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Abstract In this paper, we study a time-independent fractional Schrödinger equation of the form
(−Δ)su + V (x)u = g(u) in R

N , where N � 2, s ∈ (0, 1) and (−Δ)s is the fractional Laplacian. By
variational methods, we prove the existence of ground state solutions when V is unbounded and the
nonlinearity g is subcritical and satisfies the following geometry condition:

lim sup
t→0+

2
∫ t
0 g(τ) dτ

t2
< inf σ((−Δ)s + V (x)) < lim inf

t→+∞

2
∫ t
0 g(τ) dτ

t2
.
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1. Introduction and main results

We consider the following fractional Schrödinger equation:

(−Δ)su + V (x)u = g(u) in R
N , (1.1)

where s ∈ (0, 1), (−Δ)s stands for the fractional Laplacian, g ∈ C1(R, R) and N � 2.
Here the fractional Laplacian (−Δ)s, with s ∈ (0, 1), of a function φ : R

N → R is defined
by

F((−Δ)sφ)(ξ) = |ξ|2sF(φ)(ξ) ∀s ∈ (0, 1),

where F is the Fourier transform, i.e.

F(φ)(ξ) =
1

(2π)N/2

∫
RN

e−2πiξ·xφ(x) dx.
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If u is a solution of (1.1), then the function ψ(t, x) = exp(−ict)u(x), with c a con-
stant, is the so-called standing wave solution of the following time-dependent fractional
Schrödinger equation:

i
∂ψ

∂t
+ (−Δ)sψ + (V (x) − c)ψ = g(u) in R

N , (1.2)

where i is the imaginary unit. The fractional Schrödinger equation is an important model
in the study of fractional quantum mechanics, which was discovered by Laskin [28,29] as
a result of expanding the Feynman path integral from the Brownian-like to the Lévy-like
quantum mechanical paths. In Laskin’s studies, the Feynman path integral leads to the
classical Schrödinger equation and the path integral over Lévy trajectories leads to the
fractional Schrödinger equation.

Recently, Guo and Huo [26] studied the global well-posedness of a fractional
Schrödinger equation of the form (1.2) in R. Some blow-up phenomena of the fractional
Schrödinger equation in high-dimensional space was discussed in [17]. The investigation
of stationary solutions of the fractional Schrödinger equation has also attracted the atten-
tion of many mathematicians. In [18,19], Coti Zelati and Nolasco studied the existence
of positive ground states of some fractional Schrödinger equations involving the opera-
tor (−Δ + m2)1/2 with m > 0. Frank and Lenzmann [24] studied the uniqueness and
non-degeneracy of the ground state of (−Δ)su + u = uα+1 in R for general s ∈ (0, 1),
where 0 < α < 4s/(1 − 2s) for s ∈ (0, 1

2 ) and 0 < α < ∞ for s ∈ [ 12 , 1). Recently,
the result of [24] has been extended in any dimension when s is sufficiently close to 1
by Fall and Valdinoci [22] and later for general s ∈ (0, 1) by Frank et al . [25]. In [23],
Felmer et al . studied the existence of positive solutions of (1.1) with V (x) ≡ 1 for general
s ∈ (0, 1) when g has subcritical growth and satisfies the Ambrosetti–Rabinowitz con-
dition (see [1]), which implies that the nonlinearity g satisfies superlinear growth at ∞.
For the case in which the potential V is non-constant, Secchi [34] obtained the existence
of ground state solutions of (1.1) for general s ∈ (0, 1) when V (x) → +∞ as |x| → +∞
and the Ambrosetti–Rabinowitz condition holds. When the nonlinearity g satisfies the
asymptotically linear growth, one can see [14]. For other results related to the operator
(−Δ)s, one can also see [4,7,9,10,12,13,15,16,20,37] and the references therein.

In this paper, we study the existence of ground states of (1.1) when V is unbounded
and the nonlinearity g is subcritical and satisfies the following geometry condition:

lim sup
t→0+

2G(t)
t2

< inf σ((−Δ)s + V (x)) < lim inf
t→+∞

2G(t)
t2

,

where G(t) =
∫ t

0 g(τ) dτ . Here it is clear that neither the superlinear growth nor the
asymptotically linear growth are required. Throughout the paper the following assump-
tions are made.

(V1) V ∈ C1(RN , R), V0
.= infx∈RN V (x) > 0.

