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Integrating morphisms of Lie 2-algebras

Behrang Noohi

Abstract

Given two Lie 2-groups, we study the problem of integrating a weak morphism between
the corresponding Lie 2-algebras to a weak morphism between the Lie 2-groups. To do
so, we develop a theory of butterflies for 2-term L∞-algebras. In particular, we obtain
a new description of the bicategory of 2-term L∞-algebras. An interesting observation
here is that the role played by 1-connected Lie groups in Lie theory is now played by
2-connected Lie 2-groups. Using butterflies, we also give a functorial construction of 2-
connected covers of Lie 2-groups. Based on our results, we expect that a similar pattern
generalizes to Lie n-groups and Lie n-algebras.
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1. Introduction

In this paper, we tackle two main problems in the Lie theory of 2-groups:

(1) integrating weak morphisms of Lie 2-algebras to weak morphisms of Lie 2-groups;

(2) functorial construction of connected covers of Lie 2-groups.

As we will see in our answer to question (1), Theorem 9.4, the role played by simply connected
Lie groups in classical Lie theory is played by 2-connected Lie 2-groups in 2-Lie theory. This
justifies our interest in question (2).
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Integrating morphisms of Lie 2-algebras

Let us explain problems (1) and (2) in detail and outline our solution to them.

Problem 1. A weak morphism f : H→G of Lie 2-groups gives rise to a weak morphism of Lie
2-algebras Lie f : Lie H→ Lie G. (If we regard Lie H and Lie G as 2-term L∞-algebras, Lie f is
then a morphism of 2-term L∞-algebras in the sense of Definition 2.5.) Problem (1) can be stated
as follows: given a morphism F : Lie H→ Lie G of Lie 2-algebras, can we integrate it to a weak
morphism Int F : H→G of Lie 2-groups?

We answer this question affirmatively by the following theorem (see Theorem 9.4 for a more
precise statement).

Theorem 1.1. Let G and H be (strict) Lie 2-groups. Suppose that H is 2-connected
(Definition 7.3). Then, giving a weak morphism f : H→G is equivalent to giving a morphism of
Lie 2-algebras Lie f : Lie H→ Lie G. The same is true for 2-morphisms.

This theorem is the 2-group version of the well-known fact from Lie theory that a Lie
homomorphism f :H →G is uniquely given by its effect on Lie algebras, Lie f : LieH → LieG,
whenever H is 1-connected. It implies the following (see Corollary 9.5).

Theorem 1.2. The bifunctor Lie : LieXM→ LieAlgXM has a left adjoint

Int : LieAlgXM→ LieXM.

Here, LieXM is the bicategory of Lie crossed-modules and weak morphisms, and LieAlgXM
is the bicategory of Lie algebra crossed-modules and weak morphisms.1 The bifunctor Int takes
a Lie crossed-module to the unique 2-connected (strict) Lie 2-group that integrates it. When
restricted to the full subcategory Lie⊂ LieAlgXM of Lie algebras, it coincides with the standard
integration functor which sends a Lie algebra V to the simply connected Lie group Int V with
Lie algebra V .

The problem of integrating L∞-algebras has been studied in [Get09, Hen08], where the
authors show how to integrate an L∞-algebra to a simplicial manifold. The focus of these two
papers, however, is different from ours in that we begin with fixed Lie 2-groups H and G and
study the problem of integrating a morphism of Lie 2-algebras Lie H→ Lie G.

Problem 2. For a Lie group G, its zeroth and first connected covers G〈0〉 and G〈1〉, which are
again Lie groups, play an important role in Lie theory. We observe that for (strict) Lie 2-groups
it is necessary to go one step further, i.e. one needs to consider the second connected cover as
well. We prove the following theorem.

Theorem 1.3. For n= 0, 1, 2, there are bifunctors (−)〈n〉 : LieXM→ LieXM sending a Lie
crossed-module G to its nth connected cover. These bifunctors come with natural transformations
qn : (−)〈n〉 ⇒ id such that for every G, qn : G〈n〉 →G induces isomorphisms on πi for i> n+ 1.
Furthermore, (−)〈n〉 is right adjoint to the inclusion of the full sub-bicategory of n-connected
Lie crossed-modules in LieXM.

The above theorem is essentially the content of §§ 7–8. We will be especially interested in
the 2-connected cover G〈2〉 because, as suggested by Theorem 1.2, it seems to be the correct
replacement for the universal cover of a Lie group in the Lie theory of 2-groups.

1 As we will see in § 6.2, LieXM is naturally biequivalent to the 2-category of (strict) Lie 2-groups and weak
morphisms. Similarly, the bicategory LieAlgXM is naturally biequivalent to the full sub-2-category of the 2-
category 2TermL∞ of 2-term L∞-algebras consisting of strict 2-term L∞-algebras, and this in turn is biequivalent
to the 2-category of 2-term dglas (see § 9 and Definition 9.2).
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Method

To solve problems (1) and (2), we employ the machinery of butterflies, which we believe is
of independent interest. Roughly speaking, a butterfly (Definition 3.1) between 2-term L∞-
algebras is the Lie algebra-theoretic version of a Morita morphism. We use butterflies to give a
new description of the 2-category 2TermL∞ of 2-term L∞-algebras introduced in [BC04]. The
advantage of using butterflies is twofold. On the one hand, butterflies do away with cumbersome
cocycle formulas and are much easier to manipulate. On the other hand, given the diagrammatic
nature of butterflies, they are better suited to geometric situations; this is what allows us to
prove Theorem 1.2.

Butterflies for 2-term L∞-algebras parallel the corresponding theory for Lie 2-groups
developed in [Noo08, § 9.6] and [AN09]. In fact, taking Lie algebras converts a butterfly in
Lie groups to a butterfly in Lie algebras (§ 9). This allows us to study weak morphisms of Lie 2-
groups using butterflies between 2-term L∞-algebras, thereby reducing the problem to one about
extensions of Lie algebras. With Theorem 1.2 in hand, we expect this to provide a convenient
framework for studying weak morphisms of Lie 2-groups.

Organization of the paper

Sections 2–5 are devoted to setting up the machinery of butterflies and constructing the
bicategory 2TermL[∞ of 2-term L∞-algebras and butterflies. We show that 2TermL[∞ is
biequivalent to the Baez–Crans 2-category 2TermL∞ of 2-term L∞-algebras.

In § 4 we discuss the homotopy fiber of a morphism of 2-term L∞-algebras. The homotopy
fiber is the Lie algebra counterpart of what we called the homotopy fiber of a weak morphism of
Lie 2-groups in [Noo08, § 9.4]. The homotopy fiber of f measures the deviation of f from being
an equivalence, and it sits in a natural exact triangle which gives rise to a 7-term long exact
sequence.

The homotopy fiber comes with a rich structure consisting of various brackets and Jacobiators
(see § 4.1). Homotopy fibers of morphisms of 2-term L∞-algebras can also be defined in other ways
(e.g. using the corresponding CDGAs), but we are not aware of whether the specific structure
discussed here has been studied previously, or whether it is equivalent to a known definition. It
is presumably some kind of Lie algebra version of what is called a ‘crossed-module in groupoids’
in [BG89].

In § 6 we review Lie 2-groups and weak morphisms (butterflies) of Lie 2-groups.
Sections 7–8 are devoted to the solution of problem (2). For a Lie crossed-module G we define its
nth connected covers G〈n〉, for n6 2, and show that they are functorial and have the expected
adjunction property.

In § 9, we solve problem (1) by proving Theorems 1.2 and 1.1. The proofs rely on the solution
of problem (2) given in §§ 7–8 and the theory of butterflies developed in §§ 2–5.

2. 2-term L∞-algebras

In this section we review some basic facts about 2-term L∞-algebras. We follow the notation
of [BC04] (see also [Roy07]). All modules are over a fixed base commutative unital ring K.

Definition 2.1. A 2-term L∞-algebra V consists of a linear map ∂ : V1→ V0 of modules together
with the following data:
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Integrating morphisms of Lie 2-algebras

• three bilinear maps [· , ·] : Vi × Vj → Vi+j , where i+ j = 0, 1;
• an antisymmetric trilinear map (the Jacobiator) 〈·, ·, ·〉 : V0 × V0 × V0→ V1.

These maps satisfy the following axioms for all w, x, y, z ∈ V0 and h, k ∈ V1:

• [x, y] =−[y, x];
• [x, h] =−[h, x];
• ∂([x, h]) = [x, ∂h];
• [∂h, k] = [h, ∂k];
• ∂〈x, y, z〉= [x, [y, z]] + [y, [z, x]] + [z, [x, y]];
• 〈x, y, ∂h〉= [x, [y, h]] + [y, [h, x]] + [h, [x, y]];
• [〈x, y, z〉, w]− [〈w, x, y〉, z] + [〈z, w, x〉, y]− [〈y, z, w〉, x] = 〈[x, y], z, w〉+ 〈[z, w], x, y〉

+ 〈[x, z], w, y〉+ 〈[w, y], x, z〉+ 〈[x, w], y, z〉+ 〈[y, z], x, w〉.

We sometimes use the notation [V1→ V0] for a 2-term L∞-algebra.

Definition 2.2. The equality [∂h, k] = [h, ∂k] allows us to define a bracket on V1 by setting
[h, k] := [∂h, k] = [h, ∂k].

Lemma 2.3. For the bracket defined in Definition 2.2, the failure of the Jacobi identity is
measured by the equality

〈∂h, ∂k, ∂h〉= [h, [k, l]] + [k, [l, h]] + [l, [h, k]].

