷ ︸〉]

Simplifying the underbraced formula in the constraint system R, we obtain:

∀M∀P∃I[0.9637 6 P/(6 ∗M) 6 0.97⇒ 0 6 Imin 6 I 6 Imax�
〈∆, 0.9637 6 P/(6 ∗M) 6 0.97,

mortgage(P + 3 ∗ (P ∗ I/1200)− 3 ∗M, 3, I,M, 0)〉]
‖—(8)

∀M∀P∃I[0.9637 6 P/(6 ∗M) 6 0.97⇒ 0 6 Imin 6 I 6 Imax�
〈∆, 0.9637 6 P/(6 ∗M) 6 0.97,

∃P ′′∃T ′′∃I ′′∃M ′′∃B′′∃TotalInt(P ′′ ≈ P + 3 ∗ (P ∗ I/1200)− 3 ∗M︸ ︷︷ ︸
∧ T ′′ ≈ 3 ∧ I ′′ ≈ I ∧M ′′ ≈M ∧ B′′ ≈ 0 ∧ 0 6 T ′′ ∧ T ′′ 6 3︸ ︷︷ ︸

∧ TotalInt ≈ T ′′ ∗ (P ′′ ∗ I ′′/1200) ∧ B′′ ≈ P ′′ + TotalInt− (T ′′ ∗M ′′))︸ ︷︷ ︸〉]
Simplifying anew the underbraced formula in R:

∀M∀P∃I[0.9637 6 P/(6 ∗M) 6 0.97⇒ 0 6 Imin 6 I 6 Imax�
〈∆, 0.9637 6 P/(6 ∗M) 6 0.97,

0 ≈ P + 3 ∗ (P ∗ I/1200)− 3 ∗M+

3 ∗ (P + 3 ∗ (P ∗ I/1200)− 3 ∗M) ∗ I/1200− 3 ∗M〉]

Applying now transformation (7), we obtain the following answer constraint:

∀M∀P∃I((0.9637 6 P/(6 ∗M) 6 0.97⇒ 0 6 Imin 6 I 6 Imax )) ∧
(0.9637 6 P/(6 ∗M) 6 0.97⇒ 0 ≈ P + 3 ∗ P ∗ I/1200− 3 ∗M+

3 ∗ (P + 3 ∗ P ∗ I/1200− 3 ∗M) ∗ I/1200− 3 ∗M))

àR
∀M∀P∃I(0.9637 6 P/(6 ∗M) 6 0.97⇒ 0 6 Imin 6 I 6 Imax∧

0 ≈ P ∗ (1 + 3 ∗ I
1200

+ 3 ∗ I
1200

+ 9 ∗ I2

12002

)−M ∗ (6 + 9 ∗ I
1200

))
àR

∀M∀P∃I(0.9637 6 P/(6 ∗M) 6 0.97⇒ 0 6 Imin 6 I 6 Imax∧
0 ≈ P ∗ (1 + I

200
+ I2

4002

)−M ∗ (6 + 3 ∗ I
400

))
àR

∀M∀P∃I(0.9637 6 P/(6 ∗M) 6 0.97⇒ 0 6 Imin 6 I 6 Imax∧
P

6∗M ≈ 1+ I
800

1+ I
200 + I2

4002

) ≡ C1

We prove C1 àR Imin ≈ 8.219559 (approx.) ∧ Imax ≈ 10. In effect, let

f(I) =
1 + I

800

1 + I
200

+ I2

4002

,

we observe that f(I) is a strictly decreasing continuous function of I for any I > 0,
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and also that

f(I) ≈ 0.9637(approx.) àR I ≈ 10, and

f(I) ≈ 0.97 àR I ≈ 8.219559 (approx.).

Then, C1 is true iff for any M and P such that

P/(6 ∗M) ∈ [0.97..0.9637 (approx.)],

there exists I ∈ [Imax..Imin] such that f(I) ≈ P/(6 ∗ M) (f strictly decreasing

continuous function), and this is true iff I has its maximum value for f(I) ≈
0.9637 (approx.) and its minimum for f(I) ≈ 0.97, or equivalently Imax ≈ 10∧Imin ≈
8.219559 (approx.).

6 Conclusions and future work

We have proposed a novel combination of Constraint Logic Programming (CLP)

with first-order Hereditary Harrop Formulas (HH). Our framework includes a proof

system with the uniform proofs property and a sound and complete goal solving

procedure. Our results are parametric w.r.t. a given constraint system C, and they

can be related to previously known results for CLP and HH. Therefore, we can

speak of a scheme whose expressivity sums the advantages of CLP and HH.

As far as we know, our work is the first attempt to combine the full expressivity

of HH and CLP. A related, but more limited approach, can be found in Darlington

and Guo (1994). This paper presents an amalgamated logic that combines the Horn

fragment of intuitionistic logic with the entailment relation of a given constraint

system, showing the existence of uniform proofs as well as soundness and complete-

ness of constrained SLD resolution w.r.t. the proof system. The more general case

of HH is not studied. Moreover, the presentation of constrained SLD resolution is

not fully satisfactory, because the backchaining transition rule (see Darlington and

Guo, 1994), guesses an arbitrary instance of a program clause, instead of adding

unification constraints to the new goal, as done in our state transition rule (8).

Several interesting issues remain for future research. First, more concrete evidence

on potential application areas should be found. We are currently looking for CLP

applications where greater HH expressivity may be useful, as well as for typical HH

applications that can benefit from the use of numeric and/or symbolic constraints.