(V2) There exists r > 0 such that for any M > 0,

meas({x ∈ Br(y) : V (x) � M}) → 0 as |y| → ∞.
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(V3) ‖(∇V (x), x)+‖N/2s < 2sSs, where Ss is the best Sobolev constant of the embedding
Ḣs(RN ) ↪→ L2∗

s (RN ), i.e.

Ss = inf
u∈Hs(RN )\{0}

∫
RN |(−Δ)s/2u(x)|2 dx

(
∫

RN |u(x)|2N/(N−2s) dx)(N−2s)/N
.

(g1) g ∈ C1(R, R) and

lim
t→+∞

g(t)
t2

∗
s−1 = 0,

where 2∗
s = 2N/(N − 2s).

(g2) g(0) = 0 and there exists κ0 ∈ (0, +∞) such that

−κ0 � lim inf
t→0+

2G(t)
t2

� lim sup
t→0+

2G(t)
t2

< λ1,

where

λ1
.= inf σ((−Δ)s + V (x)) = inf

u∈Hs(RN )\{0}

∫
RN (|(−Δ)s/2u(x)|2 + V (x)u2) dx∫

RN u2 dx
.

Here σ((−Δ)s + V (x)) denotes the spectrum of the operator (−Δ)s + V (x).

(g3)

lim inf
t→+∞

2G(t)
t2

> λ1.

A solution u of (1.1) is usually called a ground state solution if it minimizes the corre-
sponding action functional among all the non-trivial solutions of (1.1).

Our main result is as follows.

Theorem 1.1. Assume that (V1)–(V3) and (g1)–(g3) hold. Then problem (1.1) has a
positive ground state solution.

Remark 1.2. Note that the assumption lim|x|→+∞V (x) = +∞ (used in [34]) implies
that, for any M > 0, the set {x ∈ R

N : V (x) � M} is bounded. There then exists a
positive constant R0 such that meas({x ∈ Br(y) : V (x) � M}) = 0 for any |y| � R0. In
this sense, we can see that (V2) is a weaker condition than that in [34].

Remark 1.3. When s = 1, (1.1) becomes the classical Schrödinger equation

−Δu + V (x)u = g(u) in R
N . (1.3)

In the past 20 years, the existence and multiplicity of positive solutions of (1.3), when the
nonlinearity g is subcritical and satisfies the superlinear or asymptotically linear growth,
have been widely investigated (see, for example, [2, 3, 5, 6, 30, 33, 36] and references
therein). One can see that our result is new, even for the case s = 1.

The paper is organized as follows. In § 2, we introduce a variational setting of the
problem and present some preliminary results. In § 3, we apply variational methods to
give the proof of Theorem 1.1.
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2. Preliminaries and functional setting

Consider the Sobolev space

Hs(RN ) =
{

u ∈ L2(RN ) :
∫

RN

(|ξ|2sû2 + û2) dξ < ∞
}

.

The norm is defined by

‖u‖Hs(RN ) =
( ∫

RN

(|ξ|2sû2 + û2) dξ

)1/2

,

and in this paper we consider its subspace

E =
{

u ∈ Hs(RN ) :
∫

RN

V (x)u2 dx < ∞
}

.

We define the norm in E by

‖u‖E =
( ∫

RN

|ξ|2sû2 dξ +
∫

RN

V (x)u2 dx

)1/2

.

Clearly,

‖u‖ =
( ∫

RN

(|(−Δ)s/2u|2 + V (x)u2) dx

)1/2

∀u ∈ E.

Throughout this paper, we use the norm ‖ · ‖ in E. The space Ḣs(RN ) is defined as the
completion of C∞

0 (RN ) under the norms

‖u‖Ḣs(RN ) =
∫

RN

|ξ|2sû2 dξ =
∫

RN

|(−Δ)s/2u(x)|2 dx.

Turning to problem (1.1), we define the energy functional I : Hs(RN ) → R as

I(u) = 1
2

∫
RN

(|(−Δ)s/2u(x)|2 + V (x)u2) dx −
∫

RN

G(u) dx ∀u ∈ E.

Definition 2.1. We say that u ∈ E is a weak solution of (1.1) if∫
RN

((−Δ)s/2u(−Δ)s/2φ + V (x)uφ) dx =
∫

RN

g(u)φ dx ∀φ ∈ E.

Lemma 2.2 (Lions [31]). Hs(RN ) is continuously embedded into Lr(RN ) for
r ∈ [2, 2N/(N − 2s)] and compactly embedded into Lr

loc(R
N ) for r ∈ [2, 2N/(N − 2s)).