Proof. This is straightforward. 2

A crossed-module in Lie algebras is the same as a strict 2-term L∞-algebra, i.e. one for which
the Jacobiator 〈·, ·, ·〉 is identically zero. More precisely, given a 2-term L∞-algebra V with zero
Jacobiator, we obtain from Lemma 2.3 a Lie algebra structure on V1, where the bracket is as
in Definition 2.2. This makes ∂ a Lie algebra homomorphism. The action of V0 on V1 is the
given bracket [· , ·] : V0 × V1→ V1. Also, observe that a strict 2-term L∞-algebra is the same as
a 2-term dgla.

Definition 2.4. Let V = [∂ : V1→ V0] be a 2-term L∞-algebra. We define

H1(V) := ker ∂, H0(V) := coker ∂.

Note that H0(V) and H1(V) both inherit natural Lie algebra structures, with the latter being
necessarily abelian. Furthermore, H1(V) is naturally an H0(V)-module.

Definition 2.5. A morphism f : W→ V of 2-term L∞-algebras consists of the following data:

• linear maps fi :Wi→ Vi, for i= 0, 1, which commute with the differentials;
• an antisymmetric bilinear map ε :W0 ×W0→ V1.

These maps satisfy the following axioms:

• for every x, y ∈W0, [f0(x), f0(y)]− f0[x, y] = ∂ε(x, y);
• for every x ∈W0 and h ∈W1, [f0(x), f1(k)]− f1[x, k] = ε(x, ∂k);
• for every x, y, z ∈W0,

〈f0(x), f0(y), f0(z)〉 − f1(〈x, y, z〉) = ε(x, [y, z]) + ε(y, [z, x]) + ε(z, [x, y])
+ [f0(x), ε(y, z)] + [f0(y), ε(z, x)] + [f0(z), ε(x, y)].
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A morphism f : W→ V of 2-term L∞-algebras induces a Lie algebra homomorphism H0(f) :
H0(W)→H0(V) and an H0(f)-equivariant morphism of Lie algebra modules H1(f) :H1(W)→
H1(V).

Definition 2.6. A morphism f : W→ V of 2-term L∞-algebras is called an equivalence (or a
quasi-isomorphism) if H0(f) and H1(f) are isomorphisms.

Definition 2.7. A morphism of 2-term L∞-algebras is strict if ε is identically zero. In the case
where V and W are crossed-modules in Lie algebras, this means that f is a (strict) morphism of
crossed-modules.

Definition 2.8. If f = (f0, f1, ε) : W→ V and g = (g0, g1, δ) : V→ U are morphisms of 2-term
L∞-algebras, the composition gf is defined to be the triple (g0f0, g1f1, γ) where

γ(x, y) := g1ε(x, y) + δ(f0(x), f0(y)) for x, y ∈W0.

Finally, we recall the definition of a transformation between morphisms of 2-term L∞-
algebras. Up to a minor difference in sign conventions, it is the same as [Roy07, Definition
2.20]. It is also equivalent to [BC04, Definition 4.3.7].

Definition 2.9. Given morphisms f, g : W→ V of 2-term L∞-algebras, a transformation (or
an L∞-homotopy) from g to f is a linear map θ :W0→ V1 such that:

• for every x ∈W0, f0(x)− g0(x) = ∂θ(x);

• for every h ∈W1, f1(h)− g1(h) = θ(∂h);

• for every x, y ∈W0,

[θ(x), θ(y)]− θ([x, y]) = εf (x, y)− εg(x, y) + [g0(y), θ(x)] + [θ(y), g0(x)].

It is easy to see that if f and g are related via a transformation, then Hi(f) =Hi(g) for
i= 0, 1.

Definition 2.10. If θ is a transformation from f to g and σ is a transformation from g to h,
then their composition is the transformation from f to h given by the linear map θ + σ.

The following definition is the one in [BC04, Proposition 4.3.8].

Definition 2.11. We define 2TermL∞ to be the 2-category in which the objects are 2-term
L∞-algebras, the morphisms are as in Definition 2.5, and the 2-morphisms are as in Definition 2.9.
(Note that the 2-morphisms are automatically invertible.)

3. Butterflies between 2-term L∞-algebras

In this section we introduce the notion of a butterfly between 2-term L∞-algebras and show
that butterflies encode morphisms of 2-term L∞-algebras (Propositions 3.4 and 3.5). A butterfly
should be regarded as an analogue of a Morita morphism.
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Integrating morphisms of Lie 2-algebras

Definition 3.1. Let V and W be 2-term L∞-algebras. A butterfly B : W→ V is a commutative
diagram

W1
κ

""EEE

��

V1
ι

}}{{{

��
E

σ||yyy ρ !!CCC

W0 V0

of modules in which E is endowed with an antisymmetric bracket [· , ·] : E × E→ E satisfying
the following axioms:

• both diagonal sequences are complexes and the NE–SW sequence

0→ V1
ι−→ E

σ−−→W0→ 0

is short exact;
• for every a, b ∈ E,

ρ[a, b] = [ρ(a), ρ(b)] and σ[a, b] = [σ(a), σ(b)];

• for every a ∈ E, h ∈ V1 and l ∈W1,

[a, ι(h)] = ι[ρ(a), h] and [a, κ(l)] = κ[σ(a), l];

• for every a, b, c ∈ E,

ι〈ρ(a), ρ(b), ρ(c)〉+ κ〈σ(a), σ(b), σ(c)〉= [a, [b, c]] + [b, [c, a]] + [c, [a, b]].

In the case where V and W are crossed-modules in Lie algebras (i.e. when the Jacobiators
are identically zero), the bracket on E makes it a Lie algebra, and all the maps in the butterfly
diagram become Lie algebra homomorphisms.

Remark 3.2. The map κ+ ι :W1 ⊕ V1→ E has a natural 2-term L∞-algebra structure. Let us
denote this 2-term L∞-algebra by E. The two projections E→W and E→ V are strict morphisms
of 2-term L∞-algebras, and the former is a quasi-isomorphism. Thus, we can think of the butterfly
B as a zig-zag of strict morphisms from W to V.

Definition 3.3. Given two butterflies B, B′ : W→ V, a morphism of butterflies from B to B′

is a linear map E→ E′ that commutes with the brackets and all four structure maps of the
butterfly. (Note that such a map E→ E′ is necessarily an isomorphism.)

In view of Remark 3.2, a morphism of butterflies as in the above definition is the same thing
as a morphism of zig-zags E→ E′.

A butterfly B : W→ V induces a Lie algebra homomorphism H0(B) :H0(W)→H0(V) and
an H0(B)-equivariant morphism H1(B) :H1(W)→H1(V). If B and B′ are related through a
morphism, then Hi(B) =Hi(B′) for i= 0, 1.

Let f : W→ V be a morphism of 2-term L∞-algebras as in Definition 2.5. Define a bracket
on V1 ⊕W0 by the rule

[(k, x), (l, y)] := ([k, l] + [f0(x), l] + [k, f0(y)] + ε(x, y), [x, y]).

Define the following four maps:

• κ :W1→ V1 ⊕W0, κ(l) = (−f1(l), ∂l);
• ι : V1→ V1 ⊕W0, ι(k) = (k, 0);
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• σ : V1 ⊕W0→W0, σ(k, x) = x;

• ρ : V1 ⊕W0→ V0, ρ(k, x) = ∂k + f0(x).

Proposition 3.4. With the bracket on V1 ⊕W0 and the maps κ, ι, ρ and σ defined as above,
the diagram

W1
κ

&&MMM
M

��

V1
ι

yyrrrr

��

V1 ⊕W0

σxxqqq
q

ρ %%LLLL

W0 V0

is a butterfly (Definition 3.1). Conversely, given a butterfly as in Definition 3.1 and a linear
section s :W0→ E to σ, we obtain a morphism of 2-term L∞-algebras by setting

f0 := ρs, f1 := s∂ − κ, ε := [s(·), s(·)]− s[· , ·].

(In the definition of the last two maps we are using the exactness of the NE–SW sequence.)
Furthermore, these two constructions are inverse to each other.

Proposition 3.5. Via the construction introduced in Proposition 3.4, transformations between
morphisms of 2-term L∞-algebras (Definition 2.9) correspond to morphisms of butterflies
(Definition 3.3). In other words, we have an equivalence of groupoids between the groupoid
of morphisms of 2-term L∞-algebras from W to V and the groupoid of butterflies from W to V.

Example 3.6. Let V and W be Lie algebras. Define Der(V ) to be the crossed-module in Lie
algebras ∂ : V →Der(V ), where ∂ sends v ∈ V to the derivation [v, ·]. Then the equivalence
classes of 2-term L∞-algebra morphisms W → Der(V ) are in bijection with isomorphism classes
of extensions of W by V . Here W is regarded as the 2-term L∞-algebra [0→W ].

4. Homotopy fiber of a morphism of 2-term L∞-algebras

We introduce the homotopy fiber (or ‘shifted mapping cone’) of a butterfly (and also of a
morphism of 2-term L∞-algebras). The homologies of the homotopy fiber sit in a 7-term long
exact sequence. We shall see in § 4.1 that the homotopy fiber has a rich structure consisting of
various brackets.

Definition 4.1. Let B : W→ V,

W1
κ

""EEE

��

V1
ι

}}{{{

��
E

σ||yyy ρ !!CCC

W0 V0

be a butterfly. We define the homotopy fiber hfib(B) of B to be the NW–SE sequence

W1
κ−−→ E

ρ−−→ V0.

We will think of W1, E and V0 as sitting in degrees 1, 0 and −1.

Using Proposition 3.4, we also get a version of the above definition for morphisms of 2-term
L∞-algebras. More precisely, for a morphism f = (f0, f1, ε) : W→ V, its homotopy fiber hfib(f)
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takes the form

W1
(−f1,∂)−−−−−−→ V1 ⊕W0

∂+f0−−−−→ V0.