Secondly, tractable fragments of our formalism (other than CLP and HH separately)

should be discovered. Otherwise, constraint satisfiability and constraint entailment

may become intractable or even undecidable. Our broad notion of constraint system

includes any first-order theory based on arbitrary equational axiomatization. Such

theories are sometimes decidable (see Comon (1993) and Comon, Haberstrau and

Jouannaud (1994)), but most often restricted fragments must be chosen to ensure

decidability. Last but not least, our framework should be extended to higher-order

HH as used in many λ-Prolog applications.
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Appendix

Proofs of results from Section 4.1

Lemma 4.1

For any ∆,Γ, G, x and t, if ∆; Γ `IC G, then there is a proof of the same size of

∆[t/x]; Γ[t/x] |—G[t/x].

Proof

By induction on the size l of the proof of the sequent ∆; Γ |—G.

If l = 1, then (CR) or (Atom) have been applied. In the first case, G ≡ C for

some constraint C and Γ `C C . Hence Γ[t/x] `C C[t/x], by the properties of `C.

Therefore the sequent ∆[t/x]; Γ[t/x] |—C[t/x] has a proof of size 1, by applying

(CR). In the second case, G ≡ A, for some predicate formula A, ∆ = ∆′ ∪{A′}, with A′
beginning with the same predicate symbol as A, and Γ `C A′ ≈ A. Hence Γ[t/x] `C
(A′ ≈ A)[t/x]. Therefore, applying (Atom), ∆′[t/x], A′[t/x]; Γ[t/x] |—A[t/x] has a

proof of size 1, and ∆[t/x] = ∆′[t/x] ∪ {A′[t/x]}.
If l > 1, we distinguish cases in accordance with the last rule applied in the

deduction of ∆; Γ |—G. Let us analyze some cases (the omitted ones are similar).

(⇒CR) In this case G ≡ C ⇒ G′, and the last step of the proof has the form:

∆; Γ, C |—G′

∆; Γ |—C ⇒ G′
(⇒CR)

By the induction hypothesis, ∆[t/x]; Γ[t/x], C[t/x] |—G′[t/x] has a proof of size

l − 1. Then, applying (⇒CR), we obtain that ∆[t/x]; Γ[t/x] |— (C ⇒ G′)[t/x] has

a proof of size l.

(∀R) In this case G ≡ ∀zG′ and the last step of the proof has the form:

∆; Γ |—G′[y/z]
∆; Γ |— ∀zG′ (∀R)

where y does not appear free in the sequent of the conclusion. We can assume,

without loss of generality, that z 6= x and z does not appear in t. If this were not the

case, the induction hypothesis could be applied another time, in order to rename

coincident variables. Also we can assume that y is different from x and that y does

not occur in t. By the induction hypothesis, ∆[t/x]; Γ[t/x] |—G′[t/x][y/z] has a

proof of size l − 1, because under our hypothesis, G′[y/z][t/x] ≡ G′[t/x][y/z].

Now, applying (∀R), ∆[t/x]; Γ[t/x] |— ∀z(G′[t/x]) has a proof of size l, but this is

the expected result because ∀z(G′[t/x]) ≡ (∀zG′)[t/x].

(∀L) In this case ∆ = ∆′ ∪ {∀zD}. As before, we can assume that z 6= x and does

not appear in t, and the last step of the proof has the form:

∆′, D[y/z]; Γ, C |—G Γ `C ∃yC
∆, ∀zD; Γ |—G

(∀L)
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where y does not appear free in the sequent of the conclusion. We can assume

without loss of generality that y is different from x and that y does not occur in

t. Then, by the induction hypothesis,

∆′[t/x], D[t/x][y/z]; Γ[t/x], C[t/x] |—G[t/x] (†)
has a proof of size l−1, because under our hypothesis, D[y/z][t/x] ≡ D[t/x][y/z].

Now Γ `C ∃yC implies

Γ[t/x] `C ∃y(C[t/x]) (‡),
by the properties of `C and the fact that (∃yC)[t/x] ≡ ∃y(C[t/x]). Then apply-

ing (∀L) to (†) and (‡), ∆[t/x]; Γ[t/x] |—G[t/x] has a proof of size l, because

∀z(D[t/x]) ≡ (∀zD)[t/x] and ∆[t/x] = ∆′[t/x] ∪ {(∀zD)[t/x]}. q
Lemma 4.2

For any ∆,Γ, G, if Γ′ is a set of constraints such that Γ′ `C Γ, and ∆; Γ `IC G,

then ∆; Γ′ |—G has a proof of the same size.

Proof

By induction on the size of the proof of the sequent ∆; Γ |—G, by case analysis on

the last rule applied, and using the properties of entailment in constraint systems. It

is obvious for proofs of size 1. For proofs of size l > 1, let us analyse the case (∀L)

(the others are similar). In this case, the last step of the proof is of the form:

∆′, D[y/x]; Γ, C |—G Γ `C ∃yC
∆′, ∀xD; Γ |—G

(∀L)

where y does not appear free in the sequent of the conclusion, and ∆ = ∆′ ∪ {∀xD}.
By the induction hypothesis

∆′, D[y/x]; Γ′, C |—G (†)
has a proof of size l − 1. We know that Γ `C ∃yC , and by the hypothesis Γ′ `C Γ,

so

Γ′ `C ∃yC (‡).
We can assume that y does not appear free in Γ′, in other case, by Lemma 4.1,

we can work with ∆′, D[y′/x]; Γ′, C[y′/y] |—G (y′ new), instead of (†), and with

Γ′ `C ∃y′C[y′/y], instead of (‡), by the properties of `C. Then we finish by applying

(∀L) to (†) and (‡). q

Lemma 4.4

For any ∆,Γ, C, G, if ∆; Γ, C `IC G and x is a variable that does not appear free in

∆,Γ, G, then ∆; Γ, ∃xC |—G has a proof of the same size.

Proof

By induction on the size of the proof. We will assume that x appears free in C , if

not ∃xC `C C , and the proof is immediate due to Lemma 4.2.