By (g1)–(g3) and Lemma 2.2 it follows that g(u) ∈ L2N/(N+2s)(RN ) and φ ∈
L2N/(N−2s)(RN ). Then g(u)φ ∈ L1(RN ). On the other hand, for any u, φ ∈ E we have∫

RN

(−Δ)s/2u(−Δ)s/2φ dx �
( ∫

RN

|(−Δ)s/2u|2 dx

)1/2( ∫
RN

|(−Δ)s/2φ|2 dx

)1/2

� ‖u‖ ‖φ‖
< ∞,
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hence the identity in Definition 2.1 is well defined. Furthermore, by arguments similar
to those in [32], it is easily seen that I ∈ C1(E, R) and that the critical points of I

correspond to weak solutions of (1.1).
Note that the operator (−Δ)s is non-local, but we can apply the s-harmonic extension

technique as in [11] to transform (1.1) into a local problem. In fact, for a given function
u ∈ Ḣs(RN ), by a minimization procedure to the problem

min
{ ∫

R
N+1
+

y1−2s|∇w|2 dxdy : w(x, 0) = u on R
N

}
,

we can obtain a unique function w ∈ Xs(RN+1
+ ) satisfying

− div(y1−2s∇w) = 0 in R
N+1
+ ,

w(x, 0) = u on R
N .

}
(2.1)

Here, w is usually called the s-harmonic extension of u to the upper half-space R
N+1
+

(see [11]), and Xs(RN+1
+ ) is the completion of C∞

0 (RN+1
+ ) under the norms

‖w‖Xs(RN+1
+ ) =

(
κs

∫
R

N+1
+

y1−2s|∇w|2 dxdy

)1/2

,

where κs = 21−2sΓ (1 − s)/Γ (s). By Lemma A.2 in [7] it follows that

‖w‖Xs(RN+1
+ ) = ‖u‖Ḣs(RN ).

Conversely, if we let w ∈ Xs(RN+1
+ ) and denote by Tr(w) its trace on R

N × {y = 0},
then the following trace inequality holds:

‖Tr(w)‖Ḣs(RN ) � ‖v‖Xs(RN+1
+ )

(see [7]). Thus, as shown in [11], the fractional Laplacian operator (−Δ)s can be defined
by the following Dirichlet-to-Neumann map:

(−Δ)su(x) = − 1
κs

lim
y→0+

y1−2s ∂w

∂y
(x, y) ∀u ∈ Ḣs(RN ), (2.2)

where w = Es(u). In view of the arguments put forward in [11] (see also [9]) we can
see that the operator (−Δ)s, when defined by the Dirichlet-to-Neumann map (2.2), is
equivalent to that obtained from the Fourier transform. Moreover, the map Es(·) is a
one-to-one map from Ḣs(RN ) into Xs(RN+1

+ ).
We can now see that (1.1) can be transformed into the following local problem:

− div(y1−2s∇w) = 0 in R
N+1
+ ,

∂s
νw + V (x)w = g(w) on R

N ,

}
(2.3)

where
∂s

νw(x, 0) .= − 1
κs

lim
y→0+

y1−2s ∂w

∂y
(x, y) ∀x ∈ R

N .
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Clearly, if w is a weak solution of (2.3), then u = w(·, 0) = Tr(w) is a weak solution
of (1.1). Thus, by similar arguments as those given in [15], we can obtain the Pohozaev
identity for (1.1) as follows.

Theorem 2.3. Assume that V ∈ C1(RN , R), g ∈ C1(RN , R) and g(0) = 0. If u ∈
Hs(RN ) ∩ L∞

loc(R
N ) is a weak solution of (1.1), then

N − 2s

2

∫
RN

|(−Δ)s/2u|2 dx +
N

2

∫
RN

V (x)u2 dx

= N

∫
RN

G(u) dx − 1
2

∫
RN

(∇V (x), x)u2 dx.

Remark 2.4. Frank and Lenzmann [24] established the Pohozaev identity of (1.1) for
g(t) = −t+ |t|p−2t with p ∈ (2, (2N +s)/(2N −s)) and N = 1. As pointed out in [20], the
arguments in [24] can be modified to the high-dimensional case where N � 2. In [15], the
Pohozaev identity for (1.1) with V (x) ≡ 0 is obtained by different arguments from [24].
For the Pohozaev identity of fractional Laplacian equations on bounded domains, see [35].

3. Proof of Theorem 1.1

In this section, we give the proof of Theorem 1.1. To begin with, we have the following
result.