If we forget all the brackets and index the terms of hfib(f) by 2, 1 and 0, we see that hfib(f)
coincides with the cone of f in the derived category of chain complexes.

The homotopy fiber measures the deviation of B from being an equivalence. More precisely,
we have the following statement.

Proposition 4.2. There is a long exact sequence

0 // H1(hfib(B)) // H1(W)
H1(B) // H1(V) // H0(hfib(B)) 5423

7601
..]]] H0(W)

H0(B) // H0(V) // H−1(hfib(B)) // 0.

Proof. The proof is left as an exercise. 2

Except for H−1(hfib(B)), all the terms in the above sequence are Lie algebras and all the
maps are Lie algebra homomorphisms; see § 4.1 below.

Corollary 4.3. A butterfly B is an equivalence (i.e. induces isomorphisms on H0 and H1) if
and only if its NW–SE sequence is short exact. In this case, the inverse of B is obtained by
flipping it along the vertical axis.

4.1 Structure of the homotopy fiber

The homotopy fiber hfib(B) comes with some additional structure, which we discuss below. This
will not be needed in the rest of the paper and can be skipped.

First, let us rename the homotopy fiber in the following way:

C1
∂−−→ C0

∂−−→ C−1.

We have the following data:

• antisymmetric bilinear brackets [· , ·]i : Ci × Ci→ Ci for i= 1, 0,−1;

• antisymmetric bilinear brackets [· , ·]01 : C0 × C1→ C1 and [· , ·]10 : C1 × C0→ C1;

• antisymmetric trilinear Jacobiators 〈·, ·, ·〉i : Ci × Ci × Ci→ Ci+1 for i=−1, 0.

We write [· , ·]−1 as simply [· , ·]. The following axioms are satisfied:

• [· , ·]01 =−[· , ·]10;

• for every a ∈ C0 and h ∈ C1, ∂([a, h]01) = [a, ∂h]0;

• for every h, k ∈ C1, [h, k]1 = [∂h, k]01 = [h, ∂k]10;

• for every a, b ∈ C0, ∂[a, b]0 = [∂a, ∂b];

• for every a, b, c ∈ C0,

〈∂a, ∂b, ∂c〉−1 + ∂(〈a, b, c〉0) = [a, [b, c]0]0 + [b, [c, a]0]0 + [c, [a, b]0]0.

• for every a, b ∈ C0 and h ∈ C1,

〈a, b, ∂h〉0 = [a, [b, h]01]01 + [b, [h, a]10]01 + [h, [a, b]0]10.
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• for every a, b, c, d ∈ C0,

[〈a, b, c〉0, d]10 − [〈d, a, b〉0, c]10 + [〈c, d, a〉0, b]10 − [〈b, c, d〉0, a]10

= 〈[a, b]0, c, d〉0 + 〈[c, d]0, a, b〉0 + 〈[a, c]0, d, b〉0 + 〈[d, b]0, a, c〉0
+〈[a, d]0, b, c〉0 + 〈[b, c]0, a, d〉0.

The butterfly picture of Definition 4.1 gives rise to obvious chain maps

V→ hfib(B)[−1] and hfib(B)→W

which respect all the brackets on the nose. (Alternatively, one could use this as the definition of
all the brackets on hfib(B) introduced above.)

The sequence

hfib(B)→W→ V

is an exact triangle in the derived category of chain complexes (note the reverse shift due to
homological indexing).

5. The bicategory of Lie 2-algebras and butterflies

Given butterflies

W1
κ

""EEE

��

V1
ι

}}{{{

��
E

σ||yyy ρ !!CCC

W0 V0

V1
κ′

!!CCC

��

U1
ι′

}}{{{

��
F

σ′
}}{{{

ρ′
!!CCC

V0 U0

we define their composition to be the following butterfly.

W1
(κ,0)

$$IIIII

��

U1
(0,ι′)

zzvvvvv

��

E
V1

⊕
V0

F

σ ◦ przzuuuuu
ρ′◦ pr $$HHHHH

W0 U0

Here E
V1

⊕
V0

F is, by definition, the fiber product of E and F over V0 modulo the diagonal image

of V1 via (ι, κ′). The bracket on it is defined componentwise.

In view of Remark 3.2, composition of butterflies corresponds to composition of zig-
zags. Under the correspondence between butterflies and morphisms of 2-term L∞-algebras
(Proposition 3.4), composition of butterflies corresponds to composition of morphisms of 2-term
L∞-algebras (see Proposition 5.2).

Proposition 5.1. With butterflies as morphisms, morphisms of butterflies as 2-morphisms,
and composition defined as above, 2-term L∞-algebras form a bicategory 2TermL[∞ in which
all 2-morphisms are invertible.
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For a 2-term L∞-algebra V, the identity butterfly from V to itself is defined as follows.

V1
κ

%%KKK
K

��

V1
ι

yysss
s

��

V1 ⊕ V0

σyysss
s

ρ %%KKK
K

V0 V0

Here, the bracket on V1 ⊕ V0 is defined by

[(k, x), (l, y)] := ([k, l] + [x, l] + [k, y], [x, y]).

The four structure maps of the butterfly are:

• κ : V1→ V1 ⊕ V0, κ(l) = (−l, ∂l);

• ι : V1→ V1 ⊕ V0, ι(k) = (k, 0);

• σ : V1 ⊕ V0→ V0, σ(k, x) = x;

• ρ : V1 ⊕ V0→ V0, ρ(k, x) = ∂k + x.

Proposition 5.2. The construction of Proposition 3.4 induces a biequivalence 2TermL∞ ∼=
2TermL[∞ (see Definition 2.11).

Proof. This involves straightforward verification. 2

By Lemma 4.3, a butterfly B : W→ V is invertible (in the bicategorical sense) if and only if
its NW–SE sequence is also short exact. In this case, the inverse of B is obtained by flipping B
along the vertical axis.

5.1 Composition of a butterfly with a strict morphism

Composition of butterflies takes a simpler form when one of the butterflies comes from a strict
morphism. When the first morphism is strict, say

W1
f1 //

��

V1

��
W0 f0

// V0

then the composition is

W1

$$III

��

U1

zzuuu

��

f∗0 (F )

f∗1 (σ′)
zzuuu $$II

I

W0 U0

where f∗0 (F ) stands for the pullback of the extension F along f0 :W0→ V0. More precisely,
f∗0 (F ) =W0 ⊕V0 F is the fiber product.
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When the second morphisms is strict, say

V1
g1 //

��

U1

��
V0 g0

// U0

then the composition is

W1

%%KKK

��

U1
g1,∗(ι)

zzttt
t

��

g1,∗(E)

yysss
$$JJJ

J

W0 U0

where g1,∗(E) stands for the pushforward of the extension E along g1 : V1→ U1. More precisely,
g1,∗(E) = E ⊕V1 U1 is the pushout.

6. Weak morphisms of Lie crossed-modules and butterflies

There are at least three equivalent ways to define weak morphisms of Lie crossed-modules.
One way is to localize the 2-category of Lie crossed-modules and strict morphisms with
respect to equivalences, and define weak morphisms to be morphisms in this localized category
(by definition, an equivalence between Lie crossed-modules is a morphism which induces
isomorphisms on π0 and π1).

The second definition is that a weak morphism of Lie crossed-modules is a weak morphism
(i.e. a monoidal functor) between the associated differentiable group stacks.

The third definition, which is shown in [AN09] to be equivalent to the stack definition, makes
use of butterflies and is the subject of this section. It is the butterfly definition that proves to
be most suitable for the study of connected covers of Lie crossed-modules as well as for proving
our integration result (Theorem 1.2).

6.1 A note on the definition of Lie 2-groups
A Lie 2-group could mean different things to different people, so some clarification of the
terminology is in order before we move on.

The definition we use in this paper is the following.

Definition 6.1. A Lie 2-group is a differentiable group stack which is equivalent to the group
stack G := [G0/G1] associated to a Lie crossed-module G := [∂ :G1→G0]. A morphism of Lie
2-groups is a differentiable weak homomorphism of differentiable group stacks.

Although most known examples of Lie 2-groups are of the above form, this is not the most
general definition, as it is too strict. Arguably, the correct definition is that a Lie 2-group is simply
a differentiable group stack, that is, a (weak) group object G in the 2-category of differentiable
stacks. We have the following result.

Lemma 6.2. A differentiable group stack G comes from a Lie crossed-module (i.e. is of the form
[G0/G1] for a Lie crossed-module [G1→G0]) if and only if it admits an atlas ϕ :G0→ G such
that G0 is a Lie group and ϕ is a differentiable (weak) homomorphism.
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Proof. If G is of the form [G0/G1], then the quotient map ϕ :G0→ G has the desired property.
Conversely, if G admits an atlas ϕ :G0→ G where G0 is a Lie group and ϕ is a differentiable weak
homomorphism, then we set G1 := ∗ ×1G,G,ϕ G0 and let ∂ :G1→G0 be the projection map. By
general considerations, G0 has an action on G1 which makes [∂ :G1→G0] a crossed-module. 2

Therefore, a Lie 2-group in the sense of Definition 6.1 is a differentiable group stack which
admits an atlas ϕ :G0→ G as in Lemma 6.2. Although in this paper we have restricted ourselves
to such ‘strict’ Lie 2-groups, we expect that our theory can be extended to arbitrary differentiable
group stacks.

Remark 6.3. Another definition of a Lie 2-group (which is presumably equivalent to the stack
definition) is discussed in [Hen08, Appendix]. This definition is motivated by the fact that a
Lie 2-group gives rise to a simplicial manifold and, conversely, a simplicial manifold with certain
fibrancy properties and some conditions on its homotopy groups should come from a Lie 2-group.

Throughout the text, all Lie groups are assumed to be finite-dimensional unless stated
otherwise.