If ∆; Γ, C |—G has a proof of size 1, (Atom) or (CR) has been applied. In both

cases Γ, C `C C ′ for certain constraint C ′. Both C ′ and Γ do not contain free
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occurrences of x, hence Γ, ∃xC `C C ′, and therefore ∆; Γ, ∃xC |—G has a proof of

size 1. If ∆; Γ, C |—G has a proof of size l > 1, let us discuss some of the possible

cases.

(∃R) Then G ≡ ∃zG′ and the last step of the proof is of the form:

∆; Γ, C, C ′ |—G′[y/z] Γ, C `C ∃yC ′
∆; Γ, C |— ∃zG′ (∃R)

where y does not appear free in the sequent of the conclusion. Hence, by Lemma

4.2, ∆; Γ, C ∧ C ′ |—G′[y/z] has a proof of size l − 1. Now, the conditions on y

imply that x 6= y, so x is not free in G′[y/z], because it is not free in ∃zG′. Then,

by the induction hypothesis and again using Lemma 4.2,

∆; Γ, ∃xC, ∃x(C ∧ C ′) |—G′[y/z] (†)
has a proof of size l − 1. On the other hand, Γ, C `C ∃yC ′ implies that Γ, C `C
C ∧ ∃yC ′ so Γ, ∃xC `C ∃x(C ∧ ∃yC ′), since x is not free in Γ, thus

Γ, ∃xC `C ∃y∃x(C ∧ C ′) (‡),
since y is not free in C . Therefore the desired result is obtained by applying (∃R)

to (†) and (‡).
(∀R) Then G ≡ ∀zG′, and the last step of the proof has the form:

∆; Γ, C |—G′[y/z]
∆; Γ, C |— ∀zG′ (∀R)

where y does not appear free in the sequent of the conclusion. Then y does not

occur free in C , so it is different from x. Applying the induction hypothesis to the

sequent ∆; Γ, C |—G′[y/z], we obtain that ∆; Γ, ∃xC |—G′[y/z] has a proof of size

l − 1. Then ∆; Γ, ∃xC |—G has a proof of size l by (∀R). q

Proofs of results from Section 4.2

Lemma 4.5 (Proof transformation)

If G is a goal, ∆ a program and Γ a set of constraint formulas, such that ∆; Γ |—G

has a proof of size l, then:

1. For G ≡ A, there are n constraint formulas C1, . . . , Cn (n > 0) and a formula

∀x1 . . . ∀xn (G′ ⇒ A′) that is a variant of some formula in elab(∆) such that

x1, . . .,xn are new distinct variables not appearing free in ∆,Γ, A, where xi does

not appear free in C1, . . .,Ci−1, for 1 < i 6 n, and A′ begins with the same

predicate symbol as A. In addition it holds:

(a) Γ `C ∃x1C1; Γ, C1 `C ∃x2C2; . . . ; Γ, C1, . . . , Cn−1 `C ∃xnCn.
(b) Γ, C1, . . . , Cn `C A′ ≈ A.
(c) ∆; Γ, C1, . . . , Cn |—G′ has a proof of size less than l, or G′ ≡ >.

2. If G ≡ C , then Γ `C C .

3. If G ≡ G1 ∧G2, then ∆; Γ |—G1 and ∆; Γ |—G2 have proofs of size less than l.

4. If G ≡ G1 ∨ G2, then ∆; Γ |—Gi has a proof of size less than l for i = 1 or 2.
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5. If G ≡ D ⇒ G1, then ∆, D; Γ |—G1 has a proof of size less than l.

6. If G ≡ C ⇒ G1, then ∆; Γ, C |—G1 has a proof of size less than l.

7. For G ≡ ∃xG1, if y is a variable not appearing free in ∆,Γ, G, then there is a

constraint formula C such that:

(a) Γ `C ∃yC .

(b) ∆; Γ, C |—G1[y/x] has a proof of size less than l.

8. If G ≡ ∀xG1, then ∆; Γ |— G1[y/x] has a proof of size less than l, where y is

a variable that does not appear free in ∆,Γ, G.

Proof

We reason by induction on the size l of a given IC-proof of ∆; Γ |—G.

If l is 1, then G has been proved by a single application of axiom (CR) or axiom

(Atom). In the former case, G is a constraint and item 2 of the lemma holds. In

the latter case G is an atomic formula A and there is A′ ∈ ∆, beginning with

the same predicate symbol that A such that Γ `C A′ ≈ A. But A′ ∈ ∆ implies

> ⇒ A′ ∈ elab(∆), then conditions (a), (b) and (c) of item 1 are satisfied with n = 0,

G′ ≡ >.

If l > 1, let us analyse cases according to the last inference rule applied in the

proof of the sequent ∆; Γ |—G. The lemma is obviously true by induction hypothesis

if the last inference rule introduces on the right the main connective or quantifier

of the goal. So the problem is reduced to the rules (∧L), (⇒L) and (∀L). For each

of these three rules, we must analyse cases according to the structure of G. In each

case, it is possible to transform the proof by permuting the application of right and

left-introduction rules, in the same way as in Miller et al. (1991). In our setting,

however, the treatment of (∀L) gives rise to some new situations. We analyse the

most interesting cases; those we omit can be treated analogously.

(∧L) Then we can decompose ∆ as ∆ = ∆′ ∪ {D1∧D2}, and the last step of the proof

is of the form:

∆′, D1, D2; Γ |—G

∆′, D1 ∧ D2; Γ |—G
(∧L)

• If G ≡ G1 ∨ G2, then by the induction hypothesis, there is a proof of size less

than l − 1 of ∆′, D1, D2; Γ |—Gi. Applying (∧L) we obtain a proof of size less

or equal l − 1, so less than l, of ∆′, D1 ∧ D2; Γ |—Gi for i = 1 or 2.