Lemma 3.1. Under the assumptions (V1)–(V3), the embedding E ↪→ Lp(RN ) is com-
pact for any p ∈ [2, 2∗

s).

Proof. Assume that {un} ⊂ E is bounded, i.e. ‖un‖ � C1 for all n ∈ N, for some
C1 > 0. By Lemma 2.2, there exists u0 ∈ E such that un → u0 in Lp

loc(R
N ) for all

p ∈ [2, 2N/(N − 2s)). Without loss of generality, we assume that u0 ≡ 0. We prove that

un → 0 in L2(RN ). (3.1)

For any y ∈ R
N , set

AM (y) .= {x ∈ Br(y) : V (x) � M} and DM (y) .= {x ∈ Br(y) : V (x) > M} ∀M > 0.

Choose {yi} ⊂ R
N such that R

N ⊂
⋃∞

i=1 Br(yi) and each x ∈ R
N is covered by at most

2N such balls. Then, for any M > 0 and R > 2r, we have

∫
Bc

R

u2
n dx �

∞∑
|yi|�R−r

∫
Br(yi)

u2
n dx

=
∞∑

|yi|�R−r

[ ∫
Br(yi)∩AM (yi)

u2
n dx +

∫
Br(yi)∩DM (yi)

u2
n dx

]

�
∞∑

|yi|�R−r

[ ∫
AM (yi)

u2
n dx +

1
M

∫
Br(yi)

V (x)u2
n dx

]
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�
∞∑

|yi|�R−r

[
(meas(AM (yi)))2s/N‖un‖2

L2N/(N−2s)(Br(yi))+
1
M

∫
Br(yi)

V (x)u2
n dx

]

�
∞∑

|yi|�R−r

[
C2(meas(AM (yi)))2s/N‖un‖2

Hs(Br(yi)) +
1
M

∫
Br(yi)

V (x)u2
n dx

]

� 2N

[
C2 sup

|y|�R−r

(meas(AM (y)))2s/N‖un‖2
Hs(Bc

R−2r) +
1
M

∫
Bc

R−2r

V (x)u2
n dx

]

� 2N‖un‖2
[
C2 sup

|y|�R−r

(meas(AM (y)))2s/N +
1
M

]
.

Together with (V1)–(V3) and Lemma 2.2, we obtain that (3.1) holds. By the interpolation
inequality we find that, for p ∈ (2, 2N/(N − 2s)),

‖un‖p = ‖un‖t
2‖un‖1−t

2N/(N−2s)

= C1−t
2 ‖un‖t

2‖un‖1−t

� (C1C2)1−t‖un‖t
2

→ 0.

We then get the compact embedding E ↪→ Lp(RN ) for p ∈ [2, 2∗
s), which completes the

proof. �

Lemma 3.2. Under the assumptions (V1)–(V3), λ1 is an eigenvalue of the operator
(−Δ)s + V (x) and there exists a corresponding eigenfunction ϕ1 with ϕ1(x) > 0 for all
x ∈ R

N .

Proof. By Ekeland’s variational principle, there exist sequences {un} ⊂ E with
‖un‖2 = 1, ‖un‖2 → λ1, and {μn} ⊂ R

+ such that∫
RN

((−Δ)s/2un(−Δ)s/2φ + V (x)unφ) dx = μn

∫
RN

unφ dx + o(1)‖φ‖ ∀φ ∈ E. (3.2)

Taking φ = un in (3.2), we get

‖un‖2 =
∫

RN

(|(−Δ)s/2un|2 + V (x)u2
n) dx = μn + o(1)‖un‖. (3.3)

Clearly, μn → λ1. By Lemma 3.1, passing to a subsequence if necessary, there exists
ϕ1 ∈ E with ‖ϕ1‖2 = 1 such that un → ϕ1 in E. We then obtain that∫

RN

((−Δ)s/2ϕ1(−Δ)s/2φ + V (x)ϕ1φ) dx = λ1

∫
RN

ϕ1φ dx ∀φ ∈ E,

i.e. ϕ1 is a non-trivial weak solution of the equation

(−Δ)su + V (x)u = λ1u in R
N .
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Note that |ϕ1| is also a solution of

λ1 = inf
u∈Hs(RN )\{0}

∫
RN (|(−Δ)s/2u(x)|2 + V (x)u2) dx∫

RN u2 dx
.

Hence, ϕ1 � 0 and ϕ1 �≡ 0. Following the arguments of § 2, it follows that w1
.= Es(ϕ1)

is a non-trivial non-negative weak solution of

− div(y1−2s∇w) = 0 in R
N+1
+ ,

∂s
νw + V (x)w = λ1w on R

N .