6.2 Quick review of Lie butterflies

By Definition 6.1, a Lie 2-group is the differentiable group stack associated to a Lie crossed-
module [G1→G0], and a homomorphism of Lie 2-groups is a weak morphism of differentiable
stacks. In this subsection, we give a description of morphisms of Lie 2-groups which avoids the
stack language. This is done via butterflies.

For more details on butterflies, see [Noo08] (especially §§ 9.6 and 10.1) and [AN09]. In what
follows, by a homomorphism of Lie groups we mean a differentiable homomorphism.

Remark 6.4. In [Noo08, AN09] we used the right-action convention for crossed-modules; but in
this article, in order to be compatible with the existing literature on L∞-algebras, we have used
the left-action convention for Lie algebra crossed-modules. Therefore, for the sake of consistency,
we will adopt the left-action convention for Lie crossed-modules as well.

Let G and H be Lie crossed-modules (i.e. crossed-modules in the category of Lie groups).
A butterfly B : H→G is a commutative diagram

H1
κ

""DDD

��

G1
ι

}}zzz

��
E

σ||zzz ρ !!DDD

H0 G0

in which both diagonal sequences are complexes of Lie groups and the NE–SW sequence is short
exact. We also require that for every x ∈ E, α ∈G2 and β ∈H2 the following equalities hold:

ι(ρ(x) · α) = xι(α)x−1, κ(σ(x) · β) = xκ(β)x−1.

A butterfly between Lie crossed-modules can be regarded as a Morita morphism which
respects the group structures. A morphism B→B′ of butterflies is, by definition, a
homomorphism E→ E′ of Lie groups which commutes with all four structure maps of the
butterflies. Note that such a morphism is necessarily an isomorphism.
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Remark 6.5. For the reader interested in the topological version of the story, we remark that in
the definition of a topological butterfly one needs to assume that the map σ : E→H0, viewed as
a continuous map of topological spaces, admits local sections. This is automatic in the Lie case
because σ is a submersion.

Thus, with butterflies as morphisms, Lie crossed-modules form a bicategory in which every
2-morphism is an isomorphism. We denote this bicategory by LieXM. The following theorem
justifies why butterflies provide the right notion of morphism.

Theorem 6.6 [AN09]. The 2-category of Lie 2-groups (in the sense of Definition 6.1) and weak
morphisms is biequivalent to the bicategory LieXM of Lie crossed-modules and butterflies.

We recall (see [Noo08, § 10.1]) how composition of two butterflies C : K→H and B : H→G is
defined. Let F and E be the Lie groups appearing in the center of these butterflies, respectively.
Then the composition B ◦ C is the butterfly

K1

$$HHH

��

G1

zzvvv

��

F
H1

×
H0

E

zzvvv $$HHH

K0 G0

where F
H1

×
H0

E is the fiber product F ×
H0

E modulo the diagonal image of H1.

In the case where one of the butterflies is strict, the composition takes a simpler form similar
to that in the discussion of § 5.1. See [Noo08, § 10.2] for more details.

7. Connected covers of a Lie 2-group

In this section we construct nth connected covers G〈n〉 of a Lie crossed-module G = [G1→G0]
for n= 0, 1, 2. In § 8 we prove that these are functorial with respect to butterflies. Hence, in
particular, they are invariant under equivalence of Lie crossed-modules (Corollary 8.7). All Lie
groups are assumed to be finite-dimensional unless stated otherwise.

Definition 7.1. By the ith homotopy group πnG of a topological crossed-module G = [∂ :G1→
G0] we mean the ith homotopy group of the simplicial space associated to it or, equivalently, the
ith homotopy group of the quotient stack [G0/G1].

Homotopy groups of a topological stack X can be defined in terms of pointed homotopy
classes of maps from spheres or, equivalently, as homotopy groups of a classifying space of X. For
details on these two definitions, and why they are equivalent, see [Noo12, Noo05]. Some basic
results on homotopy groups of stacks (such as the fiber homotopy exact sequence of a fibration)
can be found in [Noo10].

Caveat on notation. When i= 0, 1, the homotopy group πnG should not be confused with the
usage of π0 and π1 for coker ∂ and ker ∂; the two types of notation agree only when G0 and G1

are discrete groups.
Recall that a map f :X → Y of topological spaces is n-connected if πif : πiX → πiY is an

isomorphism for i6 n and a surjection for i= n+ 1.
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Proposition 7.2. Let G = [G1→G0] be a topological crossed-module and n> 0 an integer.
The following are equivalent:

(i) the map ∂ is (n− 1)-connected;

(ii) the quotient stack G := [G0/G1] is n-connected (in the sense of [Noo05, § 17]);

(iii) the classifying space of G is n-connected. (We are viewing G as a stack and ignoring its
group structure.)

Proof. The equivalence of (i) and (ii) follows from the homotopy fiber sequence applied to
the fibration sequence of stacks G1→G0→ [G0/G1]. The equivalence of (ii) and (iii) follows
from [Noo12, Theorem 10.5]. 2

Definition 7.3. We say that a Lie crossed-module G is n-connected if it satisfies the equivalent
conditions of Proposition 7.2.

It follows from Proposition 7.2 that the notion of n-connected is invariant under equivalence
of Lie crossed-modules.

Remark 7.4. A Lie crossed-module G is 2-connected if and only if πi∂ : πiG1→ πiG0 is an
isomorphism for i= 0, 1. This is because π2 of every (finite-dimensional) Lie group vanishes.

7.1 Definition of the connected covers

In this subsection we define the nth connected cover of a Lie crossed-module for n6 2. In the next
section we prove that these definitions are functorial with respect to butterflies. In particular, it
follows that they are invariant under equivalence of Lie crossed-modules.

The discussions of this and the next section are valid for topological crossed-modules (and
for infinite-dimensional Lie crossed-modules) as well.

The zeroth connected cover of G. We have the following result.

Lemma 7.5. A Lie 2-group G is connected if and only if it has a presentation by a Lie crossed-
module [G1→G0] with G0 connected.

Proof. Choose an atlas ϕ :G0→ G such that G0 is a Lie group and ϕ is a differentiable weak
homomorphism (Lemma 6.2).

If G0 is connected, then G is clearly connected, being the surjective image of a connected
group. Conversely, if G is connected, we may replace G0 by its connected component of the
identity to obtain an atlas ϕ :G0→ G with G0 connected. The desired crossed-module is obtained
by setting G1 := ∗ ×1G,G,ϕ G0, as in the proof of Lemma 6.2. 2

For a given Lie crossed-module G = [G1→G0], its zeroth connected cover is defined to be

G〈0〉 := [∂−1(Go0)→Go0],

where Go stands for the connected component of the identity. The crossed-module G〈0〉 should be
thought of as the connected component of the identity of G. There is an obvious strict morphism
q0 : G〈0〉 →G which induces isomorphisms on πi for i> 1 (see Proposition 7.9).
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The first connected cover of G. We have the following result.

Lemma 7.6. A Lie 2-group G is 1-connected if and only if it has a presentation by a Lie crossed-
module [G1→G0] with G0 1-connected and G1 connected.

Proof. Choose an atlas ϕ :G0→ G such that G0 is a Lie group and ϕ is a differentiable weak
homomorphism (Lemma 6.2), and let [G1→G0] be the corresponding Lie crossed-module (as in
the proof of Lemma 6.2).

If G0 is 1-connected and G1 is connected, a fiber homotopy exact sequence argument applied
to the fibration sequence of topological stacks

G1→G0→ G

implies that G is 1-connected.

Conversely, suppose that G is 1-connected. By Lemma 7.5, we may assume that the atlas
G0 is connected. By replacing the atlas G0 by its universal cover, we may also assume that G0

is 1-connected. A fiber homotopy exact sequence argument applied to the fibration sequence of
topological stacks

G1→G0→ G

implies that G1 is connected. 2

For a given Lie crossed-module G = [G1→G0], its first connected cover is defined to be

G〈1〉 := [Lo→ G̃o0],

where L :=G1 ×G0 G̃
o
0 and the tilde denotes universal cover. There is an obvious strict

morphism q1 : G〈1〉 →G which factors through q0 and induces isomorphisms on πi for i> 2
(see Proposition 7.9).

The second connected cover of G. We have the following result.

Lemma 7.7. A Lie 2-group G is 2-connected if and only if it has a presentation by a Lie crossed-
module [G1→G0] with G0 and G1 both 1-connected.

Proof. Choose an atlas ϕ :G0→ G such that G0 is a Lie group and ϕ is a differentiable weak
homomorphism (Lemma 6.2), and let [G1→G0] be the corresponding Lie crossed-module (as in
the proof of Lemma 6.2).

If G0 and G1 are both 1-connected, a fiber homotopy exact sequence argument applied to
the fibration sequence of topological stacks

G1→G0→ G

implies that G is 2-connected. (Here we have used the fact that π2(G0) = 0, which is always true
for Lie groups.)

Conversely, suppose that G is 2-connected. By Lemma 7.6, we may assume that the atlas G0

is 1-connected. A fiber homotopy exact sequence argument applied to the fibration sequence of
topological stacks

G1→G0→ G

implies that G1 is connected. 2
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For a given Lie crossed-module G = [G1→G0], its second connected cover is defined to be

G〈2〉 := [L̃o→ G̃o0],

where L is as defined above for the first connected cover. There is an obvious strict
morphism q2 : G〈2〉 →G which factors through q1 and induces isomorphisms on πi for i> 3
(see Proposition 7.9).

Remark 7.8. Note that a 1-connected Lie group is automatically 2-connected. The same is not
true for Lie 2-groups.