(⇒L) Then we can decompose ∆ as ∆ = ∆′ ∪ {G′ ⇒ A}, and the last step of the

proof is of the form:

∆′; Γ |—G′ ∆′, A; Γ |—G

∆′, G′ ⇒ A; Γ |—G
(⇒L)

• If G ≡ ∀xG1, then ∆′, A; Γ |— ∀xG1 has a proof of size l1 < l, and by the

induction hypothesis there is a proof of size less than l1 of ∆′, A; Γ |—G1[y/x],

where y is a new variable. Then, using that ∆′; Γ |—G′ has a proof of size l2,

l1 + l2 = l− 1, and applying (⇒L), ∆′, G′ ⇒ A; Γ |—G1[y/x] has a proof of size

less or equal l1 + l2 so less than l, as we wanted to prove.
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• If G ≡ D ⇒ G1, then ∆′, A; Γ |—D ⇒ G1 has a proof of size l1 < l, so by the

induction hypothesis there is a proof of size less than l1 of ∆′, A, D; Γ |—G1.

Then, since ∆′; Γ |—G′ has a proof of size l2, obviously ∆′, D; Γ |—G′ also

has a proof of size l2, and l1 + l2 < l. Therefore, using (⇒L), we obtain that

∆′, G′ ⇒ A,D; Γ |—G1 has a proof of size less or equal l1 + l2, so less than l, as

we wanted to prove.

(∀L) Then we can decompose ∆ as ∆ = ∆′ ∪ {∀xD}, and the last step of the proof is

of the form:
∆′, D[y/x]; Γ, C ′ |—G Γ `C ∃yC ′

∆′, ∀xD; Γ |—G
(∀L)

where y is not free in the sequent of the conclusion, and the sequent

Q ≡ ∆′, D[y/x]; Γ, C ′ |—G

has a proof of size l − 1.

• If G ≡ C , then by the induction hypothesis applied to Q, we know that

Γ, C ′ `C C . Since Γ `C ∃yC ′ and y is not free in Γ, C , we conclude that

Γ `C C , due to the properties of `C, that coincides with item 2 of the lemma.

• If G ≡ C ⇒ G1, then by the induction hypothesis applied to Q, the sequent

∆′, D[y/x]; Γ, C ′, C |—G1

has a proof of size less than l − 1. Therefore, since Γ `C ∃yC ′ implies

Γ, C `C ∃yC ′, and y is not free in C , applying (∀L), ∆′, ∀xD; Γ, C |—G1, has a

proof of size less or equal than l − 1 so less than l.

• If G ≡ ∃wG1, then by applying the induction hypothesis to Q we conclude

that there is C such that Γ, C ′ `C ∃zC , where z is not free in ∆′, D[y/x],Γ, C ′,
∃wG1, and

∆′, D[y/x]; Γ, C ′, C |—G1[z/w] (†)
has a proof of size less than l − 1. Since y is not free in ∆′, G1[z/w], applying

Corollary 4.3 to (†) we obtain that ∆′, D[u/x]; Γ, C ′, C, u ≈ y |—G1[z/w], where

u is a new variable, has a proof of the same size, so by Lemma 4.2,

∆′, D[u/x]; Γ, C ′ ∧ C, u ≈ y |—G1[z/w] (‡)
still with a proof of size less than l − 1. Now by the properties of the

constraint entailment, Γ, C ′ ∧ C `C ∃u(u ≈ y) (§). Then, since u is not free in

∆′, ∀xD,Γ, C ′ ∧ C,G1[z/w], we apply (∀L) to (‡) and (§), obtaining that

∆′, ∀xD; Γ, C ′ ∧ C |—G1[z/w]

has a proof of size less than or equal l − 1. Hence using Lemma 4.4

∆′, ∀xD; Γ, ∃y(C ′ ∧ C) |—G1[z/w]

has a proof of size less than or equal l−1, because, by the assumptions, y is not

free in ∆′, ∀xD,Γ, G1[z/w]. Therefore we can conclude the result for this case

(item 7), taking ∃y(C ′∧C) as auxiliary constraint. In fact, Γ, C ′ `C ∃zC implies
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Γ, C ′ `C ∃z(C ′∧C), since z is not free in Γ, C ′. Hence Γ, ∃yC ′ `C ∃z∃y(C ′∧C),

since y is not free in Γ. Finally, Γ `C ∃z∃y(C ′ ∧ C), because Γ `C ∃yC ′.
• If G ≡ A, then the induction hypothesis for the sequent Q assures that there

are constraints C1, . . . , Cn (n > 0) and a formula ∀x1 . . . ∀xn(G′ ⇒ A′) that is a

variant of a formula in elab(∆′ ∪ {D[y/x]}), where x1, . . . , xn are new variables,

xi not appearing free in C1, . . . , Ci−1, for 1 < i 6 n, A′ begins with the same

predicate symbol as A, and such that:

(i) Γ, C ′ `C ∃x1C1; Γ, C ′, C1 `C ∃x2C2; . . . ; Γ, C ′, C1, . . . , Cn−1 `C ∃xnCn.
(ii) Γ, C ′, C1, . . . , Cn `C A′ ≈ A.
(iii) ∆′, D[y/x]; Γ, C ′, C1, . . . , Cn |—G′ has a proof of size less than l − 1, or

G′ ≡ >.

In order to establish item 1 of the lemma, we distinguish two cases:

(I) ∀x1 . . . ∀xn(G′ ⇒ A′) is a variant of a formula in elab(∆′), or

(II) ∀x1 . . . ∀xn(G′ ⇒ A′) is a variant of a formula in elab(D[y/x]).