By the strong maximum principle for A2 weight (see [21] or [9]) it follows that
w1(x, y) > 0 for all (x, y) ∈ R

N+1
+ , which implies that ϕ1(x) > 0 for all x ∈ R

N . This
completes the proof. �

Set g1(s) = (g(s) + κ0s)+ and define G1(s) =
∫ s

0 g1(t) dt. By (g1)–(g3) it then follows
that

lim
s→+∞

g1(s)
s2∗

s−1 = 0, (3.4)

0 � lim inf
s→0+

g1(s)
s

� lim sup
s→0+

g1(s)
s

< λ1 + κ0, (3.5)

lim inf
s→+∞

2G1(s)
s2 > λ1 + κ0. (3.6)

Define the perturbed functional Iμ : E → R with μ ∈ [ 12 , 1] by

Iμ(u) = 1
2

∫
RN

[|(−Δ)s/2u|2 + (V (x) + κ0)u2] dx − μ

∫
RN

G1(u) dx.

Clearly, a critical point of I1 is a weak solution of (1.1).
Under the assumptions of Theorem 1.1, we see that there exists η ∈ (0, 1) such that

Iμ with μ ∈ [η, 1] has the mountain pass geometry.

Lemma 3.3.

(i) There exists v0 ∈ E and η ∈ (0, 1) such that

Iμ(v0) < 0 ∀μ ∈ [η, 1].

(ii) cμ(u) = infγ∈Γ maxt∈[0,1] Iμ(γ(t)) > 0 for all μ ∈ [η, 1], where

Γ = {γ ∈ C([0, 1], X) | γ(0) = 0, γ(0) = v0}.

Proof. (i) By (3.6), there exist δ1, M1 > 0 and η ∈ (0, 1) such that, for any μ ∈ [η, 1],
we have

2μG1(s) � (λ1 + κ0 + δ1)s2 ∀s � M1. (3.7)
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By ϕ1 ∈ E and Lemma 3.1 it follows that ϕ1 ∈ L2(RN ), taking R1 > 0 large enough
such that

‖ϕ1‖2
L2(BR1 ) � λ1 + κ0 + δ1/2

λ1 + κ0 + δ1
‖ϕ1‖2

2.

Since ϕ1(x) > 0 in R
N , there exists t1 > 0 such that

t1ϕ1(x) > M1 ∀|x| � R1.

Then, together with (3.7), we can see that, for t � t1,

Iμ(tϕ1) =
t2

2

∫
RN

[|(−Δ)s/2ϕ1|2 + (V (x) + κ0)ϕ2
1] dx − μ

∫
RN

G1(tϕ1) dx

=
t2

2
(λ1 + κ0)‖ϕ1‖2

2 −
∫

BR1

μG1(tϕ1) dx −
∫

Bc
R1

μG1(tϕ1) dx

� t2

2
(λ1 + κ0)‖ϕ1‖2

2 − t2

2
(λ1 + κ0 + δ1)

∫
BR1

ϕ2
1 dx

� − t2

4
δ1‖ϕ1‖2

2.

Take v0 = t̄ϕ1 with t̄ > t1. It is easily seen that Iμ(v0) < 0 for all μ ∈ [η, 1].

(ii) By (3.4)–(3.6), there exist δ0, C0 > 0 such that

g1(s) � (λ1 + κ0 − δ0)s + C0s
2∗

s−1 ∀s � 0, (3.8)

which implies that

2μG1(s) � (λ1 + κ0 − δ0)s2 + C0s
2∗

s ∀s � 0, ∀μ ∈ [η, 1].

Then, for any μ ∈ [η, 1],

Iμ(u) = 1
2

∫
RN

[|(−Δ)s/2u|2 + (V (x) + κ0)u2] dx − μ

∫
RN

G1(u) dx

� 1
2

∫
RN

[|(−Δ)s/2u|2 + (V (x) + κ0)u2] dx

− λ1 + κ0 − δ0

2

∫
RN

u2 dx − C0

∫
RN

u2∗
s dx

� 1
2

(
1 − λ1 + κ0 − δ0

λ1 + κ0

) ∫
RN

[|(−Δ)s/2u|2 + (V (x) + κ0)u2] dx − C0

∫
RN

u2∗
s dx

� δ0

2(λ1 + κ0)
‖u‖2 − C0

S
N/(N−2s)
s

( ∫
RN

|(−Δ)s/2u|2 dx

)N/(N−2s)

� δ0

2(λ1 + κ0)
‖u‖2 − C0

S
N/(N−2s)
s

‖u‖2N/(N−2s)

=
δ0

2(λ1 + κ0)
‖u‖2

[
1 − 2(λ1 + κ0)C0

δ0S
N/(N−2s)
s

‖u‖4s/(N−2s)
]
.
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It is not difficult to see that there exists a sufficiently small ρ > 0 such that

Iμ(u) > 0 ∀u ∈ E

with
‖u‖ = ρ ∀μ ∈ [η, 1].