7.2 Uniform definition of the n-connected covers
In order to be avoid repetition in the constructions and arguments given in the next section, we
phrase the definition of G〈n〉 in a uniform manner for n= 0, 1, 2 and highlight the main properties
of the connected covers qn :G〈n〉 →G which will be needed in the next section.2 Our discussion
will be valid for topological crossed-modules (and for infinite-dimensional Lie crossed-modules)
as well.

First off, we need functorial n-connected covers qn :G〈n〉 →G for n= 0, 1, 2.3 We set
G〈−1〉=G. We take G〈0〉 :=Go and G〈1〉=G〈2〉= G̃o, where Go is the connected component
of the identity and G̃o is its universal cover. (In the case where G is a topological group, or an
infinite-dimensional Lie group, one has to make a different choice for G〈2〉; see Remark 7.10.)

For a crossed-module G = [G1→G0] we define G〈n〉 to be

G〈n〉 := [∂ : L〈n− 1〉 →G0〈n〉],

where L :=G1 ×G0,qn G0〈n〉 and ∂ = pr2 ◦ qn−1. The action of G0〈n〉 on L〈n− 1〉 is defined as
follows. There is an action of G0〈n〉 on L defined componentwise (on the first component it is
obtained, via qn, from the action of G0 on G1, and on the second component it is given by right
conjugation). By functoriality of the nth connected cover construction (applied to L), this action
lifts to L〈n− 1〉. For G〈n〉 to be a crossed-module, we use the following property.

(F0) For every x ∈G〈n− 1〉, the action of qn−1(x) ∈G on G〈n− 1〉 obtained (by functoriality)
from the conjugation action of qn−1(x) on G is equal to conjugation by x.

There is a strict morphism of crossed-modules qn : G〈n〉 →G defined as follows.

L〈n− 1〉
pr1 ◦ qn−1 //

∂

��

G1

∂

��
G0〈n〉 qn

// G0

We will also need the following property.

(F1) The map qn−1 :G〈n− 1〉 →G admits local sections near every point in its image (and
hence is a fibration with open-closed image).

2 Apart from improving the clarity of proofs in the next section, there is another purpose for emphasizing properties
of connected covers in the form of axioms F: in contexts other than Lie crossed-modules, it may be possible to
formulate the axioms F for, say, other values of n, or by using different constructions for G〈n〉. In such cases, our
proofs apply verbatim.
3 This, in fact, can be arranged for any n in the category of topological groups.
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Proposition 7.9. For i6 n, we have πi(G〈n〉) = {0}. For i> n+ 1, the morphism qn : G〈n〉 →
G induces isomorphisms πi(qn) : πi(G〈n〉)→ πi(G).

Proof. Consider the following commutative diagram.

L〈n− 1〉 ∂ //

pr1 ◦ qn−1

��

G0〈n〉 //

qn
��

G〈n〉

qn

��
G1 ∂

// G0
// G

Both rows are fibration sequences of crossed-modules (and so induce fibration sequences on the
classifying spaces). The first claim follows by applying the fiber homotopy exact sequence to
the first row. For the second claim, use the fact that L→G1 is a fibration (because of (F1))
with the same fiber as qn :G0〈n〉 →G0, and apply the fiber homotopy exact sequence to the two
rows of the above diagram (together with the five lemma). 2

Remark 7.10. In the definition of G〈n〉= [L〈n− 1〉 →G0〈n〉], the fact that G0〈n〉 is an n-
connected cover of G0 is not really needed. All we need (e.g. for the discussion in the next
section and the proof of Proposition 8.8) is to have a functorial replacement q :G′→G such that
q is a fibration and πiG

′ is trivial for i6 n. (For L〈n− 1〉, however, we do still need to take the
(n− 1)st connected cover of L.)

For instance, we could take G′ to be the group Path1(G) of paths originating at the identity
element. To illustrate this by means of an example, let G = [1→G] be an arbitrary group. In
this case, for the zeroth, first and second connected covers we find, respectively,

[Ω1(G)→ Path1(G)], [Ω1(G)o→ Path1(G)], [Ω̃1(G)o→ Path1(G)],

where Ω1(G) = L is the based loop group. Note that in the finite-dimensional context this
construction would not be suitable, as Path1(G) is infinite-dimensional. That is why we chose
G〈2〉 := G̃o instead.

In the above discussion, the fact that we still need to use the (n− 1)st connected cover of L
in our construction of G〈n〉 is somewhat unsatisfactory, and one would hope that the same trick
that was applied to G can be applied to L as well. This is indeed possible, at the cost of using
a higher group model for L〈n− 1〉 (and thus for G〈n〉). For instance, instead of using

[Ω1(G)o→ Path1(G)]

as a model for G〈1〉, we could use the 3-group

[Ω1Ω1(G)→ Path1 Ω1(G)→ Path1(G)].

In general, this suggests that there is natural model of G〈n〉 as a Lie (n+ 2)-group which is
constructed solely using the Path1 and Ω1 functors.

8. Functorial properties of connected covers

For n6 2 we prove that our definition of the nth connected cover G〈n〉 of a Lie crossed-module
is functorial in Lie butterflies and satisfies the expected adjunction property (Proposition 8.8).
We will need the following property of the connected covers.
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(F2) For any homomorphism f :H →G such that πif : πiH → πiG is an isomorphism for
06 i6 n− 1, the diagram

H〈n− 1〉
f〈n−1〉//

qn−1

��

G〈n− 1〉
qn−1

��
H

f
// G

is cartesian.

8.1 Construction of the nth connected cover functor

Consider the following Lie butterfly B : H→G.

H1
κ

""DDD

��

G1
ι

}}zzz

��
E

σ||zzz ρ !!DDD

H0 G0

The butterfly B〈n〉 : H〈n〉 →G〈n〉 is defined as follows.

LH〈n− 1〉
κn

((QQQ

��

LG〈n− 1〉
ιn

vvmmm

��

F 〈n− 1〉
σnvvmmmm
m

ρn ((QQQQ
Q

H0〈n〉 G0〈n〉

Let us explain what the terms appearing in this diagram mean. The groups LG and LH
are what we called L in the definition of the n-connected cover (see § 7.2). For example,
LH =H1 ×H0 H0〈n〉. The Lie group F appearing in the center of the butterfly is defined to
be

F :=H0〈n〉 ×H0 E ×G0 G0〈n〉.

The maps ρn and σn are obtained by composing qn−1 : F 〈n− 1〉 → F with the corresponding
projections. The map κn is obtained by applying the functoriality of (−)〈n− 1〉 to (pr2, κ ◦
pr1, 1) : LH → F . The definition of ιn is less trivial and is given in the next paragraphs. We need
to show that the kernel of σn : F 〈n− 1〉 →H0〈n〉 is naturally isomorphic to LG〈n− 1〉.

There is an equivalent way of defining F which is somewhat more illuminating. Set

K :=H0〈n〉 ×H0 E.

Let σ′ :K→H0〈n〉 be the first projection map and ρ′ :K→G0 the second projection map
composed with ρ. Then

F =K ×ρ′,G0 G0〈n〉.

Now, observe that we have a short exact sequence

1→G1
α−−→K

σ′−−→H0〈n〉 → 1.
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Therefore, we have a cartesian diagram

LG
� � β //

pr1
��

F

pr1

��
G1

� �

α
// K

and the sequence

1→ LG
β−−→ F

σ′◦ pr1−−−−−→H0〈n〉 → 1

is short exact. (Exactness at the right end follows from (F1) and the fact that H0〈n〉 is
connected.) A homotopy fiber sequence argument applied to this short exact sequence shows
that α induces isomorphisms πiG1→ πiK for 06 i < n. By (F2), we have a cartesian diagram
as follows.

LG〈n− 1〉 � � β〈n−1〉 //

qn−1

��

F 〈n− 1〉

qn−1

��
LG

� �

β
// F

Therefore
1→ LG〈n− 1〉 β〈n−1〉−−−−−−→ F 〈n− 1〉 σn−−−→H0〈n〉 → 1

is short exact, where σn := σ′ ◦ pr1 ◦ qn−1. (Exactness at the right end follows from (F1) and the
fact that H0〈n〉 is connected.) Setting ιn := β〈n− 1〉 completes the construction of our butterfly
diagram. The equivariance axioms for this butterfly follow from the functoriality of the (n− 1)st
connected cover.

Remark 8.1. In the case where we have a strict morphism f : H→G, we can define a natural
strict morphism f〈n〉 : H〈n〉 →G〈n〉 componentwise. It is natural to ask whether this morphism
coincides with the one we constructed above using butterflies. The answer is yes. The proof uses
the following property of connected covers.

(F3) If G is an n-connected group acting on H, then (id, qn−1) :GnH〈n− 1〉 →GnH is the
(n− 1)-connected cover of GnH. That is, the map (id, qn−1) is isomorphic to the qn−1 map of
GnH.

8.2 Effect on the composition of butterflies

The proof that the construction of the previous subsection respects composition of butterflies
is somewhat intricate. We will only consider Lie butterflies and assume that 06 n6 2, but the
exact same proofs apply verbatim to topological butterflies (and also to infinite-dimensional Lie
butterflies). We begin with a few lemmas.

Lemma 8.2. Let m> 0 be an integer. Consider a homotopy cartesian diagram of topological
spaces as follows.

X
h //

��

Y

f
��

Z g
// W
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Suppose that W is (m+ 1)-connected and Z is m-connected. Then h induces isomorphisms
πih : πiX → πiY for i6m.

Proof. The connectivity assumptions on Z and T imply that the homotopy fiber of g is m-
connected. Since the diagram is homotopy cartesian, the same is true of the homotopy fiber of
h. A homotopy fiber exact sequence implies the claim. 2

Corollary 8.3. Let f : Y →W and g : Z→W be homomorphisms of Lie groups and suppose
that W is (m+ 1)-connected. Suppose that either f or g is a fibration (e.g. surjective). Then we
have natural isomorphisms

Z〈m〉 ×W Y 〈m〉 ∼= (Z〈m〉 ×W Y )〈m〉 ∼= (Z ×W Y 〈m〉)〈m〉.