(I). If ∀x1 . . . ∀xn(G′ ⇒ A′) is a variant of a formula in elab(∆′), then ∀x1 . . .

∀xn(G′ ⇒ A′) is a variant of a formula in elab(∆). Taking the following

n auxiliary constraints ∃y(C ′ ∧ C1), . . . , ∃y(C ′ ∧ C1 ∧ . . . ∧ Cn), we will prove

conditions (a), (b) and (c).

• For condition (a) we need to prove:
Γ `C ∃x1∃y(C ′ ∧ C1) (1)

Γ, ∃y(C ′ ∧ C1) `C ∃x2∃y(C ′ ∧ C1 ∧ C2) (2)
...

...

Γ, ∃y(C ′ ∧ C1), . . . , ∃y(C ′ ∧ C1 ∧. . .∧ Cn−1) `C
∃xn∃y(C ′ ∧ C1 ∧. . .∧ Cn) (n)

This can be deduced from condition (i) above, as follows:

(1). By (i), Γ, C ′ `C ∃x1C1, then Γ, C ′ `C C ′ ∧ ∃x1C1. Hence

Γ, ∃yC ′ `C ∃y(C ′ ∧ ∃x1C1),

since y is not free in Γ. Therefore

Γ, ∃yC ′ `C ∃x1∃y(C ′ ∧ C1),

since x1 is not free in C ′. Now we can conclude (1) because Γ `C ∃yC ′.
(2). By (i), Γ, C ′, C1 `C ∃x2C2, then Γ, C ′ ∧ C1 `C C ′ ∧ C1 ∧ ∃x2C2. Hence

Γ, ∃y(C ′ ∧ C1) `C ∃y(C ′ ∧ C1 ∧ ∃x2C2),

since y is not free in Γ. Therefore

Γ, ∃y(C ′ ∧ C1) `C ∃x2∃y(C ′ ∧ C1 ∧ C2),

since x2 is not free in C ′, C1.

By a similar reasoning, we can prove (3) to (n− 1).

(n). By (i), Γ, C ′, C1, . . . , Cn−1 `C ∃xnCn, then Γ, C ′ ∧ C1 ∧ . . . ∧ Cn−1 `C
C ′ ∧ C1 ∧ . . . ∧ Cn−1 ∧ ∃xnCn. Hence

Γ, ∃y(C ′ ∧ C1 ∧ . . . ∧ Cn−1) `C ∃y(C ′ ∧ C1 ∧ . . . ∧ Cn−1 ∧ ∃xnCn),
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since y is not free in Γ. Therefore

Γ, ∃y(C ′ ∧ C1 ∧ . . . ∧ Cn−1) `C ∃xn∃y(C ′ ∧ C1 ∧ . . . ∧ Cn−1 ∧ Cn),
since xn is not free in C ′, C1, . . . , Cn−1. Then we deduce (n) obviously.

• For condition (b) we need:

Γ, ∃y(C ′ ∧ C1), . . . , ∃y(C ′ ∧ C1 ∧ . . . ∧ Cn) `C A′ ≈ A.
To deduce this from (ii), we note that y is not free in ∆′, Γ, A by assumption.

Moreover, y is not free in A′, or else it would be free in ∆′. Therefore, (ii)

implies that

Γ, ∃y(C ′ ∧ C1 ∧ . . . ∧ Cn) `C A′ ≈ A,
which amounts to what we needed.

• Finally, for condition (c) we assume the interesting case where G′ is not >.

We need a proof of size less than l for the sequent

∆′, ∀xD; Γ, ∃y(C ′ ∧ C1), . . . , ∃y(C ′ ∧ C1 ∧ . . . ∧ Cn) |—G′ (†)
To deduce this, we first choose a fresh variable u, and we apply Corollary

4.3 to (iii), thus obtaining that

∆′, D[u/x]; Γ, C ′, C1, . . . , Cn, u ≈ y |—G′

has a proof of size less than l − 1. Since u is new and Γ, C ′, C1, . . . , Cn `C
∃u(u ≈ y), we can apply (∀L) obtaining that

∆′, ∀xD; Γ, C ′, C1, . . . , Cn |—G′

has a proof of size less than l. From this, Lemma 4.2 and Lemma 4.4 (note

that y is not free in ∆′, ∀xD,Γ, G′) lead to a proof of size less than l for

∆′, ∀xD; Γ, ∃y(C ′ ∧ C1 ∧ . . . ∧ Cn) |—G′.

Another application of Lemma 4.2 leads from this to a proof of size less

than l for the sequent (†).
(II). If ∀x1 . . . ∀xn(G′ ⇒ A′) is a variant of a formula in elab(D[y/x]), then

∀y∀x1 . . . ∀xn(G′ ⇒ A′) is a variant of a formula in elab(∀xD), and so it is

a variant of a formula in elab(∆). Then condition (a) coincides with (i) plus

Γ `C ∃yC ′, and (b) is equivalent to (ii). Moreover from (iii) (assuming that G′
is not >) we can deduce that the sequent

∆′, D[u/x]; Γ, C ′, C1, . . . , Cn, u ≈ y |—G′

has a proof of size less than l − 1, because of Corollary 4.3 (u is chosen as a

new variable). Since Γ, C ′, C1, . . . , Cn `C ∃u(u ≈ y), we can apply (∀L) and we

obtain a proof of size less than l for the sequent

∆′, ∀xD; Γ, C ′, C1, . . . , Cn |—G′.

That is precisely condition (c). q
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Proofs of results from Section 4.3

Lemma 4.7 (Elaboration)

For any ∆,Γ, A and F ∈ elab(∆): if ∆, F; Γ `IC A, then ∆; Γ `IC A.

Proof

Since F ∈ elab(∆), there will be D ∈ ∆ such that F ∈ elab(D). The proof of the

lemma is by case analysis according to the structure of D.