Hence,
cμ(u) = inf

γ∈Γ
max

t∈[0,1]
Iμ(γ(t)) � inf

u∈E, ‖u‖=ρ
Iμ(u) > 0 ∀μ ∈ [η, 1].

�

To prove Theorem 1.1, we need the following abstract result.

Theorem 3.4 (Jeanjean [27, Theorem 1.1]). Let (X, ‖ · ‖X) be a Banach space
and let J ⊂ R

+ be an interval. Consider a family {Iμ}μ∈J of C1-functionals on X with
the form

Iμ(u) = A(u) − μB(u) ∀μ ∈ J,

where B(u) � 0 for all u ∈ X, and such that either A(u) → +∞ or B(u) → +∞ as
‖u‖X → ∞. If there are two points v1, v2 ∈ X such that

cμ(u) = inf
γ∈Γ

max
t∈[0,1]

Iμ(γ(t)) > max{Iμ(v1), Iμ(v2)} ∀μ ∈ J,

where
Γ = {γ ∈ C([0, 1], X) | γ(0) = v1, γ(0) = v2},

then, for almost every μ ∈ J , there exists a sequence {vn} ⊂ X such that

(i) {vn} is bounded,

(ii) Iμ(vn) → cμ,

(iii) I ′
μ(vn) → 0 in the dual X−1 of X.

By Lemma 3.3 and Theorem 3.4 it follows that Iμ has a bounded Palais–Smale (PS)
sequence at the level of cμ for almost every (a.e.) μ ∈ [η, 1]. Furthermore, we have the
following result.

Lemma 3.5. For any μ ∈ [η, 1], each bounded (PS) sequence for the functional Iμ

admits a convergent subsequence.

Proof. Assume that {un} ⊂ E is a bounded (PS) sequence (i.e. ‖un‖ � C1 for all
n ∈ N for some C1 greater than 0) and that

{Iμ(un)} is bounded, (3.9)

lim
n→∞

I ′
μ(un) = 0 in E′. (3.10)
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By Lemma 2.2, there exists u0 ∈ E such that un → u0 in Lp
loc(R

N ) for all
p ∈ [2, 2N/(N − 2s)). Without loss of generality, we assume that u0 ≡ 0. By Lemma 3.1,
passing to a subsequence if necessary, we get some u0 ∈ E such that

un ⇀ u0 in E,

un → u0 in Lp(RN ) for p ∈ [2, 2∗
s),

un(x) → u0(x) a.e. x ∈ R
N .

Together with (3.10) it follows that, for any φ ∈ C∞
0 (RN ), I ′

μ(u0)ϕ = 0. Since C∞
0 (RN )

is dense in E, it follows that I ′
μ(u0) = 0 in E, which implies that∫

RN

[|(−Δ)s/2u0|2 + (V (x) + κ0)u2
0] dx = μ

∫
RN

g1(u0)u0 dx. (3.11)

We now claim that

lim
n→∞

∫
RN

g1(un)un dx =
∫

RN

g1(u0)u0 dx. (3.12)

If this is correct, using (3.10) and (3.11) we get

lim
n→∞

∫
RN

[|(−Δ)s/2un|2 + V (x)u2
n] dx = lim

n→∞

∫
RN

[μg1(un)un − κ0u
2
n] dx

=
∫

RN

[μg1(u0)u0 − κ0u
2
0] dx

= lim
n→∞

∫
RN

[|(−Δ)s/2u0|2 + V (x)u2
0] dx,

i.e. un → u0 in E.
In what follows we prove (3.12). In fact, we define, for 0 � a < b � +∞, that

Ωn(a, b) = {x ∈ R
N : a � |un(x)| < b}.