In particular, all three groups are m-connected.

Proof. We prove the first equality. Apply Lemma 8.2 to the diagram

X
h //

��

Y

f

��
Z〈m〉 g ◦ qm

// W

where X := Z〈m〉 ×W Y . The diagram is homotopy cartesian because either f or g ◦ qm is a
fibration. Now apply (F2) to h= pr2 : Z〈m〉 ×W Y → Y . 2

The next lemma is the technical core of this subsection.

Lemma 8.4. Consider the commutative diagram

X
h //

k
��

Y

f

��
Z g

// W

of Lie groups. Suppose that W acts on X so that [f ◦ h :X →W ] is a Lie crossed-module. Also,
suppose that the induced action of Y on X via f makes the map h Y -equivariant (the action
of Y on itself being the right conjugation). Assume the same for the induced action of Z on X
via g. Suppose that W is (m+ 1)-connected, f is surjective, and k is closed injective normal
with (m+ 1)-connected cokernel. Then the sequence

1 // X〈m〉
(k〈m〉,h〈m〉) // Z〈m〉 ×W Y 〈m〉 u // (Z

X
×
W
Y )〈m〉 // 1

is short exact. Here, u is the composition (qm, id)〈m〉 ◦ φ where φ : Z〈m〉 ×W Y 〈m〉 ∼−→

(Z〈m〉 ×W Y )〈m〉 is the isomorphism of Corollary 8.3. (For the definition of Z
X
×
W
Y see the

end of § 6.). In other words, we have a natural isomorphism

Z〈m〉
X〈m〉
×
W

Y 〈m〉 ∼= (Z
X
×
W
Y )〈m〉.
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Proof. We start with the short exact sequence

1→X → Z ×W Y → Z
X
×
W
Y → 1,

which is essentially the definition of Z
X
×
W
Y . From it we construct the exact sequence

1→X〈m〉 α−−→ Z〈m〉 ×W Y
(qm,id)−−−−−→ Z

X
×
W
Y

where α :X〈m〉 → Z〈m〉 ×W Y is (k〈m〉, h ◦ qm). To see why this sequence is exact, we calculate
the kernel of the homomorphism (qm, id) : Z〈m〉 ×W Y → Z ×W Y :

X ×Z×WY (Z〈m〉 ×W Y )∼=X ×Z×WY ((Z ×W Y )×Z Z〈m〉)∼=X ×Z Z〈m〉 ∼=X〈m〉.

For the first equality we used

Z〈m〉 ×W Y ∼= (Z ×W Y )×Z Z〈m〉,

and for the last equality we used (F2) for k :X → Z. (Note that since coker k is (m+ 1)-
connected, k :X → Z induces isomorphisms on πi for all i6m.)

Observe that the last map in the above sequence is a fibration with (open-closed) image

I ⊆ Z
X
×
W
Y . This fibration has an m-connected kernel X〈m〉, so, using the homotopy fiber exact

sequence, we see that it induces isomorphisms on πi for i6m. By (F2) we get the following
cartesian square.

(Z〈m〉 ×W Y )〈m〉

qm

��

(qm,id)〈m〉 // (Z
X
×
W
Y )〈m〉

qm

��
Z〈m〉 ×W Y

(qm,id)
// I

(Note that I〈m〉= (Z
X
×
W
Y )〈m〉, because the mth connected cover depends only on the

connected component of the identity, which is contained in I.) Precomposing the top row
with the isomorphism φ : Z〈m〉 ×W Y 〈m〉 ∼−→ (Z〈m〉 ×W Y )〈m〉 of Corollary 8.3, and calling
the composition u as in the statement of the lemma, we find the following commutative diagram
in which the square on the right is cartesian.

1 // X〈m〉
(k〈m〉,h〈m〉) //

id

��

Z〈m〉 ×W Y 〈m〉

(id,qm)

��

u // (Z
X
×
W
Y )〈m〉

qm

��

// 1

1 // X〈m〉
(k〈m〉,h◦qm)

// Z〈m〉 ×W Y
(qm,id)

// I // 1

Since the bottom row is short exact, so is the top row. The proof of the lemma is therefore
complete. 2
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We need one more technical lemma.

Lemma 8.5. Consider a commutative diagram

X
h //

k
��

Y

f
��

Z g
// W

of topological groups. Suppose that W acts on X so that [f ◦ h :X →W ] is a topological crossed-
module. Also, suppose that the induced action of Y on X via f makes the map h Y -equivariant
(the action of Y on itself being the right conjugation). Assume the same for the induced action
of Z on X via g. Suppose that f is surjective. Let α :W ′→W be a homomorphism with normal
image, and denote its cokernel by W0. Denote the pullback of the above diagram along α by
adding prime superscripts. Denote the images of X and Z in W0 by X0 and Z0, respectively.
(Note that X0 is normal in W0.) Then the sequence

1→ Z ′
X′

×
W ′

Y ′→ Z
X
×
W
Y → Z0/X0→ 1

is exact. In particular, if the image of W ′ is open in W , then Z ′
X′

×
W ′

Y ′ is a union of connected

components of Z
X
×
W
Y .

Proof. The proof is elementary group theory. 2

We are now ready to prove that our construction of n-connected covers is functorial, that is,
it respects composition of butterflies.

Proposition 8.6. Let C : K→H and B : H→G be Lie butterflies, and let B ◦ C : K→G be
their composition. Then there is a natural isomorphism of butterflies B〈n〉 ◦ C〈n〉 ⇒ (B ◦ C)〈n〉
which makes the assignment G 7→G〈n〉 a bifunctor from the bicategory LieXM of Lie crossed-
modules and butterflies to itself.

Proof. Let C and B be given by

K1
κ

""FFF

��

H1
ι

||xxx

��

EC

σ||xxx ρ ""FFF

K0 H0

H1
κ′

""FFF

��

G1
ι′

||xxx

��

EB

σ′
||xxx

ρ′
""FFF

H0 G0

respectively. Then the composition B ◦ C is the following butterfly.

K1
%%LLL

��

G1
yysss

��

EC
H1

×
H0

EB

yyrrr %%KKK

K0 G0
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Recall the following notation from § 8.1:

FC =K0〈n〉 ×K0 EC ×H0 H0〈n〉 and FB =H0〈n〉 ×H0 EB ×G0 G0〈n〉.

The group appearing in the center of the butterfly B〈n〉 ◦ C〈n〉 is

FC〈n− 1〉
LH〈n−1〉
×

H0〈n〉
FB〈n− 1〉.

The group appearing in the center of the butterfly (B ◦ C)〈n〉 is

FB◦C〈n− 1〉= (K0〈n〉 ×K0 (EC
H1

×
H0

EB)×G0 G0〈n〉)〈n− 1〉.

We show that there is a natural isomorphism from the former to the latter. For this, we first
apply Lemma 8.4 with m= n− 1 and

X = LH , Z = FC , Y = FB, W =H0〈n〉

to get

FC〈n− 1〉
LH〈n−1〉
×

H0〈n〉
FB〈n− 1〉 ∼= (FC

LH

×
H0〈n〉

FB)〈n− 1〉.

It is now enough to construct a natural isomorphism

FC
LH

×
H0〈n〉

FB → FB◦C ,

that is,

(K0〈n〉 ×K0 EC ×H0 H0〈n〉)
LH

×
H0〈n〉

(H0〈n〉 ×H0 EB ×G0 G0〈n〉)

−→ (K0〈n〉 ×K0 (EC
H1

×
H0

EB)×G0 G0〈n〉).

This, however, may not be the case. More precisely, there is such a natural homomorphism,
but it is not necessarily an isomorphism. It is, however, an isomorphism between the connected
components of the identity elements (and that is enough for our purposes). To see this, use
Lemma 8.5 with

X =H1, Z =K0〈n〉 ×K0 EC , Y = EB ×G0 G0〈n〉,
W =H0, W ′ =H0〈n〉 and α= qn.

(Recall that LH =H1 ×H0 H0〈n〉.) Here we are using the fact that α= qn :H0〈n〉 →H0 surjects
onto the connected component of the identity element in H0.

We omit the verification that the isomorphism B〈n〉 ◦ C〈n〉 ⇒ (B ◦ C)〈n〉 respects
isomorphisms of butterflies and that it commutes with the associator isomorphisms in LieXM. 2

The proposition is valid in the topological setting as well, and the proof is identical.

Corollary 8.7. Let f : H→G be an equivalence of Lie crossed-modules. Then the induced
morphism f〈n〉 : H〈n〉 →G〈n〉, for n= 0, 1, 2, is also an equivalence of Lie crossed-modules.

8.3 Adjunction property of connected covers
We show that n-connected covers of Lie crossed-modules satisfy the expected adjunction
property, namely that a weak morphism f : H→G from an n-connected Lie crossed-module
H uniquely factors through qn : G〈n〉 →G (Proposition 8.8).

286

https://doi.org/10.1112/S0010437X1200067X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1200067X


Integrating morphisms of Lie 2-algebras

As in the previous section, we will assume that n6 2. What we say remains valid for
topological crossed-modules (and also for infinite-dimensional Lie crossed-modules). We will use
the following adjunction property for groups.

(F4) For any homomorphism f :H →G with H being (n− 1)-connected, f factors uniquely
through qn−1 :H〈n− 1〉 →H.