• If D ≡ A′, then F ≡ > ⇒ A′. We prove ∆; Γ `IC A by induction on the size

l of the proof of ∆, F; Γ |—A. If l = 1, the proof consists on the application

of (Atom), the form of F implies that it does not take part in this proof.

So there exists A′′ ∈ ∆ such that Γ `C A′′ ≈ A. Therefore ∆; Γ `IC A, by

(Atom). Assuming now the result for proofs of size less than l, l > 1, we

proceed by case analysis on the last rule applied in the proof of ∆, F; Γ |—A.

Note that it is only necessary to analyse the left-introduction rules, since the

goal is an atomic formula. For (∧L) and (∀L), we note that F ≡ > ⇒ A′
cannot participate on this step of the proof, instead a formula of ∆ has been

introduced. For instance, for (∧L), if D1 ∧ D2 is the formula introduced, then

∆ is of the form ∆′ ∪ {D1 ∧ D2}, and the last step of the proof is:

∆′, D1, D2, F; Γ |—A

∆′, D1 ∧ D2, F; Γ |—A
(∧L).

So ∆′, D1, D2, F; Γ |—A has a proof of size less that l, and since F ∈ elab(∆′ ∪
{D1, D2}), ∆′, D1, D2; Γ `IC A, by induction hypothesis. The result can be

obtained now using the rule (∧L).

For the case (⇒L), if the introduced formula is F (other cases are proved as

before), then the last step of the proof is:

∆; Γ |—> ∆, A′; Γ |—A

∆, F; Γ |—A
(⇒L).

Since A′ ≡ D and D ∈ ∆, the sequent ∆, A′; Γ |—A can be also written as

∆; Γ |—A, and we are done.

• If D ≡ D1 ∧ D2, then F ∈ elab(Di) for i = 1 or 2. ∆, F; Γ `IC A, by

hypothesis, then it is easy to prove that also ∆, D1, D2, F; Γ `IC A. Hence,

applying structural induction hypothesis to Di, ∆, D1, D2; Γ `IC A. Therefore

∆, D1 ∧ D2; Γ `IC A, in accordance with the rule (∧L). This is equivalent to

∆; Γ `IC A, since D ≡ D1 ∧ D2 and D ∈ ∆.

• If D ≡ G1 ⇒ D1, then F ≡ D, so F ∈ ∆ and we have ∆; Γ `IC A directly.

• If D ≡ ∀xD1, then F ≡ ∀xF1 and F1 ∈ elab(D1). We proceed by induction

on the size l of the proof of ∆, F; Γ |—A. The case l = 1 is trivial because F

cannot take part in the proof. Similarly, we can reason the inductive step for

the cases (∧L) and (⇒L). The interesting case occurs when (∀L) was the last

rule applied and F was the introduced formula. In this case, the last proof

step is of the form:

∆, F1[y/x]; Γ, C |—A Γ `C ∃yC
∆, F; Γ |—A

(∀L),
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where y is not free in the sequent of the conclusion.

∆, D1[y/x], F1[y/x]; Γ, C `IC A can be deduced from ∆, F1[y/x]; Γ, C `IC A.

Then ∆, D1[y/x]; Γ, C `IC A, since the lemma holds for D1[y/x] –simpler

than D– and F1[y/x] ∈ elab(D1[y/x]). Therefore ∆, ∀xD1; Γ `IC A, by (∀L),

using the fact that y is not free in ∆, ∀xD1,Γ, A, and that Γ `C ∃yC . We

conclude because D ≡ ∀xD1 and D ∈ ∆. q

Lemma 4.9

For any ∆,Γ, G, if Γ′ is a set of constraints such that Γ′ `C Γ, and ∆; Γ `UC G,

then ∆; Γ′ |—G has a UC-proof of the same size.

Proof

By induction on the size of the proof of the sequent ∆; Γ |—G, by case analysis on

the last rule applied. Using the definition of the system UC and Lemma 4.2, the only

interesting case is when the last step corresponds to rule (Clause). But the proof in

this case is a direct consequence of the induction hypothesis. q

Lemma 4.10

For any ∆,Γ, C, G, if ∆; Γ, C `UC G and x is a variable that does not appear free in

∆,Γ, G, then ∆; Γ, ∃xC |—G has a UC-proof of the same size.

Proof

As in the previous lemma, and due now to Lemma 4.4, we can focus the proof on

the case (Clause). In this case G ≡ A and the last step of the proof is of the form:

∆; Γ, C |— ∃x1 . . . ∃xn((A′ ≈ A) ∧ G′)
∆; Γ, C |—A

(Clause)

where A, A′ begin with the same predicate symbol, and ∀x1 . . . ∀xn(G′ ⇒ A′) is a

variant of a formula of elab(∆), x1, . . . , xn do not appear free in the sequent of the

conclusion.

Since x is not free in ∆, A, and ∀x1 . . . ∀xn(G′ ⇒ A′) is a variant of a formula

of elab(∆), then x is not free in ∃x1 . . . ∃xn((A′ ≈ A) ∧ G′). Note also, that x is not

free in Γ, ∆, by assumption, so applying the induction hypothesis to the sequent

∆; Γ, C |— ∃x1 . . . ∃xn((A′ ≈ A) ∧ G′),
∆; Γ, ∃xC |— ∃x1 . . . ∃xn((A′ ≈ A) ∧ G′)

has a proof of the same size. Hence, applying (Clause), ∆; Γ, ∃xC |—A has a UC-

proof of the same size that ∆; Γ, C |—A. q

Proofs of results from Section 5.1

Lemma 5.2

Assume S ≡ Π[S�G] and S′ ≡ ΠΠ′[S ′�G′] are two states w.r.t. a set of variables

V , such that S‖—S′. If R′ is a constraint with its free variables in ΠΠ′ or in V , and

such that R′ `C S ′ and for any 〈∆′, C ′, G′〉 ∈ G′, ∆′;R′, C ′ `UC G′, then Π′R′ `C S
and for any 〈∆, C, G〉 ∈ G, ∆; Π′R′, C `UC G.
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Proof

We analyse the different cases, according to the transformation applied.