By (3.4) and (3.5), for any ε > 0, there exist bε > 0 sufficiently large and Cε > 0 such
that

|g1(un)un| �
{

ε|un(x)|2∗
s ∀x ∈ Ωn(bε, +∞),

Cε|un(x)|p ∀x ∈ Ωn(0, bε)

for some p ∈ (2, 2∗
s). Then,∫

RN

|g1(un)un| dx =
∫

Ωn(bε,+∞)
|g1(un)un| dx +

∫
Ωn(0,bε)

|g1(un)un| dx

= ε

∫
Ωn(bε,+∞)

|un(x)|2∗
s dx + Cε

∫
Ωn(0,bε)

|un(x)|p dx

� ε

∫
RN

|un(x)|2∗
s dx + Cε

∫
RN

|un(x)|p dx.
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Using (3.4) and (3.5) again, we can see that

(|g1(un)un − g1(u0)u0| − ε|un(x)|2∗
s )+ � Cε|un(x)|p + |u(x)|.

By the compact embedding E ↪→ Lp(Rm) and Theorem 4.9 in [8], there exists a subse-
quence {unk

} and functions ū ∈ E, h ∈ Lp(RN ) such that

(i) unk
(x) → ū(x) a.e. x ∈ R

m,

(ii) |unk
(x)| � h(x) for all k a.e. x ∈ R

m.

Then, up to a subsequence, we have that

(|g1(un)un − g1(u0)u0| − ε|un(x)|2∗
s )+ � Cε|h(x)|p + |g1(u0)u0|,

which together with Lebesgue’s dominated convergence theorem implies that

lim
n→∞

∫
RN

(|g1(un)un − g1(u0)u0| − ε|un(x)|2∗
s )+ dx

=
∫

RN

lim
n→∞

(|g1(un)un − g1(u0)u0| − ε|un(x)|2∗
s )+ dx

= 0.

Hence,

lim sup
n→∞

∫
RN

|g1(un)un − g1(u0)u0| dx �
∫

Rm

lim sup
n→∞

|g1(un)un − g1(u0)u0| dx

� ε

∫
Rm

|un(x)|2∗
s dx

� εC

for some C > 0. Since ε is arbitrary, we can see that (3.12) holds. This completes the
proof. �

Lemma 3.6. The set K
.= {u ∈ E \ {0} : I ′(u) = 0} is not empty.

Proof. By Theorem 3.4, for almost every μ ∈ [η, 1], there exists a bounded sequence
{uμ,n} ⊂ E such that Iμ(uμ,n) = cμ and I ′

μ(uμ,n) → 0 in E′. Applying Lemma 3.5,
passing to a subsequence if possible, there exists uμ ∈ E \ {0} such that uμ,n → uμ in E,
which implies that Iμ(uμ) = cμ and I ′

μ(uμ) = 0. Taking {μn} ⊂ [η, 1) with μn ↗ 1 such
that, for any n � 1, there exists un ∈ E \ {0} satisfying

Iμn(un) = cμn , (3.13)

I ′
μn

(un) = 0, (3.14)

it follows that each un is a weak solution of the equation

(−Δ)sun + (V (x) + κ0)un = μng1(un) in R
N . (3.15)
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Using Theorem 2.3, we can see that un satisfies the Pohozaev identity

N − 2s

2

∫
RN

|(−Δ)s/2un|2 dx +
N

2

∫
RN

(V (x) + κ0)u2
n dx

= N

∫
RN

μnG1(un) dx − 1
2

∫
RN

(∇V (x), x)u2
n dx.

Then, denoting ‖(∇V (x), x)+‖N/2s = 2s(Ss−σ) for some σ ∈ (0, Ss), by (V3), Lemma 2.2
and the fact that cμ is decreasing with respect to μ (see [27]), we get

s

∫
RN

|(−Δ)s/2un|2 dx =
N

2

∫
RN

[|(−Δ)s/2un|2 + (V (x) + κ0)u2
n] dx

− N

∫
RN

μnG1(un) dx + 1
2

∫
RN

(∇V (x), x)u2
n dx

= NIμn(un) + 1
2

∫
RN

(∇V (x), x)u2
n dx

� Ncμn
+ 1

2

∫
RN

(∇V (x), x)+u2
n dx

� Ncη + 1
2‖(∇V (x), x)+‖N/2s‖un‖2

2∗
s

� Ncη + s

(
1 − σ

Ss

) ∫
RN

|(−Δ)s/2un|2 dx,

which implies that ∫
RN

|(−Δ)s/2un|2 dx � NcηSs

sσ
. (3.16)

Hence, by (3.4), (3.5), (3.8) and (3.15), we have

(λ1 + κ0)
∫

RN

u2
n dx �

∫
RN

[|(−Δ)s/2un|2 + (V (x) + κ0)u2
n] dx

=
∫

RN

μng1(un)un dx

� (λ1 + κ0 − δ0)
∫

RN

u2
n dx + C0

∫
RN

u
2∗

s
n dx

� (λ1 + κ0 − δ0)
∫

RN

u2
n dx

+
C0

S
N/(N−2s)
s

( ∫
RN

|(−Δ)s/2un|2 dx

)N/(N−2s)

.