Proposition 8.8. Let G and H be Lie crossed-modules, and suppose that H is n-connected
(Definition 7.3). Then the morphism q = qn : G〈n〉 →G induces an equivalence of hom-groupoids

q∗ : LieXM(H,G〈n〉) ∼−→ LieXM(H,G).

Proof. We construct an inverse functor (quasi-inverse, to be precise) to q∗. The construction is
very similar to the construction of the n-connected cover of a butterfly given in the previous
subsection.

Since H = [H1→H0] is n-connected, we may assume that H0 is n-connected and H1 is
(n− 1)-connected (this was discussed in § 7.1). Consider a butterfly B,

H1
κ

""DDD

��

G1
ι

}}zzz

��
E

σ||zzz ρ !!DDD

H0 G0

in LieXM(H,G). Define F := E ×G0 G0〈n〉. Let τ : F →H0 be σ ◦ pr1. Since τ is a (locally
trivial) fibration and H0 is connected, τ is surjective. On the other hand, ker τ is the inverse
image of ι(G1) under the projection pr1 : F → E; this is exactly G1 ×G0 G0〈n〉= LG. In other
words, we have a short exact sequence

1→ LG
β−−→ F

τ−−→H0→ 1.

It follows from (F2) applied to β that the sequence

1→ LG〈n− 1〉 β〈n−1〉−−−−−−→ F 〈n− 1〉 τ◦qn−1−−−−−→H0→ 1

is also short exact.
Define the butterfly B′ to be

H1
κ′

%%KKK
KK

��

LG〈n− 1〉
β〈n−1〉

vvnnnn

��

F 〈n− 1〉

τ◦qn−1yysss
ss

% ((PPPPP

H0 G0〈n〉

where %= pr2 ◦ qn−1 and κ′ is obtained by the adjunction property (F4) applied to qn−1 :
F 〈n− 1〉 → F .

It is easy to verify that B 7→B′ is an inverse to q∗. (For this, use the fact that E is the
pushout of F 〈n− 1〉 along pr1 ◦ qn−1 : LG〈n− 1〉 →G1 and apply [Noo08, § 10.2].) 2

Corollary 8.9. For n= 0, 1, 2, the inclusion of the full sub-bicategory of LieXM consisting
of n-connected Lie crossed-modules is left adjoint to the n-connected cover bifunctor (−)〈n〉 :
LieXM→ LieXM.
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9. The bifunctor from Lie crossed-modules to L∞-algebras

In this section we prove our main integration results for weak morphisms of 2-term L∞-algebras
(Theorem 9.4 and Corollary 9.5). Throughout the section, we fix the base ring to be R or C.
All Lie groups and Lie algebras are finite-dimensional (real or complex). We also have a slight
change of notation: from now on LieAlgXM only contains finite-dimensional Lie algebra crossed-
modules.

Definition 9.1. To a Lie crossed-module G = [G1→G0] we associate a crossed-module in Lie
algebras

Lie G := [LieG1→ LieG0],

where LieG stands for the Lie algebra associated to the Lie group G. To a crossed-module in
Lie algebras V = [V1→ V0] we associate a Lie crossed-module

Int V := [Int V1→ Int V0],

where Int V is the connected and simply connected Lie group associated to the Lie algebra V .

Definition 9.2. We define the bicategory LieAlgXM to be the full sub-bicategory of
2TermL[∞ consisting of strict 2-term L∞-algebras (i.e. Lie algebra crossed-modules).

Note that, by Proposition 5.2, LieAlgXM is biequivalent to a full sub-2-category of the
2-category 2TermL∞.

Before proving our main result (Theorem 9.4), we need a lemma.

Lemma 9.3. Let H, K and K ′ be connected Lie groups. Suppose that H acts on K and K ′ by
automorphisms, and let f :K→K ′ be a Lie homomorphism. If the induced map Lie f : LieK→
LieK ′ is H-equivariant, then so is f itself.

Proof. This follows from the fact that if two group homomorphisms induce the same map on Lie
algebras, then they are equal. 2

Theorem 9.4. Taking Lie (as in Definition 9.1) induces a bifunctor

Lie : LieXM→ 2TermL[∞.

The bifunctor Lie factors through and essentially surjects onto LieAlgXM. Furthermore, for
H,G ∈ LieXM, the induced functor

Lie : LieXM(H,G)→ 2TermL[∞(Lie H, Lie G)

on hom-groupoids is:

(i) faithful if H is connected;

(ii) fully faithful if H is 1-connected;

(iii) an equivalence if H is 2-connected.

Proof. That Lie : LieXM→ 2TermL[∞ is a bifunctor follows from the fact that taking Lie
algebras is exact and commutes with fiber products of Lie groups.

Proof of (i). Let G = [G1→G0] and H = [H1→H0]. Let B, B′ : H→G be two butterflies. Since
H is connected, we may assume that H0 is connected (see § 7.1). Write the NE–SW short exact
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sequences for B and B′ as

0→G1→ E→H0→ 0,
0→G1→ E′→H0→ 0.

Consider two isomorphisms B⇒B′, given by Φ,Ψ : E→ E′, such that

Lie Φ = Lie Ψ : Lie E→ Lie E′.

Then Φ and Ψ are equal on the connected component Eo and also on G1. Since H0 is connected,
Eo and G1 generate E, so Φ and Ψ are equal on the whole of E.

Proof of (ii). With notation as in the previous part, we may assume that H0 is connected and
simply connected and that H1 is connected (see § 7.1). Consider an isomorphism LieB⇒ LieB′

given by f : Lie E→ Lie E′. We show that f integrates to Φ : E→ E′.
Let Ẽ→ E be the universal cover of E. Integrate f to a homomorphism Φ̃ : Ẽ→ E′. Consider

the following diagram.

Ẽ

β
��

Φ̃

��

γ

��99
99

99
99

99
99

99

G

α
��

δ
99ssssssssss
E

Φ

��

σ

%%LLLLLLLLL

0 // G1

rrrrrrrrr

99

%%KKKKKKKKK H0
// 0

E′

99sssssssss

Here G is the kernel of γ := σβ : Ẽ→H0. Note that G∼=G1 ×E Ẽ; that is, G is the pullback
of Ẽ along the map G1→ E. Since πiH0 = 0 for i= 1, 2, a fiber homotopy exact sequence
argument shows that π1G1→ π1E is an isomorphism. Hence G is the universal cover of G1

and, in particular, is connected.
If we apply Lie to the above diagram, we obtain a commutative diagram of Lie algebras.

Therefore, since all the groups involved are connected, the original diagram of Lie groups is also
commutative. Since the top left square is cartesian, δ induces an isomorphism δ : ker α→ ker β.
Commutativity of the diagram then implies that Φ̃ vanishes on ker β. Therefore, Φ̃ induces a
homomorphism Φ : E→ E′ which makes the diagram commute.

By looking at the corresponding Lie algebra maps, we see that if f commutes with the other
two maps of the butterflies, then so does Φ; that is, Φ is indeed a morphism of butterflies from
B to B′.

Proof of (iii). We may assume that H0 and H1 are connected and simply connected (see § 7.1).
In view of the previous part, we have to show that every butterfly B : Lie H→ Lie G,

LieH1
κ

$$JJJ
J

��

LieG1
ι

zzttt
t

��
E

σzzttt
t

ρ $$JJJ
J

LieH0 LieG0
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integrates to a butterfly IntB : H→G. Let Int E be the simply connected Lie group whose Lie
algebra is E. Let G be the kernel of Int σ : Int E→H0. Since πiH0 = 0 for i= 0, 1, 2, an easy
homotopy fiber exact sequence argument implies that G is connected and simply connected.

We identify the Lie algebras of G and G1 via ι : LieG1→ E and regard them as equal.
Since G is simply connected and G1 is connected, we have a natural isomorphism ῑ :G1→
G/N for some discrete central subgroup N ⊆G. We claim that N is a normal subgroup
of Int E. To prove this, we compare the conjugation action of Int E on G with the action of
Int E on G1 obtained via Int ρ : Int E→G0. (The latter is the integration of the Lie algebra
homomorphism ρ : E→ LieG0.) The equivariance axiom of the butterfly for the map ρ, plus
the fact that ῑ−1 ◦ pr :G→G1 induces the identity map on the Lie algebras, implies (by
Lemma 9.3) that ῑ−1 ◦ pr :G→G1 is Int E-equivariant. Therefore, its kernel N is invariant
under the conjugation action of Int E; that is, N ⊆ Int E is normal.

An argument similar to the one used in the previous part shows that the map Int ρ : Int E→
G0 vanishes on N . More precisely, repeat the same argument with the following diagram.

Int E

��
Int ρ

��

Int σ

  AA
AA

AA
AA

AA
AA

AA
AA

G

α
��

δ
77nnnnnnnnnnnn (Int E)/N

ρ̄

��

σ̄ ''PPPPPPPPPP

0 // G1
ῑ

nnnnnnnnnn

77

∂ ((PPPPPPPPPPPP H0
// 0

G0

Thus, we obtain an induced homomorphism ρ̄ : (Int E)/N →G0. Denote the map
(Int E)/N →H0 induced from Int σ by σ̄. Collecting what we have so far, we obtain a partial
butterfly diagram as follows.

G1
ῑ

xxqqqq

��

(Int E)/N

σ̄xxqqqq
ρ̄ &&MMMM

H0 G0

(Observe that applying Lie to this partial butterfly gives us back the corresponding portion of
the original butterfly B.) Finally, using the fact that H1 is connected and simply connected, we
can complete the butterfly by integrating κ to κ̄ :H1→ (Int E)/N . It is easily verified that the
resulting diagram satisfies the butterfly axioms; this is the sought after butterfly IntB : H→G.
The proof is complete. 2

Corollary 9.5. The bifunctor Int : LieAlgXM→ LieXM is left adjoint to the bifunctor
Lie : LieXM→ LieAlgXM (see Definition 9.1).