(2) Disjunction. Π′ is empty and S ≡ S ′ as above. Then let us check only the case

〈∆, C, G〉 /∈ G′. This implies G ≡ G1∨G2 and 〈∆, C, G1〉 ∈ G′ or 〈∆, C, G2〉 ∈ G′.
By hypothesis

∆; Π′R′, C `UC G1 or ∆; Π′R′, C `UC G2,

since Π′R′ ≡ R′. Then ∆; Π′R′, C `UC G, because of the rule (∨R).

(3) Implication with local clause. As before the prefix and the partially calculated

answer constraint do not change. If 〈∆, C, G〉 /∈ G′, then G ≡ D ⇒ G1 and

〈∆ ∪ {D}, C, G1〉 ∈ G′. Hence, by hypothesis since Π′R′ ≡ R′, it holds

∆, D; Π′R′, C `UC G1

from which we conclude the result by applying (⇒R).

(4) Implication with local constraint. As in the preceding cases where there are no

changes in S and Π, we check what happens if 〈∆, C, G〉 ∈ G \ G′. In this case

G ≡ C ′ ⇒ G1 and 〈∆, C ∧ C ′, G1〉 ∈ G′. By hypothesis, since Π′R′ ≡ R′, we

have ∆; Π′R′, C ∧ C ′ `UC G1 then in accordance with Lemma 4.9

∆; Π′R′, C, C ′ `UC G1.

Now we conclude ∆; Π′R′, C `UC G, by applying (⇒CR).

(5) Existential quantification. Π′ ≡ ∃w with w a new variable not in Π nor in V .

Hence, by item (i) of Lemma 5.1, w is not free in the formulas of G, nor in S .

Therefore, using the facts R′ `C S ′ and S ≡ S ′, we can conclude ∃wR′ `C S .

Now let 〈∆, C, G〉 ∈ G, if 〈∆, C, G〉 ∈ G′, then ∆;R′, C `UC G, by hypothesis.

Then ∆; ∃wR′, C `UC G by Lemma 4.10, because w is not free in ∆, C, G.

If 〈∆, C, G〉 /∈ G′, G ≡ ∃xG1 and 〈∆, C, G1[w/x]〉 ∈ G′. By hypothesis,

∆;R′, C `UC G1[w/x]

and so also ∆; ∃wR′, R′, C `UC G1[w/x], by Lemma 4.9. Consequently, apply-

ing the rule (∃R),

∆; ∃wR′, C `UC G
since ∃wR′, C `C ∃wR′, and w is new for the sequent of the conclusion.

(6) Universal quantification. Π′ ≡ ∀w with w a new variable w.r.t. Π and V , and

S ≡ S ′. So ∀wR′ `C S holds directly from R′ `C S ′.
Let 〈∆, C, G〉 ∈ G, if 〈∆, C, G〉 ∈ G′, then ∆;R′, C `UC G, by hypothesis. Then

∆; Π′R′, C `UC G because Π′R′ `C R′ and Lemma 4.9.

If 〈∆, C, G〉 /∈ G′, G ≡ ∀xG1 and 〈∆, C, G1[w/x]〉 ∈ G′. By the hypothesis, since

∀wR′ `C R′ and Lemma 4.9, we have

∆; ∀wR′, C `UC G1[w/x]

Now, since w is not in Π nor in V , by item (i) of Lemma 5.1, it is not free in

∆, C , G, and obviously w is neither free in ∀wR′. Then we conclude

∆; ∀wR′, C `UC G
by applying (∀R).
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(7) Constraint. In this case Π′ is empty and ΠS ′ ≡ Π(S ∧ (C ⇒ C ′)) is C-

satisfiable. Trivially, R′ `C S ′ implies Π′R′ `C S . Now let 〈∆, C, G〉 ∈ G,

the case 〈∆, C, G〉 ∈ G′ is easily proved. If 〈∆, C, G〉 /∈ G′, then G ≡ C ′.
R′ `C C ⇒ C ′ because R′ `C S ′ and S ′ ≡ S ∧ (C ⇒ C ′). By the properties of

the constraint entailment, we deduce R′, C `C C ′. Then applying the rule (CR),

∆; Π′R′, C `UC G,
because Π′R′ ≡ R′.

(8) Clause of the program. Since Π′ is empty and S ≡ S ′, we only check the

case 〈∆, C, G〉 ∈ G and 〈∆, C, G〉 /∈ G′. In such case G ≡ A and there is

∀x1 . . . ∀xn(G1 ⇒ A′) a variant of a formula of elab(∆) where:

• x1, . . . , xn are new variables not occurring in Π, V , and therefore not free

in A, ∆, C and Π′R′.
• A and A′ begin with the same predicate symbol.

• 〈∆, C, ∃x1 . . . ∃xn((A′ ≈ A) ∧ G1)〉 ∈ G′.
By hypothesis, since Π′R′ ≡ R′,

∆; Π′R′, C `UC ∃x1 . . . ∃xn((A′ ≈ A) ∧ G1).