From the above and (3.16), it follows that there exists M1 > 0 such that

∫
RN

u2
n dx � M1.
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Then,∫
RN

[|(−Δ)s/2un|2 + V (x)u2
n] dx �

∫
RN

μng1(un)un dx −
∫

RN

κ0u
2
n dx

� (λ1 − δ0)
∫

RN

u2
n dx + C0

∫
RN

u
2∗

s
n dx

� (λ1 − δ0)
∫

RN

u2
n dx

+
C0

S
N/(N−2s)
s

( ∫
RN

|(−Δ)s/2un|2 dx

)N/(N−2s)

� M2

for some M2 > 0. Thus, {un} is bounded in E. By (3.4), (3.5) and the Sobolev embedding
theorem we can see that {

∫
RN g1(un)un dx} and {

∫
RN G1(un) dx} are bounded uniformly.

Then, by (3.13), (3.14) and μn → 1 it follows that

I(un) = Iμn(un) + (μn − 1)
∫

RN

G1(un) dx → c1,

I ′(un) = I ′
μn

(un) + (μn − 1)
∫

RN

g1(un)un dx → 0.

That is, {un} is a bounded (PS) sequence for the functional I, and thus, by similar
arguments to those in Lemma 3.5, we obtain that there exists u0 ∈ E \ {0} such that
un → u0 in E. Hence, I ′(u0) = 0 and u0 is a non-trivial solution of (1.1) of mountain pass
type. Using the arguments of § 2 it follows that w0

.= Es(u0) is a non-trivial non-negative
weak solution of

− div(y1−2s∇w) = 0 in R
N+1
+ ,

∂s
νw + V (x)w = g(w) on R

N .

By the strong maximum principle for A2 weight (see [21] or [9]) we can see that
w0(x, y) > 0 for all (x, y) ∈ R

N+1
+ , which implies that u0 > 0 is a positive solution

of (1.1). �

Proof of Theorem 1.1. Let {un} ⊂ K be a minimizing sequence for cmin
.=

infu∈K I(u), i.e. I(un) → cmin and I ′(un) = 0. Similar arguments to those in Lemma 3.5
and Lemma 3.6 imply that {un} is bounded in E and there exists ū ∈ E \ {0} such that
un → ū. Hence, ū is a non-trivial critical point of I with I(ū) = cmin.

In what follows, we show that cmin > 0. In fact, if u ∈ K, then

‖u‖2 =
∫

RN

g(u)u dx. (3.17)

By (g1)–(g3), there exist δ > 0 and Cδ > 0 such that

|g(t)| � (λ1 − δ)|t| + Cδ|t|2
∗−1 ∀t ∈ R. (3.18)
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Then, by (3.17), (3.18), Lemmas 2.2 and 3.2, there exist C1, C2 > 0 such that∫
RN

|(−Δ)s/2u|2 dx � ‖u‖2

� (λ1 − δ)‖u‖2
2 + Cδ‖u‖2∗

2∗

� C1

∫
RN

|u|2∗
dx

� C2

( ∫
RN

|(−Δ)s/2u|2 dx

)N/(N−2s)

,

which implies that

inf
u∈K

∫
RN

|(−Δ)s/2u|2 dx > 0.

By Theorem 2.3 and (V3) it follows that u satisfies the Pohozaev identity, and hence

I(u) =
s

N

∫
RN

|(−Δ)s/2u|2 dx − 1
2N

∫
RN

(∇V (x), x)u2 dx

� s

N

[ ∫
RN

|(−Δ)s/2u|2 dx − 1
2s

‖(∇V (x), x)+‖N/2s‖u‖2
2∗

s

]

� s

N

[
1 −

(
1 − σ

Ss

)] ∫
RN

|(−Δ)s/2u|2 dx

=
sσ

NSs

∫
RN

|(−Δ)s/2u|2 dx

> 0,

where σ ∈ (0, Ss) is defined as in Lemma 3.6. The proof is complete. �
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