Proof. By Proposition 7.2, for any crossed-module in Lie algebras V, the associated Lie crossed-
module Int V is 2-connected. The corollary now follows from Theorem 9.4. 2
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Remark 9.6. Presumably, the adjunction of Corollary 9.5 can be extended to the following.

Int : LieAlgXM
� _

��

� LieXM : Lie
� _

��

Int : 2TermL∞ � DiffGpSt : Lie

Here, by DiffGpSt we mean the 2-category of differentiable group stacks. The inclusion on the
right is given by the fully faithful bifunctor

LieXM→DiffGpSt,

[G1→G0] 7→ [G0/G1].

10. Applications

In Lie theory, integration results are tools to linearize problems. For instance, to study a one-
parameter group of automorphisms of a manifold M , one looks at the corresponding vector
field. Integrating vector fields reduces the problem of studying symmetries of a manifold to
the study of the Lie algebra of vector fields. More precisely, integration results allow us to study
actions of a Lie groupG on a manifoldM by considering infinitesimal actions of the corresponding
Lie algebra LieG on M .

Now replace M by a ‘higher’ object, say a differentiable stack M. In this case, the symmetries
of M form a Lie 2-group. (In general, symmetries of an object in an n-category form an n-group.)
To study symmetries of M, one looks at actions of Lie 2-groups G on M. Integration results, such
as the ones proved in this paper, allow us to reduce the study of such actions to the linear
problem of studying infinitesimal actions of the Lie 2-algebra Lie G on M.

In this section we illustrate these ideas by two simple examples.

10.1 Actions on weighted projective stacks

Let n1, n2, . . . , nr be a sequence of positive integers, and consider the weight-(n1, n2, . . . , nr)
action of C∗ on Cr − {0} (that is, t ∈ C∗ acts by multiplication by (tn1 , tn2 , . . . , tnr)). The stack
quotient of this action is the weighted projective stack P(n1, n2, . . . , nr).

The weighted projective general linear 2-group

PGL(n1, n2, . . . , nr)

(see [BN06, § 8]) is defined to be the complex (algebraic) Lie 2-group associated to the crossed-
module

[∂ : C∗→Gn1,n2,...,nr ],

where Gn1,n2,...,nr is the group of all C∗-equivariant (for the above weighted action) complex
automorphisms f : Cr − {0}→ Cr − {0}. The homomorphism ∂ : C∗→Gn1,n2,...,nr is the one
induced from the C∗-action. We take the action of Gn1,n2,...,nr on C∗ to be trivial.

By [BN06, Theorem 8.1], PGL(n1, n2, . . . , nr) is equivalent to the 2-group of complex
automorphisms of P(n1, n2, . . . , nr).
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Now, let G be a 2-connected complex Lie 2-group. By the cited theorem, giving an action of
G on P(n1, n2, . . . , nr) is the same as giving a weak homomorphism of Lie 2-groups

G→ PGL(n1, n2, . . . , nr).

By Theorem 9.4, this is equivalent to giving a weak morphism of Lie algebra crossed-modules

[LieG1→ LieG0] → [Lie C∗→ LieGn1,n2,...,nr ],

where [G1→G0] is a Lie crossed-module presenting G. Observe that the map Lie C∗→
LieGn1,n2,...,nr is injective, so the crossed-module on the right-hand side is equivalent to the
honest Lie algebra

Lie(Gn1,n2,...,nr)/ Lie(C∗)∼= Lie(Gn1,n2,...,nr/C∗)∼= pgl

(
n1

d
,
n2

d
, . . . ,

nr
d

)
,

where d= gcd(n1, n2, . . . , nr) and pgl(n1/d, n2/d, . . . , nr/d) := Lie(PGL(n1/d, n2/d, . . . , nr/d))
is now an honest Lie algebra. If we let G be the cokernel of G1→G0, we conclude from the above
discussion that there is a bijection

{actions of G on P(n1, n2, . . . , nr)}←→
{

Lie algebra maps LieG→ pgl

(
n1

d
,
n2

d
, . . . ,

nr
d

)}
.

The structure of the algebraic group Gn1,n2,...,nr is studied in detail in [Noo07]. This gives
us a good handle on the Lie algebra pgl(n1, n2, . . . , nd) and hence on 2-group actions on
P(n1, n2, . . . , nr).

Remark 10.1. Observe that PGL(n1/d, n2/d, . . . , nr/d) is the automorphism 2-group of the
reduced orbifold P(n1/d, n2/d, . . . , nr/d), and that P(n1, n2, . . . , nr) is a µd-gerbe over
P(n1/d, n2/d, . . . , nr/d). The above discussion implies that for every 2-connected complex Lie
2-group G, any action of G on P(n1/d, n2/d, . . . , nr/d) lifts uniquely (up to 2-isomorphism) to
an action on P(n1, n2, . . . , nr). For instance, when n1 = n2 = · · ·= nr = d, giving an action of G

on P(d, d, . . . , d) would be equivalent to giving an action of G on its coarse moduli space CPr−1.

10.2 2-representation theory
In the classical theory, the functors Lie and Int (see Definition 9.1) relate representation theory
of a Lie group G to the representation theory of its Lie algebra LieG. For Lie 2-groups, the
same correspondence relates 2-representations of a Lie 2-group G to representations of the Lie
2-algebra Lie G.

We outline a possible application of our methods to the representation theory of 2-groups on
an abelian category. Such actions arise, for instance, in the work of Frenkel and Gaitsgory [FG06]
and Frenkel and Zhu [FZ12] in the context of the geometric Langlands program, where they are
used to study representations of double loop groups.

It is argued in [FZ12] that the correct double loop group analogues of the projective
representations of loop groups are ‘gerbal’ representations of the double loop group on certain
abelian categories (e.g. on the category of Fock representations of a certain Clifford algebra; this
is the higher analogue of the fermionic Fock representation of gl∞). This led the authors to study
weak homomorphisms

G→GL(C), representation of G on the abelian category C,

G→ π0 GL(C), ‘gerbal’ reprsentation of G on C,
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and the corresponding Lie algebra representations. In [Zhu09] the Lie 2-algebra Lie GL(C) is
described. This, in conjunction with the butterfly method of § 3, provides a new way of studying
representations of a Lie 2-algebra on Lie GL(C). Our integration results (§ 9) would then enable
one to promote these to Lie 2-group representations.

It should be stressed that many interesting examples of representations of Lie groups or
algebras on abelian categories involve actions of infinite-dimensional Lie groups or algebras
(e.g. GL∞,∞ and gl∞,∞). Studying these requires generalizing the results of this paper to infinite
dimensions, which is a subject for further investigation.
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Appendix A. Functorial n-connected covers for n > 3

Axioms (F1–4) discussed in §§ 7–8 have a certain iterative property which we would like to point
out in this appendix. To simplify the notation, we will replace n− 1 by m.

We saw in §§ 7–8 that, for m6 1, the standard choices for the m-connected cover functors
(−)〈m〉 on the category of topological groups automatically satisfy (F1–4). Using this, we
constructed our m-connected cover bifunctor (−)〈m〉 on the bicategory of topological (or Lie)
crossed-modules for m6 2. It can be shown that these bifunctors again satisfy (a categorified
version of) axioms (F1–4).

A magic seems to have occurred here: we managed to raise m from 1 to 2! This may sound
contradictory, as we do not expect to have a functorial 2-connected cover functor (−)〈2〉 on the
category of topological groups which satisfies either the pullback property (F2) or the adjunction
property (F4).

This apparent contradiction is explained by noticing that our definition of (−)〈2〉 indeed
yields a crossed-module, even if the input is a topological group. More precisely, for a topological
group G we get

G〈2〉= [L̃o→G′],

where q :G′→G is a choice of a 2-connected replacement for G and L= ker q. (For example,
take G′ = Path1(G), the space of paths starting at 1; see Remark 7.10.) It is also interesting to
note that for different choices of the 2-connected replacement q :G′→G, the resulting crossed-
modules G〈2〉 are canonically (up to a unique isomorphism of butterflies) equivalent.

The upshot of this discussion is that 2-connected covers of topological groups seem to exist
more naturally as topological crossed-modules. Another implication is that we can now iterate
the process. For example, we get a functorial construction of a 3-connected cover G〈3〉 of a
topological group G as a 2-crossed-module, and this (essentially unique) construction enjoys
a categorified version of (F1–4).

This seems to hint at the following general philosophy: for any m6 k + 1, there should be a
(essentially unique) construction of m-connected covers G〈m〉 for topological k-crossed-modules
G which enjoys a categorified version of (F1–4).
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We point out that the notion of k-crossed-module exists for k 6 3 (see [Con84, AKU09]). The
butterfly construction of the tricategory of 2-crossed-modules (and weak morphisms) is being
developed in [AN]. For higher values of k, the simplicial approach is perhaps a better alternative,
as k-crossed-modules tend to become immensely complicated as k increases.

Remark. The above discussion applies to the case where topological groups are replaced by
infinite-dimensional Lie groups.
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AKU09 Z. Arvasi, T. S. Kuzpinari and E. Ö. Uslu, Three crossed modules, Homology, Homotopy Appl.

11 (2009), 161–187.
BC04 J. Baez and A. Crans, Higher-dimensional algebra. VI. Lie 2-algebras, Theory Appl. Categ. 12

(2004), 492–538.
BN06 K. Behrend and B. Noohi, Uniformization of Deligne–Mumford analytic curves, J. Reine Angew.

Math. 599 (2006), 111–153.
BG89 R. Brown and N. D. Gilbert, Algebraic models of 3-types and automorphism structures for

crossed modules, Proc. Lond. Math. Soc. (3) 59 (1989), 51–73.
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