Using now the rule (Clause), we conclude ∆; Π′R′, C `UC G. q

Proofs of results from Section 5.2

Lemma 5.4

Let S ≡ Π[S�G] be a non-final state w.r.t. a set of variables V , and let R be

a constraint such that ΠR is C-satisfiable and R `C S . If ∆;R,C `UC G for all

〈∆, C, G〉 ∈ G, then we can find a rule transforming S in a state S′ ≡ Π′[S ′�G′]
(S‖—S′) and a constraint R′ such that:

1. ΠR `C Π′R′ and R′ `C S ′.
2. ∆′;R′, C ′ `UC G′ for all 〈∆′, C ′, G′〉 ∈ G′. Moreover MG′R′ <<MGR .

Proof

Let us choose any 〈∆, C, G〉 ∈ G; we reason by induction on the structure of G,

analysing cases:

• If G has the form G1 ∧ G2, G1 ∨ G2, D ⇒ G1 or C1 ⇒ G1, then we apply

respectively the transformation rules (1), (2), (3) or (4) to S. Let S′ be the

state obtained after the transformation, and let R′ ≡ R:

1. ΠR `C Π′R′ and R′ `C S ′ are obvious by the hypothesis and because

Π′ ≡ Π, S ′ ≡ S and R′ ≡ R.

2. Let 〈∆′, C ′, G′〉 ∈ G′. If 〈∆′, C ′, G′〉 ∈ G, then ∆′;R′, C ′ `UC G′ trivially since

∆′;R,C ′ `UC G′ by hypothesis, and R′ ≡ R. Moreover τR′(∆
′, C ′, G′) =

τR(∆′, C ′, G′). If 〈∆′, C ′, G′〉 /∈ G and (1), for example, was applied, then

∆′ ≡ ∆, C ′ ≡ C , G ≡ G1 ∧ G2 and G′ ≡ G1 or G′ ≡ G2. By hypothesis

∆;R,C |—G with a proof of size l, therefore by the definition of UC, since

R′ ≡ R, ∆;R′, C |—G1 and ∆;R′, C |—G2 have proofs of size less than l.
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Consequently τR′(∆
′, C ′, G1) < τR(∆, C, G) and τR′(∆

′, C ′, G2) < τR(∆, C, G),

so, finally ∆′;R′, C ′ `UC G′ for all 〈∆′, C ′, G′〉 ∈ G′ and MG′R′ << MGR .

The argument for transformations (2), (3) and (4) is similar. Note that, in

the case of (2), we must choose G1 (resp. G2) if the shortest UC-proof of

∆;R,C |—G1 ∨ G2 contains a subproof of ∆;R,C |—G1 (resp. G2).

• If G has the form ∀xG1, we apply then the transformation rule (6) and obtain

S′. Assume R′ ≡ R:

1. Trivial since the choice of w assures that ΠR àC Π∀wR ≡ Π′R′; moreover,

S ′ ≡ S .

2. Let 〈∆′, C ′, G′〉 ∈ G′, if 〈∆′, C ′, G′〉 ∈ G, then we obtain ∆′;R′, C ′ `UC G′,
being τR′(∆

′, C ′, G′) = τR(∆′, C ′, G′). If 〈∆′, C ′, G′〉 /∈ G′, this is the triple

coming from the transformation of 〈∆, C, G〉, so G′ ≡ G1[w/x], C ′ ≡ C and

∆′ ≡ ∆. By hypothesis ∆;R,C|—G has a proof of size l, then since w does

not appear free in ∆, C, R′(≡ R), G1, because of the form of the calculus

UC, ∆;R′, C |—G1[w/x] has a proof of size less than l, and for that reason

τR′(∆
′, C ′, G′) < τR(∆, C, G), and thus we conclude that 2 is valid.

• If G is a constraint C1, we apply the transformation (7) obtaining S′. Assume

R′ ≡ R:

1. ΠR `C Π′R′ is trivial since Π′ ≡ Π. Furthermore, ∆;R,C `UC C1 by

hypothesis, so by the definition of UC, R,C `C C1 and therefore R `C
C ⇒ C1. Moreover R `C S , then R′ `C S ′, because R′ ≡ R and S ′ ≡
S ∧ (C ⇒ C1). Now, from R′ `C S ′ and the C-satisfiability of Π′R′ ≡ ΠR,

we deduce that Π′S ′ is also C-satisfiable. Therefore the transformation step

is allowed.

2. G′ ⊂ G, so ∆′;R′, C ′ `UC G′ for all 〈∆′, C ′, G′〉 ∈ G′ and MG′R′ <<MGR .

• If G is atomic G ≡ A, by hypothesis ∆;R,C |—A has a proof of size l,

then by reason of the form of UC, if x1, . . . , xn are new variables not free

in ∆, R, C neither in A, then there is a variant of a formula from elab(∆),

∀x1 . . . ∀xn(G1 ⇒ A′), with A and A′ beginning with the same predicate symbol,

such that ∆;R,C |— ∃x1 . . . ∃xn((A′ ≈ A) ∧ G1)(†) has a proof of size less than

l. We transform S in S′ by means of the rule (8), using ∀x1 . . . ∀xn(G1 ⇒ A′).
Assume now R′ ≡ R. Since S ≡ S ′ and Π ≡ Π′, the proof of 1. is immediate.

2. Let 〈∆′, C ′, G′〉 ∈ G′, if 〈∆′, C ′, G′〉 ∈ G, then ∆′;R,C ′ `UC G′ by hypothesis

and therefore ∆′;R′, C ′ `UC G′, besides τR′(∆
′, C ′, G′) = τR(∆′, C ′, G′).

If 〈∆′, C ′, G′〉 /∈ G, then G′ ≡ ∃x1 . . . ∃xn((A′ ≈ A) ∧ G1), C ′ ≡ C and ∆′ ≡ ∆.

As we have noted in (†), ∆;R′, C ′ |—G′ has a proof of size less than l. So

τR′(∆
′, C ′, G′) < τR(∆, C, G), and 2. is also proved in this case. q
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